TRELLIS AND CODEBOOK SOURCE CODERS - A PERFORMANCE COMPARISON

M. Elbaz, S. Farkash & D. Malah

Department of electrical engineering
Technion - Israel Institute of Technology
Haifa 32000, Israel

Abstract

This paper presents a comparison between two vec-
tor source coders: codebook and trellis coders. The com-
parison, based on simulations, is referred to three aspects:
performance, i.e., the SNR achieved by the coders, the
amount of computations and the memory requirements.
The results show that under the constraint of same
amount of computations, and in the range the parameters
were tested, there exists a trellis coder with better perfor-
mance than the codebook coder. When the constraint is
put on the available memory, then, beyond a critical
memory size, a trellis coder can be constructed, which
exceeds the performance of the codebook with a lower
computational load. Guide-lines for setting the trellis
parameters in order to design an efficient trellis coder are
drawn.

L. Introduction

There are two basic approaches to implement
source coding - scalar and vector coding [1,2]. A funda-
mental result of source coding theory states that better
performance can always be achieved by vector coding
rather then scalar. A bound on the achievable perfor-
mance for any coder is given by the rate-distortion func-
tion R(D) representing the minimum achievable distortion
when compressing data at any given rate for a given
source [3].

A coder is said to be optimal if it's performance
can reach the rate-distortion bound arbitrarily close. Three
vector coders were proven to be optimal - the block coder
(codebook), the tree coder and the trellis coder [1-3]. In
this paper two of these coders, the codebook and the
trellis coders are compared.

The most common vector coder is the codebook
coder [1,2], which is constructed of an encoder and a
decoder containing each a list of vectors referred to as a
codebook. The main motivation in using the codebook
coder hinges on its optimality, which is expressed by the
fact that the codebook coder performance reaches the
rate-distortion bound as the vector length goes to infinity.
Two other important motivations in using the codebook
coder are its conceptual simplicity, and the fact that an
efficient (but not optimal) algorithm (LBG) for the construc-
tion of a codebook from a training sequence exists {4].

A major drawback of the codebook quantizer is its
complexity. The number of code elements in the codebook
increases exponentially with the vector length, implying
exponential growth of the number of distortion measure
computations and memory requirements. This fact
prevents, in essence, the use of the codebook quantizer
for long vectors.

The second vector coder dealt with in this paper is the
trellis coder, which has recently attracted considerable
interest [7-9]. The trellis coder, although not as conceptu-

ally simple as the codebook coder, was also proven to be
optimal [3]. Furthermore, there is a linear dependence of
the computational and storage requirements vs. the vector
length, thus, implying lower complexity of the trellis coder.
However, to the best of our knowledge, there is no
thorough investigation of which of these two coders -
codebook or trellis - is superior in performance under com-
plexity (computation and memory) constraints.

In this paper we compare, on the basis of simulations,
the codebook and trellis vector coders referring to three
parameters: the performance, i.e., the distortion vs. rate;
the amount of computations; and the memory require-
ments. The comparison is conducted for the rate of R=1
bit per element. Similar qualitative results and conclusions
are expected for other rates as well. it is shown that under
the constraint of both coders having the same amount of
computations, there exist a set of trellis parameters yield-
ing a trellis coder with better performance than that
achieved by the codebook coder. When the constraint is
put on the available memory, then, beyond a critical
memory size, a trellis coder can be constructed, which
exceeds the performance of the codebook with a lower
computational load.

Based on the comparison presented in the sequel,
guide lines for setting the trellis parameters are esta-
blished in order to achieve improved performance of the
trellis coder. This design rules are important because of
the many parameters and considerations involved in
designing a trellis diagram.

The paper is organized as follows: Section Il presents
the codebook coder. Section Il describes the trellis coder.
In section IV expressions for the computation and memory
requirements for the two coders are given. Section V sum-
marizes the performance comparison. Guide lines for
designing the trellis coder are drawn in chapter VI, and
section VIl concludes the paper.

II. The codebook coder

The codebook coder is a straight-forward solution to
the vector coding problem [1-3]. In this coder both the
encoder and decoder contain an identical list of M vectors
of size N referred to as the codebook. The encoder
assigns to each input vector of length N an index which
corresponds to the nearest code vector in the codebook
according to a prescribed distortion measure. This index
constitutes the compressed data. The decoder uses the
same index to fetch a code vector from its codebook. This
code vector constitutes the reconstructed output vector.

When coding vectors of length N, using R bits per ele-

ment, with a codebook containing M vectors, the following
relations hold:

M = 2NR R = 2-log;M)

The codebook coder is proven to be optimal [3], since as

2,1.6

123

N goes to infinity the coder performance approaches the
rate distortion bound.

The main problem concerning codebook coders is
the determination of the codebook vectors. Motivated by
the proof of the vector source coding theorem, the code-
book can be randomly populated, using the optimal-coder
output distribution law [3]. Another way is to use a training
sequence from the source data and an iterative efficient
-algorithm such as the LBG [4].

lll. The trellis coder

Both the encoder and decoder of the trellis coder are
composed of a trellis diagram which plays the same role
played by the codebook in the codebook coder. The trellis
diagram (e.g., see Fig. 1) is a directed graph composed of
nodes and branches. Each branch in the diagram is popu-
lated by n elements, and a set of N = nL elements aiong a
path through the diagram constitutes a code vector, where
L is the number of stages in the trellis (L=5 in Fig. 1).

The coding process is performed as foliows:

For each input source vector the encoder searches
the trellis for the optimal path, i.e., the path along the trellis
which minimizes the distortion between the input source
vector and the code vectors residing on paths through the
trellis. The path-map corresponding to the chosen path
represents the compressed data. The decoder uses the
same path map in an identical trellis to uniquely determine
the reconstructed output vector.

The structure of the trellis diagram is determined by a
finite state-machine realized by a shift-register. For a shift
register of size K with a radix-q alphabet, the number of
nodes(states) in each stage of the diagram is g~', and the
number of branches emanating from each node (branching
factor) is g. the connections between nodes at successive
stages in the diagram correspond to the transitions of
states in the shift register. The trellis diagram in Fig. 1
correspondsto q=2 ,K=3,and has L=5 where L. The
initial state of the shift register can be an arbitrary one,
yielding a full trellis. Throughout this paper the initial
state is chosen to be zero, resulting in a simple trellis
such as the one depicted in Fig. 1.

When coding vectors of length N using a simple trellis
coder, the rate R in bits/element is given by :

=L

4
R N logpq = F'ngq

2

An exhaustive search for the optimal path in the trellis
requires a large amount of computations. However, use of
the Viterbi algorithm [5] enables an efficient search for the
optimal path.

The trellis coder is an optimal coder (in the sense dis-

cussed in section 1) since as q or K go to infinity the coder
performance approaches the rate distortion bound [3].

Similar to the codebook coder, a major issue is the
population of the trellis diagram branches. As with the
codebook coder, one can populate the diagram randomly -
based on the proof of the trellis source-coding theorem
[3]. In that case, the trellis is populated using the optimail-
coder output distribution law. Applying an iterative train-
ing method such as the LBG algorithm is quite difficult

2.1.6

124

here because of the trellis structure constraints. Several
algorithms to populate the trellis diagram using a training
sequence from the source data are found in the literature
[6]. Since these algorithms as well as the LBG algorithm
are not optimal, we have chosen to use random population
for both the trellis and the codebook coders.

IV. Computation and memory requirements

Denoting the amount of computations per element as
C(cb) - for the codebook, and C(tr) - for the trellis; and the
memory size required as M(cb) and M(tr), respectively, the
following expressions are obtained (for the simple trellis):

C(cb) = 2NR (3)
M(cb) = N-2\R (4)
(L+1-K) . 1K

ca k1K K
tn= =741 3d 2a 5

K-1 |
M(tr) = n(L+1-K)q"+n ¥ ¢

K
- N
i—1 LK q

(€)

Note that using (2) we also have g¥ = 2"KR. The computa-
tion expressions above concern only distortion computa-
tions. The contribution of the comparison operations is not
taken here into account.

First, we refer to the effect of the vector length on the
memory and computation requirements. As can be seen
from egns. (3) and (4) both the computation and the
memory requirements for the codebook coder are
exponentially growing with the vector length N. The
computation requirements for the trellis coder (egn. 5) is
independent (for sufficiently large L) on the vector length,
whereas the memory required for the trellis coder (egn. 6)
is linearly growing with the vector length. This behavior
may indicate possible trellis coder superiority regarding
memory and computation requirements vs. vector length
applied.

Next we examine the computation and memory
requirements vs. rate. It can be seen from the above
expressions that both are growing exponentially with
increasing rate, but the exponent coefficient in the trellis
expression is nK while for the codebook coder the
coefficient is N. Since usually L>>K we have N = nL>>nK
which means that the trellis coder can work with much
longer vectors for the same rate, and same computations
or memory requirements - again indicating possible trellis
superiority.

V. Performance comparison

Since except for the rate-distortion bounds there are
no analytical derivations for the performance of the code-
book and the trellis coders, their performance comparison
has been made on a basis of simulations. The simulations
were done for the most common source - the white Gaus-
sian source Mm,cz) with zero mean (m=0) and unity vari-

ance (62 =1).

For this source, the optimal coder output distribution
low is P(y) = 2{0,6%-D) (where D is the distortion deter-
mined form the rate distortion function R(D) for the given

rate), and this distribution law was used to randomly popu-
late both the codebook and the trellis diagram. All the
simulations were done for the rate of R =1 bits/element.
For this rate the rate-distortion bound on the achievable
performance for the above source is 6.02 dB. In addition,
the trellis length L was chosen to satisfy L>>K , as is
commonly used.
Fig. 2 illustrates the performance vs. computations for both
the codebook and trellis coders. The solid curves in the
graphs correspond to the codebook coder, for which the
amount of computations is varied by varying the vector
length N according to (3). For the trellis coder the amount
of computations is controlled by varying q (in Fig. 2a) or K
(in Fig. 2b) according to eqn (5). The "+" signs correspond
to vector length values of N=10nK (i.e., L=10K)
whereas the "x" signs corresponds to a vector length value
of N =256 (maintaining L = 10K).
The following conclusions can be drawn from these two
graphs:
(i) There exists a set of trellis coder parameters yielding
better performance then that obtained by the code-

book coder for any given constraint on the computa-
tional load in the range of examined values.

The performance of the trellis coder is almost
independent of the vector length for a given computa-
tional constraint if L > 10K .

For a fixed computational load qK = const, the perfor-
mance of the trellis coder is slightly improved as K
increases.

The improved performance of the trellis coder over the
codebook coder for a given constraint on the computa-
tional load is achieved at the cost of increased memory
needed for the trellis coder. This is given from the result
that for the same computational load and for L> >K

M(tr) = M(cb)%

(ii)

(iii)

@)

Fig. 3 illustrates the performance versus memory size
for both the codebook and trellis coders. Again, the solid
curves in the graphs correspond to the codebook coder,
for which the memory size is varied by varying the vector
length N - according to (4). For the trellis coder the
memory size is controlled by varying q (in Fig. 3a) or K (in
Fig. 3b) according to eqn (6). As in Fig. 2, the "+" signs
correspond to vector length values of N=10nK (i.e.,
L = 10K), whereas the "x" signs corresponds to a vector
length value of N = 256 (maintaining L > 10K).

The following conclusions can be drawn from Fig. 3:

(i) 1f memory size is increased while keeping qK fixed
(i.e., increasing N), the performance of the trellis
coder is only slightly improved, as indicated by the
dashed lines on the graphs.

The trellis coder performance is improved as g
increases (but maintaining L = 10K. Furthermore, for
the range of vector length values examined, there
exists a threshold value for qK (128 in Fig. 3) above
which the trellis coder performance exceeds the
performance of the codebook coder. This threshold
value for gX implies a critical memory size above
which there exist g and K values yielding a trellis
coder having a better performance than the codebook
coder. Note however, that further increasing the
memory size while maintaining qK fixed (i.e., increas-

{ii)

2.1.6

125

ing the vector length N) will lead eventually to
superiority of the codebook performance (at the price
of exponentially increasing computations), as it
asymptotically reaches the rate distortion bound with
increasing N, while the trellis coder performance can
not reach this bound with finite values of q and K ,
even as N goes to infinity.

From eqgns. (4) and (6), if both coders have the same

memory size then
Cftr) _ N(cb) (©)
C(cb) N(tr)
where, N(ir) and N(cb) are the vector length of the trellis
and the codebook coders, respectively. Hence if the
memory size exceeds the critical value discussed above,
there exist a trellis coder with equal or better performance
and a lower computational load as compared to the code-
book coder. In the case shown in Fig. 3, at the point
where both coders have the same performance:
C(tr) = C(cb)/7 .

V. Guide lines for designing trellis coder

In this section we draw guide-lines for designing the
trellis parameters, using Figs. 2 and 3 and the conclusions
above. Recall that the simulations and the analysis were
done only for the rate R =1 bits/element. However, we
conjecture that similar qualitative results will be obtained
also at other rates. Two possible approaches to the prob-
lem of designing a source coder are considered, depend-
ing on the constraint put on the coder are considered here:

(A) Constraint on the amount of computations - C,

1. For a given rate R, the integer parameters q and n
should be chosen such that q=2" has the lowest
possible value.

2. Given the constrained amount of computations Cg,
choose the largest possible value of K satisfying
k<C
q" =G

3. The number of stages L in the trellis should be
chosen such that L> >K, yielding vector length N =nL.

(B) Constraint on the available memory - M,

Assuming that the critical memory size for a given rate is

known, and the memory constraint, M, , exceeds this criti-

cal value, the following design rules are suggested.

1. For a given rate R, the integer parameters q and n
should be chosen such that q=2“R has the lowest
possible value.

2. Given the constraint on the memory size M,, choose
the largest possible value of K satistying Kg¥< <Myn
(to satisfy a requirement of the form a<<b we recom-
mend here a ratio b/a 2 10).

3. The number of stages L in the trellis should be
chosen the largest possible value satisfying
L < My/(ngh).

VIi. Summary and Conclusions

A comparison between two optimal vector source
coders - the codebook coder and the trellis coder - has
been presented. The comparison between the trellis and
the codebook was performed on a basis of simulations
using a Gaussian source and the squared-error distortion

measure. The comparison was performed for rate R =1
bit per element, Similar qualitative results and conclusions
are expected for other rates as well, using the same
method.

It was found that for a given constraint on the compu-
tations there exists a trellis coder which yields a better per-
formance than the codebook coder. When the constraint
was put on the memory size, it is found that there is a criti-
cal memory size above which a trellis coder can be con-
structed having the same or better performance then the
codebook coder, yet with a lower computational load.
Similar qualitative results were obtained for Laplace distri-
bution source using the absolute distortion measure, but
are not presented here because of lack of space.

A set of design rules is given to guide the design of
an efficient trellis coder. These guide lines are given for
two basic constraints: memory size and computations.

REFERENCES
[1} R. Gray, "Vector Quantization", IEEE ASSP Magazine,
Vol. 1, April 1984, pp. 4-29.

N.S. Jayant and P. Noll, "DIGITAL CODING OF
WAVEFORMS", Englewood Cliffs, NJ: Prentice-Hall, 1984.
AJJ. Viterbi and J.K. Omura, "PRINCIPLES OF DIGITAL
COMMUNICATION AND CODING", McGraw-Hill, 1979.
Y. Linde, A.Buzo and R.M. Gray, "An Algorithm for Vec-
tor Quantizer Design®, IEEE Trans. Commun. Vol. COM-
28, January 1980, pp. 84-95.

G.D. Fomey Jr., “The Viterbi Algorithm®, Proc. IEEE, Vol.
61, March 1973, pp. 268-278.

(21
13
[4]

[5]

k=2 and q=2,4,8,16,32

6 — T T T T
g 4
I3
Z
n
ol s/l
100 101 102 108 104
computation

SNR [dB]

161

gl

(8]

M.W. Marcellin and T.R. Fischer, “Trellis Coded
Quantization of Memoryless and Gauss-Markov Sources”,
IEEE Trans. Commun., Vol. 38, No. 1, January 1990, pp.
82-93.

B. Mazor and W.A. Peariman, "A Trellis Code Construc-
tion and coding Theorem for Stationary Gaussian
Sources”, |EEE Trans. Inform. Theory Vol. IT-20, No. 3,
May 1983, pp. 924-930.

B. Mazor and W.A. Peariman, "An Optimal Transform
Trellis Code With Application to Speech”, IEEE Trans.
Commun., Vol. COM-31, No. 6, June 1983, pp. 835-839.

S. Farkash, D. Malah and W.A. Peariman, "Transform
Trellis Coding of Images at Low Bit Rate", IEEE Trans.
Commun., Vol. COM-38, No. 10, Oct 1991, pp. 1871-
1878.

00 HHH

01 @

10 @

11 @

Fig. 1 - The trellis diagramfor Q=2 ,K=3andL =5
(pass bit-map: solid - '0’; dashed - '1")

k=2-10 and q=2

6 —rr T
i K F i
4
Cos

| i

Rb rogfis

‘ S T A ST
100 101 102 103

computation

Fig. 2 - Coders performance (SNR) vs. computations (Gaussian source)
solid line - codebook coder, +,x - trellis coder
(a) Fixed K, varying g. (b) Fixed q, varying K

k=2 and q=2,4,8,16,32

Gﬁ. T T T
| | : X
)
=
&
Z
7]
2 N
T R i
10t 104 107
memory

SNR [dB]

k=2-10 and

T T T TTIT

2

T T T

6 T

ﬂ:

g T

I S A T [

104

10!

memory

Fig. 3 - Coders performance (SNR) vs. memory (Gaussian source)
solid line - codebook coder, +,x - trellis coder
(a) Fixed K, varying g. (b) Fixed q, varying K

2,1.6

126

