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Signal Synthesis from Modified Discrete Short-Time
Transform

AMIR DEMBO, MEMBER, IEEE, AND DAVID MALAH, FELLOW, IEEE

Abstract—The discrete short-time transform (DSTT) is a gelieral-
ization of the discrete short-time Fourier transform (DSTFT). The nec-
essary and sufficient conditions on the analysis filter, under which per-
fect reconstruction of the input signal is possible (when the DSTT is
not modified), are presented. Furthermore, the class of linear modifi-
cationis for which the original input can be reconstructed, when the
modification is applied, is characterized. This characterization is use-
ful, for example, in speech scrambling applications. The synthesis of
an optimal (in the minimum mean-square-error sense) signal from a
modified DSTT (MDSTT) of finite duration is presented. It is shown
that for an analysis filter length which does not exceed a given value,
the optimal synthesis scheme is independent of the duration of the given
MDSTT, and is an extension of the weighted overlap add (WOLA) syn-
thesis method. For longer analysis filters, the optimal synthesis scheme
becomes quite cuambersome, and therefore, a steady-state solution (as
the duration of the MDSTT approaches infinity) is presented for this
case. It is further shown that this solution can be approximated with
arbitrarily small reconstruction error, using a WOLA synthesis fol-
lowed by an appropriate set of FIR correction filters.

I. INTRODUCTION

HE DSTFT is an important tool in analyzing and

modifying speech signals [1]. It has been extensively
used in analysis/synthesis (A/S) systems which contain a
certain desired modification of the DSTFT. Typical ap-
plications are speech enhancement by spectral substruc-
tion [2], time and frequency domain scaling [3], [5],
speech scrambling by frequency permutations [4], and re-
construction of speech signals from the magnitude of their
DSTFT [5].

Although, usually, the DFT is used in these systems,
some contain other transforms (e.g., the DCT [9] and the
GDFT [7]), and therefore, in this work we use the notion
of DSTT in an unified framework for all those systems.

The most common synthesis scheme in these A/S sys-
tems is the WOLA method (cf. [6] and [7]). For this syn-
thesis method, the necessary conditions on the analysis
and synthesis filters under which an identity (or unity)
system exists were presented in [1], where an identity sys-
tem is an A/S system which reconstructs its original input
signal without error when no modification is applied.
However, since the WOLA synthesis method is not nec-
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essarily the optimal approach, it seems worthwhile to ob-
tain the necessary and sufficient conditions on the analysis
filter under which an identity system exists, when an ar-
bitrary synthesis scheme is allowed. Such conditions have
not yet been presented, although some results in this di-
rection appear in [10].

In the next section we present these conditions, and fur-
ther discuss the conditions under which a finite duration
input signal can be reconstructed without an error from
its finite duration DSTT. These systems are denoted as
finite-time identity systems (FTIS). We further present
there the conditions for the existence of a transform-do-
main identity system (TDIS), which corresponds to a sys-
tem for which its synthesis stage has the property that for
every MDSTT it results in a time domain signal whose
DSTT coincides with the given MDSTT.

It is also shown that when the decimation factor (R) is
less than the transform size (M ), there exists no TDIS.
This implies that, in general, signal synthesis from
MDSTT cannot be errorless. Therefore, in the transmit-
ter-receiver pair based on two A/S systems shown in Fig.
1, the output signal from the receiver is not equal, in gen-
eral, to the original input signal at the transmitter. This
result was already noted in [10], when considering scram-
bling schemes based on A/S systems. However, when a
specific modification is used, it might result in a restricted
class of MDSTT for which an errorless synthesis scheme
exists:

In Section III we consider a class of linear modifica-
tions of the DSTT, which is commonly used in scram-
bling applications [4], [10]. We characterize the subclass
of these modifications for which there exists a system as
in Fig. 2, that reconstructs the original input signal with-
out error, and denote them as legal modifications (LM).

For nonlinear or time-varying modifications, and even
for linear time-invariant modifications which are not LM,
the issue of optimal synthesis arises. Some results in this
direction were reported in [5], [8], and [10]. The opti-
mization criterion in these works (which we also adopt
here) is the minimization of the mean-square-error (MSE)
between the DSTFT of the synthesized signal and the
given MDSTFT. The main limitation in the result of [5]
is in the nonrealistic assumption made that the continuous
modified short-time Fourier transform is known instead
of its discrete representation. As shown in [8], the syn-
thesis scheme of [5] (which coincides with the WOLA
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Fig. 1. A transmitter-receiver pair based on two A/S systems, the first
contains a modification and the second contains its inverse.
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Fig. 2. A transmitter-receiver pair with linear modifications, FTIS syn-
thesis systems, and possibly two different analysis systems.

method) is also optimal for the synthesis from MDSTFT
provided that the transform-size M is greater or equal to
the length of the analysis FIR filter. However, for an im-
proved frequency resolution, one must use analysis filters
which are longer than the transform size (cf. [7]). In this
case, the optimal synthesis was regarded as an open prob-
lem, except for the special example of systems with no
decimation at all (cf. [10]).

In Section IV we define the problems of optimal signal
synthesis from a finite duration MDSTT, for analysis fil-
ters for which finite-time identity systems (FTIS) exist. It
is shown there that the unique solution of this problem is
obtained by a WOLA synthesis, followed by a ‘‘correc-
tion’” system (CS). This system corresponds to solving M
sets of linear equations, with overall dimension which
equals the number of samples in the output signal. Al-

though the coefficients of these linear equations are in-
dependent of the given MDSTT, the size of these sets of
equations can typically be in the thousands. Therefore, in
general, the task of solving these equations is highly com-
plex. As of now we have not restricted the analysis filter
to be an FIR filter. However, when this assumption is
made, the matrices that represent these systems of linear
equations are banded matrices (i.¢., have few nonzero di-
agonals), and an efficient implementation of the CS for
this case is given. If L, denotes the length of the analysis
filter, then the complexity per output sample of this im-
plementation is only Q((L,/M ))? and is independent of
the time duration of the given MDSTT. Similarly, the
memory Trequirements per output sample are only
O((L,/M)) samples.

It is also shown, in Section IV, that for L, < RM/
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gcd(R, M) (where ged( -, +) denotes the greatest com-
mon divisor, and R is the decimation factor), the correc-
tion system mentioned above is represented by block-di-
agonal matrices of linear equations, and therefore has a
very simple recursive implementation. This implementa-
tion coincides with the result of [5] and [8] for L, < M,
and is its natural generalization.

For values of L, larger than RM /gcd (R M), a steady-
state stable solution for an MDSTT of infinite duration is
derived in Section V. Although this solution contains a
noncausal IIR system, it is shown there that it can be ap-
proximated with arbitrarily uniformly small reconstruc-
tion error by a set of FIR correction filters. For the special
example of systems without decimation (R = 1); this ap-
proximation coincides with the solution presented in [10].

Conclusions are drawn in the last section, and the de-
tails of the derivations are given in the Appendixes.

II. IDENTITY SYSTEMS

Before presenting the conditions for existence of the
various types of identity systems, we shall define both the
DSTT and the notion of a synthesis system.

The input to the analysis stage is a causal sequence de-
noted by x(n) or {x(n)};-¢. Its multiplication by the
sliding window sequence h(n) results in a causal se-
quence of M-dimensional vectors { x.z } s, which will be
denoted in the sequel as discrete short-time vectors
(DSTYV), where the nth element of x4 (the sth vector) is

xg(n) = go h(sR —(n+ rM))x(n +rM);

w >y5 =1, M—-1=z2zn=0.

(1)

The analysis window h(n) is a causal sequence as-
sumed to have the property #(0) = O (which simplifies
the presentation). The decimation factor (R) is assumed
to be no greater than the transform size (M ).

For the generality of the results, we assume throughout
that all the signals are complex valued. Our results remain
valid even when all the signals are real valued, as one
should simply omit the complex conjugate sign * wher-
ever it appears.

The DSTT is obtained from the DSTV by applying an
arbitrary linear transform (represented by an M x M-di-
mensional regular matrix 7') on each of the vectors in the
DSTYV sequence, i.e.,

X = Txgp; w >g5 = 1.

In particular, for the matrix 7 whose (k, n)th element
is (1/M)eC7/™* the DSTT as defined in (1) and
(2) is essentially the dtscrete short-time Fourier transform
(DSTFT) (cf. [1] and [7]). The analysis window 4 (n) can
then be interpreted as the unit sample response of the pro-
totype filter in the analysis filter bank (cf. [7]). For this
reason we also denote 4 (n) in the sequel as the analysis
filter. Since h(n) is typically a finite duration sequence,
the summation in (1) is essentially finite, and the DSTT
is well defined for any causal input sequence.

()

In the framework of DSTFT, the DSTV are the result
of time-domain aliasing of the weighted [by 4 (n)] input
sequence. This aliasing is due to the discretization (sam-
pling) of the frequency variable in the short-time trans-
form. When considering a general DSTT, the sampling in
the transform domain should be represented by an appro-
priate transformation matrix, instead of the restricted form
used in (1) and (2). All the results in this section, as well
as some of the results derived in the sequel, can be re-
stated under this more general framework, at the expense
of more complicated expressions and lengthier deriva-
tions. Bearing in mind that most of the useful DSTT’s are
still based on the Fourier transform (e.g., the DCT and
GDFT mentioned earlier), we prefer to limit the scope of
this paper to DSTT’s for which (1) and (2) make sense.
The interested reader can use this work as a guideline for
performing generalizations.

The synthesis system reconstructs a causal time-domain
sequence from a given MDSTT, and without loss of gen-
erality we can make the following assumptions.

a) The output of the system [which is denoted by
y(n)] is well defined for the given MDSTT (denoted by
the sequence of vectors { Xz} & ).

b) Each sample of y(n) depends only on a finite (ar-
bitrarily long) prefix' of the MDSTT, and thus can be ob-
tained with finite delay.

Now, when we consider the existence of identity sys-
tems, we assume that all the parameters regarding the
DSTT (i.e., the values of M and R, the filter A(n), and
the transform 7') have already been chosen. Therefore, it
is convenient (although not common) to define an identity
system with respect to these parameters as the synthesis
system that has the desired property when it is combined
with the given analysis system. We distinguish between
three types of identity systems, as follows.

Definition 1: An identity system (IS) is a synthesis sys-
tem which reconstructs the original input sequence when
no modification is applied, i.e.,

( 1)( SR_XSR) ﬁ(Vn>0)( (n):x(n))'

(3)

Definition 2: A finite-time identity system (FTIS) is an
IS having the additional property that for every L = 1,
the first /LR samples of y(n) depend only on the first IL
vectors of the MDSTT.’

Note: Throughout we denote gcd(R, M) by g and
define 1 £ M/g,J= R/g

Definition 3: A transform-domain identity system
(TDIS) is a synthesis system which generates for every
MDSTT a causal sequence y(n) whose DSTT coincides
with the given MDSTT.

The following propositions summarize the results re-
garding existence of the various types of identity systems.

A‘A finite prefix of the MDSTT denotes a finite sequence of vectors
{ Xz}, withs, < oo.

*Note that there is no correspondence between the concept of FTIS and
the use of FIR analysis (synthesis) filters.
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The derivations (which are constructive, i.e., contain
closed-form examples of these systems) are presented in
Appendix A.

Proposition 1: The existence of the various identity
systems is independent of the specific transform used in
the analysis.

Proposition 2: There exists a TDIS iff R = M and h(n)
# Qatleast forM = n = 1.

Proposition 3: These exists an FTIS iff A(n) # 0 at
least forR = n = 1.

Proposition 4: Every IS is a linear system.

Proposition 5:

a) There exists an IS only if none of the R polyphases
(cf. [7]) of the analysis filter {h(p + Rk)};~0, R = p
= 1 is identically zero.

b) WhenJ = 1 (i.e., R divides M), this condition is
also a sufficient condition for the existence of an IS.

¢) There exists an IS iff for every M = p = 1, there
exists a finite prefix of the DSTV from which the J sam-
ples {x(Mr — p)}7_, of the input signal can be uniquely
determined.

The conditions of propositions 2, 3, and 5 are valuable
in the design of analysis systems and some of them are
also used in the next sections.

II. LEGAL LINEAR MODIFICATIONS

We consider now a transmitter-receiver pair as in Fig.
1 but with linear modification of the DSTT vectors, rep-
resented by an M X M nonsingular matrix P, i.e.,

A

XSR = PXsR;

A

Ys = P_IYSR;

(4a)
(4b)

We introduce another degree of freedom by allowing
the analysis filter of the receiver h (n) to be different from
the analysis filter 2 (n) of the transmitter.

Definition 4: A legal modification (LM), with respect
to the analysis system of the transmitter, is a matrix P for
which there exists a synthesis system for the transmitter,
and an analysis filter fz(n) for the receiver, such that

(Vs 2 1)(Xg = PXg) = (Vs = 1)(Y = Xp).
(5)

For simplicity we shall further assume throughout this
section that there exists an FTIS with respect to the anal-
ysis filter of the transmitter.

The following proposition is derived in Appendix B.

Proposition 6: If P is an LM with respect to the anal-
ysis system of the transmitter, using %(n) as the analysis
filter of the receiver, then

a) there exists an FTIS with respect to this analysis
filter, and

b) the transmitter-receiver pair depicted in Fig. 2
guarantees errorless reconstruction of the original input of
the transmitter, i.e., z(n) = x(n).

This proposition explains why the use of LM is rec-
ommended, and why the characterization of the subclass

o >s5 =1

o >s5 = 1.

of LM’s is an important issue. For example, the problems
of low quality reconstruction in a scrambling system (cf.
[4]) of the type presented in Fig. 2 (that were reported in
[10]) disappear once one restricts oneself to using the sub-
class of LM’s.

As we show below, a modification might be an LM with
respect to one analysis filter, but not so with respect to
another analysis filter. It is therefore more convenient in
the design of the system to use only matrices which are
LM with respect to any analysis filter to which there exists
an FTIS. Therefore, we have Definition 5 as follows.

Definition 5: A universal legal modification (ULM) is
a matrix P which is an LM with respect to any analysis
filter for which there exists an FTIS.

The following five propositions, which are derived in
Appendix B, summarize the characterization of LM’s and
ULM’s.

Proposition 7: The parameters M, R, the analysis filter
h(n), and the locations of nonzero elements of the ma-
trix, P & (T~'PT), are sufficient in order to determine
whether or not P is an LM.

Proposition 8: A matrix P represents an LM only if P
is a block-diagonal matrix with blocks of dimensions g X
g each [where g & gcd(R, M)].

Proposition 9: For R = M, and A(n) = h(n), every
regular matrix P is a ULM.

Proposition 10: For R < M, and A(n) = h(n), there
exists an FIR analysis filter, for which every block-diag-
onal matrix P with blocks of dimensions g X g (each)
represents an LM.

Proposition 11:

a) For R < M, a ULM is characterized by

r 0 ---0

. 0 =

P=A]. . : 6
Lo 0 (6)
00 T

where A is any nonsingular diagonal matrix, and = is any
g X g-dimensional permutation matrix.

b) There exists an FIR analysis filter ~(n) of length
2R samples, such that every LM with respect to A(n) is
a ULM.

Note: For scrambling, one usually uses the DFT with
a permutation matrix P (cf. [4] and [10]). In general, the
resulting P does not represent an LM (it usually contra-
dicts the conditions stated in proposition 8 above). How-
ever, it is easily verified that any circulant permutation
(i.e., of the form P; = 6(j = (i + a) mod M), with M
—~ 1 = a = 0) is a ULM for the DFT transform. Thus,
if one restricts oneself to using only these M permuta-
tions, then reconstruction of the original input without er-
ror is guaranteed.

Some of the ideas used in this section for linear modi-
fications can be extended to invertible nonlinear modifi-
cations. In particular, the definitions of LM and ULM are
easily extended as well as part b) of proposition 6 (the
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errorless reconstruction property) and proposition 9.
However, unlike the linear case, it is hard, in general, to
obtain explicit characterization of the LM’s and ULM’s
(the extensions of propositions 8, 10, and 11).

IV. OpTIMAL SIGNAL SYNTHESIS FROM FINITE
DuraTioN MDSTT

Assume that an arbitrary MDSTT of finite duration
{X'SR}!L=1 is given. In general, there might be no causal
sequence y(n) whose DSTT coincides with this MDSTT.
We restrict the discussion to MDSTT durations which are
integer multiples of I = M/gcd(R, M) = M /g, merely
for simplicity of the presentation.

We note that the first /L vectors of the DSTT depend
only on {y(n)}2; ! and, therefore, define the optimal
(in the MSE sense) signal as the finite sequence y(n)
({y(n)}, iy 1) that minimizes the following error mea-
sure:

DL()’(”))

where the asterisk denotes the complex conjugate-trans-
pose operation.

Before proceeding with the solution of this problem, we
make two reasonable assumptions regarding the analysis
system, as follows.

Assumption 1: There exists an FTIS with respect to the
analysis filter A(n) and the parameters M, R (i.e., h(n)
# O atleast for M = R = n = 1, as required in propo-
sition 3).

Assumption 2: The transform T is a unitary transform
(i.e., T*T is the identity matrix).

Due to assumption 1 it is guaranteed that for Xz = Xz
(i.e., the MDSTT is actually a DSTT), the optimal signal
y(n) will coincide with the prefix of the original input
signal x(n), and therefore, the optimal synthesis scheme
is an FTIS with respect to the analysis system.

Due to assumption 2, the error measure D; ( y(n)) can
be restated in terms of the MDSTV generated from the
given MDSTT and the DSTV of the sequence y(n) as
follows:

IL

2 (Xe -

III>

_ll: sR)*(XsR - sR) (7)

L
DL()’(”)) = is; (Br — ysR)*(st - y&) (8)
and therefore, except for the generation of the MDSTV
from the given MDSTT using the matrix 7 !, the optimal
synthesis scheme is independent of the specific transform
used in the analysis.

When the modification is a known linear modification
represented by the matrix P (which is in general not an

LM), one can define a slightly different error measure as

( (”)) E (X — P7'Yr) (X — P™'Y).

(9)

However, for unitary linear modifications (which are the

typical ones), this error measure coincides with
Dy (y(n)).

The results presented below can be extended to the case
of nonunitary transform and arbitrary positive definite
(P.D.) error weighting matrix, but the derivations are
much more tedious (cf. [13]).

Since the DSTV is a linear function of the time signal,
it follows from (8) that D; ( y(n)) is a quadratic form in
terms of the unknown samples of y(n), and since
D;(y(n)) = 0 for every sequence y(n), this is a non-
negative definite quadratic form. Moreover, for the spe-
cific case of X,z = X,z, we have already noticed that due
to assumption 1, there exists a unique optimal signal y(n)
[which is the prefix of x(n)]. This directly implies that
D;(y(n)) is a P.D. quadratic form, and therefore, there
always exists a unique optimal signal, which is the solu-
tion of the linear set -of equations obtained from
VD, (y(n)) = O

Substituting (1) in (8) and calculating the gradient
equations, we obtain

Z yx((k),) h*(sR = k)

IL

-st((k)M) h*(SR - k)’

IIR-1=2k=0. (10)

The right-hand side of (10) corresponds to WOLA syn-
thesis of the given MDSTT with the noncausal synthesis
filter: f(n) = h*(—n), ©® > n > —oo.

The left-hand side of (10) corresponds to what we de-
noted earlier as the correction system (CS). Substituting
(1) in (10) and rearranging the resulting expressions, we
obtain

LJ
2 W (k. n) yP(n) = uP (k);

n

Lizkz1,M=p =1 (11a)
where
L
P (k) £ E £g(M —p)h*(sR + p — kM)
- (11b)
»P(k) £ y(KM - p) (11c)
and
Wi (k, n)

i
= Elh*(sR +p —kM)h(sR +p — nM).
(11d)

Since the M subsequences u'?’( A) are the output of the
WOLA synthesis method, the CS involves solving M sets
of LJ linear equations each (recall, J = R/g). The com-
plexity of a brute-force solution is O(M(LJ )*), and this
is an enormous amount of computations for typical values
of L = 1000.
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The discussion so far was for any analysis filter. How-
ever, for FIR analysis filter, reasonable implementation
of the CS is possible. Therefore, we introduce now the
third assumption on the analysis system.

Assumptzon 3: The analysns filter A(n) is an FIR of
length L, = MJK,. There is essentially no restriction in
choosing L, as an integer multiple of MJ, since zero pad-
ding can always be used, it only simplifies the derivations
below.

Under assumption 3 we make the following two obser-
vations.

a) Causality of the WOLA synthesis that implements
(11b) can be guaranteed by incorporating a finite delay of
L, samples in the synthesis scheme

b) When the matrix W,_ is arranged as an L X L
matrix with entries which are J X J matrices, then

1) itis a banded matrix, where the (2K, — 1) main
diagonals are the only nonzero diagonals; and

2) except for the last X, rows and columns, it is a
Toeplitz-Hermitian matrix, with its entries being inde-
pendent of the value of L.

This observation is based on the analysis of (11d) under
assumption 3, and can be summarized formally as

B ()
ng) PN B(I%.
(p)
Bl
WE‘P) = 0
| 0
where, for |A| < (K, — 1),
B(P)( )
IKn+(I-1)

= 2 h(sR+p—jM)h*(sR+p—iM+AMJ);
s=1

J=zij=1 (12b)
and

C(P)(k’ n)
IKn
= gll h(sR+p — nM) h* (sR + p — kM);

K =kn=1. (12¢)

Efficient On-Line Implementation of the CS for L, <
MJ: For L, < MJ, then K;, = 1, and therefore, W\"’ is a
block diagonal matrix (with blocks of size J X J) in
which all the blocks equal to B, except for the last block

which equals C‘?. Therefore, [W"] "
given by

(WP = diag (B, -+, B, cP7']. (13)

Thus, the CS design involves inversion of 2 M, nonsin-
gular J X J matrices, and the optimal synthesis is imple-
mented as depicted in Fig. 3. In the special case of either
J = 1or L, < M, the matrices B}”’ become diagonal
matrices and the optimal synthesis coincides (except for
boundary conditions) with the WOLA synthesis obtained
in [5] and [8].

Efficient Batch Implementation of the CS for L, >
MJ: For L, > MJ, then K, > 1 and WL is not a block
diagonal matrix. However, it is still a banded matrix, and
this property is utilized to derive an efficient batch imple-
mentation of the CS. This implementation holds only un-
der the following additional assumption on the analysis
system.

Assumption 4: The J X J matrix B(Kh-,) is a nonsin-
gular matrix, forany 1 < p < M. However, for the im-
portant case of J = 1 (i.e., R divides M ), this assumption

is obviously

o ... o ]

By Bif-1) O (12a)
R

By | CP
|
|

0 : .

is essentlally unneeded, since B(Kh 1y is a scalar, and if
B(K,, 1y = O for some value of p, we can easily adapt the
1mplementatlon presented below to this case by using
B(K,, 2) instead of B(K,, 1y» and so on.

We now regard the sequences ¥P(n) and u'?(n) as
sequences of L vectors in G’ (denoted as y{” and u'?,
respectively ) by combining every J consecutive samples
into one vector. Thus, the (L — K,)J first equations of
(11a) are [due to (12a)]

(Kp—1)

(p).(p) — (P
E Bk y(n unp ’

L-K)=n=1
k=—(Kp—1) ( h) "

(14)

where y”’ £ 0 forn < 0.
Under assumption 4 we rewrite (14) as an (matrix) I[IR
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w:nghtmq Scalarization

-1 (M-1)

(u 1),
B(u-n)‘ }L.{ 1J J_(.)

E R R

(1)
(”_ ] yn | ] ()

L Correction System S

Fig. 3. An on-line implementation of the optimal synthesis scheme for
analysis filter length L, < MJ.

174
Vectorization
FOR)
WOLA Synthesis -0
X ——I g
E-LLIN TR
B! .
CRCEN ey
filter
| 2(Kn—1) .
( (17l P IR
¥ = [B(Kh—l)] U~ (Kn—1)) — k§l [Bik,- 1]
102
Bki-1- k))’(n k> (L-1)=nz=K,
(15)

Therefore, the original solution of (11a) (except for the
last J samples) can be described, according to (15), as the
sum of the particular solution and a linear combination of
(K, — 1)J homogeneous solutions.

The particular solution is obtained by using (15) with
zero initial conditions (y{?’ = 0 for (K, — 1) = n = 1),
and the (m, i ) th element of the basis of the homogeneous
solution space (where (K, — 1) =2m=1,J=2i=1)
is obtained by using (15) with zero input (z{”’ = 0), and
initial conditions y»> = 0 for n # m, and y{?’ is the ith
unit vector in €.

The calculation of the particular solution and the basis
of the homogeneous solution requires. O(K3J?) opera-
tions per output sample of the CS. Given these (K, — 1)J
+ 1 solutions, their appropriate linear combination is de-
termined by solving numerically the last JK}, equations in
(11a) which involve the matrices C'?’. This is a batch
implementation since before we obtain all the samples of
u'”(n), we cannot determine any of the samples of
y'P)(n). However, it requires a small amount of opera-
tions per output sample which is independent of the du-
ration of the given MDSTT, and a small (fixed) amount
of temporary memory per output sample (i.e., O(1 +
(K,J/M)) samples).

However, for large values of L, stability problems may
arise, and as we shall show in the next section—it is pre-
ferred to use a steady-state on-line, nonrecursive, and sta-
ble implementation of the CS presented there.

V. THE STEADY-STATE STABLE OPTIMAL SYNTHESIS

There are two different approaches in which an on-line
implementation of the CS can be derived. Although the
justifications of these derivations differ, their final results
coincide.

The first approach, which we only briefly review here

without supplying the proofs, is an extension of the al-
gebraic approach of [10], presented there forR = J = 1.
It is based on finding a sequence of matrices
(WPYe_ g, Wthh are asymptotically equivalent (cf.
[12]) to { WL I -k, and provides an analytical solution
for [W]7!

For R = 1 it is claimed in glO] following the results of
[12], that the sequence W ") of circulant matnces with
first row (B(”) , BE 1,0, -, 0, By,
. , BY ? is asymptot1cally equivalent to WL ) There-
fore, [W 17Vis also a circulant matrix, and its first row
is obtained from {B{"}i<'_(x,—1, by a DFT of size L
followed by replacement of each transform element value
by its rec1procal and an IDFT (cf. [11]). Since
{WP3=_ . is asymptotically equivalent to { W "} i .,
it is suggested m [10] to 1mplement an approximate CS
by replacing wP ? with W )in (11a). Due to finite energy
considerations, it is shown there that the first row of
[W”1~" can be ““clipped’’ so that this matrix essentially
represents FIR filtering of the sequence u'”’(n), and
therefore the structure of the proposed CS is as depicted
in Fig. 4. It can be easily verified that this CS can be
embedded inside the WOLA synthesis.

From the discussion in the previous section it is clear
that this solution holds whenever R divides M (i.e., J =
1), and not only for R = 1.

The generalization of the algebraic approach to the case
of J > 1 is as follows.

a) Following the same line of proof as in [12] it can
be shown that { Wi’} _,. is asymptotically equivalent
to { W} £_ x, which is now a block- c1rculant matrlx with

J x J blocks and first * row” (B, B(K;,—l)» 0,
. 0. B*” RN )
s U, B, —1)s s —1 .
b) If
(Kn—1)
det{ 2 Bi”)z"‘z #0 for|z| =1, (16)
k=—(Kn—1)

then [ W] ~! exists, for every value of L, and is a block-
circulant matrix with J X J blocks. The entries of the first
“row>” of [Wi”] " are obtained by J? DFT’s of size L,
which are done mdependently on the J? entries of the se-

quence of matrices {B{”’}{X*Z!) ), then a pointwise
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FIR Filtering
(Linear phase) ™

() ()
’

WOLA ><
output . . . y(+)
.y g e

Fig. 4. An on-line implementation of the correction system for J = 1,
which is the steady-state, stable solution.

(M)
u

matrix inversion in the transform domain is performed,
followed by J2 IDFT’s of size L, done independently on
each entry. This derivation is proved following the same
lines as in [11].
¢) The considerations presented in [10] can also be
applied here [due to (16)], to justify the use of only
a finite ( cllpped ’) sequence of J X J matrices
{r? )}(T; _(r.-1y to approximate the operation of
[W(L’J )] ~!. For every small accuracy level required ¢ >
0, there exists an integer 7, = 1 such that the approxi-
mation error is bounded below e.
The suggested implementation (depicted also in Fig. 5)
is according to

i

T (T-1)

(P) — 5
I =-(T-1

YPulPy e >n=1

(17)

where u{?’ £ 0 for n < 1. This is an on-line implemen-

tation of the CS, with a reconstruction delay of (7, — 1)
MJ samples. However, it is only an approximation of the
solution of (11a). The second approach, with which we
shall prove this result, also indicates the type of approx-
imation done in (17).

As L approaches infinity, the submatrix C?’ is elimi-
nated from Wﬁ , and (11a) can be regarded as the follow-
ing deconvolution problem.

Given the sequence {u{”}>_,, find a sequence
{ ¥} 2_, such that ) :

(Kp—1)
k=_(th‘l) BRYy®R o =uP;, ow>n=1 (18)

where y(”) = 0 forn < 1.

It is easily verified that in general (18) has an infinite
number of solutionis [one for every choice of
{y(") 3 according to (15)]. However, since B{P* =
B_k as is easily verified in (12b), the zeros of the deter-
minant in the left-hand side of (16) are arranged in pairs,
where for every zero inside the unit circle there exists a
corresponding zero outside the unit circle. Because of this
property most of the solutions of (18) are unstable. The
following proposition is proved in Appendix C regarding
the stable solution.

Proposition 12: The only stable solution of (18) [under
the condition of (16)], except for a possible mismatch with

wPfor(K,—1)=n=

we= 2
k=-—o

1, is given by

Y ul? o >n=1

(n—k)»

(19)

where u(?) = Y2 0forn < 1, and the se uence of matrices
{Ykp)}k=_m is obtained from {BY) k__(,(,,_l) by a
(continuous frequency) Fourier transform, followed by
matrix inversion and inverse transform.

Stability is defined in the following sense:

uf,") -

for n = n, = > lim {yf,”)*yf,")} =0.
n—o

(20)

The solution given by (19) is denoted as the stable steady-
state solution, since we ignore a mismatch in the first (K,
— 1) equations.

It is also shown in Appendix C that the sequence Y{"
can be ““clipped’’ as follows.

Proposition 13:

a) For every value of ¢ > 0, there exists an integer
T, = 1 such that the error in each output sample between
the solutions using (17) and (19) is below e.

b) For every value of ¢ > 0, there exists an integer
Q. [with Q, = max (2T, — 1, 2K, — 1)], such that the
evaluation of {Y{"} ;f;—_i)n_ 1y using Q,-dimensjonal
DFT’s, instead of the continuous frequency Fourier trans-
form, introduces a reconstruction error which is uniformly
bounded below e.

Under mild conditions, the values of T, and Q, are in-
dependent of the sequence {u{”}>_,, and therefore can
be determined a priori in the design of the CS.

This proposition links the on-line solution (of Fig. 5)
which results by using the extended algebraic approach,
with the only steady-state stable solution of the decon-
volution problem in (18). It also gives certain bounds on
T, and Q,, but they are only of theoretical value.

When using this implementation it is suggested to
choose T, and Q. according to the allowed complexity of
the synthesis system, and to test empirically the accuracy
of the synthesis by comparing two or three different
choices of (T,, Q,).

VI. CONCLUSIONS

In this paper we studied three subjects related to the
synthesis of a signal from a modified discrete short-time
transform (MDSTT). These are identity systems, legal
linear modifications, and optimal synthesis. The main
contributions are as follows.

a) New necessary and sufficient conditions on the
analysis filter which guarantee the existence of identity
systems are presented. The consequences of these condi-
tions are that every identity system has to be linear, and
that there exists a transform domain identity system only
when the decimation rate (R) equals the transform size
(M). The most useful result from the practical point of
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Fig. 5. An on-line implementation of the correction system for J > 1.

view is that a finite-time identity system exists iff none of
the first R samples of the analysis filter is zero.

b) For systems of the type described in [4] and [10],
legal modifications (LM) are defined, and it is shown that
for these modifications the scheme depicted in Fig. 2
guarantees errorless reconstruction of the original input.
Furthermore, the class of LM is characterized, as well as
the subclass of ULM (i.e., those modifications which are
LM with respect to any analysis filter with nonzero first
R samples).

c) Given an arbitrary MDSTT sequence of finite du-
ration, the optimal (in the mean-square-error sense) syn-
thesis is defined. It is shown that the optimal signal syn-
thesis is done by a WOLA system followed by a linear
correction system (CS).

Efficient on-line implementation of the CS for FIR
analysis filters with length which is not greater than MJ
[with J = R/gcd (R, M )], is presented (e.g., in Fig. 3),
and coincides, for some particular cases, with the results
of [5] and [8].

For FIR analysis filters whose length is greater than MJ,
an efficient batch implementation of the CS is presented.
It involves a relatively small computational complexity
and memory requirements per output sample, which are
independent of the given MDSTT duration.

Moreover, for infinite duration MDSTT the stable,
steady-state on-line implementation of the CS is pre-
sented (e.g., Figs. 4 and 5). This implementation coin-
cides with the results of [10] for the particular case of R
= 1 (no decimation in the DSTT), and leads to a rela-
tively simple synthesis scheme.

We note here that whereas for analysis filters whose
length is not greater than the transform size the optimal
synthesis scheme is essentially a WOLA system (as men-
tioned also in [8]), it is not so for longer analysis filters.

As the optimal signal synthesis structure does not de-
pend explicitly on the given MDSTT, all these schemes
tolerate synchronization and channel delays. They will
simply cause the same delay in the reconstructed signal.

APPENDIX A

Proof of Proposition 1: Since the transform T is a
linear one-to-one and onto operator that transfers a finite
prefix of the DSTV into a prefix of the same length of the
DSTT, the proposition follows from definitions 1-3.

Remark: Due to Proposition 1, we prove propositions
2-5 for T = I without loss of generality.
Proof of Proposition 2:

a) Necessity of the TDIS Conditions: Consider
x,z(n) for s = 1. From (1), the causality of both x(n)
and i (n), and the assumption that R < M, it follows that
xg(n) = h(R — n)x(n) forR — 1 = n = 0 and zero
for M — 1 = n = R. Therefore, if either R < M or h(k)
= 0 for some value of R = k = 1, then the vector xg
must have at least one zero element in it. Thus, in this
case, for any given MDSTT in which all the elements of
the first vector are nonzero, there is no causal sequence
y(n) whose DSTT coincides with the given MDSTT. This
implies that no TDIS exists.

b) Sufficiency of the TDIS Conditions: Assume that
R =Mand h(n) #+ 0 for M = n = 1. In this case (1)
can be rewritten as

s—1
Xg(n) = Zo R(M —n+ Mt)x(n+ (s —t — 1)M);
=

©o>s=21,M-12n=0 (A1)

Given an arbitrary MDSTT { X, } 5, the following
system is a TDIS (for T = I'), as can be easily verified:

y(n + (s — 1)M)

= Xou(n) — §1 h(M — n + Mt)

ww+@—nM—m@;

o >s=1, M-1=n=0.

(A2)

Proof of Proposition 3:

a) Necessity of the FTIS Conditions: Consider the
reconstruction of the first /R samples of x(n) from the
vectors {x,z}!_,. The samples {x(n)}n<¢_1)r affect
only the vector x;z as easily verified in (1). Moreover,
each of these R samples affects a different (and only one)
element of this vector. Since the nth sample is multiplied
by k(IR — n), it follows that if h(k) = O forR = k =
1, then x (IR — k) does not affect xg at all, and therefore
cannot be reconstructed from { x,z} I_,, i.e., there exists
no FTIS. ‘

b) Sufficiency of the FTIS Conditions: Assume that
h(n) # 0 for R = n = 1. We shall inductively build an
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FTIS. From xz we reconstruct {x(n)}XZ}, by x(n) =
xg(n)/h(R — n) R — 1 =z n = 0. Now, assume that

{x(n)} ¥ was already reconstructed from {x,z}*_,,
(k+DR-1

and then the reconstruction of {x(n)},_i from
X+ 1R 18 by
x(n) = 1 — {x(k+l)R((n)M)

h((k + 1)R — n)

Ln/M]
- gl h((k+ 1)R —n + Mr)x(n - Mr)}.

(A3)

This is obviously a well-defined FTIS.

Proof of Proposition 4: Assume an IS exists. We use
it to reconstruct x(n) from its DSTT X,z, and to recon-
struct y(n) from its DSTT Yz. Consider the sequence
{aX;g + BY,z}~ with a, 8 € C. Since the mapping
from time domain sequences to DSTT is a linear map-
ping, it follows that this later sequence is the DSTT of
ax(n) + By(n). From definition 1, the use of the IS must
lead to the output sequence ax(n) + By(n), and thus we
have showed that any IS is linear.

Proof of Proposition 5:

Part a): If h(p, + Rk) = O for every k = 0 and
some R = p, = 1, then, for example, the sample x (R —
D,) does not affect the DSTV at all, and therefore, it can-
not be reconstructed from the DSTV (i.e., there does not
exist an IS).

Part b): Assume we have already proven part c) of
this proposition, and let us denote by 0 < k,(p) < o
the first sample in {h(p + kR)} -, which is not zero,
forR=zp =1 NowforM —-1=n=0,

xg(n) = x(n) h(R - (n)R + kU(R - (n)R)R);
=k,(R n = )y
s =k, R

Since h(R — (n)g + k,(R — (n)g)R) # 0, there ex-
ists an IS due to (A4) and Proposition 5, part c).

Part c): The necessity of the conditions for IS is
trivially verified in the IS definition. The sufficiency is
proved using a similar argument to the one done in the
proof of Proposition 4, part b). Assume there exists a syn-
thesis system S such that {x(m) I3 = S{xz} 2 e,
from a finite prefix of length A7 of the DSTV, one recon-
structs the samples {x(Mr — p) }f':ML[,:,. Note that MJ
= IR, and therefore, after substructing the terms depend-
ing on these known first /R samples of x(n) from
{xXR}smrs1, WE obtam {x(n)}2%®z! as the output of §
with input {xSR}S A,+ll) Continuing in this manner we
have constructed an IS. 0

- (n)R) + 1+ (A4)

APPENDIX B

Proof of Proposition 6:
Part a): We assumed that P is an LM with respect
to h(n) [using h(n)] Therefore, for every causal se-

quence x (n), there exists another causal sequence y(n),
such that forM — 1 >/ >0and o > s =1,

h(sR — 1 — Mt) y(I + Mr)

it

t

Z;) (lm)z

“h(sR —m — Mr) x(m + Mr). (Bl)

The matrix P is nonsingular, and therefore, for every M
—1=1=0,thereexists M — 1 = m,(l) = 0, such
that P(1, m, (1)) # 0. Equation (B1) holds in particular
for the sequence 50 (m + Mry = 6(m — m,(1)) 6(r
— p) [1/BW, m,(1))], i.e., there exist sequences
¥ (nyfor M — 12120, (J —1) 2 p = 0, such
that

2 h(sR — 1 — Mt) y“» (I + Mi)
t=0

=h(sR—m,(I) —Mp) (J~-1)zp=0.

(B2)

Consider (B2) for ] = s = 1. This equation is rewritten

as
Ay =hl; (J-1)zp=20 (B3)
where the sth entry of the vector h,,,a(,) € Clis [h(sR —
m,(l) — Mp)], the tth entry of the vector y'**’ € €’ is
Y5 (1 + Mr), and the (s, 1) element of the I x J-
dimensional matrix H, is h(sR — | — Mt). Since we
assumed that there exists an FTIS for h(n), one can in
particular reconstruct {x(m,(I) + Mp)},Z; from
{x;g(m,(1))}!_,, and therefore, the J vectors hi,?o)(“,
, hf,,Ju(,l)) in G/ are linearly independent for every value
of m,(1). Thus, due to (B3), Range (H)) contains a linear
subspace of dimension J. Since H, is an I X J-dimensional
matrix, it follows that the columns of H; are linearly in-
dependent. Since this argument holds for every M — 1 =
I = 0, when fl(n) is the analysis filter, the samples
{y(Mr - p)yiM ,p=1 <an be reconstructed from
{ y;z}!_,. Due to Proposition 5, part c), this guarantees
the existence of an IS. Furthermore, by following the con-
struction of the IS given there, we notice that in our case
(i.e., A = 1), this is essentially an FTIS for A(n).

A Corollary from the Above Proof If P is an LM with
respect to 2 (n), then Range (H,) =2 Range (H,,) for every
(1, m) such that P(I, m) # 0.

Part b): Since P is an LM, there exists a causal se-
quence y(n) for which Y,z = XsR, o > s = 1. From part
a) of this proposition, there exists an FTIS for & (n) which
reconstructs y(A) from {¥,z}:>,, i.e., from {XSR}f’:l.
Therefore, y(n) in Fig. 2 is exactly the causal sequence
for which (5) holds. Due to (5), in Fig. 2,

YSR =

e =P Xp==Xp ®>sz1,

(B4)
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and thus, x(n) is reconstructed from { ¥z} by the
FTIS for h(n), which proves our claim.

Proposition 7: This is an immediate consequence of the
following lemma.

Lemma 1: P is an LM with respect to h(n), iff, for the
MIJ sequences x™ " (m + Mr) = 6(m — m,) 8(r — p),
J—-—12p=0,M-1 = m, = 0, there exist corre-
sponding MJ sequences y\">*’(n), for which (B1) holds
with every nonzero element of P replaced by 1.

Proof of the Lemma:

a) Necessity of the Above Condition: It follows
immediately from the definition of the LM, when using
the input sequences xme®)(ny [1/P(l, m,)] for every !
for which P(l m,) + 0.

b) Sufficiency of the Above Condition: Assume the
MJ sequences y"™>#)(n) exist, then it is fairly easy to ver-
ify that for an arbitrary casual input x(n), (B1) holds for
the causal sequence

M—1 J—1 [1/]]
2 X 2 B(l,m,)
me=0p=0 6=0
x(m, + Mp + 6JM)

< [ymee (1 + M(t - 67))].

y(l + Mt)

(B5)

Proof of Proposition 8: For P which is an LM with
respect to h(n), both Range (1-7,) and Range (H,,) are
linear subspaces of G' of dimension J, forevery [M — 1
= I, m = 0] [since both A (n) and A(n) possess an FTIS
due to Proposition 6, part a)]. Furthermore, as a corollary
of Proposition 6, part a), we have essentially shown that
Range (H) = Range (H,,) for every (I, m) such that
[P(l, m) # 0]. It is therefore sufficient to prove that
[Range (H,) + Range (H,)] for every (m, q) such that
[Lm/g| # | q/g] ] Sinceh(n) # 0forR=n =1
(due to Proposition 3), and h(n) is causal, it is easily
verified that each column of the matrices H,, (H,) possess
its first nonzero element in the row s,(¢) & ([l +
v)/J + 1) where v = |m/g]| (| q/g], respec-
tively). Moreover, 1 < s5,(t) < IforeveryJ — 1 >t
= 0,ands,(t + 1) = 5,(¢) + 1, since I = J. Therefore,
if there exists a column ¢, for which s,(¢,) in H, and H,,
differ one from the other, then Range (H,) # Range
(H,). Without loss of generality we assume that | m/g |
< |g¢/g]. and choose J — 1 = 1, = 0 such that
(—t,1)(modJ) = | m/g | (thisis possible since ged (1,
J) = 1). For this value of ¢,, it is easily verified that
50(2)1H, = 5,(t,)14, + 1, which completes the proof.

Corollary from the Proof Above: For P which is an LM
with respect to h(n), every upper-left submatrix of
H,(H,,) whose dimensions are s, (e — 1) X ¢ has linearly
independent columns.

Proof of Proposition 9: Since we assumed that h(n)
possesses an FTIS, and that R = M, it follows from Prop-
ositions 2 and 3 that TDIS exists for £ (n). Therefore, for
every causal filter 2 (n), when using h(n) = h(n), and
the sequence y(n) generated by this TDIS from
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{X.2}2_1, (5) holds independently of the specific matrix
P, which completes the proof.

Proof of Proposition 10: We construct here the re-
quested FIR filter as follows. The filter is of length R, and
satisfies A(1) = = h(g), h(g + 1) = -+ =
h(2g), etc. Therefore, forevery M — 1 = (I, m) =
suchthat |//g| = | m/g| and foreveryt = 0,s =
1,A(sR—1~Mt) =h(sR—m— Mt) = h(sR—m-—
Mt). Therefore, for every block-diagonal matrix P with g
X g-dimensional blocks, (B1) with £(n) and A (n) holds
for every causal sequence x(n), where y(n) is given by

gli/g] +(g-1

y(I + M) & P

P(l, m) x(m + Mt).
m=g /g] ( ) x( )

(B6)
Proof of Proposition 11:

Part a): Let P be given by (6).AF0r every filter
h(n), with an FTIS, choose h(gv — u) = h(gv — 7 (u))
forg — 1 = u =0, v = 1, and then for every causal
sequence x (n), (B1) holds for y(n) which is given by

y(u + gv) & x(mw(u) + gv) Mu + g(v)l);
g—-1=2zu=0,

Therefore, such a Pis a ULM.

Part b): We shall construct an FIR filter with the
desired property, as follows. h(1) = -+ - = h(R) # 0
and h(R + 1), , k(2 R) which have R different val-
ues. First, we shall show that for this 2 (n), Range (H,,)
is a different subspace of C’ for at least each one of some
g consecutive values of M — 1 > m = 0. Now, s5,(J —
1) —s5,0) = Jif [((J—-1UT—-J)+ v)/J]

[v/J] + 1, where v = | m/g | . This holds for I >
J > 1and (v); = 0, and then there exists a (J — 1) =

= 0 with s,(¢z, + 1) = s,(¢,) + 2. Since H,(s,(t,),
t,) does not depend on m, whereas H,,(s,(t,) + 1, t,)
has g different values for vg + (g — 1) = m = vg, it
follows that for each of these g values of m, Range (H,,)
is a different subspace of C'. For/ > J =1, H, is a
vector in €', and this result is immediate for v = 0 from
the structure of k(n).

Due to the corollary of Proposition 6, and Proposition
8, at least forg — 1 = | = 0, the Ith row of an LM P
has exactly one nonzero element.

The proof is completed using the following lemma.

Lemma 2: If the matrix P, which has a nonzero (I, m)th
element, 1s an LM with respect to 2(n), using some anal-
ysis filter fi(n), then the matrix P**) which has in addi-
tion nonzero (I + gv, m + gv)th elements is also an LM
with respect to 2(n), using the same h(n).

Proof of Lemma 2: Consider the characterization of
LM in Lemma 1. For (m, # m),, the sequences y\"eP)(n)
of P{*) coincide with those of P. Since P(l, m) # 0, we
know (again due to Lemma 1) that there exist sequences
¥ (n),J — 1 = p = 0, which satisfy

v=0 (B7)

EO h(sR — | — Mt) Y™ (I + M)
o

=h(sR—m — Mp); o >s=>1(B8)
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And we only have to derive from them the sequences
yimrene) () satisfying )

=

Zo h(sR — 1 — gv — Mt) " 89 (] + gv + My)
P

=h(sR—m—gv—Mp); o >s=1.

(B9)

For every p, v there exists (J/ — 1) = p’ = 0, such that
(p'l — pI — v); = 0 (since ged(J, I) = 1), and we
denote by € = (p’ — p). Now, the solution of (B9) is

ymHEO(] + gu + Mr)

. {y(m.p')(l + Mt + Me) t = max (—e, 0)]
"o otherwise .

This completes the proof of the lemma, provided that we
show that fore > 0, Y™ (1 + Mt) = 0for0 < ¢ < (e
— 1). The right-hand side of (B8) is zero for p’ and s <
S,(e — 1) (since s,(e — 1)R —m — Mp' =5,(¢ ~ 1)R
-m-—-M(—-1)-M(p+1)<R-M=<0),and
therefore, (B8) contains a subsystem of s,(e — 1) equa-
tions, in the e unknowns { y"™*" (I + Mr) }¢Z}, with coef-
ficients matrix which is an upper-left submatrix of H, of
dimensions s,(e¢ — 1) X € and zero, free vector. Thus,
the proof is completed due to the corollary of Proposition
8.

Completion of the Proof of Proposition 11: Denote
the only nonzero element in the /th (g — 1 > [ = 0) row
of an LM P with respect to h(n) as the (I, w,(l))th ele-
ment. Assume that there exists an LM P with respect to
h(n) with P(I + gv,, m + gv,) + Oand m # 7,(1).
Then, with the same analysis filter 2(n), P(*) is also an
LM with respect to 2 (n) due to Lemma 2. However, the
Ith row of P'*? has two nonzero elements, and contradic-
tion arises.

APPENDIX C

We assume throughout that the given MDSTT
{Xg}o,isin [, ie., £2, || Xzll, < . Using the
Cauchy-Schwartz inequality, £, | Xzl < o, and
therefore, Z5% | [ £zl < oo (since || Ao |, = [ Mgax (A *
A 12| vl, [14]). This implies in particular that
I |£r(M — p)| < o forevery M = p = 1, and
therefore,

/Z:l ’u(p)(k)l

< El |£&(M - p)| é)l |*(sR + p — kM)| <

by applying the triangle inequality to (11b), and the as-
sumption that h(n) is an FIR filter.

Proof of Proposition 12:
a) We define the
{17} by

sequence of  matrices

—00 < k < oo

1>

Y[((P)

0.5
§ Y(f)e’* df;
-0.5

(Cla)
(Kp—1)

Y(f) £ B(f)", B(f)*~

. B(—pk) e—jZ‘lrfk;

k=—(Kn—1)

-0.5 < f=<0.5. (Clb)
Each element of the matrix B(f) is a trigonometric
polynomial, and due to (16), B(f) is nonsingular for
every +0.5 = f= —0.5. Thus, each entry of Y(f) is a
well-defined continuous function in [ —0.5, 0.5], and the
matrices Y{" are well defined.
b) Using the definition of y{”’ in (19)

=

1520, = 2 101wl

o

= (sup [77],), 2

> ),

Since each entry of Y( f) is in L[ —0.5, 0.5], it fol-
lows from the Riemann-Lebesgue lemma [15] that

both limy (.o | ¥i” [l = 0 and limyj. | Y{"ll, = 0,
and therefore, also limj) - o || Y\” |, = 0[14]. Thus, sup;
| ¥{”|l, < oo, and since o > I, [uP (k)| = T2,

ulP 1, = 22, || ul]l,, it follows that || P, < oo and
¥t is well defined by (19).
¢) Forn = K,, using (19) and (C1), we obtain

(Kp—1)
(p) (p)
B Z
k= (Ryo1y - Ib
(Kn—1) o
= Z B(pk) Z
k==(Kn—1) = I=-w

0.5
S Y(f) uipZ e af
-0.5
o 0.5 (Kn—1)
Z S Z B(P)e—j21rfk
= Joos \k=-(Kn-1) ¥
(p) j
©Y(f) u(r’:—l)ej“ﬂ daf

1l

o 0.5
=, S T gp = P (C2)

where the change of order of the summations over k and
! is permitted since one of them is finite, and the other
converges as shown above.
Thus, the solution in (19) satisfies (18) at least forn =
K;.
d) For ul? =

-1
Ei":(,,),,,u) YiPul’ ), and therefore,

except for | < n < n,, yP =
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(n—1)

100 =, 1Tl ol

k=(n—
no
(p) (p)
= ((n_no)n;z);(n_” I "2><k§1 I ”2>
However, ~we  have already shown that

limj )~ |l Y|, = 0, and therefore, lim,—, || y*’ |, =
0, i.e., the solution of (19) is a stable solution.

e) The zeros of det {E,Eﬁ":(‘,){,‘_l)B(fk)z_k} are or-
ganized in pairs (2, z,) such that z,7, = 1. The different
solutions of (18) (forn = K},) correspond to different par-
titions of these (2K, — 1)J zeros between the causal and
anticausal components of the sequence { ¥Y{"’} = __., and
there exists only one partition which leads to a stable so-
lution [16].

Proof of Proposition 13:
Part a): 1t is sufficient to prove that

2<e>.

(C3)

(ve > 0)(3T,)(vn = 1)<““€ET YPull)

However, as shown above,

(p), (p)
Y, Un— k)

|k| = Te 2

s (p) (p)
< (2 121 ) e 1771,)

and since limy;| » | Y, =0,and T, 4P|, < oo,
(C3) holds. We note here that T, depends only on the [,
norm of the given MDSTT, and so is Q.. Thus, if the
input MDSTT’s are uniformly /; bounded sequences, then
Q. and T, can be determined according to this given
bound.

Part b): For every ¢ > 0 we find a value of T,
which guarantees a reconstruction error below €/2. We
then approximate { ¥{”’} ,(CT;:()E, 1y by

Al -1 m )
7P 2 5 .2 Y<§> e/@/Qm k) < (T, = 1).
(C4)
Now
(Te-1)
(p) __ > ~(p)u(p)
’ Yn k=T k Un—k) ,
(Tz“l)
<e/2 + 2
k=—(T.—1)

(p) (P)y .. (P)
(Y = Y ug

max
lk| s (T—1

(2 1),

Since Z7_, | u{” ||, < oo, and T, is finite, it is sufficient
to show that for every |k| < (T, — 1), limg o, || Yy -
7" |, = 0. However, every entry of Y( f) e/>* is con-
tinuous function, and is thus Riemann integrable. There-
fore, due to (C1) and (C4), every entry of (Y{" — 7{")
approaches zero as Q approaches infinity [17], and so is
Ivi” = 771l 14].

=e/2+( max |V - 7))

(Cs5)
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