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ABSTRACT

Two new ideas for the design of multipulse
excited LPC coders are presented in this paper.
The first idea relates to improving the extraction
of the all-pole filter parameters by taking into
account the error weighting function. This func-
tion, which takes advantage of the noise masking
properties of the ear, is ignored in the convention-
al covariance and autocorrelation methods. The
new approach leads to an iterative algorithm, in
which the first iteration is essentially the co-
variance method. Each new iteration involves
estimation of the residual and increases a likeli-
hood function, taking into account the error
weighting function. The second idea relates to
improving the derivation of the excitation para-
meters. A recursive algorithm for the optimal
choice of the i-th pulse location, given the pre-

viously obtained (i-i) pulse locations, is presented.
The low complexity of the new algorithm enables its
combination with a tree search algorithm, thus giv-
ing a solution which is better than the solution
of the algorithms reported earlier , when the error
weighting function is used.

I. INTRODUCTION

The nultipulse model of LPC Excitation [1,3,5]
provides a method for producing natural sounding

speech.
The model is based on two sets of parameters:

(A) The coefficients of an all-pole filter used
to approximate the vocal tract transfer function.

(B) The excitation signal parameters, composed of
pulse locations and amplitudes.

Simultaneous optimization of all the para-
meters is highly difficult. Thus, all previous
works obtained the all-pole filter parameters us-
ing standard LPC methods (the auto-correlation
method, or the stabilized covariance method [1)).
These methods assume either a single pulse or
white noise as an excitation signal. After the
LPC parameters are set, optimization of an error
criterion with respect to the excitation parameteis
is performed. In [5], an iterative scheme is
presented in which the LPC parameters are re-
optimized under a previously obtained excitation
signal.The basic multipulse LPC model is as follows:

p p
s(n) — a.s(n—i) = e(n) —

a1y'e(n—i) + u(n) (1)
i=l i=l
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where s(n) is the speech signal, e(n) is the input
noise sequence, and u(n) is the multipulse excita-
tion sequence. In each frame of the analysis (of

duration M), u(n) contains,only K<<M non-zero
elements at locations {n)k1, with amplitudes

{bt}1. The parameters of the multipulse LPC

coder, which generally vary from frame to frame,
are the values of {at}1, {n1}1 and {bt}1.

The value of y is a priori set and in the range
0 y < 1. Conventional LPC coders use = 0.
However, due to the masking property of the ear
it was found that an optimal value of y is about
0.7 [1].

The synthesis of the speech signal is per-
formed by exciting the all-pole model by the
multipulse sequence u(n). For each frame, the P
initial values needed for the synthesis by an
all-pole filter, are obtained from the synthesized
speech of the previous frame. The synthesis error
can be measured by the energy of the weighted

residual sequence e(n), in the given frame, i.e.:
M- 1

ER e(n)2 (2)

n=0

For every set of parameters in the current
analysis frame, (1) and (2) are used to calcul-
ate the error measure ER. This is done, using
the P last samples of speech and weighted residual,
of the previous frame, as initial values in (1).
The optimal set of parameters is defined to be the
set which yields the minimum value of ER.

As stated earlier, direct minimization of the
error measure with respect to all the parameters
is not practicable . Therefore, two minimization
problems are solved. The first is the minimization
of ER with resepct to the all-pole filter coeffici-
ents, and the second one is its minimization with
respect to the excitation signal parameters. In
both minimization steps, the parameters that are
not optimized are assumed to be known. The mini-
mization steps are therefore:

Mn ER({ai}ll(b(T),n
K \

i i i=l)
(a. }.i i=l

(3A)

Mm
K

{b. n.}.1 1 1=1

where the superscript r denotes the iteration
number

(38)
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II. EXTRACTING THE LPC PARAMETERS

As mentioned earlier we extract the LPC
parameters assuming that the excitation signal
parameters are known (either from previous itera-
tions, or are set to zero for the first iteration).
For y = 0 (i.e. not taking advantage of the mask-

ing property of the ear) , the solution of (3A) is
by means of the conventional covariance method
for LPC parameters, as in [5]. Therefore, the
vector a (with elements a, i = 1,2
representing the LPC coefficients) is obtained
by solving the following set of linear equations:

Rap (4)

where the (i,j) element of the correlation matrix
R is:

M- 1

R(i,j) s(n-i)s(n-j)
n=0

and the j-th element of the correlation vector p

M- 1

p(j) = (s(n)—u(n)).s(n—j)
n=0

However, this simple solution is not optimal for
0. Direct minimization of the error measure

for I & 0 leads to a non-linear set of equations
which are very difficult to solve. We will use
therefore, an alternate method to define and
extract the optimal set of LPC parameters. For
this purpose, we now modify the basic multipulse
LPC model, by assuming that there are two
independent input noise sequences. The first is
e(n) which appears in the basic model represented
by (1), arid the second input noise sequence, denoted
by v(n) is a white noise sequence, having zero mean
and variance G A c2.a2

The modified model (which replaces (1)) is
therefore:

P P -

s(n) - a.s(n-i) =e(n) - a-le(n_i)+u(n) +v(n)
i=l i=1

However, again direct minimization of the error
measure leads to a non-linear set of equations which
are difficult to solve. We, therefore, modify the
error measure, and instead of minimizing the energy
of e(n) over all possible LPC parameters, we seek
the set of parameters for which the probability of

generating the given speech samples is maximal.
This is actually a maximum likelihood (ML) formula-
tion of the parameter extimation problem.
However, to solve the ML problem we can use an
iterative algorithm [2], in which each iteration
involves a solution of a set of linear equations,
similar to the covariance method equations (4)-(6).
Thus, each iteration is quite simple, and in this
iterative algorithm the li\ceiihood function can be

shown [2] to be non-decreasing from iteration to
iteration.

We choose a Gaussian model for both input noise
sequences (thus, assuming also a Gaussian model for
the speech signal), since under this model the like-
lihood function of the speech is a function of the
weighted residual energy ER, and therefore the ML
set of parameters is closely related to the solution
of the original problem. We

use vector notation, to simplify the equations.
The vectors e, v and s are of length M, and refer
to the weighted residual, white noise and speech

samples in the current frame, respectively. Now,
the likelihood function is given by:

Prob(s(a,oe) =

eE
1r1 T 1 T ]

exp--f--- (a .e) +—- (v .v)jde[=L(ao)1 (8)LO

This is, of course, a function of the parameter
vector a, since the vector v in (8) is given by
(7), andtbns depends on the LPC parameters. The
ML problem is therefore the following maximization

problem:

Max {L(a,o)} (9)

(5) The gradient of the function L(.) with respect
to the unknowns, is a complicated non-linear func-
tion. Therefore, as stated earlier, a direct solu-
tion of (9) is not practicable. In the iterative
algorithm of [2], the x-th iteration involves a

(6) solution of the following maximization problem:
(r) (r)Max {,0eIa ,o )} (10)— e

where the function Q(.) is defined as:

(r)
(r)) I tn[Prob(e,vla,a )]Q(a,cy a ,o— e— e

JM
——— e

Prob(e,va,c)de (11)e —

Since the logarithm of the joint probability
density of both input noiserisa p.s.d. quadratic
form in the unknowns a and e' the global maximum
of Q() in each iteration can be found analytically
as well as the new set of parameters, for the
th iteration. The new set of LPC parameters aLJl)
is the solution of the following set of P linear

(7)
equations:

(r) (r+l) (r)R a =p (12)

where the (i,j) element of the correlation matrix
R(r) in the r-th iteration is:

M- 1
i (r)

(s(n-i)-y e (n-i)).

j (r)e (n-j)) (i+j) Ml(r)
n=0

(13)

and the j-th element of the correlation vector
in the r-th iteration is:

M-l

(s(n) -u(n) -
(r)e (n)).

n0
j (r)

M-l
(r)y e (n-j))+y3 B (n-j,n)

n=0
(14)

The values of e(n) and B1(n,m) depend on the
set of parameters that were obtained in the r-th
iteration, and their exact value is given in the
sequel. The optimal gain in the (r+l)-th iteration
is given by:

is:

aE a— 'e

n=0
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•B (ni,nflJ}

v1)(n) (s(n) - a1)s(ni)) -

- (e(n) - acr.yi.e)(niflu(n)
In (13)-(l6) the values of e(r)(n) for -Pn-l
are independent of the iteration number, as they
are known from the previous frame (the P last
samples of the resulting weighted residual of the
previous frame). The values of B(r)(n,m) for
negative indices are zero, and their appearance in
(l3)-(l5) is in order to simplify these equations,
Therefore, the dependence of the (r+l)-th iteration
in the result of the (r)-th iteration, is vie the
M><M matrix B(r) whose (n,m) element is B(r)(n,m)),
and the vector e) €M (whose n-th element is
e(r)(n)). Now, e(T) is given by:

(r)
(17)

E a(r) y •e(n-i) (19)
i=(n+l)

B(r) is the inverse of the matrix A(r) of dimension
MxM, whose elements are:

A(r)(n,n+d) =A(r)(n+d,n) =

= 1

{P(fl)(2id)
+

e2(d=o)] (20)
i=d.

1 1—

In (18)-(20) 0n(M-l), dO., P(n)Min[M-l-n,P]

and a —1.
Equations (12)-(20) summarize the r-th iteration,
and their derivation is by computing the gradient
of Q(.) with respect to the unknown parameters.

The initial set parameters is obtained

by using e(0) = 0, B ) = 0 in (12)-(16). This set

of parameters coincides with the set of parameters
obtained by the conventional covariance method.
Each iteration of the new method increases the
likelihood function (10), thus the new method

results in a set of LPC parameters that are more
likely than the set of parameters obtained by
conventional methods. It can be shown that for

÷ 0 the iterative algorithm become singular,
and stops at any initial set of parameters. Thus,
it is recommended not to choose very small values
of .

III. EXTRACTING THE EXCITATION PARAMETERS

The optimal set of excitation parameters is
the solution of the minimization problem (3B).
Given the optimal pulse locations {n1)1, the

optimal amplitudes are the solution of a set of K
linear equations, as shown in [3]. However, there

(15)
are () possible ways of setting the pulse loca-

tions. For y 0 (i.e., taking advantage of the
masking property of the ear), the error measure
ER depends on all K pulse locations so that the
only known way of optimal pulse locations setting,

(16)
involves an exhaustive search over all the (

settings. We present here a simple algorithm (of
complexity 0(m2)) for computing the value of the
minimal error corresponding to the location of the

(m+l)-th pulse, given the previously selected m
pulse locations, without explicitly calculating the
optimal pulse amplitudes. This algorithm, which
has lower complexity than the reported algorithms
[3], is combined with tree search methods in order
to find a reasonable set of excitation parameters.
Although the search algorithm is sub-optimal, it
is guaranteed that its result has lower value of
ER than the result of the algorithm in [3], while

preserving its complexity.

We first describe the tree search method.
We arrange all possible pulse locations in a tree
of depth K. The root of this tree represents the
initial state, in which the excitation signal is
zero, and it has M sons, each of them represents a
different possible location of the first pulse.
Each of these nodes (denoted as nodes of the first

level), has (N-i) sons (one for every possible
value of the second pulse location). In general,
each node at the m-th level has (N-n) sons, and

there are ().in! nodes at the m-th level. Each

route from the root to one of the leaves of this
tree represents a complete set of K pulse locations,
and there are exactly K! different routes.

An exhaustive search over all () possible pulse

locations, is equivalent to a search over all the
(different) leaves of this tree and selection of
the leave with the minimal error value. Using the
new algorithm, we can calculate the minimal error
value on the leaves of this tree, by calculating
at first the minimal error value on the nodes in
the first level, then the minimal error value on
the nodes in the second level, etc. This process

has complexity of
(N-rn)!

.

m2),
and thus is

not feasible, the minimal error value at each
node i5 an upper bound on the minimal error value
at each of the offsprings of this node. Therefore,
the following sub-optimal search algorithm seems
to be a reasonable alternative of the exhaustive
search:

(i) Find the minimal error value of all M nodes at
the first level, select the R nodes which have
the lowest error values.

(ii) Given K nodes at the m-th level (m=l,...,K-l),
find the minimal error values at their sons,
then select the R nodes having the minimal

N-i N-i
r) 2

B(r)(n,n) +
(r+l)2A

{ e (n) +
n=0 n=0

M-l N-i p
ij , (ri-i) (r) (r+l)+ — v (n)2+ (B (n,n)- ' ai •y

n=O n=0 i=l

where

(r) A 1 [ (r) P(n) (r) i (r)w (n) = jZ (n)- a y •z
(n+1)](r)2 i=i

(18)

(r) A r)z (n) =s(n)-u(n) - a s(n-i) —i
1=1p
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error values out of these R(M-rn) nodes of the

(m+l)-th level.
(iii) Reaching the K-th level (i.e., the leaves of

the tree), select the leave with minimal error
vahie Out of the R leaves.

The complexity of this algorithm is 0(M.R.K3)
while the algorithm in [3), has complexity of
O(M.R.K4). Because of this complexity, the value

of R=l was used in [3]. Here, for the same complex-
ity, we can use R=K. Thus, the new algorithm
results jn a smaller error than obtained in [3) for
the same complexity.

We cescribe uow the new atkorithm for calcul-
ating the minimal value of ER over all possible
amplitudes of the (m+l) pulses. This algorithm is
used in the tree search in order to calculate the
value of the minimal error.

Let {e0(i) be the weighted residual sam-

plea due tothe previous frame (i.e., initial

conditio0s), and let {h(i)} be the impulse

response of the filter i/A(z/1), both are assumed
to be known from the solution of problem (3A)
For each selection of m pulse locations

and in pulse amplitudes

the resuVtThg Tesanial samples zcr-e

em(1)
= e(t) - b'h(i-n.) 0 (NI-i)

i=l
(21)

The error ER is therefore given by:
NI—i

ER({b.;n.}l) = ( e(t)) -

1=0
m M-l

- 2' b.( e0(t)h(t_n)) +
i=l

m m M-l
4

1=1 j=l 1=0

This is a p.s.d. quadratic form with respect to
the pulse amplitudes, and its minimal value for a
given set of pulse locations is:

ER({ni}il) in ER({b.;n.}l) =

NI-i
= ( e(t))

NI—i

v (1) E e(k)h(k-t)0

and q(i,j) is the (i,j)-th element of the matrix
Q which is the inverse of the matrix R whose (i,j)
element jS r(n1,n.), defined below:

NI—i

r(n,1) = h(k-n).h(k_j) (25)
k=max(n,t)

The initial operations needed are the calcula-
tion of the NI2 values of r(n,1) and NI values of

v (1) . This is done with a complexity of p(M2)
a

The calculation of the sequence h(') from the
solution of (3A) is done with a complexity of 0(M.P)

We assume that the matrix Q and the value of
ER for the m pulse locations (n.}' are already1 1=1

known, and present an efficient algorithel to update
both Q and ER for the (m+l) pulse locations

m+1
The efficient algorithm uses a matrix

inversion theorem from [4], in order to avoid the
need to invert the matrix R for updating the
matrix Q. We denote by Q(m) the mm matrix
Q of the m pulse locations, and by Q(l)
the (m+l)x(m+l) matrix Q of the (m+1) pulse
locations including n as the new pulsem+1
location. Let denote by r(n ) the m

m+ 1

dimensional vector whose i-tb element is

(m+l)r(n. ,n ), and by v the (m+l) dimensional1 m-4-1 —o
vector whose i-th element is We also

denote by m) the minimal error value

of the set of m pulse locations. With
this notatiOn the new algorithm is given by:

(i) Compute:

I [m)r= '(n ) Q .r(ni) (26)— m+l —

(m) r(n )
1m1÷iJ m÷l (27)

fl(m),

Q(m+l)
I ' 1 T— I _____________- L' -- n)- -

(28)T
o 0 m+l m+l

(m+l) (m) - I T 2
R R (r(n

. (v (4) (29)m+l m+l -o -
[m+l) d (m+l)It can be readily verified that Q an R

obtained by (28)-(29), match their definition in
(23)-(25), and that the overall complexity of
(26)-(29) is 0(m2) while direct calculatlon of
Q(m+l) requires 0(m3) operations.
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(ii) Now:

where

- v(n.).v(n)q(i,j)
1=1 j=l
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