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Abstract—A maximum a posteriori approach for enhancing speech
signals which have been degraded by statistically independent additive
noise is proposed. The approach is based upon statistical modeling of
the clean speech signal and the noise process using long training se-
quences from the two processes. Hidden Markov models (HMM’s) with
mixtures of Gaussian autoregressive (AR) output probability distri-
butions are used to model the clean speech signal. The model for the
noise process depends on its nature. For Gaussian noise with a theo-
retically flat power spectral density considered here, a low-order
Gaussian AR model is used. The parameter set of the HMM is esti-
mated using the Baum or the EM (estimation-maximization) algo-
rithm. The enhancement of the noisy speech is done by means of rees-
timation of the clean speech waveform using the EM algorithm.
Efficient approximations of the training and enhancement procedures
which involve explicit estimation of the state sequence associated with
the clean speech are examined. This results in the segmental k-means
approach for hidden Markov modeling, in which the state sequence
and the parameter set of the model are alternately estimated. Simi-
larly, the enhancement is done by alternate estimation of the state and
observation sequences, using Viterbi decoding and time-varying Wie-
ner filtering, respectively. An approximate improvement of 4.0-6.0 dB
in signal-to-noise ratio (SNR) is achieved at 10 dB input SNR.

I. INTRODUCTION

HE problem of enhancing speech signals which have

been degraded by noise is basically an estimation
problem in which a given function of the clean speech has
to be estimated from a given sample function of the noisy
speech so as to minimize the expected value of a given
distortion measure between the clean and the estimated
speech signals. Some examples are minimum mean-square
error (MMSE) estimation of the clean speech waveform
or of its sample spectrum function, given the noisy speech.
The latter example is of particular interest since optimal
autoregressive (AR) modeling of the clean speech, under
the Itakura-Saito distortion measure, is achieved by AR
modeling of its MMSE sample spectrum estimator [1].
Optimal solutions to the speech enhancement estimation
problem, in the above-defined sense or in a sense of max-
imizing an appropriately chosen likelihood function, as-
sume explicit knowledge of the joint probability distri-
bution (PD) of the clean speech signal and the noise
process. Such statistical knowledge is required in the
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above examples for evaluating the conditional expected
value of the clean speech or of its sample spectrum, given
the noisy speech, which are the optimal MMSE esti-
mators of the speech waveform and its sample spectrum,
respectively [2]. For the case considered in this paper
where the speech is degraded by statistically independent
additive noise, the PD’s of the clean speech signal and
the noise process must be known.

In practice, the PD of the speech signal is not known,
and the PD of the noise process is rarely available. In-
stead, the statistics of the sources are implicitly given in
terms of training sequences generated by the speech sig-
nal and the noise process. While such training sequences
can be directly applied to optimally solve the specific es-
timation problem of interest simply by replacing statisti-
cal expectations with sample averages, this requires a
substantial amount of memory and computation re-
sources. This is due to the necessity of storing the two
training sequences and reapplying them in estimating each
vector of the clean speech [1]. An alternative approach is
to first estimate the unknown PD’s of the speech signal
and the noise process from the given training sequences,
and then to use the estimated PD’s for constructing the
desired signal estimators. This two-step approach is usu-
ally suboptimal, but has proven useful in the speech en-
hancement application considered here. In fact, this ap-
proach is not new in the area of speech processing, as it
has been extensively used in speech recognition applica-
tions where explicit knowledge of the PD’s of the acoustic
signals is required in order to apply the likelihood ratio
test.

For the two-step enhancement approach to be tractable,
compact, but reliable, estimates of the PD’s of the speech
signal and the noise process must be obtained. This can
be accomplished by modeling the sample PD of each pro-
cess by a parametric PD which depends on a much smaller
number of parameters than the number of samples in the
training sequence itself. A useful class of models for
speech signals is that of Markov sources or hidden Mar-
kov models (HMM’s) [3]-[5]. These models assume that
the PD of any vector of speech samples, at a given time
instant, is parametric and is determined by the state at
which the process is assumed to be in at that time. Fur-
thermore, the transition from one state to another is Mar-
kovian of a given order, usually one. Such models have
proven very successful in speech recognition applications
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(see, e.g., [6]-[8]). Here, we shall use HMM’s with mix-
tures of Gaussian AR output PD’s to model the PD of the
clean speech signal. The appropriate model for the noise
process depends on the nature of the noise. Since in this
paper we shall be concerned only with Gaussian noise with
a theoretically flat power spectral density, a low-order AR
model will be used.

The parameter set of the HMM for the speech signal is
estimated by the maximum likelihood (ML) approach
using the Baum [8]-[12] or the EM (estimation-maximi-
zation) reestimation algorithm [13]-[14]. This algorithm
locally maximizes the probability density function (pdf)
of the model observation sequence for the given training
sequence of clean speech. The algorithm starts from an
initial HMM, and iteratively generates a sequence of
HMM’s with nondecreasing likelihood values by maxi-
mizing in each iteration the so-called auxiliary function.
An efficient approximation to the Baum algorithm, which
will also be examined here, is given by the segmental k-
means algorithm [15]. This algorithm locally maximizes
the joint pdf of the state and observation sequences of the
model for the given training sequence. This is done by
alternate maximization of the joint pdf once over all se-
quences of states assuming a parameter set of the model
is given, and then over all parameter sets assuming that
the most likely sequence of state is available. The esti-
mation of the most likely sequence of states is done by
the Viterbi algorithm [16], and the estimation of the pa-
rameter set of the model is done by the Baum reestimation
formulas [8]-[12]. The two algorithms perform similarly
when there is a unique sequence of states which domi-
nates the likelihood function of the HMM. The parameter
set of the model for the noise process is obtained by AR
modeling of the centroid covariance matrix of the training
sequence from the noise process.

Given the parameter sets of the speech and noise
models, a maximum a posteriori (MAP) approach for es-
timating the clean speech waveform is developed. The
MAP enhancement algorithm is a straightforward appli-
cation of the EM algorithm for reestimation of the clean
speech waveform given the noisy speech [17]. The algo-
rithm locally maximizes the conditional pdf of the clean
speech given the noisy speech. The algorithm starts from
the given noisy speech and generates a sequence of speech
sample functions with nondecreasing likelihood values by
maximizing in each iteration an appropriately defined
auxiliary function. Note that this enhancement algorithm
is consistent with the ML training procedure obtained by
using the Baum algorithm.

An approximate MAP approach, which is consistent
with the segmental k-means training procedure, is also de-
veloped and examined here. This algorithm locally max-
imizes the joint conditional pdf of the state and observa-
tion sequences associated with the clean speech, given the
noisy speech. This is done by alternate maximization of
the conditional pdf once over all state sequences assuming
that the clean speech vectors are given, and then over the
clean speech vectors assuming that the most likely state
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sequence is available. The estimation of the most likely
sequence of states is done by applying the Viterbi algo-
rithm to the current estimate of the clean speech signal.
The estimation of the clean speech vectors is done by time-
varying Wiener filtering of the noisy speech using the AR
covariance matrices of the HMM associated with the most
likely sequence of states and the AR covariance matrix of
the noise model.

The approximate MAP speech enhancement approach
is similar to the approach proposed by Lim and Oppen-
heim [18]. Both algorithms alternately estimate the orig-
inal speech signal, and its power spectral density as rep-
resented by an AR model, for any vector of the speech
signal. The two algorithms differ, however, in two major
aspects. First, the enhancement in [18] is done on a frame-
by-frame basis where estimation in one frame does not
affect the estimation in adjacent frames. Here, the en-
hancement of the speech signal in a given time interval
(which consists of several frames) is done simultaneously
and estimates in adjacent frames are dependent due to the
Markovian property of the model. The second difference
between the two approaches is that in [18], any AR model
for the current estimate of the speech signal can be cho-
sen, while here, the estimate of the AR model is con-
strained to the finite set of predesigned AR models.

The paper is organized as follows. In Section II, we
formulate the problem and specify the statistical models
used here. In Section III, we describe the training proce-
dures. In Section IV, we describe the enhancement algo-
rithms. In Section V, we provide experimental results.
Comments are given in Section VI.

II. PROBLEM FORMULATION
A. HMM’s for Clean Speech

Let p,, be the pdf of an HMM for the clean speech sig-
nal where A, denotes the parameter set of the model. We
consider HMM’s with M states and mixtures of L Gauss-
ian AR output processes at each state. Let y £ {y,t=
0, -+, T}, y € R¥, be a sequence of K-dimensional
vectors which represent the output from the model. Let x
£4{x,1=0,---,T}, x,€{l, -+, M}, bea se-
quence of states corresponding to y. Let h £ {h,, t = 0,
<+, T}, h,e{l, ---, L}, be a sequence of mixture
components corresponding to (x, y). The pdf p,, is given
by

p(y) =2 ;px,‘(x, h,y)
= ; ;Px‘(x)Px,\-(h[X)Pm()’|h,x) (1)

where p, (x) is the probability of the sequence of states
x, p,(h|x) is the probability of the sequence of mixture
components k given the sequence of states x, and p, ( y| A,
x) is the pdf of the output sequence y given {x, #}. The
probability p, (x) is given by

(2)
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where a, . denotes the transition probability from state

Xx;_1 at time ¢ — 1 to state x, at time ¢, and s 2 Ty
denotes the probability of the initial state xy. For py (k]| x)
and py,(y|h, x), we make the following standard as-

sumptions:

T T
P)\\(hlx) = p)\;(hi‘xl) £ 11 Chy|xt (3)
=0 t=0
and
T T
p)\s( }'|h, x) = o p)\.\( yl|h1’ X,) = '1;-[0 b( y1|hn xr)

(4)

where ¢, is the probability of choosing the mixture 4,
given that the process is in states x,, and b( y, |k, x,) is
the pdf of the output vector y, given (4, x,). For zero-
mean N th-order Gaussian AR output processes, we have

exp { —3y/S sy}

b()’,‘h,=’Y,x,=B) = (5)

K/2
(2m)"'" det'/? (S, 5)

where # denotes vector transpose, S|4
0215(AY 3A,5)~", 625 is the variance of the innovation
process of the AR source, and 4,5 is a K X K lower
triangular Toeplitz matrix in which the first N, + 1 ele-
ments of the first column constitute the coefficients of the
AR process, g, é ( 8v1 B(O)’ 8yi 6( 1, .-, 8y| B(NA‘))’
8y8(0) = 1.

The modeling problem is that of estimating the param-
eterset \, = (7, a, ¢, S) where 7 £ {73}, a £ {a.s},
c&{c, s}, and S & {S, 5} fora, B =1, -+, Mand
¥y =1, -+, L, given a training sequence y from the
speech signal. An ML estimate of the parameter set A is
obtained from

max In py,(y) = max In 22 2 py (x, b y).  (6)
As x

s

where the maximization is locally performed by the Baum
reestimation algorithm [8]-[12]. The segmental k-means
algorithm for estimating the parameter set of the model
assumes that the double sum in (6) is dominated by a
unique sequence of states and mixture components.
Hence, the parameter set of the model is estimated along
with the most likely sequence of states and mixture com-
ponents by

max In py (x, A, y). (7)

xhoNs
The two estimation procedures are described in Subsec-
tions A and B of Section III.

B. AR Model for the Noise Process

Let p), be the pdf of the model for the noise process
where A, is the parameter set of the model. For the Gauss-
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ian noise considered in this paper, we assume that

T
pr(0) = T py(2)
T ©Xp { —%UI#V_IUI}
=] —7— (8)
=0 (2m) " det'/2 (V)
where v £ {v,t=0, - ,T}, v, € R, is a sequence

of T + 1 K-dimensional output vectors and V is an N,th-
order AR covariance matrix. V = 02(4%4,)™" where o>
and A, are defined similarly to "ilﬁ and A, g, respec-
tively. A, is a K X K lower triangular Toeplitz matrix in
which the first N, + 1 elements of the first column con-
stitute the coefficients of the AR process, g, £ ( g,(0),
gl/(l)’ T s gl’(Nl’))’ gl’(o) = 1'

The noise modeling problem is that of finding the pa-
rameter set A, £ (62, g,(m), m=1, -+ -, N,) given a
training sequence v from the noise process. An ML esti-
mate of A\, is obtained from

max In . (v), 9)
and this maximization is equivalent to AR modeling of
the centroid covariance matrix of the noise training se-
quence. The estimation of the noise model is discussed in
Section III-C.

C. Speech Enhancement Problem

Given the parameter set A, of an HMM for the clean
speech signal, the parameter set A, for the AR model for
the noise process, and a sequence of K-dimensional noisy
vectors 7 2 {z,t =0, --- , T}, z =y + v, the en-
hancement problem considered here is that of estimating
the sequence y of clean speech vectors by the MAP esti-
mation approach as follows:

max In py,,(y, 2) = max In 2 2 py 5, (x, b, 3, 2)
¥y ¥ X

(10)
where
Pane( 35 2) = P (¥) Pro(2] ¥) = po(¥) pro(z = ¥)
(11)
due to the fact that the noise is additive and statistically
independent of the signal, and
Paone (X 1, ¥, 2) = pan (2] %, By y) paj(x, By y)
= pa(z] ) pr(x, By y)
=pr(z = ¥) pa(x, by y) (12)

due to the fact that given y, z and (x, k) are statistically
independent. Note that since py ., (2) = § paa. (¥, 2) dy
is independent of y, the problem (10) is equivalent to

(13)

max In Px,‘-x,,( )’|Z),
¥
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where py ., (¥]2) = pa, (¥, 2)/Paa, (2). Furthermore,
the enhancement problem stated in (13) is consistent with
the ML training procedure described in (6). In the ap-
proximate MAP enhancement procedure which is con-
sistent with the segmental k-means training algorithm (7),
it is assumed that the double sum in (10) is dominated by
a unique sequence of states and mixture components.
Hence, the sequence of clean speech vectors is estimated
along with the most likely sequence of states and mixture
components by

max In py 5. (x, &, ¥, 2).

x.hy

(14)

Similarly to (13), fhe problem in (14) is equivalent to

max In py , (x, k, y|z). (15)
x.hy

The two MAP enhancement procedures (13) and (15) are
described in Section IV.

III. TRAINING OF SPEECH AND NOISE MODELS

The formulation of the speech modeling problem as
given in Section II considers the estimation of the param-
eter set of the model from a single training sequence of
speech. In this paper, however, multiple training se-
quences which are assumed to be statistically independent
have been used. Hence, we provide the algorithms for the
more general case of modeling usmg N training sequences
of speech. Letyr, £ { y,,, 1 =0, , T,} be a sequence
of T,, + 1 K-dimensional vectors, and lety £ {y;,n=
L, - -+, N} be the set of N such sequences. Let x; 2
{x,,,,t—O sT,}andhy, & {h ,,t=0,--- T,}
be, respectlvely the sequences of states and mixture com-
ponents corresponding to the nth utterance of the training
sequence Fmally, letx & {xy,n=1, ,N}and h

{h‘r", n = 1 N}

A. Baum Reestimation Algorithm
The likelihood function to be maxirnized is given by

N

Inp, (y) = n;l In p, (yr,). (16)
Local maximization of (16) can be achieved by the Baum
reestimation algorithm [8]-[12]. This algorithm generates
a sequence of HMM’s with nondecreasing likelihood val-
ues (16). Each iteration of the Baum algorithm starts with
an old set of parameters, say \,, and estimates a new set
of parameters, say \{, by maximizing the following aux-
iliary function:

N
d(N;) = 'E XZ Z r(37 b, | y1,) In pyi(x7,, by, y1,)

(17)
over A, subject to the constraints w5 = 0, 2371 7r5 =1,
ﬂ/3 > 0 Eﬁ—l aa,g 1 C’HB 0 E 71 Cvlﬂ = and
Syig = *rlﬁ(AvIﬁA*rlB) fora, 8 = Mand Y

=1, - , L. The algorithm is stopped when a conver-
gence criterion is satisfied, e.g., when the difference of
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the values of the likelihood function (16) in two consec-
utive iterations is smaller than or equal to a given thresh-
old. Convergence of the model sequence generated by the
Baum algorithm was discussed in [14].

The above constrained maximization of the auxiliary
function results in the following reestimation formulas:

™= Zl /Z 90.4(8. v) (18)
N T L
; < ;l qt,n(as 8, 'Y)

A = 5 NI_ T L (19)
INDY 2 ql.n(aa Bs'Y)
B=1n=1(=1=1

Tu
21 Zo qIn(B 'Y)
e (20)

L N Tn
2 2 2q.,.(8,7)
y=1n=11=0

and the parameters of the AR output PD’s are obtained
from

min {tr R} 585 — In det S5}
Sy18
w N Ty
A ,Z:“:Oq (B ‘Y)ylnyl n
Vg = N Tn (21)
ngl 1:2 (B ’Y)
where
qt,n(a, B, ’Y)
Z 2 pa(xg b )
. {xT,.:XI—x:.,:;ﬂa} {th:h,‘,,=7}
Z ZPM(XT", th, _yTn) ’
*r, hr,
0<r=T, (22)

is the conditional probability, under p,,, of being in state
aat time ¢ — 1, in state 8 at time ¢, and choosing mixture
component y while in state 8, given the nth utterance of
the speech training sequence, and

P (7, h, y1,)
) o =8} {hythia=v}

Z Z P)\,(XT,p th’ yTn) ’
xr, hr,

qt,n(B’ Y

0=<:r=<T, (23)

is the conditional probability, under p, , of being in state
@ at time ¢ and choosing mixture component y while in
state 8, given the nth utterance of the speech training se-
quence. The reestimation formulas (19)-(21) are valid
provided that the terms in the denominators of these
expressions are greater than zero. If any of these condi-
tions is not satisfied, then the affected reestimated param-
eter can be arbitrarily chosen up to the constraints asso-
ciated with the problem (17), without affecting the
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likelihood value. For example, if the denominator of (19)
equals zero for a particular «, then any a/, 8 =1, -+ -,
M, which satisfies Efg”:l a,g = 1 can be chosen.

The probability measures g, ,(«, 8, v) and ¢, ,( 8, v)
can be efficiently calculated using the forward-backward
formulas as follows:
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The likelihood function (16), which has to be evaluated
in checking convergence of the Baum algorithm, can be
efficiently calculated similarly to the calculation of the de-
nominator of (23) using the forward-backward formulas,
as is shown in (25).

L
§§| F,_]‘,,(Ot, E) Bl.n(B’ ’Y)auﬂc'ylﬁ b( yt.n"Y» ﬁ)

gnla, B,7) = ——1 ., 0<r=T, (24)
o BZ]:I ¢ 'yE:I Flfl.n(a’ E) Bt.n(ﬁv 'Y)aaﬁcﬂﬁ b( )’;.n‘% B)
F..(8,v)B. (8,
gn(Boy) = e BV BB Y) 0<i<T, (25)
2 2 F (8, v) Bv.n(ﬁv'Y)
B=1y=1
where
F 5 B. Segmental k-Means Algorithm
o.n(e, v) = TaCyla ( yo,nl% ) The likelihood function to be maximized in this case is
MoL given by
Ft,n(av ’Y) = VZJI z::l Fr~|‘n(V» u)ayac'y{ab( yt,n"y’ a)’ i
i Inpy(x, b, y) = 21 In py,(xg,, bz, yr,)  (29)
0<t=<T, 2 "
(26) and the maximization is performed over (x, #) and A for
Br(B8,v) =1 a given y. This is done by alternate maximization of the
g given y y n o
ML likelihood function once over (x, k) assuming A is given,
B - and then over A\, assuming that the most likely sequence
LB, ) .E:l Mgl Biiralv, 1) of states and mixture components, say (x*, h*), is avail-
. " able. Thus, if each iteration comprises the estimation of
g, Cu b (i il v), 0 =t<T, (x, h) for a given A and the estimation of a new A based
(27) upon (x*, h*), then this training algorithm generates a

The minimization problem in (21) has a unique solution
provided that R}z is positive definite [19, Theorem 2],
[20]. The minimizing AR parameter set can be found by
AR modeling of R}z using a variant of the covariance
method of linear prediction [21, Corollary 2], [22, p. 14].
An approximate solution can be obtained by the autocor-
relation method of linear prediction if end-block eftects
are neglected, more specifically, if the Kth-order vector
A, | gY:. is considered as the convolution result of y, , with
&y16- The two vectors are identical in their first K ele-
ments, but the vector which results from convolution of
Yi.» With g, 5 has N, — | additional elements. This ap-
proximation was found reasonable for the values of K =
128 and N, = 10 used here. In this case, it can be shown
by substituting R} g and S, into (21) that the AR param-
eter set is obtained from AR modeling of the autocorre-
lation function given by

N Tu
. 2 25 (B, ) ria(m)
ryp(m) & =R (28)
2 2 q,.,(8.7)
n=11=0
where
1 K—|m|—1
roa(m) = E kgo ymr(k)yr-n(k + Iml)’
m = _‘Nw ’N.V'

sequence of models with nondecreasing likelihood. The
procedure is stopped when a convergence criterion is sat-
isfied, e.g., when the difference of the values of the like-
lihood function (29) in two consecutive iterations is
smaller than or equal to a given threshold. Convergence
of the model sequence generated by this algorithm was
considered in [23] using standard arguments from opti-
mization theory [14], [24, p. 187], [25].

The maximization of (29) over (x, h) is achieved by
applying the Viterbi algorithm for each utterance of the
training sequence independently, using the following path
metric:

InTs +1Inc, g+ In b(yo‘,,1110<,, =v,%,=0)

fort = 0 and
In aup t In Cylp + In b( yl.'l.hl.n =% X = B) (30)
forl <t < T,wherea,8 =1, ,Mandy =1,

-« + L. Given the most likely sequence (x *, h*), a new
parameter set is obtained from maximization of the aux-
iliary function

N
PIDIDY 8(xg, — x?m hy, — h;,) In py:(xg,, bz, ¥1.)

n=1 xg, "'r,,
(31)
over \!, subject to the constraints associated with (17),

where 8 () denotes a Dirac function. Comparing (17) and
(31) shows that this maximization can be performed using
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exactly the same reestimation formulas (18)-(21) with
4i,n (e, B, v) and g, ,( B, v) being replaced by

(. B, y) & b 2
T T )

* 8(xp, — x?,.’ hr, — h?)

— * — * - *
1 Q= X ,8 =X Y T th

0 otherwise,

0<t=T, (32
4un(Bo7) £ {xr,,:xlz.iw} T
* 0(xg, — x7%,, hy, — hY)
L B=xl,y=h,
B ZO otherwise,
0=t=<T, (33)

C. Noise Model Estimation

The estimation problem of the parameter set of the AR
model for the noise process results from substituting (8)
into (9). This problem is equivalent to

min {tr R,V — Indet v'} (34)
Vv
where
| T
R, é ?ﬁ ,;0 l!,lvf

This problem is similar to that associated with the esti-
mation of the parameter set of each AR output process of
the HMM. An approximation solution is obtained from
AR modeling of the autocorrelation function given by

1
10K $50 ).
m= =N, -, N, (35)

T K—|m|—1

fi>
—_

v (k) v,(k + |m

D. Implementation Issues

The segmental k-means algorithm is initialized by a pa-
rameter set A, obtained from AR model vector quantiza-
tion of the given training sequences. The model designed
by the segmental k-means algorithm is used as the initial
model for the Baum algorithm. The vector quantizer (VQ)
is designed for the Itakura-Saito distortion measure using
the standard generalized Lloyd algorithm [27]. Initially,
an M-entry code book is designed by successive splitting
of codewords corresponding to lower order code books,
starting from the centroid of the training sequences. The
splitting of only one codeword, that with the largest re-
sidual energy, is applied in each increase of a code book
order. Thus, the tree design approach of [27] is used, but
with a nonbinary or a pruned tree. This approach has the
advantage that the number of states need not be a power
of two. Once the code book representing the states’ code-
words has been designed, the training sequences are clus-
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tered using this code book. The vectors in each cluster are
then used for designing the codewords representing the
mixture components of that state using the same splitting
strategy. The resulting M X L code book is used as the
initial parameter set for the output AR processes of the
HMM. The initial estimate of (7, a, ¢) is obtained from
decoding of the training sequences using the designed VQ
and estimating the frequency at which each initial state is
used, each state transition occurs, and each mixture is
chosen for each state.

In implementing the Baum algorithm, a proper scaling
of the forward and backward probabilities is applied. In
particular, the recursive scaling proposed in [28], in which
F. ,(a, v) is normalized by £, F, ,(o, v) and B, (B,
7¥) is normalized by Lz, B, , (8, v) for each (¢, n), is
used. Furthermore, the calculation of each summand of
the forward-backward formulas and of the probabilities
qi.n(a, B, ) in (24) is done in the log domain due to the
relatively small numbers involved. In this case, the values
ofInb( y,|h, = v, x, = B) for each (t, ) are shifted into
the dynamic range of the computer prior to their summa-
tion, simply by subtracting max, g In b(y |k = ¥,
x, = 8) — In D where D is the largest number which can
be represented on the computer, from each term. This shift
is compensated for automatically by the above scaling and
it has no effect on the reestimation formulas. The evalu-
ation of the likelihood (16), however, is affected by both
the scaling and the shifting, and hence, the likelihood cal-
culated as the denominator of (25) has to be modified ap-
propriately.

IV. SPEECH ENHANCEMENT ALGORITHM

In this section, we first apply the EM algorithm for
MAP estimation of the clean speech signal given the noisy
speech. Then we present an approximate MAP approach
in which the enhancement is performed based upon the
most likely sequence of states and mixture components.

A. EM Algorithm

Let z be a given sequence of T + 1 K-dimensional vec-
tors of noisy speech. Let A £ (A,, \,). Let y(k) &
{y(k),t =0, -+ ,T}, y,(k) € RX, be a current esti-
mate of the speech signal. Similarly, let y(k + 1) be a
new estimate of the speech signal. Using Jensen’s in-
equality and the fact that given y, (x, k) and z are statis-
tically independent, we have that

Inpy(v(k + 1)|z) = In py(y(k)|z)

pr(x. b, y(k)|2) pa(x, By y(k + 1)|2)

o (y(k)]z)  palxs b y(K)]2)

p(x, by y(k + 1)]2)
pa(x, b, y(k)|2)

p(x by y(k + 1)]z)
m(x, b y(k)|2)

£o(ylk + 1)) = ¢(y(k))

1l

In Z,‘ pr(x. 1| y(k))

v

E_I:Ipx(x, h| y(k)) In

>

(36)
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where

Myw+lné§pmnHyw»

. lnpx(x, h, y(k + 1)‘z). (37)

Hence, maximization of ¢ ( y(k + 1)) over y(k + 1)
results in In p\( y(k + 1)|z) = In py( y(k)|z) where
equality holds if and only if y(k + 1) = y(k) almost
everywhere py(x, k| y(k)). This standard argument of
the EM algorithm implies that a MAP estimate of the
speech waveform can be achieved by reestimation of the
speech waveform through the maximization of the auxil-
iary function ¢ ( y(k + 1)).

On substituting (1)-(5), (8), and (12) into (37), and set-
ting the gradient of ¢ ( y(k + 1)) with respect to y(k +
1) to zero, we obtain the following reestimation formula
for the clean speech signal:

y(k+1) = Lf; a.(8, v| Y(k))HJ;IBI 2

O0=<t=T (38)

where ¢,( 8, v| y(k)) is defined similarly to (23) with
yr, being replaced by y(k), and H,, g is a Wiener filter for
the output Gaussian process from state 8 and mixture vy
and the Gaussian noise process (8):
Hv\ﬁ = Svlﬂ(svlﬂ +V)

B (39)
The probability measure g,( 8, v| y(k)) is calculated by
(25) using the forward-backward formulas (26)-(27).
The estimate y,(k + 1) can be efficiently implemented
in the frequency domain if S, and V are approximated
by their asymptotically equivalent circulant covariance
matrices. Since the two matrices are covariance matrices
of AR processes, such an approximation is always pos-

sible provided that |A,|5(8)|° = m > 0 and [4,(0)]*

= m > 0 for some m where A,|5(8) and A, () are the
Fourier transforms of g, g and g,, respectively [26]. Let

2
F1s(0) & 035/ ]4,5(0)] (40)
and
2
£(0) & o3 /]4,(0)] (41)
be the asymptotic power spectral densities associated with
the two AR processes. Then

Sy18 ~ C(£16(6))

v~ C(£.(0)) (42)

where C(f,3(0)) and C(f,(8)) are the asymptotically
equivalent circulant covariance matrices of S,z and V,
respectively. Using some basic properties of circulant ma-
trices and their inverses [26], we have that
-1

Sﬂg(s.,lﬁ + V) - C(Hﬂﬁ((i)) (43)

where
f18(0)
Hy| 5(9) <

W00} ()
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Hence,

-1
nalk 1) = | a8 110 @] 70 @9)
where y, 4(k + 1) and z, 4 are the Fourier transforms of
v,(k + 1) and z,, respectively.

B. Approximate MAP Algorithm

The approximate MAP enhancement algorithm results
from alternate maximization of In py . (x, h, y, 2), de-
fined in (12), once over (x, k) assuming that y is given,
and then over y assuming that (x, k) is available. Given
an estimate of the clean speech signal, say y(k), the es-
timation of the most likely sequence of states and mixture
components is done by applying the Viterbi algorithm
using the path metric

Inmg + Incyg + Inb( yo(k)|ho = 7. X0 = B)

+ lnp)\,‘(zo — yo(k)) (46a)
fort = 0 and
Inaus +Inc,g+1n b( y,(k)’h, =7y, x =8)

+ Inpy, (2 = %(k)) (46b)
forl <=t < Twherea, 3 =1, -+, Mandy =1,

-+« , L. Note that since the last term in each of (46a) and
(46b) is independent of the states and the mixture com-
ponents, these terms can be ignored in performing the Vi-
terbi decoding. Let the resulting sequence of states and
mixture components be denoted by (x*, h*). Given (x*,
h*), a new estimate of the speech signal, say { y,(k +
1)}, is obtained from

max {In b( y,|x*, bF) + Inpy(z ~ y)}  (47)
A

for all 0 < ¢t < T. On substituting (5) and (8) into (47)
and setting the gradient of the resulting function with re-
spect to y, to zero, we get

-1
ik + 1) = 8. (Smx+ V) 2

(48)
which is equivalent to Wiener filtering of the noisy speech
using the covariance matrix of the AR process corre-
sponding to the most probable state and mixture compo-
nent at time ¢ and the stationary covariance matrix of the
noise. Equation (48) can be efficiently implemented in the
frequency domain similarly to (38). The entire algorithm
which comprises alternate application of (46) and (48) is
described in Fig. 1.

The reestimation algorithms (45) and (48) are initial-
ized from the noisy speech, i.e., y(0) = z, and the al-
gorithms are stopped when a convergence criterion simi-
lar to that used in Section II is satisfied. The convergence
of these algorithms will not be discussed here as conver-
gence can be shown using standard arguments from opti-
mization theory, in particular, the Global Convergence
Theorem [24, p. 187].
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nois
speech

enhanced

Wiener filter Speed

state
sequence

Viterbi decoder

Fig. 1. A block diagram for the approximate MAP enhancement approach.

V. EXPERIMENTAL RESULTS

The speech enhancement approach described in this pa-
per was examined in enhancing speech signals which have
been degraded by statistically independent additive
Gaussian white noise at signal-to-noise ratio (SNR) val-
ues of 5, 10, 15, and 20 dB. The two training procedures
for designing the clean speech model, namely, the Baum
and the segmental k-means, were examined and com-
pared. Similarly, the two enhancement procedures, (45)
and (48), were applied and compared. Training was per-
formed using 100 sentences of clean conversational speech
spoken by ten speakers through a telephone handset. En-
hancement tests were performed on eight sentences spo-
ken by four speakers and recorded in a manner similar to
that of the training set. The speech material and the speak-
ers used for training were different from those used for
testing. The model for the noise process was estimated
directly from the noisy speech, using an initial interval
whose length was about 10 percent of the length of the
utterance to be enhanced, and in which speech was not
present.

In all of our experiments, the dimension of the speech
vectors was K = 128 at a sampling rate of 8 kHz. Train-
ing was done using nonoverlapped frames, while en-
hancement was performed using frames of speech which
overlapped each other by 64 samples. A Hanning analysis
window was applied to the speech frames during training
and enhancement. The synthesis of the enhanced signal
from the individually processed frames was done using
the standard short time Fourier transform overlap and add
technique [29]. The order of each AR output process of
the HMM was set to N, = 10, which is a commonly used
value in linear predictive analysis of speech signals. The
order of the AR model for the noise process was set to N,
= 4 since the noise examined here has a theoretically flat
power spectral density. The iterative algorithms for de-
signing the models and for performing the enhancement
were terminated whenever the difference in likelihood
values at two consecutive iterations, normalized by the
older likelihood value, was less than or equal to 107°.

The number of states M and mixture components for
each state L were experimentally determined by examin-
ing the enhancement results obtained using different val-
ues of (M, L) at input SNR of 10 dB. Table I shows the
minimum and maximum SNR values achieved in this ex-
periment. The case VQ-AMAP represents enhancement
results obtained using the initial HMM designed by the
vector quantization approach described in Section III-D
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and the approximate MAP enhancement approach de-
scribed in (48). The case SEG-AMAP represents en-
hancement results obtained using segmental k-means
training and approximate MAP enhancement. The case
ML-MAP represents enhancement results obtained using
ML Baum training and MAP enhancement (45) ap-
proaches. Finally, the cases VQ-CLN and SEG-CLN
represent some theoretical performance bounds within the
proposed framework for speech enhancement. Here, the
clean speech was used for estimating the most likely se-
quence of states and mixture components, and the noisy
speech was filtered through a time-varying Wiener filter,
which at each time instant was constructed from the
spectrum of the AR process associated with the estimated
state and mixture component and the spectrum of the AR
model of the noise process. In the VQ-CLN case, decod-
ing is performed by applying AR model vector quantiza-
tion to the clean speech on a frame-by-frame basis using
the M x L VQ designed for initializing the segmental
k-means algorithm. In the SEG-CLN case, Viterbi de-
coding was applied to the clean speech using the model
designed by the segmental k-means algorithm. The major
difference between the two cases is that the decoding in
the VQ-CLN case is memoryless, while the SEG-CLN
version incorporates the Markovian memory. The setup
of this specific experiment is described in Fig. 2.

Table I shows that the three proposed speech enhance-
ment schemes, VQ-AMAP, SEG-AMAP, and ML-
MAP, provide very similar SNR improvement for all of
the examined values of (M, L). Furthermore, this SNR
improvement is about 0.5 dB lower than that obtained in
the VQ-CLN and SEG-CLN cases which use the clean
speech for performing the decoding. The SNR improve-
ment obtained in the latter two cases is essentially iden-
tical. Careful informal listening tests indicate that for a
given (M, L), the three enhancement schemes, VQ-
AMAP, SEG-AMAP, and ML-MAP, provide very sim-
ilar enhanced speech quality. In some cases, however, the
ML-MAP approach provided slightly better results than
the other two procedures. The best enhancement results
were obtained using the five-state five-mixture model. For
this case, the enhanced speech has almost no residual
noise, it is reasonably intelligible, and it contains fewer
gross estimation errors than the enhanced speech obtained
using M = 8, L =4 orM = 16, L = 8. Those gross
estimation errors are due to decoding errors which result
in an incorrect filter selection. The enhanced speech cor-
responding to VQ-CLN and SEG-CLN sounds identical,
a fact which implies the unimportance of the Markovian
memory in decoding the speech signal, given the clean
speech, in this application. The differences between the
best enhanced speech signals and the speech signals ob-
tained in the VQ-CLN or SEG-CLN cases are generally
small. In both cases, the input noise was effectively re-
moved. The speech obtained using VQ-CLN or SEG-
CLN is somewhat crisper, but somewhat noiser than the
enhanced signals obtained using either VQ-AMAP, SEG-
AMAP, or ML-MAP.
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TABLE I
ENHANCEMENT RESULTS FOR DIFFERENT NUMBER OF STATES AND MIXTURE COMPONENTS AT 10 dB INPUT
SNR
State/Mixture VQ-AMAP SEG-AMAP ML-MAP VQ-CLN SEG-CLN
5/5 14.23-15.93 14.25-15.95 14.10-15.84 14.73-16.45 14.72-16.44
8/4 14.24-15.76 14.26-15.75 14.26-15.70 14.75-16.51 14.75-16.50
16/8 14.15-15.85 14.16-15.82 14.04-15.72 15.04-16.72 15.04-16.70
In a complementary experiment to the SEG-CLN case, .
. L. nois! Wiener filter enhanced
we performed the enhancement in a manner similar to that speech ’
shown in Fig. 2, but with decoding being applied to the vate
noisy speech rather than to the clean speech. A block dia- sequence
gram of this system is shown in Fig. 3. The difference wean
between this enhancement scheme and the algorithm de- speech Viterbi dacod

scribed in Fig. 1 is that here the decoding is based upon
the noisy speech, while in Fig. 1, the decoding is based
upon the current estimate of the clean speech. In fact, if
the algorithm described in Fig. 1 is initialized by the given
noisy speech, i.e., y(0) = z, then the enhanced speech
obtained at the first iteration of that algorithm and the en-
hanced speech obtained in this experiment are identical.
The purpose here was to examine the importance of cor-
rect decoding and to prove superiority of the approximate
MAP algorithm over the intuitive approach of Fig. 3. For
this experiment, the SNR values of the enhanced signals
were in the range of 12.38-13.26 dB at input SNR of 10
dB. The quality of the enhanced signal obtained here was
significantly worse than that of the speech signal obtained
in either CLN-SEG or ML-MAP. In particular, the en-
hanced signal contained a significant level of nonwhite
residual noise.

In order to examine further the theoretical bounds of
performance of the proposed speech enhancement ap-
proach, we repeated the experiments referred to as VQ-
CLN for much larger code book VQ’s. Specifically, we
designed AR model VQ’'s for the clean speech, with 64,
128, and 256 codewords, using the binary tree design ap-
proach of [27]. The SNR of the noisy speech was again
10 dB. The resulting SNR of the enhanced signals was in
the range of 15.04-16.79 dB for the 256 codeword code
book, 15.01-16.71 dB for the 128 codeword code book,
and 14.93-16.58 dB for the 64 codeword code book. The
quality and intelligibility of the enhanced speech were
fairly good in all three cases, with minor differences
among them.

The good quality of the enhanced speech obtained when
decoding is done using the clean speech, on the one hand,
and the very bad quality of the enhanced speech obtained
when decoding is performed using only the noisy speech,
on the other hand, indicate that correct decoding of the
speech signal is crucial for successful speech enhance-
ment. Given the correct decoding of the noisy speech, a
time-varying Wiener filter, which at each time instant is
constructed from the power spectral density of a finite-
order AR process representing the true power spectral
density of the speech vector at that time, performs satis-
factorily, even when a relatively small number of quan-
tized AR spectra, e.g., 64, are used.

Fig. 2. A block diagram of a theoretical speech enhancement system in
which signal decoding is done using the clean speech.

noisy i " enhanced,
Speech Wiener filter Speec
state
sequence
Viterbi decod

Fig. 3. A block diagram of an open loop version of the system of Fig. 1.

TABLE 11
MINIMUM AND MAXIMUM SNR VALUES OBTAINED BY USING THE ML~
MAP ENHANCEMENT APPROACH WITH THE FIVE-STATE FIVE-MIXTURE
MoDbEiL AT DIFFERENT INPUT SNR (SNR-IN) VALUES

SNR-IN ML-MAP VQ-CLN Iterations
5.00 10.50-11.96 11.12-12.87 10-19
10.00 14.10-15.84 14.73-16.45 10-17
15.00 18.24-19.61 18.63-20.14 10-13
20.00 22.53-23.63 22.76-23.92 11-21

Table II focuses on the ML-MAP approach with five-
state five-mixture model, and shows minimum and max-
imum values of SNR of the enhanced speech obtained at
values of different input SNR. The minimum and maxi-
mum number of iterations used in each case is also shown.
The table also provides a comparison to the theoretical
bounds obtained in the VQ-CLN case.

Informal listening to the enhanced speech signals indi-
cates that at 5 dB input SNR, the enhancement was effec-
tive only for some of the sentences, while for the other
sentences, it introduced some noticeable distortions. At
the higher input SNR values of 15 and 20 dB, very good
enhanced speech quality was obtained. The noise was
completely removed and the speech was minimally dis-
torted. The crispness and naturalness of the original
speech were well preserved.

VI. COMMENTS

We proposed a new approach for enhancing speech sig-
nals which have been degraded by statistically indepen-
dent additive noise. The approach capitalizes on statisti-
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cal modeling of the clean speech and the noise process
using long training sequences from the two processes.
Given the estimated statistics of the speech and the noise
processes, a MAP estimation approach was developed and
implemented using the EM algorithm. An efficient ap-
proximation of the MAP enhancement approach, in which
time-varying Wiener filtering of the noisy speech and Vi-
terbi decoding of the enhanced speech are alternately ap-
plied, was developed. The approach was tested for en-
hancing speech degraded by white noise. It proved
especially useful for enhancing noisy speech with SNR
greater than or equal to 10 dB.

We opt for HMM s due to their general acceptability as
reliable models for speech signals in the speech recogni-
tion community. The most natural way to use these models
in speech enhancement applications is for simultaneous
enhancement of the entire utterance of noisy speech. This,
however, is not the only way the proposed approach can
be implemented, and a frame-by-frame enhancement im-
plementation is possible, for example, by considering
max,, p; ( y,|z). This frame-by-frame version of the MAP
enhancement algorithm can also be efficiently imple-
mented using a slightly different forward formula from
that used here. The estimate obtained in simultaneous en-
hancement of all the frames in the noisy input utterance
is usually more accurate than that obtained on a frame-
by-frame basis since the number of noisy speech samples
upon which the estimation is based is larger. Since this is
the first paper on the subject, our goal was to establish a
benchmark on the performance of the proposed approach.
Hence, we focused on the simultaneous enhancement of
all the frames in each given noisy input utterance. While
the simultaneous estimation of the entire noisy utterance
is not practical in real-time speech communication appli-
cations because of the long time delay it requires, it may
be useful in other applications, such as recognition of
noisy speech. In the latter case, the delay introduced does
not play any role since recognition is naturally performed
on the basis of the entire input utterance. For real-time
communication applications, either the frame-by-frame
implementation of the MAP enhancement approach men-
tioned above or the approximate MAP approach with tol-
erated delay achieved by sequential application of the
Viterbi algorithm [30] can be used.

We believe that the main contribution of this paper is
in establishing a fairly flexible statistical framework for
studying speech enhancement, and in demonstrating en-
couraging preliminary results using the proposed ap-
proach. Rather than attributing arbitrary PD’s to the
speech signal and the noise process, as was often done in
the past, we estimate these statistics from training se-
quences from the clean speech and the noise process. This
statistical knowledge was used here in deriving MAP es-
timators for the clean speech signal; however, it can eas-
ily be applied to derive other estimators such as MMSE
estimators for the speech signal or for its sample spec-
trum [32]. Since, given the models for the speech and
noise, we apply optimal (in a given sense) estimators to
the noisy speech, better enhancement results are expected
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as the modeling, especially that of the clean speech sig-
nal, is better understood. Some insight into this problem
can be obtained from the experience accumulated in the
speech recognition area where hidden Markov modeling
has been used for a long time. The modeling problems in
the two cases, however, are not identical since in speech
recognition, the training sequences usually represent the
same spoken word and the variability is smaller than in
training for speech enhancement. The models used here
may be refined, for example, by supplementing the AR
estimate of the power spectral density of each vector of
the clean speech by a pitch model similar to that used in
[31]. In addition, better modeling may be achieved if the
order of the model, i.e., the number of states, mixture
components, and AR coefficients, is determined in a more
optimal way than the experimental approach used here.

An important issue not studied in this paper is the ini-
tialization of the iterative enhancement procedures. Since
the iterative algorithms always converge to local maxima,
the initialization may be important, and initial estimates
other than that of the noisy speech used here may prove
useful.
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