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ABSTRACT

A statistical model is used for the optimal
design of analysis/synthesis systems which include
quantization of the signals in the separate bands.
Two error measures are used.
of the usual statistical mean square error (MSE) to
time-varying systems {since analysis/synthesis sys-
tems with decimation and interpolation are time
varying). The second measure is the time average
of the expected &, distance between the output of
the analysis stage and the analyzed reconstructed
signal. The proposed design methods are based on
minimizing these error measures and shown to apply
not only with the DFT but also with any linear
regular transform (e.g. Hadamard, DCT). The above
two error measures are shown to be equivalent for a
wide class of transforms (including the DFT). The
design methods isapplicable to either finding an
optimal synthesis window for a given analysis window,
or finding an optimal analysis window for a given
synthesis window. The optimal windows (filters)
are obtained by solving a set of linear equations.

An optimal analysis/synthesis system is obtained
using an iterative algorithm which is based on
alternately solving these two sets of linear equa-
tions. When no quantization is applied the new
design methods coincides with previously reported
methods.

I. INTRODUCTION

Analysis/synthesis systems are widely used in
speech processing [2-6]. A typical application is
medium rate waveform coding (e.g. [2]), where quant-
ization is applied to the signals in separate bands.

Known methods for the design of analysis/
synthesis windows (interpreted as analysis/synthesis
filter banks [2]), are based on deterministic error
measures [3-5], and ignore the quantization noise.
Thus, in the presence of quantization noise even a
unity system is not necessarily an optimal one, and
its performance depends also on the input statistics
A statistical approach which will take into account
the quantization noise in the design process is
therefore needed. Such an approach is presented
here, where the statistical analysis is done under
the assumption that the quantization noise is ad-
ditive and is independent of the input signal. This
assumption is reasonable if the output SNR is suf-
ficiently high (e.g. for waveform coding schemes at
16Kbps rate and above).

One is a generalization

Analysis/synthesis systems are usually used in
conjunction with the DFT transform. FHowever, the
statistical approach is applied here to a more
general model in which any linear regular transform
may be used within a fixed time-reference analysis/
synthesis system [1].

The model details are as follows: The input
signal sequence x(n) 1is multiplied by the sliding
analysis window h(-) having a length of Lp
samples. A time aliasing operation reduces these
Ly values into a vector of length M {the transform
size), denoted by xg, These vectors (for differ-
ent time instances) are decimated with a decima-
tion factor R, 1 <R <M. The m-th element of the
vector Xxgp 1s given by:

o0

%~ h(sR-m-Mr) sx(m+Mr), 0Sn<{M-I) (1)

=_c0

XsR(m) b

A linear regular transform of size M operates
on these vectors and results in output vectors XsR
of M elements each. This transform is represented
by the square matrix T of dimensions MxM, whose
(k,m) element is denoted by t(k,m), 0<k,m<(M-1)
2mkm
_—Er>)' The
is given by:

{e.g., for the DFT, t(k,m) & expl -j

k-th element of the vector XsRr
M-1
e 3 < < (M
XSR(k) = m:@t(k,m)st(m), 0 sk s (M-1) (2)

This completes the analysis part of the system. If
the DFT transform is applied, th: out™ut of the
analysis stage is known as the discre.e short-time
Fourier transform (DSTFT) [5], of the input signal.
For a general transform we denote the output of the
analysis stage as the discrete short-time transform
(DSTT), of the input signal. The quantization is
modeled by an additive noise vector Vggr which is
added to the output signal from the analysis stage.
The k-th element of the modified discrete short-
time transform (MDSTT) vector gsR is given there-
fore by:

X gl = X () + VoK), 0Sk<(M-1) (3)

The MDSTT is the input of the systhesis stage.
An inverse transform operates on the MDSTT and
results in time domain vectors %SR of M elements
each. The inverse transform is represented by the
matrix T-! of dimensions MxM, whose (m,k) element
is denoted by t~3(m,k) for 0 < m,k < (M~1). The
m-th element of the vector xgp is given by:
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M-1 X
ot (m, k)X p(K),
k=0

isR(m) = 0<m< M-1) (4)

The sequence of time domain vectors Xgp is
interpolated with an interpolation factor R.
A wieghted overlapp-add operation reconstruct the
output sequence y(n) from these vectors. This
operation is done using a synthesis window £(*)
of L¢ samples, and is described by:

y() = I £(n-sR)x_p((n),) (5)

S=-00
where (n)M denotes m mod M.

Since both the analysis and synthesis windows
are of finite length the summations in (1) and (5)
are actually finite. An infinite summation range
is used here to simplify the presentation, and for
the same reason will also be used in the sequel.

Let vgp be the inverse transform of the
noise vector Vgp. Thus the m-th element of vgp
is given by:

M-1 -1

v _(m = ZtomKkV_(k), 0<m< (M-1) (6)

sR k=0 sR

If the transform is complex (e.g. a DFT), we
assume that the guantization of the DSTT vectors is
done in a way that assures the realness of VgR.
This is needed in order to obtain a real output
sequence.

We assume that the input signal and the elem-
ents of the random vectors vgp are samples of
wide-sense stationary processes with zero-mean.
Furthermore, we assume that the elements of the
random vectors Vggp are un-correlated with the in-
put signal. Written formally:

E[x(n)] = E[vsR(m)] =0 wn,s; 0<m<(M-1) (7)

)

E[x(n) v p(m)] = 0 wn,s; 0<m<(M-1)  (8)

He>

Efx(n).x(n+d)] 2 ¢°(d) wn,d (9)

A
E[V () +Vgpqyp M1 ¢;’n(R.d)
vs,d; 0<m,n< (M-1)(10)

¢~(+) 1is the autocorrelation sequence of the in-
put signal, and ¢%’n(R-d) is the {m,n) element of
the autocorrelation matrix at lag Red of the noise
vectors. If the input is a speech signal, ¢X(*)
represents the long-term autocorrelation sequence
of speech, thus incorporating the non-flatness of
the speech spectrum in the design process. Equa-
tions (1)-(10) completely define the model on which
the statistical approach is based.

In the next section, we define two error
measures, which are shown to be equivalent for a
wide class of transforms. The optimal design is
based on minimizing these measures. 1In Section III
various design methods for optimal analysis/
synthesis are presented along with the conditions
under which the new approach coincides with pre-
viously reported results [3-5].

II, ERROR MEASURES

Physically realizable analysis/synthesis sys-
tems introduce signal delay. It is known that
exact signal reconstruction is possible only if
this delay is an integer multiple of the transform
size [6]. We, therefore, assume that the asnalysis/
synthesis system has a delay M-rgy, with r, being
an integer. Since in an ideal system the recons-
tructed signal coincides with the delayed input
signal, we define the output error signal as:

A

e(n) = y(n) - x(n—Mro) (11)
Since the amalysis/oynthesis system considered is
linear, and both its input and the additive noise
have zero mean, the output error signal has also
zero-mean. However, since it is a time-varying
system (because of embedded decimation and inter-
polation), e(n) is not a wide-sense stationary
process. We now derive a generalization of the
usual MSE error measure for the non-stationary
process e(n).

Let the autocorrelation sequence of e(n) be
denoted by ¢&(+), i.e.:

$°(d,m) 2 Ele(m+d)ec(m)]  vd,m (12)
An expression for ¢°(+) is given in the Appendix.
For any analysis/synthesis system, this function
has the following two properties:
(13a)

|¢€(d,m)| <C vd,m

$5(d,m+2+p) = ¢°(d,m) vd,m,s (13b)
where p & R-M/gcd(r,M) (gcd(R,M) is the greatest
common divisor of the two integer numbers R and M).
The derivation of these two properties is also
given in the Appendix.

Let G(f) be a non-negative real and sym-
metric weight function, whose Fourier coefficients,

0.5 .
¥ (m) 2 ] G(f)elz“fndf converges absolutely,
-0.5
i.e,: s
lim Z |¢ (n)[ < o (14)
%>~ n=0

The first error measure considered is defined by:

o0 p—l
uf = ¢g(d)'[-1— z ¢€(d,m3] (15)
d=-o0 P =0

Due to (13a) and (14), this error measure is bound-
ed. The following theorem (presented here without
proof because of lack of space), gives a spectral
domain interpretation of this  error weasuve:

Theorem 1:
Let:
0.5 L4
u é_\l J’ EI Zr E(n) —jZT[fn 2 df (16
2,r " (2r+1) _ e [26() (16)

0.5 n=f-r
ve,r

(a) For every value of %, the sequence

up y con-
verges to U as T > =,

Therefore U is non-negative.
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(b) For e(n) that is a wide-sense stationary
process, having a spectrum S(£), it follows that:
0.5
u= ]
-0.5

S(E)G(HAf . (N

The error signal e(n) was defined in the time-
domain. An alternative approach is to define the
error in the transform domain. Let Yggr be the

DSTT of the reconstructed signal y(n). In an ideal
system, this vector is a delayed version of the DSTT
of the input signal (with delay M-ry). The error
vector in the transform domain is defined therefore

as: A
EsR T XsR B §(SR—M10) ° (18)
The DSTT is & linear operation, therefore egp has
zero mean. Let D(SR) be the expected value of 2
norm of the random error vector
M-1
A 21 = _ 2
D(sR) —E[HgsRH 1= k?OEHYsR(k) st_Mro(k)l 1(19)

ESR’ l.e.:

Tt follows from the definition of the DSTT ((1) and
(2)), and of e(n) (in (11)), that D(sR) can be
rgpresented in terms of the autocorrelation secquence
¢ () as:
D(sR)= & I l\(sR—t)h(sR—r)¢€(r—t,t)°a((r)M,(t)Np
rEetae (20)

where a(i,j) is the (i,j) element of the MxM matrix
A defined as:
A =TT (210
where * denotes fconjugate transpose'. The error
vector ggp is not a wide-sense stationary process
because the analysis/synthesis system 1s time-
varying. Therefore, the value of D(sR) depends on
the time instances sR. However, due to property
(13b), this function is periodic with a period of
p, 1.e.:
D(sR+ &+p) = D(sR) ¥s,q integers (22)
We now define the second error measure as the
time average of D(sR) over one period of this
periodic function, i.e.:
p-1
vel's D(sR +m)
P m=0
Sybstituting (20) in (23) results in the following
equation:

(23)

© ® p_l

Ve 2 [ Z h@h(rd)]os Z [65(dm allued),, ()]
d=-® N=-g P =0 '
(24)

Comparing (24) with (15) it is easily verified
that when the matrix A is a circulant matrix (i.e.,
a(i,j)==a((i+d)M,(j+d)M] for d=0,...,M-1), U and
V are equivalent measures. In this case, if the
values of ¢®(-) are set according to:

$E(a) &

2 h(n)-h(n+d)-a((d)y,0) (25)

n=~c

Then U and V become equal, independent of the syn-
thesis filter and decimation factor used. Both U

and V measure the quality of the signal reconstruc-
tion for a given variance of the quantization
noise. In typical applications it is also desired
that the analysis window will have a low-pass
frequency response. Therefore, both U and V should
be modified in order to incorporate this specifica-
tion in the design process. Following the approach
in [3], we add to the error measure the weighted
mean sguare error between the frequency response of
the analysis window H(f) and the desired frequency
response D(f) of the LPF prototype. Let W(f) de-
note the weight function, and 0 and ¥V the modified
error measures, then:

D
U=U+ [ WEIHE - D) |2af (26a)
-0.5
A 0.5
V=v+ [ WEHE - D(£|2dE (26b)
-0.5

III. DESIGN OF OPTIMAL SYSTEMS

We consider three different types of design
problems:

(a) The design of an optimal synthesis window for
a given analysis window.

(b) The design of an optimal analysis window for
a given synthesis window.

(¢) The design of an optimal analysis/synthesis
system.

We consider U as the error measure, and the
optimality criterion is the minimization of U with
respect to the unknown window or windows. For a
wide class of transforms (including the DFT) for
which the matrix A in_(21) is circulant, the two
error measures U and V are equivalent, and there-
fore similar results can be obtained when V is
used as the error measure.

When the analysis window is given, U in (26a}
can be written as a p.s.d. quadratic form in terms
of the synthesis window £, i.e.:

b=y g (£10Q +Q)E - by D) N
The expressionsfor the matrices Qp and Qy. which
are of dimensions LgXLp, the error vector by which
is of length Lg and the constant Cy, are given in
the Appendix. The solution of problem (a) above,
is thus obtained by solving the following set of
linear equations:

(Qh N Qz N Qv N Qz)ufopt - ?h

If this set of equations is degenerate, any-
one of the infinitely many pgssible solutions have
the same (minimal) value of U. The matrix Qy
reflects the quantization noise effect, and Qp
depends on the analysis - window sequence. It can
be verified that if no quantization is applied
(¢Y(-) =0), and a unity system exist (which
requires R <M or Lg = Ly = M), any unity system is
a soiution of the (possibly degenerate) set of
equations (28), regardless of the weight function
G(f) and input signal statistics. Thus for this
case the result presented in [4,5] is but one of
many possible optimal solutions of problem (a).
When R=M and Lg, Ly >M (which is the typical
situation in waveform coding applications), no

(28)

14.1.3

519



unity system exists [6], and the set of quations
in (28) provides a unique solution, even if no
quantization is applied.

For this case (R=M, Lg,Lp >M) the stati§tical
approach not only accounts for the quantizatlon.
noise but also utilizes the statistical properties
of the input signal.

In order to illustrate the effect of the
quantization noise, we consider now a simple
example for which an analytic solution of (28) can
be obtained. We assume that the input signal has
a flat spectrum and its variance is o%, and that
the elements of the noise vector Vgp(k) are un-
correlated random variables with equal variance
denoted by o%. We now use the error measure U
with a uniform spectral weight (G(f) = 1).

For the special case of Lg=Lp=M, r =1, and a sym-
metric analysis window, the optimal synthesis
filter is:

h(t) 0 <t< (M-1)

(29)

fopt(t] -

Z h(t-mR)Z+ (os/oi)
m=-c
which extends the results in [4,5], to include the
effect of the quantization noise.

We consider now the solution of problem (b),
i.e. the design of an optimal analysis window given
a systhesis window. Again 0 can be written as a
p-s.d. quadratic form in terms of the analysis
window h, i.e.:

~ 1 T T

U=Cp+g (b (Q+Qh-(beb) *h) (30
The expressions for the matrices Qg and Qp which are
of dimensions LpXLy, the vectors bg and bp of
length Lg each, and the constant (g, are given in
the Appendix. The solution of problem (b) is thus
obtained by solving the following set of linear
equations:

Qe+ Qp+ Qy+ Q)h = (be+ b)) (31

£ £ D D’ -opt -f " -D

Again, if the set of equations is degenerate,
anyone o0f the possible solutions have the same
(minimal) value of U. However, once
W(f) is positive on a set of non-zero measure,
there is a unique solution of (31), which is a
compromise between the desired LPF specification,
and the unity system specification for the given
synthesis window. The matrix Qp and the
vector by reflect the specifications on the desired
LPF frequency response of the analysis window,
whereas Q¢ and b, which depend on the synthesis
window re?lect tge unity system specification.

The design of an optimal analysis/synthesis
system (problem (c) above), is done by an iterat-
ive algorithm, consisting of alternately  solving
the above two sets of linear equations ((28) and
(34)), similar to [3].

We consider now the design of an optimal
analysis/synthesis system for the special case which
satisfies the following conditions: (i) the decima-
tion factor equals the transform size (R=M); (ii) the
input signal is white; (iii) a uniform frequency
weighting of the errvor is used; (iv) no quantization
is applied.

For this case, Uis similar tothe error measure in
[3] which is a deterministic MSE between the analysis/
synthesis system’s impulse response and the ideal
response. The only difference is that we incorpor-
ated the linear constraint on the gain of the system,
used in [3] into the error measure, thus avoiding
the need for using Lagrange multipliers and hence
simplifying the design algorithm.

Iv. CONCLUSIONS

A statistical model of analysis/synthesis with
quantization was presented. This model can be
applied with the DFT or any other linear regular
transform. Under the presented statistical model,
two different error measures were defined and shown
to be equivalent for a wide class of transforms
(including the DFT). The optimal synthesis window
for a given analysis window, and the optimal analysis
window for a given synthesis window are obtained by
solving a set of linear equations. An iterative
algorithm (similar to [3]), with global convergence
properties is used to design an optimal analysis/
synthesis system. For R<M, and no-quantization
noise, the result in [4,5] is one of many possible
optimal synthesis windows according to the statist-
ical approach presented here. However, for a white
input signal, white quantization noise and uniform
frequency weighting, the optimal synthesis window
obtained here extends the result in [4,5] to in-
clude the effect of quantization noise. For R=M,
the statistical approach partially extends the
results of [3], by allowing non-zerc quantization
noise, and incorporating into the design process
the input signal statistics, and the error freq-
uency weighting. A statistical model for systems
with QUF filters [3], and quantization noise
is now studied.
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