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WMMSE Design of Digital  Filter Banks with 
Specified  Composite  Response 

Abstract-A new method for designing uniform and nonuniform dig- 
ital filter banks with a specified composite response is presented. The 
composite response of the filter bank can be met either exactly or to 
within a given tolerance. 

We focus on filter banks in which the individual filters are finite 
impulse response (FIR) digital filters of possibly nonequal length, al- 
though the new method is applicable even to more general, structures 
as well. The new method minimizes the weighted sum of the mean 
square errors in the response of the individual filters, subject to the 
composite response specifications. Sufficient conditions for either real- 
ness'or phase Iinearity of the optimal individual filters are presented. 

The new weighted minimum mean square error (WMMSE) design 
method is interpreted from a statistical viewpoint as a maximization of 
the harmonic mean of the output signal-to-noise ratio (SNR) of the in- 
dividual filters. 

The complexity of the new method is analyzed, and the design pro- 
cess is demonstrated via a design example. 

I 
I. INTRODUCTION 

N many applications, digital filter banks with a speci- 
fied composite response (usually flat, or having band- 

pass characteristics) are required. For  example,  in speech 
recognition [l], the speech signal is analyzed by a filter 
bank in order  to  measure  its time-varying. energy in dif- 
ferent frequency bands.  A flat composite response guar- 
antees  that  the  sum of the  outputs of all  the individual 
filters restores  the original input signal so that no signal 
component is misrepresented. 

The conventional filter banks used in  these applications 
are composed of individual filters that  are finite impulse 
response (FIR)  digital filters with linear phase and real 
coefficients. However,  due. to issues of complexity and 
cost-effectiveness related to  the  use of VLSI technologies, 
generalized structures of FIR filters were suggested in [3] 
and [4]. The proposed design method presented here  is 
therefore  derived using a generalized strkture. 

The well-known Remez exchange method is applicable 
for  the  design of optimal min-max FIR filters [5], and the 
Wiener filtering approach can be used to design optimal 
WMMSE FIR filters [6], [7]. In filter bank designs,,  these 
methods are used to  design each filter independently of 
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the other filters in  the  bank.  Therefore,  direct  application 
of these methods typically results in a poor composite re- 
sponse [8], [lo]. 

Various methods exist  that  guarantee  a flat composite 
response [lo], 1121-[14]. However, they all suffer from 
the following disadvantages: 

1) suboptimality under both min-max and WMMSE 
criteria; and 

2 )  limited flexibility in  the  design  (e.g., restriction to 
individual filters of equal length, restriction to odd-length 
conventional FIR filters, limitations  on  the ratio between 
the passband and  the stopband deviations,  etc.) . 

Although a min-max design method of a filter bank with 
a specified composite  response was suggested in [ 111, it 
is based on  a  complicated  automated trial-and-error ap- 
proach of iterated designs using the Remez exchange 
method, which is not guaranteed to converge. 

In principal,  one Can design  an  optimal (min-max) filter 
bank subject to  a specified composite response using the 
linear programming techniques applied in [ 151 for  the  de- 
sign of a single optimal (min-max) filter. However,  since 
typically the  number of variables, which is  equal to the 
overall number of filter coefficients in the filter bank, can 
well be  over  1000,  this  design method may become quite 
complicated in many applications. 

In  this  paper,  we show that  the  WMMSE  criterion can 
be applied to the given design problem with reasonable 
complexity.  Furthermore,  since  the  optimal filter bank is 
derived analytically,  as  the solution of a set of linear 
equations,  the effect of various  design  parameters can be 
investigated. As an  example, we allow a  tolerance  in  the 
composite response specification and characterize  the 
design tradeoff via a  curve  that relates the overall 
performance of the individual filters (the  WMMSE) to 
this tolerance  parameter.  Moreover, using eigenvalue  de- 
composition routines,  this  design  curve  can  be derived 
very efficiently. 

In addition,  the proposed WMMSE  design has the  fol- 
lowing advantages. 

1) It has a  statistical interpretation as  the filter bank 
that minimizes the'weighted  sum of output noise powers 
or, equivalently,  the filter bank with the maximal weighted 
harmonic mean of the  output signal-to-noise ratios 
(SNR's).  This  interpretation is important  in communica- 
tion applications in which the input of the filter bank is 
defined statistically (e.g . , detection of frequency-hopping 
signals). 
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2) It conveniently accommodates a generalized struc- 
ture  for  the filters in the filter bank, so that each filter can 
be composed of a  linear combination of arbitrary basic 
components, with possibly a different number and differ- 
ent types of components in each filter. In particular,  for 
FIR filter banks, the filters in the bank may each have a 
different length. 

As mentioned earlier,  the generalized structure is es- 
pecially suitable  for  the use of prototype (VLSI) filters, 
as cheap off-the-shelf basic components [3], [4] which 
may be either FIR or  IIR filters. 

The  organization of the paper is as follows. 
In the next section, we present the new design method. 

The presentation is done  for filter banks having a gener- 
alized structure and complex coefficients. Sufficient con- 
ditions on the specifications, which guarantee real coef- 
ficients and  zero phase error of the individual filters,  are 
presented in Section 111. In that section,  we  also discuss 
the  issue of phase linearity of conventional FIR filter 
banks as  a  particular  example of the more general condi- 
tion for  zero phase error. Section IV is devoted to  the 
statistical interpretation of the  WMMSE  criterion.  This 
interpretation relates the filter design problem to Wiener 
filtering, subject to a specified composite response. In 
Section V, the complexity of each step in the design pro- 
cess is investigated,  for various characterizations of the 
design problem.  A  design  example of an octave-band fil- 
ter bank is presented in Section VI, and conclusions are 
drawn in  the  last  section.  Some of the  details regarding 
the issue of complexity of the design are given in the Ap- 
pendix. 

11. THE WMMSE DESIGN OF FILTER BANKS 

The formulation of the design problem is as  follows. 
1) The filter bank is composed of N individual digital 

filters. The ith filter is a  linear combination of Mi basic 
components having frequency responses Eik( f )  k = 1, 2, 

modate more general building blocks as  in  Fig. 2 where 
Eik( f )  = (Ei ( f ) ) k .  For conventional FIR filters, the basic 
components are  delays, and thus, E i k ( f )  takes the form 

which are usually used to guarantee  a  linear phase com- 
posite response, as further elaborated in Section 111). 

All the results to be derived in this section are  for  com- 
plex filter banks.  Thus,  the coefficients of the  linear  com- 
binations (denoted by aik, k = 1, - a e , Mi) are assumed 
to be complex numbers. In the next section,  we state and 
prove sufficient conditions for  the realness of these coef- 
ficients. 

The frequency response of the ith filter is, therefore, 

. . .  , Mi. This generalized structure  enables us to accom- 

E i k ( f  = 
e - j 2 ~ ( k  + li)f (where Zi are additional delay values, 

Mi 

~ i ( f )  a i k E i k ( f ) -  (1) 
k =  1 

2) The desired frequency response of the ith filter is 
denoted by D i ( f ) ,  i = 1, * - , N .  The  error between this 
desired frequency response and the frequency response of 

the corresponding filter is weighted according to a speci- 
fied (real) weight function Wi (f)’. 

We use the mean square  error (MSE) as  the  error  norm, 
and therefore,  the ith filter response error is defined as 

0.5 
sf  L s W , m 2  lDi(f> - Hi(f)I2 d !  (2) 

-0.5 

3) The composite response of the filter bank is the sum 
of the responses of the individual filters. Let the compos- 
ite frequency response be denoted by HN+ 1( f ) .  Thus, 
HN+ l ( f )  = E?= H i ( f ) .  The specifications on the com- 
posite response are given by a desired composite fre- 
quency response denoted by DN+ ] ( f )  and by a (real) 
weight function W , +  l ( f ) 2  related to the MSE norm of the 
composite response.  Therefore,  the  composite response 
error is given by 

p 0 . 5  

(3) 
For  example, if a flat composite response is specified, 
IDN+ l ( f ) l  = 1 ,  and for equal error weighting in fre- 
quency, W , + , ( f )  = 1 as  well. 

4) The performance of the filter bank is measured in 
terms of a weighted combination of the individual filter’s 
response errors. The ith coefficient of this combination, 
denoted by K t ,  reflects the relative importance of the ith 
filter specification. Thus, Ki = 0 means that the frequency 
response of the ith filter can be set arbitrarily (but subject 
to fulfilling the composite response specifications), 
whereas Ki -+ 03 means that the frequency response of the 
ith filter should be as close  as possible to its desired fre- 
quency response, regardless of the composite response 
specifications. 

The  overall weighted MSE is denoted by E* and is thus 
given by 

N 

E’ 4 Kf6 f .  (4) 

5 )  Two kinds of composite response specification are 
possible. The first is a  tolerance specification, stated by 
the constraint a;+ I q 2 ,  and the second is an indirect 
specification, by incorporating the composite response er- 
ror 6;+ into the weighted MSE: 

i =  1 

6) The design problem is. to find the optimal set of Mu 
= E?= Mi coefficients {aik}f2y,i = 1. The optimization cri- 
terion is minimization of E :  or minimization of E *,subject 
to the composite response constraint. 

Therefore,  two different optimization problems can be 
stated: 
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7 )  Both E' and Ai+ are  convex  functions of the un- 
known variables. From the theory of convex program- 
ming [9, sec. 4.51, it follows immediately that the  two 
optimization problems are  equivalent. We therefore  start 
by deriving the solution of the first optimization problem 
and then describe how KN+ l(v) is found,  in  order  to use 
this solution for  the second optimization problem. 

Before we derive  the optimal filter bank  solution,  we 
focus on  two  extreme composite response specifications, 

1) As 7 -+ 03 (KN+ + 0), an arbitrary composite re- 
sponse is  allowed.  Therefore, in order  to minimize E '(E:), 
we  can minimize the N individual filter errors { Ai};= sep- 
arately.  The  original optimization problem is thus con- 
verted into N simpler  optimization problems. For conven- 
tional FIR structure,  the solution of each of the N 
optimization problems is  the  Wiener filter derived in [6] 
and [ 7 ] .  

2) As K N + l  -+ 00 (q  approaches its minimal possible 
value),  the optimal composite response is obtained. If the 
desired composite response can be met by any filter bank 
of the prescribed structure (i.e., if there is at least one set 
of {ajk} i ,k  for which Ai+ = 0), then it is guaranteed that 
this composite response is achieved by the proposed de- 
sign method. If this desired composite response is not fea- 
sible,  the resulting filter bank will have a composite re- 
sponse that is its best possible approximation in the MSE 
sense. 

A .  Solution of the First Optimization Problem 
E :  is clearly a  p.s.d.  quadratic form of the unknown 

variables {uik}f2y,i = Thus,  the optimal set of coeffi- 
cients is given by a 'solution of a  set of Ma linear equa- 
tions. However,  in most practical applications,  the  basic 
components of all  the N individual filters are taken out of 
a  set of only MN+ << M, distinct elements (e.g.,  for 
conventional FIR structures, E j k ( f )  represents delays,  and 
MN+ = maxi = . . , N  {Mi 1, which is  the  largest delay in 
the filter bank). 

In  this  case,  the  size of the  set of linear  equations  is 
reduced to M N +  1, thus reducing dramatically the com- 
plexity of the  design,  as  elaborated  further  in Section V. 
In order to exploit this property,  we introduce the follow- 
ing notation. 

The composite frequency response H N  + 1( f )  is  a  linear 
combination of the frequency responses of all  the  MN+ 
distinct  basic  components.  We  order  these M N +  basic 
components arbitrarily and  denote them by E,+ l ) k ( f ) ,  
k = 1 ,  * , MN+ 1. We denote  the coefficients of the 
linear combination by q N +  I ) k ,  and thus, 

A 

MN+ I 

NN+ l(f> = q N +  l ) k E ( N +  l ) k ( f ) .  (7) 
k =  1 

Let the  vector ai E G M  represent the coefficients of the 
ith filter for i = 1, - , N + 1 (where aN+ represents 
the above coefficients of the  composite response). 

In what follows,  an  augmented version of any vector 
ui E GMi is a  vector in GMN+' ,  denoted by ( u ~ ) ~ ~ ~  as defined 
below. 

The kth element of the  vector (ui)aug is zero if E(N+ l ) k ( f )  
is not a  basic component of the ith filter. Otherwise, if 
E(N+ l ) k ( f )  = Ei,( f )  for  some m, 1 I m I Mi, then  the 
kth element of the  vector ( u ~ ) ~ ~ ~  is the mth element of vi. 

From this definition and (7 ) ,  it follows 
N 

It is easily verified that  the  augmentation operation is  a 
one-to-one mapping of GMi into CMN+I. The reduced ver- 
sion of a  vector u E CMN+', denoted by u], E CMi,  is de- 
fined as  follows. If u is  in  the range of the  augmentation 
operation, i.e., u = ( u ~ ) ~ ~ ~ ,  then uIMi = ui. Otherwise, 
the  vector u is projected into  the  range of the augmenta- 
tion by replacing the  appropriate  (MN+ - M i )  elements 
by zeros and is  then reduced to GMi as defined above. 
Augmentation (reduction) of square matrices is done by 
augmenting (reducing) both the  columns  and  the  rows. 

Note  that  augmentation (reduction) from CMN+l to itself 
is an identity operation;  hence,  in  the  sequel we use aug- 
mentation symbols for matrices and vectors  in GMN+I as 
well if they are convenient for  the  presentation. 

In  the  sequel,  a  superbar  denotes complex conjugation, 
and u H  denotes  conjugate  transposition of u. 

Substituting (1)-(4) and (7) in (5 )  and  rearranging  the 
expression of E :  in terms of the coefficient vectors {U~]Y~~', we  obtain  the following alternative  expression 
for  the optimization problem in (6a): 

N f  1 

min K: [(ai - Ri(ai - a:) + $:I, (9) 
{ @ i f =  , i = 1 

where uN+ is given in (8) and a; R i l  di is  a  vector  in 
Mi 

The elements of the  square matrix Ri are 
0.5 

Ri(~n,  k) = j w , ( ~ Y  E i m ( f )  E i k ( f >  df 
-0.5 

j =  1,  e . .  , N + l ;  ( 10) 
m,k  = 1, - . .  9 Mi. 

The elements of di E CMi are 

i =  1, . . .  , N +  l ; m  = 1, 
3 Mi. 

(11) 

The value of 8: is 
0.5 

82 = 1 Wi(f)2 (Di(f)12 df - dFR;'di 
-0.5 

j =  1 ,  e . .  , N +  1. (12) 

Note  that  the  WMMSE  approach  in [7] leads  to  the so- 
lution ai = u:, i = l ,  * * * , N ,  for which 6 :  = 8: is 
minimal for i I N .  However, the optimal  set of coeffi- 
cients of the  composite  response, which is a$+ 1, is in gen- 
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era1 not equal  to  the augmented sum of these filters. 
Therefore, this filter bank is not necessarily the solution 

The optimization problem stated in (9) is the minimi- 
zation of a p.s.d quadratic from.  Its analytical solution 
(obtained by differentiation with respect to the unknown 
variables) is 

of (9). 

where q E GMN+ ' is a  correction  vector  due to the com- 
posite response specification and is given by solving the 
following set of linear  equations: 

rN+1 . 1 

The  vector p is the difference between the optimal set 
of coefficients of the composite response and the  aug- 
mented sum of the optimal individual filters, i.e., 

N 

p = a;+ 1 - c <ap)""g. (15) 
i =  1 

The resulting errors  are 

(16) 
This completes the solution of the first optimization 

problem for weight factors that are  neither  zero nor ap- 
proach infinity, under  the assumption that the matrices 
R i '  exist and that the matrix appearing in (14) is a non- 
singular matrix. 

It can be shown that this assumption holds if the design 
problem is well defined [a] .  We will now extend  the re- 
sults for weight values which are approaching infinity. 

If Kj -+ 00, the jth filter desired response overrides all 
other specifications, thus forcing  the jth filter to have the 
minimal error 8; (i.e., in (13) we get in the  limit,  as KJ 
--f 03, that uj = a;). This affects the  correction  vector q 
by omitting (R;')a"g/K; from (14)  since  this  value  ap- 
proaches zero  as Kj --t M. However,  as shown in the se- 
quel, increasing the value of Kj results in an increase of 
the overall error of the remaining filters. 

In particular, K i +  --f 00 corresponds to a constraint on 
the composite response,  and in this case, R,: l /Ki+ is 
omitted in (14), thus increasing the  overall  error of the 
individual filters. The solution then coincides with an ear- 
lier result we presented in [SI'. As mentioned earlier,  the 
composite response error A i +  I is minimized in that  case. 

The basic algorithm can be modified to accommodate 
the case of zero weight values.  Since this modification is 
lengthy and of less importance, it is not presented here 
and can be found in [2]. 

B. Solution of the Second Optimization  Problem 
The second optimization problem, stated in  (6b), can 

be solved by converting it  to  the problem in (6a) which 

we just solved.  This is done by finding the weighting fac- 
tor KN+ 1, which incorporates the composite response 
specification into (6a), from the given tolerance q on the 
composite response error.  We  describe now an algorithm 
for computing KN + l(q). 

Rewriting (14), we  obtain the following relation be- 
tween q and the value of KN + l : 

where T = C j =  (l/K;)  (RLyl)a"g is an MN+ x MN+ ma- 
trix which is independent of  KN+ 1. Equations (16) and 
(17)  give  an implicit relation between the values of Ai+ I 
and KN+ 1. In  order to find an explicit relation,  we make 
a change of basis in (17) so that both RiL and T become 
diagonal in the new basis of GMN+ ' . For  that  purpose, we 
use the following lemma, which is easily derived from 
[17, theorem 7.12.21. 

Lemma I :  For any two Hermitian matrices A and B, 
with A being a p.d. matrix, there exists  a nonsingular ma- 
trix V such that VHAV = I and VHBV = D where D is 
a diagonal matrix. 

The matrix RN + is clearly a p.s .d. Hermitian matrix, 
and for well-defined design problems, it is nonsingular. 
Thus, R,L1 exists and is  a  p.d. Hermitian matrix.  The 
matrix T is also a p.s.d. Hermitian matrix (being an aug- 
mented sum of p.d. Hermitian matrices RLrl). Thus, 
lemma 1 holds for the pair of matrices RGL and T,  and 
there is a nonsingular matrix V of dimension MN+ I X 
MN+ so that 

A N  

V H R i i , V  = I (184 

VHTV = diag (d l ,  * * , dM,,,+,). ( 18b) 

We can express d, in  terms of u,, the nth column of V, 
as  follows: d, = ufTu,. Since T is p.s.d., this expression 
implies that d, 2 0. The matrix V is nonsingular, and 
therefore, we can perform a change of variables from p ,  
q to @, 4 as follows: 

q = vg ( 194 

p = v p .  H ( 19b) 

Multiplying (17) by V H  and using (18) and (19), we 
obtain MN + scalar  equations: 

Substituting (20) and (19a) in (16), we obtain the follow- 
ing relation between K i +  and A N  + 1: 

2 

MN+ I 

From (16) and  the definition of the filter bank error e 2  in 
(4)  we obtain 

e2 = i 2  + qHTq (22) 
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where E’ = E?= 8; is the  error of the optimal filter bank 
with unspecified composite  response (q + 03). Substitut- 
ing (19a),  (18b), and (20) in  (22),  we  obtain 

Using (18) and  (19b),  we can evaluate  the values of 
limK;+ I -0 (Si+ 1) and limK;+, -+ ( E ’ )  from (21) and (23) 
and obtain 

8;+ = lim (6;+l) = + pHRN+lp (24a) A 

f 4 , I - o  

It is easily verified from (21) and (23) that is a 
monotonically decreasing function of K i +  1, and E’ is a 
monotonically increasing function of K;+ 1. Upper  and 
lower limits of these two functions are 8;+ 1(F2) and 
8;+ respectively. The following important property 
is obtained by evaluating d(6i+l)/d(K;+ 1) and d(E2)/ 
d(K;+ 1) from (21) and (23), respectively: 

From (25) it follows that the design  curve of e 2  as func- 
tion of 6;+ is a monotonically decreasing convex curve, 
and K i +  has a  geometric interpretation as  the  slope of 
the curve at  the point ( S i +  1 ,  E ’). Fig. 1 (a) illustrates a 
typical design  curve. 

Three different ranges of the  value of the tolerance 
specification 7’ should now be considered. 

The first range is q ’ < 8;+ 1 ,  in which the tolerance 
specification is actually irrelevant since  there  exists no fil- 
ter bank of the given structure that can fulfill this speci- 
fication. Values in the second range, defined by v 2  1 
8:+ 1 ,  are actually fulfilled by the  optimal filter bank, 
which ignores  the  composite response specifications (the 
Wiener solution a:). The third range is 8i+ > q 2  1 
8;+ 1 ,  and in this  case,  since E is a monotonically de- 
creasing function of &;+ l , 6 i +  l = 7 ’. Thus,  for  the  latter 
situation,  we  have  to  solve  the  nonlinear  scalar equation 
derived from (21),  namely, q = A i +  l (Ki+  J, in order  to 
evaluate K;+ An alternative  approach is to first draw 
the design curve E 2 ( 6 i +  1) using (21) and (23), then choose 
the desired point on  this  curve,  and find K i +  geometri- 
cally,  as illustrated in  Fig.  l(b). 

Furthermore,  upper  and  lower bounds on K & + l ) ( q 2 ) ,  
which reduce the number of iterations needed in evaluat- 
ing KfN+ 1)(7 2, by numei-ical methods,  are derived in [ 2 ] .  

Note: The design  curve of ( E ;  - Kj26f) as a  function of 
Kf has the  same  properties  as  the  design  curve of e 2  as  a 
function of K i +  1.  Therefore,  our remark that  an  increase 
in the value of Kf impl-ies an  increase in the overall error 
of the remaining filters (i.e., E; - Kf6;) follows as a 
consequence of (23). 

‘i 

ALLOWED TOLERANCE 

(a) 

‘i 

ALLOWED  TOLERANCE 

(b) 
Fig. 1. (a)  Typical  tradeoff  curve of the MSE e’ as  function  of  the  allowed 

tolerance  from  the  specified  composite  response (q’). (b) Geometrical 
interpretation of the  weight  constant K:, 

111. PHASE  LINEARITY AND REALNESS OF OPTIMAL 
FILTER BANKS 

In the general model presented  in  the  previous  section, 
we assumed that  the designed filter bank has complex coef- 
ficients ( a j k > r ~ y k =  1 ,  and we have not considered  the  issue 
of phase linearity of the resulting filters. We  discuss the 
subjects of realness and phase linearity in this  section. 

Two  theorems  are  presented. The first provides a suf- 
ficient condition for realness of the optimal filter bank 
coefficients, and  the second provides a sufficient condition 
for  zero phase error  in  the responses of all N individual 
filters in the bank. These  two  theorems  are derived for  the 
general  structure defined in Section 11. However,  their 
interpretation for  the  important  class of FIR filter banks 
is given by means of corollaries following the relevant 
theorem.  Theorem 1 provides sufficient conditions for the 
realness of the coefficients of the optimal filter bank. 



1534 IEEE TRANSACTIONS ON ACOUSTICS. SPEECH, AND  SIGNAL PROCESSING, VOL. A S P - 3 4 ,  NO. 6, DECEMBER 1986 

Theorem I: I f a )  ~ , ( f ) '  = ~ , . ( - f ) ' ,  i = 1, - - , N  
+ 1, and  a  function S ( f )  exists such that the following 
conditions are satisfied: 

b) oi( f )  = oi(-f) ej'(f) i = 1, . , N +  1 

c) E ~ , J ~ >  = Ei,(-f> ej'(f) i = 1, - e , N + 1; 

m =  1, . . .  
9 Mi, 

then all  the filters in the optimal filter bank have real coef- 
ficients. Furthermore,  the matrices {Rj}r=+ll and  the vec- 
tors (di, ai I i =  , p and q are  all  real.  Thus, the design 
process then involves only operations on real numbers. 

Proof: It is easily verified from (10) and (1 1) that 
conditions a)-c) are sufficient conditions for realness of 
the matrices Ri and the vectors dj .  Since {ap}r211, p ,  and 
q are given in terms of these values, they are all real vec- 
tors, and so are  the coefficients of the individual filters of 
the optimal filter bank. 

Corollary I :  For  a filter bank composed of conven- 
tional FIR filters (i.e., E i k ( f )  = e-jzTf(k+c)), the individ- 
ual filters in the optimal filter bank have real coefficients, 
provided that  all  the impulse responses related to the  de- 
sired frequency responses Q ( f )  and weight functions 
W,  ( f ) 2  are real sequences. 

Proof: For conventional FIR filters, condition c) is 
satisfied with S ( f )  = 0. The corollary thus restates con- 
ditions a) and b) for S(f) = 0, in  a slightly different man- 
ner. 

Theorem 2 below provides sufficient conditions for  ex- 
act fulfillment of the desired phase response specifications 
(up to an integer multiple of T due to sign inversions). 

Theorem 2: Under the following two conditions: 
a) all the filters in  the bank have the same desired phase 

response (up to an integer multiple of T) $ ( f ) ,  i.e., 

oi ( f )  = Bi(f) ,j+(f) i = 1, . . . , N +  1, 

0 N + 1  

with di(f) being real functions; and 
b) the basic components of each filter can be divided 

into distinct pairs such that in every pair  the frequency 
response of one component is the complex conjugate of 
the frequency response of the  other component multipled 
by ejZwf); written formally,  for every i, i = 1, - - , N 
+ 1, there exists  a permutation ai such that ( V k )  ( E i k ( f )  
= EiTick,(f)  eJ2+(f)) .  

The phase response of each filter in the optimal filter bank 
is exactly the desired phase response (up to an integer 
multiple of a), i.e., ~ ~ ( f )  = f i i ( f )  ej+(f) ,  i = 1, * * , 
N + 1, with hi ( f )  being real functions. 

Proof: It is easily verified that conditions a) and b) are 
sufficient for  the following results: 

1) di(m) = Zi(ni (m))  for  all m and i; and 
2) Ri(rn, k)  = Ei ( r j (m) ,  xi(k)) for  all m, k ,  and i. 

It is easily proven that from 2) follows 
3) R;'(rn, k)  = ?(ai (m) ,  ai (k)) for  all m, k ,  and i. 

From 1) and 3) it follows directly that 

4) ap(m) = z(ni (m))  for all m and i. 

Since 3) and 4) hold for i = N + 1, the augmentation of 
a? and R;' only reorders the pairs of elements according 
to aN+ - )  instead of ai( a ) ,  and  therefore, 

5 )  p(m) = p(aN+l(m))  for  all m; and 
6) T(m, k)  = 7 ( ~ N + ~ ( r n ) ,  aN+l (k ) )  for all m, k. 

Thus, 

7 )  q(m) = @aN+ l(m))  for  all m. 

The reduction of q to qlMt reorders the pairs of elements 
according to the permutation ai( e ) ,  and  therefore, 

8) qIMi(m) = .IMi (n i (m))  for  all m and i. 

And the final result from 3), 4), and 8) is that the optimal 
coefficients satisfy 

9) ai (m) = Z j  (ai (m))  for  all m and i. 

Combining 9) above with condition b),  one easily obtains 
the result that Hi ( f )  = pi ( f )  ejzlC.(f), which means that 
Hi ( f )  = f i i  ( f )  ej+(f) ,  with f i j  ( f )  being real functions. 

Note: Similar results hold for 8, ( f )  being pure imag- 
inary functions, with f i i  ( f )  being pure imaginary, and a 
(-) sign in 1)-9). 

Corollary 2: For filter banks composed of conventional 
FIR filters (i.e., E i k ( f )  = e-jzTf@+")), with the additional 
delay values being Zi = 4(MN+ I - Mi ) - 1, so that all N 
filters have the  same  delay, and desired frequency re- 
sponses Di ( f ) ,  which have the same  linear phase re- 
sponse $( f )  = - af (MN+ ] - l), the optimal filters are 
also linear phase filters. 

Pro03 For li = i ( M N + ]  - M i )  - 1 and $ ( f )  = 
-a f (MN+ - l),  it is easily verified that condition b) of 
theorem 2 holds for ai@) = (Mi + 1 - n). Condition a) 
was satisfied in the corollary statement,  and thus the result 
follows from theorem 2. 

It should be noted that  the phase linearity of the optimal 
filter bank is not obtained when odd-length and even- 
length filters are mixed together in the same filter bank 
since then some of the additional delays of the individual 
filters (Zi values) involve half-sample delays, which are 
difficult to realize. 

IV. STATISICAL INTERPRETATION OF THE WMMSE 
METHOD 

The statistical interpretation of the  WMMSE criterion 
for  the  design of a  single  FIR filter was presented in [6]. 
We present here its extension to the design of filter banks, 
composed of FIR filters, with a specified composite re- 
sponse.  This interpretation is useful for applications in 
which the input process has a  statistical  characterization. 

Since each filter in  the filter bank is usually designed to 
pass a different frequency band of the common input sig- 
nal, we  may define differently the so-called signal and 
noise components for  each filter in the bank. The conven- 
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tion taken here is to  consider  all  the frequency compo- 
nents of the comnion input which are  in  the passband of 
the  ith filter as its  input  signal si and  all  the components 
in the stopband as noise ni. Because  we deal with a filter 
design  problem,  components  in  the  transition bands of 
each individual filter are ignored. Thus,  we view each fil- 
ter  as having its  own  input, denoted by xi = si + ni, for 
the ith filter in  the  bank.  Note  that  according  to  the  above 
convention,  the inputs xi, i = 1 ,  * - , N ,  are not identi- 
cal, unless all  the  transition bands are eliminated (i.e., set 
to  have  zero  bandwidth).  For  the mathematical develop- 
ment, it is convenient to apply the following  vector  no- 
tation. 

The  impulse  response of the  ith filter, which is of length 
Mi,  is denoted by the  vector ai. The input vector,  .which 
comprises of Mi consecutive  samples of the random pro- 
cess x i ,  is  denoted by Xi  ( k ) ,  i.e., Xi ( k )  = [x i (k ) ,  * * - , 
x i (k  - (Mi - 1 ) ) I T .  Thus,, the corresponding output is y i ( k )  
= aTXi(k) .  As explained above,  we regard input samples 
as being the  sum of signal  samples  and noise samples,  and 
we assume. that they are  samples of two wide-sense sta- 
tionary continuous random processes.  The  desired signal 
at  the  ith output at time k is defined to  be  the  delayed 
version of the input  signal,  i.e., y f ( k )  = si(k - p i ) .  We 
divert now from the usual convention of assuming that the 
signal component at  the  output  is  the  response of the filter 
to  the  signal component at the input and instead set the 
signal component at the  ith filter output to  be the desired 
response y f ( k ) ,  which is  independent of the filter ai. This 
way,  the noise component at  the  output of the  ith filter 
contains both the filtered input noise and the distortions 
of the input signal introduced by  the  ith filter. With  these 
assumptions,  the  signal  power  at  the  output of the  ith filter 
is given by 

sOi = E [ [  y4(k )12~  = d j ,  (26) 

and the corresponding noise power is 

~ o i  = E [  I Yi (k)  - Y 4(k) I21 
= (ai - u : ) ~ R ~ ( u ~  - a:> -I- 8; (27) 

where 

a: A R;’di (28) 

Ri is  an Mi X Mi autocorreiatiori (Toeplitz) matrix defined 

Ri E [ x i ( k )  (30) 
by 

with di E GMi defihed by 

SOi is independent of the filter ai. Independent designs of 
the individual filters using the  Wiener  filters, may result, 
however,  in  a  poor  composite  response.  To  solve  this 
problem,  a  composite response specification is now in- 
corporated into  the  design  process. The desired composite 
response is specified as the  frequency  response of a  de- 
sired FIR filter (e.g., which is a unit vector, 
represents a flat composite response). Since each filter has 
a different iength and delay,  the  composite response of the 
filter bank is  an augmented sum  of  the coefficients of the 
individual filters, i.e., aN + A (ai)aug. The augmen- 
tation operation takes care of the different lengths  as well 
as  the additional delays  needed.  The  composite response 
error  measure is a weighted MSE between the desired re- 
sponse a;+ 1 and the actual response aN+ 1,  i.e., the  com- 
posite resp’onse “noise’ ’ is 

No(N+ 1) = (%+1 - a;+dH R N + l  (aN+ 1 - a$+ 1) (32) 
where RN+ is an M N +  X MN+ p.d. matrix [with MN+ 
= maxi ( M i ) ] .  This specific error  measure is used in order 
to obtain a  statistical  interpretation  to  the WMMSE cri- 
teria. If RN+ is a  Toeplitz  matrix,  one can interpret 
No(.,,+ I )  as  the weighted & norm of  the  composite  fre- 
quency response error. Using Parseval’s  theorem,  the 
frequency weight function  is given by 

wN+l(f)2 = F{RN+l(k -k d, k ) }  (33)  
with F {  . } representing the  Fourier  transform of the  au- 
tocorrelation sequence with respect to the variable d. 

The optimal filter bank is the filter bank with the min- 
imal weighted sum of output  noise  powers,  among  all  the 
filter banks having composite response noise power which 
is below 11 ’. Written formally, 

N 

min C K ; ( ( U ~  - u P ) ~ R ~ ( u ~  - a: )  + 8;). 
{U~)Y=~,N~(N+I)S$ i = l  

(34) 
This  is exactly -the second optimization problem pre- 

sented in Section 11, for  the  special  case of FIR filters (see 
(9) for  comparison). 

Since  the  output  signal powers of the  individual filters 
are independent of the coefficients of the  filters, it follows 
that the above-defined optimal filter bank also maximizes 
the weighted harmonic mean of the  output  SNR’s, i.e., it 
is the solution of 

1 
max (35) 

{a i}y=I ,No(N+l)5g2 

N i = l  

where Ci = A 2 2  u, ,K i .  
We  have  thus presented the  equivalence in the filter 

di A E[Si(k - p i )  X&)].  (31) bank design problem between minimal-noise powers, 
maximal output  SNR’s, and WMMSE criteria.  Further- 

a: is exactly the  Wiener filter coefficient vector which more,  we  can  relate  the  desired  frequency responses and 
minimizes the  output noise power of the  ith filter [6]. This  the weighting functions  to  signal and noise spectra by 
filter also maximizes  the  output SNR of the  ith filter since comparing the  statistical  and  deterministic definitions of 
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Ri and di. This is done  under  the assumption that pi = (1 / 
2)(Mi - 1) and Zi = (1/2)(MN+ I - M i )  - 1, and  there- 
fore, corollary 2 from the previous section holds, and all 
the individual filters have linear  phase. It follows that each 
weighting function represents the spectrum of the corre- 
sponding input and each desired frequency response is the 
cross spectra of the corresponding input and its signal 
component divided by the spectrum of the input. Written 
formally, 

W , ( f ) 2  = F{E[Xi(k) Xj(k + d ) ] )  

i =  1, , N  (36) 

K(f1210i(f>I = F{E[X(k )  si(k + 
j =  1 ,  * . I  

Y N .  (37) 

In communication applications,  the  input process is 
characterized by its autocorrelation  sequence  and  its cross 
correlation with the desired signal. Equations (36) and 
(37) enable us to use  the new design method for  these 
applications by suggesting a way of choosing the weight 
functions and desired frequency responses in terms of the 
autocorrelation and cross-correlation sequences. Further- 
more,  subject to these  relations, (35) gives an interpreta- 
tion of the  design  criteria in terms of the  output  SNR's. 

v. O N  THE  COMPLEXITY OF THE WMMSE DESIGN 
METHOD 

The design of an optimal filter bank is composed of the 

1) Evaluation of Ri and di from the specified frequency 

2) Calculation of R i 1  and a (to obtain  the  filter bank 

3) Computation of p where if either p = 0 or KN+ = 

4) For specified values of KN+ > 0, find 4 by solving 

5 )  For specified values of 17 > 0, 

following steps. 

responses [according to (10) and  (1 l)]. 

for. unspecified composite  response). 

0 the  design is complete. 

(14). 

a) find the matrix V and the values of {dl * - * 

dMN+, ) defined in  (1 8); 
b) compute p and  solve  the  nonlinear  scalar equation 

(21) for K i + l ;  and 
c) given  the value of K i +  1, q is computed via (20) 

and (19a). 
6) Once 4 is known,  the filters' coefficients are  ob- 

tained by (1  3). 
We  analyze now the complexity of each of the  above 

steps. 
Step I): In  general,  there  are O(Cy2,' M ? )  integrals to 

be evaluated in this step (where O( .) denotes "order of"). 
It is highly complicated  to  evaluate  these integrals nu- 
merically.  However,  for weighting functions that  are 
piecewise linear,  and  basic components that  are FIR fil- 
ters,  the integrals that define the matrices Ri can be  eval- 
uated analytically. 

Let Bi be  the number of distinct  pieces  in  the  ith weight- 
ing function;  then  the Ri matrices can  be evaluated in 

O(Cy211 M?Bi)  operations.  The desired frequency re- 
sponses are present only in O(Cy=+ll M i )  integrals, and thus, 
the complexity of step 1) is unaffected whether or not these 
responses are piecewise linear.  For  the special case 
of- conventional FIR  filters, and piecewise linear desired 
responses,  the matrices Ri are Toeplitz matrices;  thus, 
only Mi elements have  to  be evaluated for each matrix, 
and the integrals involving the desired responses can be 
evaluated analytically.  Therefore,  the  overall complexity 
is O(Cy=+ll M i B i )  where Bi is the number of distinct pieces 

Step 2): This  step involves solving ( N  + 1) systems of 
linear equations or, alternatively, calculating (N  + 1) in- 
verses of the matrices Ri. The complexity of this step is 
thus O(Cy=+ll M ? ) .  For filters composed of all-pass sec- 
tions,  as illustrated in  Fig.  2(a),  the matrices Ri are  Toe- 
plitz matrices.  Similarly,  for filters composed of sections 
having the  same  phase  response  and powers of a basic 
magnitude response,  as illutrated in  Fig.  2(b),  the matri- 
ces Ri are Hankel matrices.  The first structure coincides 
with the  conventional FIR structure  for c p j ( f )  = -27rf. 
Furthermore, this structure seems suitable for the design 
of filter banks composed of IIR filters. In this case, Ci ( f )  
represents an IIR filter designed so that its magnitude re- 
sponse is very close  to  the desired magnitude response of 
the  ith filter, and the all-pass sections are used for  the 
phase correction needed to approximate  the desired (lin- 
ear) phase response. The second structure is especially 
suitable for  the  design of filters based on short FIR filters 
in cascade.  In that case, Ci ( f )  = e-j2?rfpi is the delay that 
guarantees causality of the  ith filter, and I A i ( f )  I is the 
magnitude response of the  short prototype FIR filter. This 
is exactly the structure used in [3], [4]. For both struc- 
tures,  the matrices Ri are invertible in O(M?) operations, 
and  the overall complexity of step 2) reduces to O(Cy=+l' 

Step 3): This step  is of negligible complexity 

Step 4): This step involves the solution of a set of MN + 

linear equations, and its complexity is thus O(M;+ l). This 
step  is of negligible complexity in comparison to step 2) 
for the general case,  but it dominates the complexity of 
the design when we deal with conventional FIR filters 
since the equation matrix in step 4) is not a Toeplitz ma- 
trix while all  the Ri matrices are  Toeplitz  matrices. 

Step 5): This  step involves three different operations, 
out of which the third (reconstructing the vector Q) is of 
negligible complexity (O(Mi+ 1)) compared to step 2). 
The second operation involves the solution of a nonlinear 
scalar  equation, and its complexity can be estimated by 
O(MN+ Niter) where Nit,, is the number of iterations in the 
solution (i.e., number of values of K i +  tried until con- 
vergence).  Since MN + >> 1, this complexity can be re- 
garded as negligible in comparison to  the  other  design 

in W, ( f ) 2  oi(f>* 

M ? ) .  

(o(Cy=+l' Mi) ) .  

'R,(m, k )  = J'?& wi(f)21Ci(f)lZIAi(f)im+kdfgive~ a Hankel matrix 
for the structure in Fig. 2(b), and Ri(m, k )  = j!& K ( f ) 2 i C i ( f ) 1 2  
e-j'icf)c"-k)dfgives a Toeplitz matrix for the structure of Fig. ?(a). 
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( M i - I )  Sections (Mi-1) Seclions 

(a) co) 

Fig. 2. (a)  The  structure of the  ith filter for  which Ri is a  Toeplitz  matrix. 
(b)  The  structure  of  the  ith filter for which  Ri is a  Hankel  matrix. 

TABLE I 
COMPLEXITY  ANALYSIS 

Problem  Characteristics  Complexity  Dominant  Step 

General  weighting  functions or 1) 4 

non-FIR  basic  components 

Piecewise linear weightipg 1)  and 2) 
functions and FIR basic 
components 

Conventional  FIR filters, or 
specific  structures  (Fig. 2) 

N+ I 2) and 4) or Sa) 

Conventional  FIR filters, no 
composite  response 
specification 

a Each operation  in  this row is  a numerical  integration. 

steps. Thus, the dominant operation in step 5 )  is the  eval- 
uation of the matrix V, and its complexity is about 
O(Mi+ 1), as discussed in the Appendix. 

Step 6): This  step, which  concludes the design  process, 
involves matrix  vector multiplications, and therefore its 
complexity is O(C?~+~’ M ? ) .  

Table I summarizes  the overall complexity of the de- 
sign procedure. Note that no distinction is  made  between 
the two types of composite  response specification since 
the complexity of steps 4). and 5 )  is . .  about the same. 

VI. DESIGN EXAMPLE 
To illustrate the new method, the following design ex- 

ample  is  presented.2 
The  problem  we consider is  the  design of an octave- 

band filter bank  composed of five filters. The  composite 
response is specified to be flat. The first filter in the  bank 
is a  low-pass filter, the  last  one is a high-pass filter,  and 
the other three are bandpass filters. The  ith filter has  a 
bandwidth’which  is twice the bandwidth of the (i-1)th fil- 
ter (except for the first two filters, which  have the same 

‘The Fortran  program  used  (run  on  an HP-1000 computer)  can be  ob- 
tained  from  the  authors  upon  request. 

bandwidth), starting with  a  low-pass filter having  a pass- 
band width of 200 HZ. The transition bandwidths of the 
ith filter are proportional to its  bandwidth. Thus, the last 
(highest) filter has  the  widest transition band.  The indi- 
vidual filters are’ conventional FIR filters, and the sam- 
pling frequency  is ‘8000 Hz.  In  order that all the filters 
have the same  performance, the product “filter length 
times transition bandwidth”  is set to be  about  the  same 
for all five filters [ 161. For this reason, all the  weight fac- 
tors Ki are equal (Ki, = l ) ,  except for the composite re- 
sponse  factor & that takes different values for different 
designs. For real-time applications,  an  upper bound  of 
1.68 X lo6 multiplies per  second is allowed in a  particular 
implementation of the filter  bank.  This leads to filter 
lengths ranging from 19 to i39 samples (taking advantage 
of the linear phase). The desired responses Di (f ), = 1, 

high-pass filters, respectively, i.e., set to  one in the de- 
sired passband  and  zero  elsewhere.  Table I1 summarizes 
the exact passband/stopband frequencies of the individual 
filters and  their  lengths.  The  magnitude. of the desired 
composite  response ,D6(f) is unity. Ali six  frequency re- 
sponses Di (f ), i = 1, - - - ,6,  have  the  same  linear  phase 
$(f) = -.-f 138, which  corresponds  to  a delay of 69 

. . .  , 5 ,  are  the responses of ideal low-pass/bandpass/ 
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TABLE I1 
DESIGN SPECIFICATIONS 

Error in Error in Flat 
Lower  Stopband  Passband  Higher  Stopband  Unconstrained  Composite 

Filter No. Filter  (Hz) (Hz) (Hz) Design Design 
and Type . Length D = 0, W 2  = 4 D = 1, W? = 1 D = 0, W? = 9 (6,)  (6,) 

I(LPF) 139 - 0000-0200 0300-4000 0.504 x lo-’ 1.914 x lo-? 
2(BPF) 139 0000-0200 0300-0500 0600-4000 0.849 x lo-? 2.518 x lo-’ 
3(BPF) 19 0000-0400 0600-  1000 1200-4000 0.553 x lo-? 2.881 x IO-’ 
4(BPF) 39 0000-0800 1200-2000 2400-4000 0.816 x lo-? 3.520 x lo-? 
5(HPF) 19 0000- 1600 2400-4000 - 0.746 x lo-* 2.396 x lo-’ 
6(Composite 139 - 0000-4000 - 15.582 x lo-? 0 

rmse E 

response) 
- - - - 1.582 x lo-? 6.036 x lo-* 

samples. Additional delays of 69 - (1 /2 ) (Mj  - 1) sam- 
ples are required so that all five filters have  the  same  de- 
lay,  and  thus, the conditions of corollary 2 are satisfied 
and the resulting filters have linear phase. 

The weight functions Wi(f)2 for i = 1, * * * , 6 are  all 
piecewise constant functions.  For each filter in the  bank, 
the weight function Wj ( f ) 2  equals 1 in  the  passband, 0 in 
the transition bands,  4 in the  lower  stopband, and 9 in the 
upper stopband. For  the  composite  response,  a unity 
weight function is used;  thus, 8:  is the energy of the  com- 
posite response error.  Since Wi ( f ) 2  and Di ( f ) ,  i = 1, 

the conditions of corollary 1 are satisfied, and the optimal 
individual filters are  all real-valued FIR filters. Two  ex- 
tremal values of Kg are used: Kg = 0 and K: -+ 00. For 
the first case,  the resulting filter bank is composed of op- 
timal filters that can be designed either by the new method 
or by the  design method in [6] and [7] since  the composite 
response is of  no relevance.  This  design obtains the min- 
imal weighted MSE for each individual filter 8; and the 
minimal MSE ; 2 .  However,  since  the composite response 
is ignored in  this  design,  the result is a very poor re- 
sponse,  as illustrated in Fig.  3 by the solid line.  The sec- 
ond extremal case is obtained by specifying  a flat com- 
posite response as a design constraint. This leads to a filter 
bank with a flat composite response (demonstrated by the 
dashed line of Fig. 3), and  the new method minimizes the 
overall MSE subject to this constraint.  The optimal filters 
obtained using K: -+ 03 are, of course, degraded with 
respect to those obtained using K i  = 0, and their MSE is 
E 2 ,  i.e., a worse performance than for any finite value of 
K i .  On the  other  hand,  these filters minimize the com- 
posite response error, which is zero here (i.e., 86 = 86 = 
0), whereas the filters obtained using K: = 0 have a com- 
posite response error of li6 = 8 6  = 0.156. A tradeoff be- 
tween these extremal cases can be obtained either by using 
finite values of K i  or by choosing a desired point on the 
E 2 (q  2 ,  curve, as illustrated in Fig.  1.  ,For example, choos- 
ing K i  = 0.5 results in this example in a6 = 0.034 and E 

= 3.715 X 
The frequency responses of the optimal individual fil- 

ters for  the  two extremal cases are compared in  Fig. 4. 

. . .  , 6, correspond to real (possibly infinite) sequences, 

*. . 

= : :  
c i,’ 

= t  
0 :  

F ;  

” 1 8 ,  

I *  
r 

-5. 0. b F R E Q U E N C Y  4000 

Fig.  3.  Composite  response  error for the  unconstrained  design  (solid  line) 
and the  constrained  design  (dashed  line). 

The frequency responses of the filters obtained in the flat 
composite response design are illustrated in Fig.  4(a), and 
the frequency responses of the filters obtained in the un- 
constrained design are in Fig.  4(b). Both are shown on a 
linear magnitude scale.  For  further  comparison, the fre- 
quency responses of the fourth individual filter in these 
two designs are illustrated in Fig. 5(a) and (b), respec- 
tively, on a logarithmic magnitude scale.  The values of 8i 
obtained in the two extremal designs and the overall rmse 
E are summarized in  Table 11. 

.It is significant that the two extreme values of E are quite 
close to each other (last row in the  table), whereas the 
values of 86 differ dramatically.  Thus, with a moderate 
increase of the MSE, a flat composite response is ob- 
tained, instead of the poor composite response which re- 
sults in the design which ignores composite response 
specifications. 
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Fig. 4. (a)  Frequency  response of each of the five optimal filters for  the 
constrained  design  (linear  magnitude  scale). (b) Frequency  response of 
each of the five optimal filters for the  uncontrained  design  (linear mag- 
nitude  scale). 

5 .  

D 

Fig. 5 .  (a)  Frequency  response  of  the  fourth  optimal filter for  the  con- 
strained  design (in decibels). (b) Frequency  response  of  the  fourth  op- 
timal filter for  the  unconstrained  design (in decibels). 
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VII.  CONCLUSIONS 
The above design example  illustrates  the strength of the 

new design method by obtaining the specified composite 
response, even when each filter in  the bank has a different 
length.  The composite response can  be specified to be flat, 
as in the  above  example,  or  it can be any other desired 
response (e.g., when the sampling frequency of the input 
process is higher than the Nyquist rate,  a low-pass type 
of composite response can be specified). The composite 
response can be specified as  a  constraint on the  design,  as 
in the above example, or in terms of an allowed tolerance. 
For  the  latter  type of specification, some properties of the 
tradeoff curve that relates the overall performance to  the 
allowed tolerance were illustrated. Among these proper- 
ties are  the monotonicity of this curve  and its convexity, 
as well as a simple geometrical interpretation of the weight 
constant K i +  as  the negative slope of the  curve. Using 
an  eigenvector decomposition scheme,  one is able  to com- 
pute this  design  curve  and thus solve  the  design problem 
for any value of K i  + , with complexity similar  to that of 
the  design with a specific tolerance  value.  Once  the trade- 
off curve  is  plotted, it helps in choosing the  appropriate 
value of + 1. 

The new method is very flexible in the  sense  that  the 
individual filters in the bank need not be conventional FIR 
filters. They can be  linear combinations of some prede- 
signed realizable filters, and the new method optimizes 
the performance with respect  to  the coefficients of these 
combinations.  Thus,  generalized  structures of FIR filters 
as suggested in [3] and [4] are  applicable  as well as con- 
ventional FIR. IIR structures  are  allowed, provided that 
the poles' locations  are  given  and  the optimization is on 
the  zeros' locations represented by the coefficients uik in 
(1). In general,  the optimal individual filters have com- 
plex coefficients and an arbitrary phase response.  How- 
ever, real coefficients and zero phase error can be achieved 
by fulfilling the conditions stated in Section 111. These 
conditions are given for  the  general filter structures, with 
simplified versions corresponding to real filter banks com- 
posed of conventional FIR filters with linear  phase.  For 
example, the more general conditions can be applied when 
IIR components with approximately linear phase response 
are  used, and the design goal is to get an improved mag- 
nitude response, without degrading  the  phase  response, 
by means of linear combination of these  components. 

Special emphasis is given to  the complexity of the  de- 
sign.  This  issue is very important since typically the num- 
ber of coefficients in the filter bank is on  the  order of sev- 
eral hundred up to  even  several  thousand. To illustrate 
that the new method is easily implemented on fairly small 
computers,  we remark that  the  above  design  example, 
which involves an overall number of 415 coefficients, runs 
on  a 16 bit machine, written in Fortran,  in  less than 1 min 
of CPU time. 

In speech processing applications,  the deterministic de- 
sign approach is particularly suitable  since  there  is no 
valid statistical characterization of the input processes. On 
the other  hand,  in many communication applications there 

are established statistical characterizations of the input 
signal and noise processes, so that  the statistical approach 
is more suitable for setting the  design specifications. Ex- 
amples are  the detection of frequency-hopping signals by 
means of filter banks and the  design of filter banks for 
TDM/FDM  systems. 

Finally,  we note that although the problem of designing 
a  single FIR filter subject to  linear constraints on its im- 
pulse response is not in the  scope of this  work, its solution 
can be derived as  a special case in the mathematical 
framework presented here. 

APPENDIX 

In this appendix, we investigate  the complexity of eval- 
uating the elements of the matrix V that  appear in lemma 
1 .  In [ 171 the following method is applied for evaluating 
V as well as  the values of {d,):::'. 

1) Compute the matrix C = R N +  ,T. 
2) Solve the eigenvalue/eigenvector problem Cu = Xu. 
It can be shown that for RN+ and T, which are both 

Hermitian, and RN+ I being p.d., the matrix C can be diag- 
onalized. 

Now,  since C is a  diagonalizable  matrix, there exists a 
nonsingular matrix U (whose columns are  the eigenvec- 
tors) such that CU = U diag (dl * * - d,,,,). ( d , ) ~ ~ ~ '  
are  therefore  the  eigenvalues of C. It can be shown that 
ford, # dm, UFRN:, u, = uflTu, = 0. 

3) If all {d,>f:t ' values are  distinct, then V is obtained 
from U by scaling the columns of U as follows: u, = u,/ 
(uFR,: u , ) ~ ' ~ .  

4) If the eigenvalue d, has m 2 1 eigenvectors asso- 
ciated with it, a Grahm-Schmidt orthonormalization pro- 
cess on the subspace of dimension m of these eigenvectors 
will give  the m columns of the matrix V corresponding to 
this  eigenvalue. The orthonormalization process is with 
respect to the following norm of e""+' defined by (x, y) 
= xHRNily.  For RN+l, which is a p.d. Hermitian ma- 
trix,  this is a well-defined norm, and the case of m = l 
discussed in step 3) above is only a special case. 

The complexity of the matrix multiplication in step 1) 
above is O(Mi+ l). The complexity of the  eigenvector/ 
eigenvalue problem that is solved in step 2) is about 
O(Mi+ using efficient numerical methods [ M I .  The 
complexity of the normalization process in step 3) or  4) 
is  also O ( L I ~ ~ + ~ ) .  Thus,  the overall complexity of evalu- 
ating the elements of the matrix V is O(Mi+  However, 
this task is certainly more complex than simply inverting 
an M N + ]  X M N + I  matrix. 

Note that  for  the special case of a desired flat composite 
response, RN+ = I ,  and step 1) is totally omitted. Futh- 
ermore,  in  step 2) C = T is an Hermitian p. s.d matrix; 
thus, it has a unitary diagonalization V, which is the ma- 
trix that appears in lemma l [steps 3) and 4) are  omitted]. 
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