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Statistical Design of Analysis/Synthesis Systems with
Quantization

AMIR DEMBO, MEMBER, IEEE, AND DAVID MALAH, FELLOW, IEEE

Abstract—A statistical model is used for the optimal design of anal-
ysis/synthesis systems which include quantization of the signals in sep-
arate bands. Two types of quantization approaches are analyzed: fine
quantization modeled by additive noise, and matrix quantization (which
includes vertical and horizontal vector quantizations and scalar quan-
tization with fixed bit allocation as special cases). With proper modi-
fication, the general framework is also applicable for other types of
quantization approaches. Based on the assumption that the system op-
erates as a waveform coder, two error measures are used. The first is
a generalization of the usual statistical mean-square error (MSE) to
time-varying systems, whereas the second involves the MSE between
the outputs of the analysis of the original and reconstructed signals.
Both error measures are shown to be equivalent. We present a design
method which is applicable for the design of optimal synthesis filters,
given the analysis filters. In addition, for fine quantization, an iterative
algorithm for the design of an optimal analysis/synthesis system is pre-
sented, together with its convergence properties. It is further shown
that if no quantization is applied, the results obtained with the new
method coincide with previously reported results.

I. INTRODUCTION

NALYSIS/SYNTHESIS (A/S) systems are widely

used in speech processing [1]-[8]. A typical appli-
cation is medium rate waveform coding (e.g., [2]) where
quantization is applied to the signals in separate frequency
bands.

Known methods for the design of analysis/synthesis
windows (interpreted also as analysis/synthesis filters in
[1]) are based on deterministic error measures [4]-[6], and
they ignore signal quantization. Thus, in the presence of
quantization, even a unity A/S system is not necessarily
an optimal one, and its performance depends also on the
input statistics and quantization characteristics.

A statistical approach which takes into account the
quantization effect in the design process is therefore
needed. Such an approach is presented here for two com-
mon types of quantization. The first is ‘‘fine quantiza-
tion’”’ which is used in waveform coding schemes at a 16
kbit/s rate and above. This type of quantization is rea-
sonably modeled by additive noise which is independent
of the input signal. The second is vector/matrix quanti-
zation with a small (typically 256-1024 ) overall number
of different codewords used to represent blocks of con-
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secutive output vectors of the analysis stage. The discus-
sion is restricted to quantization schemes aimed to work
as waveform coders. These schemes have been recently
used in conjunction with subband coding (cf. [7]). Scalar
quantization with typically 1-4 bits per frequency band
(e.g., [8]) is also regarded here as a particular case of
vector/matrix quantization (single element). A/S systems
are usually used in conjunction with the DFT transform.
However, the statistical approach is applied here to a more
general model in which any linear regular transform may
be used.

The weighted overlap-add (WOLA) synthesis method
191, [10] is used throughout. In the next section, we re-
view the A/S systems with WOLA synthesis, and we in-
troduce the statistical models of the various quantization
approaches. Since A/S systems are in general time vary-
ing, a generalization of the standard waveform error mea-
sures to a class of nonstationary random processes is
needed and is presented in Section III. It is then used as
an optimality criterion. Furthermore, the generalized er-
ror measure which is defined in the time domain and an
error measure defined in the transform domain are shown
to be equivalent. The details of the derivations are given
in Appendix A. In Section IV, the optimal synthesis filters
for given analysis and quantization subsystems are de-
rived as the solution of a set of linear equations. Condi-
tions for uniqueness of the solution, as well as some ex-
amples for which closed-form solutions exist, are also
presented there. Certain asymptotic properties of the so-
lution (as the quantization noise approaches zero) and its
relation to results obtained with known design methods
[5], [6] are discussed. An analysis of the computational
complexity of the proposed design process is also given.
Proofs and details of the subjects discussed in Section IV
are given in Appendix B.

In the case of fine quantization (and only in this case),
the dependence of the error measure on tie analysis win-
dow is given explicitly by a positive semidefinite (PSD)
quadratic form. Thus, similarly to [4], we present in Sec-
tion V an iterative algorithm for the design of optimal
A/S systems with fine quantization. This algorithm par-
tially extends the results of [4] by incorporating the quan-
tization and input signal characteristics into the design
process. Furthermore, we present here its convergence
properties which were not reported in [4], with details
given in Appendix C. Conclusions are drawn in the last
section.
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II. STATISTICAL MODEL OF THE A/S SYSTEM

We present below a statistical model of a fixed time
reference [1], [9] A/S system with WOLA synthesis and
quantization of the output of the analysis stage. Although
most of the A/S systems contain the DFT transform in the
analysis stage, so that the quantizer input is the discrete
short-time Fourier transform (DSTFT) of the input signal
[10], some contain other linear regular transforms (such
as DCT or Hadamard). Therefore, the modeling of an
A/S system with an arbitrary linear regular transform is
presented in order to apply the new design method to var-
ious coding systems. A schematic description of the A/S
system is given in Fig. 1. In order to simplify the presen-
tation of the new design method, we frequently use infi-
nite sums so as not to bother with explicitly stating their
limits, although they are actually finite—unless explicitly
stated. The time domain sequences as well as the analysis
and synthesis windows have real values, whereas the
transform values may be complex. A detailed description
of the model is given below.

1) The input signal sequence x (- ) is multiplied by the
sliding analysis window 4 ( + ) having a length of L, sam-
ples. A time aliasing operation reduces these L, values
into a vector of length M (the transform size), denoted by
x;, where the sth sample of x () is the one multiplied by
h(0). These vectors (for different time instances) are de-
cimated with a decimation factor R, 1 < R < M. The mth
element of the vector xz is given by

xg(m) = r=i;on h(sR — m — Mr)x(m + Mr),

O<m=<M-1. (1)

A linear regular transform of size M operates on these
vectors and results in output vectors Xz of M elements
each. This transform is represented by the M X M matrix
T whose (k, m) element is denoted by #(k, m), 0 < k, m
< M — 1. The kth element of the vector X, is given by

M~1
Xz(k) = ZO t(k, m) xzg(m), O0<k=<M-1.

(2)

If the DFT transform is applied [i.e., t(k, m) = exp
(—j(2mkm/M)], the sequence of vectors X, is the
DSTFT of the input signal. For the general transform rep-
resented by 7, we denote the sequence of vectors X, as
the discrete short-time transform (DSTT) of the input sig-
nal. This completes the analysis part of the system.

2) Let the quantized DSTT sequence of vectors be de-
noted by Xg. Since the signal is changed by the quanti-
zation, it can be considered as a modified DSTT which we
denote as MDSTT. Before describing in detail the various
quantizers considered [i.e., the various types of mappings
of X,z(X,z)], we describe the WOLA synthesis scheme
which is used in all the systems considered here.

An inverse transform operates on the MDSTT and re-
sults in time domain vectors £,z of M elements each. The
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Fig. 1. Block diagram of an analysis/synthesis system with an arbitrary
regular linear transform, modification (quantization), and WOLA syn-
thesis.

inverse transform is represented by the matrix 7' of di-
mensions M X M, whose (m, k) element is denoted by
t™'(m, k) for0 < m, k < (M — 1). The mth element of
X;g is thus given by

M-1

Zp(m) = EO 17 (m, k) Xp(k), O<m=<M~-1.

(3)

Each of the time domain vectors £ is periodically ex-

tended, and a weighted overlap-add operation (with shift

R) reconstructs the output sequence y(n) [10, p. 321].

This operation is done using a synthesis filter f( - ) of Ly
samples, and is described by

y(n) = szz_:mf(n = sR) £x((n),,) (4)

where (n),, denotes n(mod M ).
3) Two types of quantization approaches are consid-
ered.

a) Fine Quantization (FQ): With fine quantization,
typically more than 4 bits per input sample are used, and
the output signal-to-noise ratio (SNR) is quite high. It is
well known that for this case, the quantization error can
be reasonably modeled as an additive noise vector that is
uncorrelated with the input signal [11]. We shall further
assume that these noise vectors are samples of a wide-
sense stationary process with zero mean and known co-
variance sequence. Let V denote the noise vector added
to X;z; then

Xa(k) = Vig(k) + Xg(k), O=sk=M-1. (5)

For covenience of the presentation, we denote by v,
the inverse transform of the vector V,z and use the co-
variance sequence of v rather than the covariance se-
quence of V. Thus,

Ir(m) = xg(m) + ve(m), O0<m=<M-1 (6)
and
E[vg(m)]
= E[vg(m) x(n)] =0

vn,s; 0<m=<M-1

(7a)
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Elvg(m) o war(n)]
=¥, ,(dR)

vs.d: 0<m.n=<M-=1. (7b)

For example. if the vectors Vg arc uncorrelated both in
time and in the transform domain, then ¥, (d R) = 0
for d # 0. Furthermore, if the DFT transform is used,
the matrix whose elements are ¥,, ,(0) is a circulant ma-
trix whose first row is the IDFT of dimension M of the
sequence (E[V,x(0)]. L E[VR(M — 1)*]). The
latter sequence is closely related to the bit allocation used
in the different bands.

b) Matrix Quantization (MQ): The matrix quantiza-
tion of blocks of B = | DSTT vectors is explained below.

The vectors { X.gr. ** « X+ g-1nr} are regarded
as an M X B matrix X, az,. The codebook contains L dif-
ferent matrices {C"’. -+ - ., C""?} and the space of all
M X B complex matrices is divided into L distinct sets
£40, oA™Y such that UT 4" = M~B At the
time instance s. the coder selects the index i,, | = i, =
L according to

i =1 ifandonlyif X, ea’ 1

s

</ <L
(8a)

When a specific index value / is received by the de-
coder. it uses the matrix C'"" as X, g, and therefore the
sequence {¢j', - . ey’ V= T'C'" is used as the
sequence of vectors { £gg, . ®.pig-1r} in the
synthesis. This sequence is assumed to be real even for
complex transforms (one can easily guarantee this prop-
erty by an appropriate selection of the codebook matri-
ces). The output samples of the A/S system are the result
of a WOLA synthesis [using (4)]. applied to the vectors:

& Ciy)
Xp+arr = Cd > 0<d=<B- I.

1 <i =L, —~oo < § < oo (8b)

It is quite difficult to design a complete codebook for large
values of L (e.g.. 1024 and above), and therefore the
Cartesian product of several codebooks is usually used.
In such a scheme. the index i, is essentially a vector of
lengthJ = 1, ie.. i, = (i,(1), . i(J)) where 1 <
i(k)y < L,withlL = II{_,L,. The reduction in complex-
ity is obtained by designing J independent codebooks,
with the kth codebook being described by the pair of sets
{A‘l'k', ce A(U,kb}. {C(l'k). Cee C(“'M}. and the
coding-decoding scheme is

i(k) =1 ifandonly if X,z €A,
l<l<sL.l<k=slJ (9a)
J o
fapeqn = 2oel L 0=d = (B 1)
| <i(k) < L. —o <s< oo (9)

The linear combination of the representative vectors is not
an inherent property of the Cartesian product of code-
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books. but is often applied (e.g., [20]) since the synthesis
is linear and high-quality reconstruction of the time do-
main waveform is desired.

We have chosen this specific model mainly because it
serves as a unified framework for many different coding
schemes. This is also the reason for adopting the matrix
quantization notation instead of the more popular scalar/
vector quantization. For example, the following four par-
ticular cases of frequently used scalar/vector quantizers
also fall into this general framework.

1} “Vertical”’ Vector Quantization: This corresponds
toB=J=1

2) Scalar Quantization with Fixed Bit Allocarion: This
corresponds to B = 1,J = M (or M/2 for the DFT trans-
form). L, is the number of quantization levels of the kth
sample of the DSTT vector, and C'"*)is the kth unit vec-
tor multiplied by the value of the /th quantization level of
the kth sample.

3) “Horizontal’” Vector Quantization: This is the
generalization of scalar quantization to the case B > |
where C**? is a matrix in which only the kth row is non-
zero.

4) Cascaded Vector Quantization [20]: This is a vari-
ant of the vertical vector quantization, with B = [..J >
I. A coarse vector quantizer of size L, is first designed
and then the residual vectors X,z — C'"*’ are used as input
sequence for a second vector quantizer of size L. etc.

In analyzing this class of quantizers, we make the fol-
lowing assumptions.

1) The quantizer is unbiased. i.e..

('(/.l‘) — E[XuRR)lX\(BR) EA”‘“].

l<k=<J l=<l<l,. (l0a)

This property guarantecs an unbiased output signal. and
is automatically satisfied by many optimal matrix quan-
tizers (e.g.. those designed under a minimum mean-
square-error criterion).

2) The expected valuc of the input sample x(sBR + d )
given that X g, € A'"*" depends only on the delay value
d. and is known at least for several values of d (as spec-
ified in the sequel). Let

G""'(d) = E[x(sBR + d) | X, gk, € AR (1a)

3) The occurrence probabilities of codewords in each
one of the J codebooks, as well as thc probabilities of
occurrence of a specific pair of codewords. with a specific
delay d( BR) between them, are known (estimated"), i.e..

P”'“ = Prob {X\rBR] € A(I.L)} (llb)
F”“')‘("/)(d) = Prob {x\(BR| e A[[.I\)
N X,y €A™} (1le)

There are L £ £{_, L, different codewords in the union
of the J codebooks, and therefore for each value of the

'In practice. the frequency of oceurrence. or histogram, is measured and
is used as an estimate of the probability of occurrence.
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delay d, L different values of G'(d) and L? values of
F'(d) have to be known.

4) We assume that the input signal x(n) is composed
of samples of a wide-sense stationary process with zero
mean and known autocorrelation denoted by p (d ). If the
input is a speech signal, p () represents the long-term
autocorrelation sequence of the speech, thus taking ad-
vantage of the nonflatness of the speech spectrum in the
design process. Furthermore, although in various steps,
this sequence appears inside infinite summations, the final
result is that only the terms of p(d) for |d| < L, + L;
are used in the design of the (locally) optimal A/S system,
and these terms appear only in the case of FQ. A similar
remark applies to the covariance sequence of the additive
noise that is used in modeling the FQ effect.

In assumptions 2) and 3) above, we assumed knowl-
edge of values which depend on the codebook used, the
analysis window, and type of transform. Therefore, in the
sequel, we assume that all these factors have already been
determined, and we concentrate on selecting the optimal
synthesis filter for a given analysis and coding system
(quantizer). Since usually the design of an MQ is based
on a typical training sequence, this sequence can also be
used to determine P, F*), and G'"(d ) which will af-
terwards determine the coefficients of the synthesis filter.
Again, to simplify the presentation, we will use the se-
quences F')(d ) and G'"’ (d) inside infinite summations,
but in the final result, it is implied that only the values for
|d| < Ly + L, are actually required.

III. ERROR MEASURES

Physically realizable A/S systems introduce signal de-
lay. It is known that the delay of the A/S system depicted
in Fig. 1 is an integer multiple of the transform size [1].
We therefore assume that the A/S system has a delay Mr,
with ry being an integer. Since in an ideal system, the
reconstructed signal y(n) coincides with the delayed in-
put signal, we define the output error signal as

e(n) £ y(n) = x(n = Nrp).

(12)

The assumption that the quantizer is unbiased (7a),
(10a) guarantees that the output error signal has zero
mean. The WOLA synthesis is a time-varying operation
due to the embedded interpolation, and therefore when
quantization is applied, e (n) is not a wide-sense station-
ary process. Thus, in order to measure the error induced
by the A/S system with different synthesis filters, we gen-
eralize the usual MSE error measure for a class of non-
stationary processes which, of course, includes the error
process € (n) above.

Let the autocorrelation sequence of e (n) be denoted by

¢(.)’ i'e"

¢(d, m) £ E[e(m + d) e(m)]  vd, m.

(13)

In Appendix A, expressions for ¢ (- ) are given for FQ
and MQ. Furthermore, this function has the following two
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properties (as proven in Appendix A):
lqb(d, m)| < const vd, m (14a)
¢(d,m +IN) = ¢(d, m) vd,m,1 (14b)

where N 2 BRM /gcd (BR, M) (where gcd (BR, M) is
the greatest common divisor of the two integer numbers
BR and M, and B = 1 for the FQ case).

Let G( f) be a nonnegative real and symmetric weight
functionin L,[ —0.5, 0.5} whose Fourier coefficients g (n)
4 205 G(f) e/>™ df converge absolutely, i.e.,

!
lim Zl|g(n)| < . (15)
|20 n=—
The first error measure we consider is given by
® 1 N-1
N
U= —
2 e@) % T etm]|  (16)

which, due to (14a) and (15), is well defined. Further-
more, it has a spectral domain interpretation as the natural
generalization of the MSE criterion for processes with
bounded periodic autocorrelation sequence [i.e., satisfy-
ing (14)]. The following theorem (whose proof is given
in Appendix A) summarizes this interpretation.

Theorem 1: Let

SO.S
-0.5
I+r 2

2 e(n) eI

n=|[-r

A 1

“w

- E G(f)df wvir

(17)

Then the following hold.

a) For any value of [, lim, ., (4;,) = U. Therefore,
U=0.

b) When e (n) is a wide-sense stationary process with
a spectrum S( f) € L,[ —0.5, 0.51], it follows that

0.5
v=|_ stroa (18)
The error measure U defined in (16) is based on the
error signal in the time domain. An alternative approach
is to define the error in the transform domain (i.e., in the
domain in which the quantization is done). Let Yz, — oo
< s < o denote the DSTT sequence of vectors generated
from the reconstructed signal y(n). In an ideal A/S sys-
tem, Y is a delayed version of the DSTT of the input
signal (with delay of Mr, samples). Thus, the sequence
of error vectors in the transform domain is
Eg £ (19)
Since the DSTT is a linear operation and the error in
the time domain e (7 ) has zero mean, it follows immedi-
ately that E also has zero mean. With the DFT transform
in mind, it is natural to consider the expected value of the

YsR - X(sR — Mro)-

T1
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Euclidean norm of the random error vectors E, i.e.,

>

Vsr E[HEsRH2]

M~1

& Bl

Yia(k) = Xa-mo(k)[]. (20)

It follows from the definition of the DSTT [(1) and (2)]
and of e(n) [in (12)] that v can be represented in terms
of the autocorrelation sequence ¢ ( +) as

o )

v = 22 22 h(sR~1)h(sR —r)

r=—o 1=—-®

“o(r— 1) a((r),, (1),) (21)

where a (i, j) is the (i, j )th element of the M X M matrix
defined as

A =T*T (22)

where * denotes ‘‘conjugate transpose.’’

Since the A/S system is time varying, vz depends on
the time instance sR. However, due to (14b), the se-
quence pgg is periodic with a period of N, i.e.,

(23)

We now define the second error measure as the time
average of v over one period of this sequence, i.e.,
N-1

1
4 Nmz::() VsR + m-

VsR+INY = VsR Vs, [ integers.

(24)

Substituting (24) in (21) results in

d=—o0

V = % L=§;mh(n)h(n+d)]

1 N-1
"y [Eo o(d, m)a((m + d),; (m)M)} (25)
Comparing (25) to (16), it is easily verified that when the
matrix A is a circulant matrix [i.e., a(i, j) = a((i +
d)y, (j+d)y)ford=20, -+, (M- 1)], Vcoincides
with U, provided that the following weight sequence g (d )
is used:

3

2 h(n)h(n+d)a((d)

n=—o

. 0). (26)
It is shown in [14] that the matrix A4 is circulant for
every unitary transform, and then (26) is equivalent to

2
k

H(s+ %)
where H( f) is the frequency response of the analysis
window, and since it is an approximation of an ideal LPF
with cutoff frequency 1/2M, it follows that G(f) =~ 1
in (27).

Since the error measure V coincides with U for this wide

class of transforms, we continue in what follows with U
only.

_iMfl

G(f) = (27)

M k=0

The error measure U given in (16) is suitable for the
design of an optimal synthesis filter, given the analysis
window. However, when the design of the optimal anal-
ysis window is considered, the error measure U should be
modified in order to incorporate the low-pass frequency
response specification of the analysis window into the de-
sign process. Following the approach in [4], we add the
weighted MSE between H( f) and the desired frequency
response D( f) to U. Let W( f) = 0 denote the weight
function and U the modified error measure; then

0.5
U=u+ S W) |H(F) = D) df. (28)

-0.5

IV. DEesIGN oF OpTIMAL SYNTHESIS FILTERS
The optimality criterion is the minimization of U with
respect to the unknown synthesis filter coefficients. Com-
bining (16) and the expressions for ¢ ( *) given in Appen-
dix A, it is easily verified that for both quantization ap-
proaches considered here, U is a PSD quadratic form in
terms of the synthesis filter vector of coefficients f, i.e.,
1
U=C+ o (fOf -~ bYf) (29)
where the apostrophe denotes transposition. The expres-
sions for the Ly X L;matrix Q, the vector b (of dimension
Ly), and the constant C are given in Appendix B.
Thus, the optimal synthesis filter is given by the solu-
tion of the following set of linear equations:

(Q+ Q) fom = b. (30)

If this set of equations is degenerate, each of the infi-
nitely many possible solutions corresponds to the same
(minimal) value of U.

We now interpret the general expressions for various
particular cases of practical importance, and we analyze
both the complexity of the solution and the type of data
needed.

Starting with FQ: Here Q can be written as Q = Q, +
Q, where the matrix Q, reflects the quantization effect,
and the matrix Q, depends on the analysis window and
corresponds to Portnoff’s conditions [12].

When no quantization is applied (i.e., ¥,, ,(d) = 0),
Xgr(m) = x;p(m). In that case, and if the A/S system is
a unity system, e(n) = 0, and therefore U = 0. Thus,
any unity system is a solution of the (possibly degenerate)
set of equations (30), regardless of the weight function
G( f) and the input statistics. For R = M and L, Ly >
M (which is the typical situation in waveform coding ap-
plications), no unity system exists [13]. However, when
G(f)=1,p(d) = ofé(d), and none of the polyphases
[1] of the analysis window is identically zero, (30) pos-
sesses a unique solution [14].

For illustration, we show in Fig. 2 the optimal synthe-
sis filter (Ly = 256) which was obtained as a solution
of (30) for an analysis window which is a truncated sinc
sequence (of length L, = 256), approximating an ideal
LPF with a cutoff frequency of 1/(2M ), M = 16. In this
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Fig. 2. Optical synthesis filter (solid line) for a given analysis window
(dotted line) and an A/S system without quantization (R = M = 16, L,
=L, = 256).

example, G(f) = 1, R = M, p(d) = 6(d) (white noise
input). Thus, the uniqueness condition given above is sat-
isfied. The error measure U for this design was numeri-
cally evaluated to be —18.17 dB (as elaborated above, a
unity system does not exist in this case since here R = M
andL, > M).

This A/S system was simulated on a computer, and a
speech signal (of telephone bandwidth), sampled at f; =
8 kHz, was passed through it (with no quantization). The
output SNR was found to be 16.9 dB and it sounded al-
most transparent relative to the input speech signal. On
the other hand, when the synthesis filter was set iden-
tical to the above analysis window, the output SNR
dropped to 15.7 dB. Thus, the use of the optimal synthe-
sis filter resulted in an improvement of 1.2 dB in output
SNR.

If quantization is applied, uniqueness of the solution of
(30) is guaranteed, at least when G( f) = 1 and the noise
process v,z cannot be predicted with zero-mean-square
error from { v _yp } %1 (cf. [14]).

Again, if Q, = 0, (i.e., no quantization is applied),
there may be, in general, infinitely many possible solu-
tions of (30), but one can choose among them the appro-
priate solution assuming a characteristic noise statistic
¥,,,(d R) as follows.

Use ¥,,,(-) = e‘i/,,,‘,,( -) as the noise covariance se-
quence where € > 0 is a small value governing the overall
noise level. If the uniqueness condition presented above
is satisfied, then there exists a unique solution of (30) for
every ¢ > 0 which is denoted by f.. It is shown in [14]
that fy = lim, ¢ ( f,) exists, and that it can be determined
efficiently [16] from

fo= A'[A(Q, + Q)A'] " Ab (31)

where AA' = Q,, + Q; [for O, that is generated by
\i/,,,‘,,( -)] and + denotes the Moore-Penrose (M-P) in-
verse [15].

In order to illustrate the effect of the quantization noise,
we present the following two examples for which a closed-
form solution of (30) can be obtained.

Example 1: G(f) = 1, L, = Ly=M, ry =1, p(d)
= 026(d), ¥, ,(dR) = 8(d) ¥((m — n)y). In this

-
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case, it is shown in Appendix B that the optimal synthesis
filter is

fopl(t) = "= h(M — t) ,

0<str=M-1 (32)

which extends the results in [5], [6] to include the effect
of quantization noise.

Example 2: G(f) = 1, R = M. In this case, the set of
L linear equations given in (30) is decomposable into M
sets, of about the same number of equations in each. Let
f+(x) denote the rth polyphase [1] of the synthesis filter
(e, LX) £ f(1+ Mx), 0= 7 <M~ 1); hy(x)
denotes the properly delayed and inverted in time, th
polyphase of the analysis window (i.e., h,(x) = h(Mr,
—(7+ Mx)),0 <7=<M-—1),and p(d) denotes the
decimated by M autocorrelation sequence of the input sig-
nal. Then, the optimal synthesis filter is the solution of

©

5 hy(x ~d)p(d)

= I A= )[RG) + ¥, ()],
O0<7=M-1
0=x< L%J (33)
where
R'r(y) = r:Z_m hT(r + y) [:Z‘m hT(r - l) [3(1),

The derivation of (33), (34) is given in Appendix B.
For Ly = oo, and if noncausality of the synthesis filter is
allowed (i.e., (33) holds for — o < x < o), these equa-
tions have a frequency domain interpretation which re-
sembles the classical Wiener filter. Let F,( f), H,(f),
R(f), ¥, .(f) be the frequency responses of f,(x),
h.(x), p(d),and ¥, (dM), respectively; then (33), (34)
imply that

H,(f)R(f)
¥, (f) + ROAI|H(f)

—-0.5 < f=<0.5. (35)

The complexity of the design according to (33), (34) is
quite small, as only (L; + L,)/M values of p(-) and
L;/M values of ¥, () are used and only M Toeplitz
systems of about L,/M linear equations each have to be
solved. A more general complexity analysis is given in
[14].

For illustration, Fig. 3 depicts the optimal synthesis
filter (solid line) obtained for an A/S system with a

F.(f) =

"

T1



334 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. 36, NO. 3. MARCH 1988

1o ———

i i — fm
| R hn
o8 !
!
| HE
Pl
° 6 | t
t
1
H t
at LIRS i
= | f
= s t
= ; 1 {
= | | t
= 9 2 i t
= f
= ! ! I8
- - ! i AR ~ 2
\ _ i A 4
P T e A PR WSS va
v %4 s | (i \V4 J
X / \
i \ Y /
9.2 i it 4
i
2.4
0.0 64 128 192 256.

Fig. 3. Optimal synthesis filter (solid line) for a given analysis window
(dotted line) and an A/S system with a DFT and fine quantization (trans-
mission rate = 32 kbits/s).

DFT and ‘‘fine quantization.”” The design is based on
(33), (34) with L,,, L, = 256; R = M = 16, and it is based
on statistical data estimated from 10 s of speech ( f; = 8
kHz). The following simple quantization scheme is used
in this example.

The quantizer in each band is uniform (its step size
being optimized for the Gamma distribution). The real and
imaginary components of each transformed sample are
separately encoded (only half of the complex transform
components are encoded and transmitted since the input
signal is real). The number of bits assigned to each band
was fixed and was set according to the long-term variance
estimate of the transformed samples (to minimize the
MSE, but limited to a maximum of 6 bits/component).
The overall transmission bit rate was set in this example
to 32 kbits/s (i.e., 64 bits per each transformed vector).

The main computational load in the design is the esti-
mation of the statistical data needed in (33), (34), namely,
5(d) and ¥, .(dM). For 10 s of speech (80 000 sam-
ples), it required about 5 - 10°% muitiply-add operations
(evenly split between the two estimated functions). Add-
ing the operations needed to complete (34) and to solve
the M = 16 Toeplitz systems of L;/M = 16 equations,
less than 5.2 - 10°® multiply-add operations were needed
to complete the design of the optimal synthesis window
in this example. An output SNR of 15 dB was measured
with the above system, compared to 14.1 dB when a non-
optimal sinc synthesis filter (of length Ly = 256) is used.

We turn now to MQ.

In this case, due to the inherent nonlinearity of the
quantization process, the matrix Q cannot be decomposed
into @, + Q, as with FQ. Moreover, the implicit depen-
dence of the synthesis filter on the given analysis window
coefficients is only via the statistics F'"’(d), G''(d),
and P*. Furthermore, since there are only L possible dif-
ferent MDSTT vectors, it is clear that, in general, no unity
system exists (i.e., U > 0 even for f,, obtained via (30),
and no matter what are the values of R, M, L,, Ly). A
sufficient condition for the uniqueness of f,, obtained
from (30) is (as for FQ) G(f) = 1, and the process

B-1 L

dgo ,gl PU)Cf/)(m) Gflf)(m + M(d - ro))
flm) = 0l |
Al I\ ]
d=0k=11=1 F(k)<(l)(0) CE{ )(m) Ci} )(m)

O0=m=M-1 (36)

where for ease of presentation, we reorder the L code-
words and thus replace the pairs of indexes (/, k) in (11)
by a single index.

This result is derived in Appendix B, as well as the
simplified expressions of Q and b for the important case
of G(f) = 1, R = M, as well as a discussion on the
complexity of the design.

For illustration, we show in Fig. 4 the optimal synthe-
sis filter (solid line) obtained for an A/S system with a
DFT and vertical vector quantization [i.e., B =J = 1—
see in Section II ] of size M = 8 (here also R = M and
G(f) = 1). The synthesis filter is obtained by solving
(30), using (B7a), (B7b) which are simplified further here
to have the form

L
b(r) =2 2 PUV((),,) G (1) (37a)
o(t, s) = Igl kgl <((0),,) (0,
. F(l)‘(k)<s_A_4_t> 5((s - 1), = 0)
0=sts=<L;— L (37b)

Furthermore, with Q(¢, s) above, the matrix [Q + 071
[in (30)] has zeros everywhere except on diagonals sepa-
rated M elements apart (including the main diagonal).
Thus, the synthesis filter can be solved here in terms
of its M polyphase filters, with each polyphase being
solved from a set of L;/M equations.

Because of speech nonstationarity a gain-adaptive vec-
tor quantization scheme [21] is used with forward adap-
tation. With 4 bits for the gain (on a log scale) computed
for every 16 consecutive vectors (corresponding to 0.25
bits/vector), and a dictionary of 256 vectors (i.e., 8
bits /vector), the overall transmission rate is 8.25 kbits /s.
Since here the effective value of L is 2* - 2% = 2", storing
F-® () requires a large amount of storage. We have
chosen therefore to directly generate b(z) and Q(¢, s) by
updating its values as each input vector from the training
data is entered. The updating equations turn out to be

b(1r) < b(1) + 2ix((1),,) x(1 + sR),
O0=<=t=<L;-1 (38a)
O(1, 1) < Q(1, 1) + £((1),) Zo v rmn/mnr((1) )
O<st,r<Li—1; (r—1),=0

(38b)



DEMBO AND MALAH: DESIGN OF ANALYSIS/SYNTHESIS SYSTEMS

—f(n)
seechin)

AMPLITUDE

|

-2.4
e.e 64 128 192 256.
n
Fig. 4. Optimal synthesis filter (solid line) for a given analysis window
(dotted line) and an A/S system with gain-adaptive *'vertical'’ vector
quantization (transmission rate = 8.25 kbits/s).

where x (¢ + sR) is a sample at time (¢ + sR) of the input
signal, £ (1) is the rth clement of the quantized (repro-
duction) vector £,z, and b (1) = Nb (1), O(t, r) = NQ(1,
r) where N is the number of vectors used for training.

For N = 10* training vectors (input data of 8 - 10*
samples) and L, = 256, about 3NL; = 7.68 - 10° mul-
tiply-add operations are needed for computing b(¢) and
Q(t, r) in this case. The solution of M = 8 Toeplitz sys-
tems of L;/M = 32 equations each is of much less com-
plexity (O( 10°)). The amount of computations needed
for the analysis, vector quantization process (search in
dictionary), and WOLA synthesis are not included here
as they are part of the usual coding system.

The above system (with the optimal synthesis filter
and 8.25 kbit/s transmission rate) resulted in an output
SNR of 12 dB (for 10 s of input speech) and in 11.5 dB
when the synthesis filter was set to be identical to the
analysis window (i.e., truncated sinc sequence of length
L;= L, = 256). Although only 0.5 dB improvement was
obtained in this particular experiment,” a clear subjective
improvement in reproduced speech quality could be dis-
cerned, apparently because of the different (smoother) na-
ture of the error.

It should be noted that the above scheme (‘‘vertical”’
VQ) is particularly attractive if the squared error distance
measure is used to construct the dictionary and to search
it for the best reproduction vector. This is because there
is actually no need to perform the transform at the trans-
mitter and the inverse transform at the receiver if the
transform is unitary (which the DFT is). The encoding
can thus be done here on the time-domain vectors x,z di-
rectly.

V. ITERATIVE DESIGN OF OPTIMAL A/S SYSTEMS WITH
FINE QUANTIZATION

If fine quantization (FQ) is used, the error measure U
is given as an explicit function of the coefficients of the

*An additional improvement of 0.4 dB was obtained when the sinc anal-
ysis window was replaced by a window such as the one in Fig. 5 (but for
M = 8) which was designed by applying the iterative technique described
in the next section.
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analysis window. Combining (16) and (28) and the
expression for ¢ (- ) given in Appendix A, it is easily ver-
ified that U is a PSD quadratic form in terms of the anal-
ysis window vector of coeflicients k. Thus, for a given
synthesis filter, the optimal analysis window which min-
imizes U is the solution of a linear set of equations, as
follows:

(Qf + Q} + QD + Qb)h\\p( = bD + bf' (39)
The expressions for the L, x L, matrices O, Qp and the
vectors by, by of dimension L, are given in Appendix C.
It is also shown there that for a weight function W( f)
which is positive on a set of nonzero measure, there exists
a unique solution of (37). The matrix Op and the vector
by reflect the frequency response specification on the
analysis window via (28), whereas Qf-and Ef, which de-
pend on the synthesis filter, reflect the desired unity sys-
tem specification. The statistics of the quantization noise
do not affect the optimal analysis window. Furthermore,
regardless of the quantization, the optimal analysis win-
dow does not correspond in general to a unity system, but
is rather a compromise between the frequency response
specification and the unity system specification. Unlike
the set of linear equations in (30), the equations in (37)
are usually irreducible even for M = Rand G(f) = 1.

The design of an optimal A/S system with FQ is done
by the following iterative algorithm, similar to [4].

1) Initialize » = 0, and let 2, £'® denote the given
initial analysis and synthesis filters.

2) Let k%Y e A,( ') be any solution of (37) for the
given synthesis filter f'”, with the exception that if A" is
a solution, choose this solution.

3) Let f""" € 4,(h""* ") be any solution of (30) for
the given analysis window k""", with the exception that
if £ is a solution, choose this solution.

4 IfO =D ARD = BHY stop?; otherwise. r
< (r + 1) and return to 2).

Here A,(-) and A,(-) denote the sets of solutions of
(37) and (30), respectively.

This iterative algorithm consists of alternately solving
two sets of linear equations. For the special case of R =
M, G(f)=1¥,,(d) =0 and p(d) = 6(d), Uis
similar to the error measure in [4] which is the determin-
istic MSE between the A/S system unit sample response
and the desired ideal response. The only difference is that
we incorporated the linear constraint on the gain of the
system, used in [4] into the error measure, thus avoiding
the need of using Lagrange multipliers, and hence sim-
plifying the design algorithm.

For illustration, Fig. 5(a) shows the result of an itera-
tive design of an analysis-synthesis window pair [for R
=M=16,L, =L, =256,G(f) =1,p(d) = 6(d)]
without quantization and without any constraint on the

*In practice, since the arithmetic has final precision, the number of it-
erations is not allowed to exceed a given limit. Furthermore, the iterations
are stopped whenever U( f", h'") — U(f“* ", A" ") < €. However,
to obtain convergence proofs, we avoid this issue in the discussion above.

11
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Fig. 5. (a) Analysis/synthesis window pair obtained by iterative design
(identical windows) for an A/S system without quantization and with R
=M =16, L; = L, = 256. (b) Frequency response of the window in
Fig. 5(a).

analysis window frequency response (i.e., W(f) = 0,
U = U). In this case, the analysis and synthesis windows
are identical, and they result in a system which is very
close to a unity system (U < —60 dB, SNR > 60 dB).
The frequency response of each of these windows is
shown in Fig. 5(b). It is of interest to note that conver-
gence to the same pair of windows shown in Fig. 5(a) was
obtained from several initial analysis windows (of length
L, = 256) having a low-pass response with the proper
cutoff frequency. Convergence was obtained within 50~
100 iterations.

Using the above pair of windows in an A/S system with
fine quantization (and DFT) resulted in an output SNR of
18.6 dB at the bit rate of 32 kbits/s. This is a marked
improvement over the results obtained with the pair of
windows depicted in Fig. 3. Further improvement could
be expected by adding a constraint on the frequency re-
sponse of the analysis window by using a nonzero value
for W( f) in (28), and by taking into account the quanti-
zation noise statistics, as well as using gain adaptation (as
was done with VQ above).

The following theorem which is proved in Appendix C
summarizes the convergence properties of the iterative al-

gorithm, assuming both Op and Q, are PD matrices (i.e.,
both (37) and (30) always possess unique solution). The
reader may consider [14] for a more complete version of
this theorem.

Theorem 2:

a) Uis monotonically decreasing from iteration to it-
ration, unless the algorithm stops at a fixed point in T
{(fih);h=A(f)Nf=Ah)}

b) T is the set of stationary points of U.

c) Every sequence generated by the algorithm has at
least one limit point, and all limit points are in T".

d) U possesses a global minimum which is in T'.
Assume that ( f*, h*) € T'; then the iterative algorithm

converges linearly to ( f*, h*), and the rate of conver-
gence is determined by the second-order derivatives of
Uin ( f*, h*) (cf. [14]).

1>9

VI. CONCLUSIONS

In this paper, a statistical model of analysis/synthesis
systems with quantization is presented. It is applied to the
design of systems under two different quantization ap-
proaches: fine quantization and matrix quantization (which
serves as a unified framework having scalar and vector
quantization as special cases), and any linear regular
transform. With the presented statistical model, two dif-
ferent error measures were defined: the first one in the
time domain, and the second one in the transform domain.
These error measures are shown to be equivalent for a
wide class of transforms (including the DFT). The opti-
mal WOLA synthesis filter is obtained by solving a set of
linear equations. Conditions for uniqueness of the solu-
tion when quantization is applied are given, and it is
shown that if there is no quantization, then an optimal
synthesis filter corresponds to a unity system (if it exists).
Thus, for R < M, the result in [5], [6] is just one of many
possible optimal synthesis filters. Furthermore, this result
is extended to the case of white input signal and white
(nonzero) quantization noise. It is also shown that for
quantization noise approaching zero, there exists a limit-
ing optimal synthesis filter which corresponds to a unity
system, but depends on the specific input signal and noise
statistics.

For the important case of critical sampling (R = M),
the polyphases of the optimal synthesis filter are inter-
preted in the frequency domain as Wiener filters. For this
case, the new approach partially extends the results of [4]
by incorporating the quantization effect into the design
process, and thus leads to optimal synthesis filters which
depend on the quantization characteristics.

For the case of fine quantization, an iterative algorithm
(similar to [4]) is presented for the design of optimal A/S
system, and its convergence properties are analyzed.

Preliminary computer simulations with speech coding
have shown both objective (SNR) and subjective (by in-
formal listening) improvement as compared to A/S sys-
tems with nonoptimal windows, particularly at low bit
rates.
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APPENDIX A
A. Explicit Equations for ¢ (d, m) and Its Properties
Following (12), (13), and (4), it follows that

¢(d, m) = p(d) - Sz&f(m — SR) E[ix((m),,)

- x(m +d — Mry)]

- S;jwf(m +d — sR) E[#x((m + d),,)
- x(m = Mro)]

SIS f(m = R)f(m + d — sR)

- E[#x((m + d),,) 5x((m),,)]. (A1)
Following (1), (6), and (7), we obtain for the FQ case
E[st((m)M) x(m +d - Mro)]
= X h(sR—m—rM)p(M(r+r) - d)
(A2a)
E[)?SR((ni + d)M)x(m - Mro)]

= 2 h(SR-m—d—rM)p(M(r +r) +d)

r=-o

(A2b)
E[fSR((m + d)M) XIR((m)M)]

-3 -3

= ¥ msrdymm((f = S)R) + PIREDY

-h(tR —m — rM)h(sR —m — d — nM)
“o(d + M(n = r)). (A2¢)
Following (9)-(11), we obtain for the MQ case

E[4x((m),) x(m — d — Mr,)]
- 5 PO, ()
6 v |5 ]o0) o
E[tx((m + d),) x(m — Mro)]
= 5 PO, (4 )

: G“)<m ~ Mr, - BJ BR>

(A3b)
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Elt(n + d),) #al(m),)]
L L . ¢ s
-zEee(5)- 1))
Cela((m + d),,) iy ((m),,). (A4)

All the infinite summations in (Al) and (A2) are ac-
tually finite since both f( - ) and h( - ) are of finite length.
The periodicity of ¢ (d, m) in the second variable with a
period of N £ BRM /gcd (BR, M) can be verified from
(A1)-(A4) using elementary (although tedious) algebra.
For the boundness of |¢(d, m)|, it is enough to check
that this sequence is bounded with respect to d for 0 < m
< N — 1. This property follows from the fact that f( )
and h(-) are of finite values and length, and from the
assumption that the covariance sequences p( ) and ¥ ()
are bounded, as well as the conditional expectations se-
quences G“(+). Note that the terms which appear in (A4)
are always bounded due to the boundness of 0 <
FO-®(.y < 1. The boundness assumptions on the input
signal are quite natural and not very restrictive.

B. Proof of Theorem 1

1) Since the summation over n in (17) is finite, all the
expectations involved are finite [due to (14a)], and the
Fourier coefficients of G( f) are well defined, it follows
that

I+r I+r
ulr B ﬂ=z[:—l' m=z[:-l'g(n - m)
. — )_1_ (A5)
oln =mm) Z 1y

Using the periodicity of ¢ ( -) with respect to the sec-
ond variable [see (14b)], we rewrite (A5) as follows:

2r N-1

wo= 3 g(d) T o(d m)w(dm) (A6)
with
w,’,(d,m)é Hx;l—ersl+r
ANl —r=sx+ds=sl+r

A x

m(mod N)}|/(2r + 1).

The sequence w; . (d, m) is a window sequence having the
following two properties:

wi(d,m)=0 |d| = @2r+1) (ATa)
! |a]
(o512 -t
g |d| < 2r (A7b)
T (2r+1) -

TT
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Define
3: ]
T, g(d) N mzo ¢(d. m) }< 2r + T)
2r N-1
LE Y > |
o AI;Z:ZI' ( )\ N m=0 d)(d "1) (Ag)
Then, from (A7a), (A7b), (A8), (A6), (14a), and the tri-
angle inequality for the /, norm,
- 1
v, — l(,_,‘ = (1:21:, g((])‘Cm (AIO)
Due to the Riemann-Lebesgue lemma [18],

limy.. | g = 0 forevery G(f) e L] -0.5,0.5].
Therefore, from (A 10), it follows that lim,_ o | », — u;,

= 0. Thus, it is sufficient to show that lim,_ v, = U,

and since v, = (1/2r + 1) Lilouy, lim, . u, = Uim-
plies that lim, ., », = U. Let
N-1

$(d) = Nﬁ;ﬂqs(d m). (Al1)

Since LT- .« g(d ) converges absolutely, for é(d ) which
is bounded [by (14a)], E7. _. g(d) é(d ) also converges
(absolutely), and therefore lim, ., u, = U < oo. This
completes part |) of the proof.

2) For e(n) which is a wide-sense stationary process,
the period N of ¢( +) is one. Therefore, from (16), U =
LT . g(d) ¢(d). Since g(d) converges absolutely, it
follows that G( f) € L[ —0.5. 0.5] € L,[ —0.5, 0.5].
If e (n) has a spectrum S( f) which is in L,| *0.5, 0.51],
we can apply Parseval’s theorem to obtain (18) (due to
the realness of G( f), the complex conjugate operation is
omitted).

APPENDIX B
A. The Expressions of Q, b, Cin (29)

The quadratic form (29) is obtained by substituting
(AD)~(A4) in (16) and rearranging the resulting expres-
sion as a quadratic form in terms of the coeflicients of the
synthesis filter. We present here only the final results, i.e.,
the expressions for computing the matrix Q, the vector b,
and the scalar C.

3 pd) g(d).

d=

C= (BI)

For the FQ case, the rth element of the vector b (0 <
<=L;—1)is

b(1) = i h(Mr — 1) ,}jm g(d)
: (P(d - M(r— "0)) + P(*d - M(r — "0)))
(B2a)

and the elements of the matrix Q are given by

=Y

o1, s) = 72 R

h(Mr — s)h(Mn — 1)

2 p(M(n—r)+(s—1)+Rd)
d= -
cg(s — 1+ Rd) + 2 g(s—1t+Rd)
d= -
R [le)
: ]T] it W (=0 + R artm) u( Rd)
nme= (R
0=t s=<Ly- 1 (B2b)

Likewise. for the MQ case, we obtain

N-1

B—1 L R
b() = 2 2P S 2 ((m)y)
j=0 I=1 m =0 .
! (m —1)r =0
(m—1)pr =j
{72 g(d)(GV(d — Mry + 1t + jR)

+ G"(=d = Mry + t + jR)) (B3a)
R A R N-1
.S DIEDIEDINSINDY
o(r. 5) =0 1=1k=1N m=0
(m=1ngr=0
(m—1pr=J

oo

A !
Lm “:,/)H/m((m + (s — 1)

d=-

+ Rd) )P ((m),,)

R F(l).(k)<_ \f;—dj >g(s -1+ Rd).

(B3b)

The indexes (¢, s) in (B2), (B3) are limited to a finite
interval of length L, for which the synthesis filter’s coef-
ficients are nonzero. The summations over the (r, n) in-
dexes in (B2) are therefore finite, but the summations over
d in (B2), (B3) may be infinite if g(-) is infinite. How-
ever, these summations can be alternatively evaluated in
the frequency domain using Parseval’s theorem. The ma-
trix Q in (B2b) is interpreted throughout as the sum of
two matrices O, + Q, where Q,(t, s) 1s the first term on
the right-hand side of (B2b) and Q, (1, s) is the second
term.

B. Derivations for Example 1

We substitute in (B2a) g(d) = 6(d) (since G(f) =
lyand p(d) = (S(d)aZ and the summations over d and
r collapse into a single element 11 =0,r=ry,=1, thus
leading to b(t) = 2h(M — t)o Subsmutmg these val-
ues and ¥,, ,(d R) = 6(d) \I/((m — 1)) into (B2b).
we notice that Q(z, s) equals zero unless (1 — s)z = 0.
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Fors = t + Rr, it follows that
Q(t, 1+ rR) = 07 2 h(Mn — 1t~ rR)

“h(Mn — 1) + ¥(0)8(r). (B4)

Now, since L, = L; = M, the summation over  in (B4)
can be replaced by a single element n = 1, and therefore
in this example, (30) becomes

)

h(M —1t) 2 h(M—1t— rR)f(t+ rR)

r=-—om

¥ <\i/(?)>f(t) = h(M - 1),

Oy

O0=sr=(M-1). (B5)

It is easily verified that the unique solution of (B5) for
¥(0) > 0 is given by (32), and that for Y0)=0,it
coincides with the limiting synthesis filter f, for white
noise.

C. Derivations for Example 2
When we substitute into (B2) R =M = Nand g(d) =
&(d), we obtain

o

b(1) =2 2 h(Mry — (1 + Mx)) p(Mx) (B6a)

x=—o

It follows from (B6b) that the set of Llinear equations
given in (30) is decomposable into M sets, each of them
of L;/M equations. Using the notations of f,(x), h,(x)
and 5(d) = p(Md) and the even symmetry of the se-
quences 5(d) and ¥, .(d M), we can obtain (33), (34)
from (30) and (B6).

D. Simplified Equations for the MQ Case when M = R,
G(f)=

When M = Rand G(f) = 1, (B3) can be significantly
simplified and yields

b()——Z ZP‘”‘”(() )

B j=01=1
. G(”([ + (j— rO)M) (B7a)
1 B-1 L L

o(r,5) = Ej; 3:4: :Z CEIJ)H/ o/ma((1) )

. CJ‘.k)((t)M) F”).(k)(_ [j + (tA; 5)/MJ >

~8((s = 1), =0). (B7b)
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For L, = M, the matrix Q is diagonal, and (36) follows
from substituting (B7) in (30). For L, > M, there is no
closed form solution, but yet the set of L linear equations
is decomposable into M sets of about (Lf/M) equations
each, and each of these sets is represented by a Toeplitz
matrix. Therefore, the complexity of solvmg (30) is
O((L;/M)*M ). The design process involves L*(L;/MB)
different values of F/*®)(d), and L(Lf + B) different
values of G ”(d) The overall complexity of evaluating
Q and b is O(BL? L+ BLLf) The complexity analysis
of the more general cases in which either R # Mor G( f)
# 1 is omitted here for simplicity.

APPENDIX C
A. Expressions for Qp, Oy, bp, by in (37)

The expressions for the matrices QD and Q,, of dimen-
sions L, X L, and for the vectors bp, b/, of dimension
L,, are obtained by substituting (Al1)-(A2) into (16),
combining it with (28), and rearranging the results as a
quadratic form in terms of the analysis window coeffi-
cients. For simplification, we omit here the details of this
easy (although lengthy) derivation, and only state the final
results, which are

0.5
Bp(1) = 2 Re ﬂ W(F)D(f)e™ df} (Cla)

:i‘ p(M(n —r) + (s — 1)+ Rd)

~g(s— 1+ Rd). (Cld)

The indexes (z, s) in (C1l) are limited to a finite interval
of length L,, for which the coefficients of the analysis
window are nonzero. The summations over the indexes
(r, n) are therefore finite, but the summations over d may
be infinite, in which case they can be alternatively eval-
uated in the frequency domain. When W( f) is positive
on a set of nonzero measure, it follows from (Clc) (and
the assumption that W( f) = 0) that the matrix 0, is a
PD matrix. Since according to Theorem 1, U = 0, Q~f is
a PSD matrix. Therefore, (Op + Q) is a PD matrix, and
in particular, (Q; + Q; + Op + Qp) is nonsingular, so
that existence and uniqueness of the solution of (37) are
guaranteed. All the facts mentioned in Section V in the
discussion below (37) are an immediate consequence of
the expressions given in (Cl).
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B. Proof of Theorem 2

In the proof of Theorem 2, we frequently denote by x
a pair of filters ( f, h) corresponding to an A/S system,
and use the notation x,,; € A,(x,) to denote the rth iter-

ation of the iterative algorithm [ where x, & (f"), RN,
The assumption that both (30) and (37) possess unique
solutions implies that A;( - ), A>( ), and A,( - ) are point-
to-point mappings.

1) Consider U(x,,,) = U(FU D, i Dy < O(f ™,
RCTY)y < (O(f, By = U(x,) where the two inequal-
ities follow from the definitions of steps 3) and 2) of the
algorithm and the definitions of 4,(-) and 4,( - ). Equal-
ity is obtained iff B = AU = A,(f7) and £ =
As(h" "1y = A,(h'"”); thus, iff the algorithm reaches a
fixed point.

2) According to the definition of T'(T' = {x,; 4,(x,) =
{x.I), (f,hyeTlifandonly if h = A\(f) and f =
Ay(h), i.e., iff the A/S system defined by ( f, h) satisfies
both (30) and (37), which are exactly the gradient equa-
tions of the error criterion U. Thus, T' = {x; VU(x) =
0}.

3) This property follows immediately from the follow-
ing.

Theorem C1 [17]: 1f there exists a des(‘enlfum‘rion4 of
a point-to-point continuous mapping A with respect to a
set of real vectors I', then every limit point of an instance
of A which is contained in a compact set is in the set T
Providing that the following lemma holds.

Lemma I:

a) U is a descent function of A, with respect to the
set I', i.e., U(x) is a continuous function, and for every
y = A,(x), U(y) = U(x) with equality only if x e T".

b) The point-to-point mapping A, is a continuous
mapping.

¢) For any initial condition x,, the
{x,}7Z0 is contained in a compact set.

Proof of the Lemma:

a) Since U is a polynomial in both k and f, it is a
continuous function with respect to x = ( f, h). We have
already shown above, in part 1) of the theorem, that for
y = A/ (x), U(y) < U(x), with equality if and only if x
e I'. Thus, U is a descent function of A, with respect to
T.

sequence

b) The point-to-point mapping A,( *) is a continuous
mapping, since the coeflicients of the matrix Qf and the
vector bf are continuoustunctions 0f~f anfi the determi-
nant of the PD matrix (Qp + Op + @ + QF) is bounded
away from zero for every f € "/, (It is well known that
the solution of a nondegenerate set of linear equations Ax
= b with det (A) bounded away from zero is a continuous
function of the coefficients of A and b [19].) Similarly,
since Q, is assumed to be PD, the determinant of (Q, +
Q, + O + Q) is bounded away from zero for every h €
R Therefore, A,( +) is a continuous mapping, and thus
sois A,(*).

*f(x) is a descent function of a mapping A w.r.t. the set T if f(x) is a

continuous function, and for every y € A(x), f(¥) < f(x), with strict
inequality whenever x ¢ T,
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c) Due to (28),
U(x) = U(x) + (Ko + (h — k) Op(h ~ h))

> inf U(x) + Ko + (h — k) Qp(h — h)

where b £ (Op + 0p) 'bpand Ky £ [°5s W(£)|D(f)
— H(f)|* dfin which H( f) is the frequency response
associated with f.

Since 0(x) is a descent function of the algorithm A,,
U(xy) = U(x,) for any sequence {x,} = , starting at x,.
So let pg £ U(xe) — inf U(x) — Ky = (h'" —
) Op(h'"” — h). Thus, the whole sequence { A"} =, is
contained in the compact set C( py) g {h; pop = (h —
h) Op(h — h)} since Oy is a PD matrix.

The proof of Lemma 1 is completed by the following
lemma.

Lemma 2: For every finite value of p, the sct S(p) =
{(fih);f=A(h) N he C(p)} is contained in a com-
pact set.

Proof: Since C( p) is a compact set, it only remains
to show that h € C( p) implies that A,( k) is contained in
a compact set which does depend on k. Let )\, (h) denote
the minimal eigenvalue of (Q + Q') as a function of h,
|| £ | denotes the Euclidean norm of the vector f = A,(h),
and || b(h) |l denotes the Euclidean norm of the vector b
which appears on the right-hand side of (30) for a given
value of h. Then, since @, is a PD matrix, A\, (h) > A,
> 0, and therefore, || fI| < [[b(h)]l/N\,. Observing
(B2a), we notice that b is a linear function of k; thus, on
the compact set h € C(p), the value of [|b(h)] is
bounded from above by B < oo. Therefore, || £ < B/\,
< oo, and thus the union of A>(h) over h € C(p) is con-
tained in a ball which is a compact set.

4) Since U is a nonnegative continuous function, its
infimum exists, and there exists a sequence {x, } - start-
ing on x, defined above such that lim,. . U(x,) =
inf, U(x). Furthermore, without loss of generality, we can
assume that for any value of r, U(x,) < U(x,). Now, if
we replace every element x, = ( f,, h,) of this sequence
by %, = (f.. h,) with f € A5(h,), then inf, U(x) <
U(X,) = U(x,), and therefore [7(.)2,) also converges to
inf, U(x). Since U(X,) < U(xo), it follows from Lemma
1, partc) that h, € C( py), and therefore X, € S( p,). Thus,
the sequence {%,} . is contained in a compact set, and
therefore it has at least one limit point there. Let x* denote
a limit point, and let £, be the subsequence that converges
to x*. Since %, $ e XS U(X,‘) P inf, U(x), and U(x)
is a continuous function, U(x*) = inf, U(x), i.e., there

exists a global minimqm of O(X) which is in T" since it is
a stationary point of U(x).
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