DESIGN OF FILTER BANKS WITH SPECIFIED COMPOSITE
RESPONSE AND MAXIMUM OUTPUT SNR

A. Dembo and D. Malah*

Abstract

A new method for designing uniform and non-
uniform digital filter banks with specified composite
response is presented. The individual filters in the bank
are FIR (finite impulse response) digital filters with
linear phase.

The new method maximizes the weighted harmonic

mean of the output signal to noise ratio (SNR) of the

individual filters and guarantees the fulfillment of the

secifled composite response. The method is shown to
“be equivalent to an optimal weighted minimum mean
square error design (WMMSE) with specified composite
response and allows the design of filter banks with vari-
able individual filters lengths. For uniform filter banks
the method is simplified and is applied directly to the
design of a lowpass prototype. The new method is
demonsirated by a design example.

1. Introduction

In many applications filter banks with specified
composite response (usually flat), are required. We shall
focus on filter banks in which the individual filters are
“IR (finite impulse response) digital filters with linear
Uhase, and real coeflicients.

Direct application of the well known Remez
exchange method [1], for the design of filter banks,
generally results in a poor composite response [2]. This
is particularly so for non-uniform filter banks where
even a complicated automated trial and error approach
of iterated designs using the Remez exchange method
might diverge [31].

Various methods exist that guarantee a flat compo-
__.eresponse [2,4,5,6]. However they all suffer from the
following disadvantages:

(a). Sub-optimality under both Min-Max and WMMSE cri-
teria.

{b). Limited flexibility in the design, (e.g., restriction to
individual filers of equal length).

The new method presented in this work overcomes
these disadvantages, and will be illustrated via a design

example. The filter design criterion of maximum output
SNR is not new and was already used for the design of a
single bandpass/bandstop FIR filter with linear phase
[7). Its connection with the WMMSE criterion for this
problemn was presented in [8].

However, these results are not applicable to the
design of filter banks with specified composite
response, since there is no control on the resulting
composite response. In the new method presented here
the composite response is incorporated into the design
process as a constraint on the sum of the individual
filters, and an overall weighted mean square error of
hese filters is minimized subject to that constraint. A
set of weighting constants reflects the importance of
each individual filter.
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The general mathematical framework of the new
method is presented in [2]. In this work we present the
new miethod from a statistical point of view. This
interpretation results (similarly to [7]) in a relation
between relative input signal and noise levels, and the
weight function used in the WMMSE design. Thus the
resulting filter bank maximizes the weighted harmonic
mean of the output SNR's, subject to the specified com-
posite response constraint. In the next section the sta-
tistical approach for presenting the new method is
given for the gereral case of non-uniform filter banks.
The mathematical derivations as well as the relation
between this approach and the WMMSE criterion are
given in Appendix A. Section 11l deals with uniform filter
banks. For these filter banks the opiimal individual
filters are shown to be frequency translated versions of
a lowpass prototype. Thus, a simplified version of the
new method is derived and can be applied directly to
the design of the lowpass prototype. The details of the
mathernatical derivations are given in Appendix B. The
last section demonstrates the new method via a design
example and conclusions are drawn.

1. Filter bank design using a Maximum output SNR
criterion
We shall state the design problem from a statistical
point of view for filter banks with real input and real
coefficients. Generalization of the method for complex
signals and filters is not difficult.

Since each filter in the fillter bank is usually
designed to pass a different frequency band of the com-
mon input signal, we may define differently thc so
called signal and noise components for each filter in the
bank. The convention taken here is to consider all the
frequency components of the common input which are
in the pass band of the i-th filter as its inpul signal s;
and all the components in the stopband as the noise -
n,. Because we deal with a filter design problem, com-
ponents in the transition bands of each individual fiiter
are ignored. Thus we view each filter as having its own
separate input denoted by z;=s;+ny, for the i-th fliter in
the bank. Note that according to the above convention
the inputs z;, 1=1,2,..,N (for N filters in the filter bank)
will all be identical if all the transition bands are elim-
inated (i.e. set to have a zero bandwidth). For the
mathematical development to follow it is convenient to
apply the following vector notation:

The impulse response of the i-th filter, which is of
length #;, is denoted by the vector o; ( i.e., _Q,;GE?”‘).
The input vector, which comprises of M; consecutive
samples of the random process z;, is denoted by X; (k).
Le. Xi(k)=[zy(k),zi(k-1),..,z;(k —s_M‘-—l))]T. Thus the
corresponding output is y;{k)=g/-X;(k). As explained
above we regard input samples as being the sum of sig-
nal samples and noise samples, and we assume that
they are samples of two uncorrelated, zero mean, wide-
sense stationary continuous random processes. In vec-
tor notation we have X;{(k)=S;(k)+N;{(k) where S;{k)
contain signal samples and N;(k) contain noise sam-
ples, in the i-th filter input. The desired signal at the i-
th output at time k is defined to be the delayed version
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of the input signal, ie., y¥k)=s;(k ——di)z_qd’: -Si k),
where g is the di-th unit vector in IR ' ie. all its ele-
ments are zero except the d;-th element which is one.
We now divert from the usual convention of assuming
the signal component at the output as the response of
the filter to the signal component at the input and we
set the signal component at the output of the i-th filter
to be #&(k), which is independent of the filter a;. This
way, the noise component at the output of the i-th filter
contains both the filtered input noise, and the distor-
tions of the input signal introduced by the i-th filter.
With these assumptions the signal power at the output
of the i-th filter is given by:

Sog = ETY8 Y] = 1] -Ruay g = 7, (0) (1)
and the corresponding noise power is: (2)
No,= E[ (3 (k) —y(k )P 1=Tes (0 ) =20 R s +0 Raz 2
where Hss(,}?u(, and er( are M;xM; autocorrelation
matrices defined by:

E[,}-i,l(k)’_\,t(k)T] = R.m"*'Rnn‘ (3)

Rong = E(N:(k)-Ni (k)]

Rz,

Rss‘ E[é‘l(k)ﬁl(k)7]
with 7, (k) and Tan (k) being the corresponding auto-
correlation sequences. Maximizing the output SNR of
each of the individual filters leads to the well known
Wiener filter solution [7]:

o’ = R,}‘l—}?ss‘-yd‘ for 1i=1,.,N. (4)
With the corresponding output SNR (denoted by 5 ):
Tag,(0)
(5)

M=
T o, (0 )-—yd‘T AN S AN VY

Independent designs of the individual filters, using
(4), may result however in a poor composite response.
To solve this problem a composite response
specification is now incorporated into the design pro-
cess. The desired composite response is specified as the
frequency responsc of a desired FIR composite filter a,
( e.g., for flat composite response g/ is a unit vector).
Since in general each individual filter may be specified
to have a different delay with respect to its input signal,
the composite response is defined as the sum of the fre-
quency responses of the properly delayed individual
filters, such that all the delayed individual filters have
the same delay. This adjusted common delay is denoted
by d;. The desired composite response filter is of
length M; which satisfies M; =Max{#;, 1=1,..,N]. Thus
the composite response of the designed filter bank
satisfles the desired specification if and only if:

gx o =0l (8)

Where g_.{“‘gelZ?M‘, is an augmented version of _@,-EIR”‘,
obtained by padding zeros (on both ends of @; - as
necessary to adjust the filter's delay), so that the d;
element of g; becomes the d; element of of¥.

We shall denote by S; the set of all filter banks that
satisfy this constraint (i.e., S;={{g;}{L,] Y af¥=g']). Of

(=1
course, the specification of @&, should match the
specifications of the individual filters, for example, if a
flat composite response is desired, g, should be the d;
unit vector of K¢, where d; is the adjusted common
delay mentioned above.

Because of the constraint that the filter bank must
belong to S;, all N individual filters must be designed
simultaneously. As noted earlier, the optimization cri-
terion which we use for selecting the best filter bank in
the set .S; is maximum weighted harmonic mean of the

N output SNR's, L.e.
1 \
Moz
l_‘_’_ii&lesc _l_.i ___Cl__.__
N i=1 (So(/ND‘)

(7a)

This is equivalent to minimizing the sum in the denomi-
nator, i.e..

N No,
Min G- (7b)
edflies, =1 S
G >0 are relative weight constants which are propor-
tional to the desired output SNR of the corresponding
filters.

The harmonic mean is dominated by the lower SNR
values, thus providing an approximation to a Max-Min
criterion. This is in contrast to the arithmetic mean
{which may appear at first more natural), which is dom-
inated by the higher SNR vaiues and may lead to few
filters having very high output SNR, and others having
very low output SNR.

Note that if the filter bank {g;’}{{,, obtained from
the Wiener solution (4) (to be denoted the "Wiener filter
bank”) also satisfies the desired composite response
constraint (i.e. it is in S;), it is obviously also the
optimal filter bank, i.e. the solution of (7). However if
the Wiener filter bank is not in S;. each filter in the
optimal filter bank (which is in S, ) cannot have a higher
value of output SNR than the corresponding filter in the
Wiener filler bank (which does not satisfy the composite
response constraint). Thus the composite response con-
straint is expected to degrade the performance of the
individual filters, with this degradation increasing as
the corresponding weight constant (; becormics smaller,
relative to other filters’ weights. Note also that select-
ing one of the weights to be large relative to the others
will improve the performance of the corresponding
filter. However, this will be on account of the perfor-
mances of the other filters in the bank. Since SD( does
not depend on g; (see (1)), the optimization criterion in
(7b) is equivalent to the minimization of the weighted
output noise power {(which is relatcd to a WMMSE
design), subject to constraint (6). The reiation with
WMMSE design is further elaborated in Appendix A,
together with the details of the design method.

The resulting optimal filters are found to be (see
Appendix A):

. Tus¢(0 )

& =g+ — R gl . i=LN (8)

with the corresponding output SNR's being:

S"( By
N, - , 1=10 N

B,
Ce e (0)g RS g,
1

(9)

where g and B; are given in (4) and (5) respectively,
and g is defined by {(AB) in Appendix A. Reducing prop-
erly the vector g from IR into [R™* results in g ' ;.. The

reduction is done such that the d, element of q
becomes the d; element of g, with the elements at
both ends of the vector g being eliminated.

It should be noted that the optimal individual
filters have linear phase if: '

d; = (M;—1)/2 for i=1,..N (10a)
and:
a; has linear phase (10b)

The proof of this claim is given in Appendix A.
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We shall elaborate now on setting the design
paramelers in (3). The input signal and noise com-
ponents of each individual filter are two non-overlapping
narrow-band processes with known cut-off frequencies,
since, as explained earlier, the signal component is
rclated Lo the passband and the noise to the stopbands.
There is typically also a-priori knowledge on the input
SNR (which is inversely proportional to the dynamic
range {DR) in Lhe frequency domain of the input, since a
signal component in one filter is a noise component in
other filters).

A typical specification is:
Flry,(k)]=0 outside predefined frequency

intervals (passbands)
Firan,(k)}=0 outside predefined frequency

intervals (stopbands)

(11)

where F{-] denotes Fourier transformation, and

frss((o):l

i (0)=[Input DR of i—th filter]! for i=1,...N (12)
7

A reasonable specification of the other elements of
r,.s‘(k\ and r,m‘{]c), is such that the signal and noise
spectrums are flat in their ban:s, while satisfying (11)
and {12). This results in the same input characteristics
as in [7,8]. However, the design method in [7.8], results
in Wiener fitters as in (4), which in: general do not satisfy
the composite response specification (6). and thus the
new method can be considered to be an extension of
these reuults.

III. Uniform Filter Banks

For the special case of a uniforr filter bank with a
flat compuosite response, all input signals have the same
pandwidth. Conventional approaches to the design of
such filter banks usec a lowpass protnatype filter [4,5]. N
complex individual filters can be obtained by frequency
translationg, (on the normalized frequency axis, with 1
corresponding to the siiaplig frequency), by
(i+s)/ N,i=1, N , 0=a<l. A real filter bank consisiing

of 5~ or (—1—4-1) fiiters is obteined from the complex

filter bank of N filters by combining *he complex indivi-
dual filters in ceonjugate pairs. To obtain a real filter
bank when using a real lowpass prolotype filter, & shiould
take the value of 0 or 1/2. This issue is explained later
on. Thus, in the «:nventional approaches, the specified
composite responsc puts a corstraint on the lowpass
prototype filter [5].

If one applies the new riconod, presented in the
previous scction, to the design «i a real umifor.n filter
pank, having a flat composite respunse, he will find, in
general, that the individual filters in the resulting
optimal filter bank are not freouency translations of a
single lowpass protolype filter. This rneans that o recal
uniform filter bank which is obtsin.d by the conven-
tional approach of frequency translation of a lowpass
prototype filte:. is usually not cptima! under the Max-
imuin output SNR criterion define” "1 the previous sce-
tion. It also skows that the ger .al -»lution in (8) nan-
not be simnplified for this problem. ..owever, il we are
gatisfi.d with optimality of the ccmplex individual
filters, an optimal complex uniforLi filter bank with a
flat composite response can be obtained also by fre-
quency translation of a lowpass filter prototype, pro-
vided that the design problem is specified as follows:

(a). Al N complex individual filters are of equal length
and have the same desired signal delay (which
must have an integer value).

(b). The desired composite response is flat.

<o
oo

(c). The desired outpul SNR values are the same for all
N individual filters, thus they all have the same
relative weight.

(d). All N individual filters have the same input signal
and noise powers, and the same input signal and
noise bandwidths. Furthermore, the input signal
and noise spectrums of the individual filters are
frequency translated versions of a prototype input
signal spectrum and a prototype input noise spec-
trum, respectively. The frequency translation of
the i-th individual filter's input is (i+a)/ N, and the
prototype input is a real random process.

Written formally:

M=K, d;=d, v 1=l N dp aninteger. (13a)

a7 = Uy (13b)
G =1 ., 1=1,..,N (13c)
Rz, = A‘l-W""-I?no-W"-A
Rss‘ = A—I'W>1'R550'WI'A for < 1'”'N ( )
where

H, P2
W = diag fon,0f, . .ox°) . oyz=e ¥
and:
A = diag fwf.off - - ,wﬁ"'bf

and Rz and Fs, are both real loeplitz p.d. matrices.

Under these specifications il is proven in Appendix

B that the optimal filter bank resulting from (8), has
the following property:

(48, -
05 = Wy AT a, for i=1,...N (14)

Thus the individual filters are frequency translated ver-
sions of the prototype filter g,. It is also shown in

Appendix B, that this prototype filter has real
coeflicients, and is found to be given by:

2 = Rz_:; [Hsso 'Hd.c"'rsso (0 )_Q’:] (15)
where:

so 1 TRl . gty gl p-1. .
E'_Tsso(o) HT-(H Ruo HoHtg [N ! Ruu Rssn]ﬁdc(lﬁ)

A'/I,‘he matrix H in (18) is of dimensions @x#, where
Q:[-ﬁ—ﬁl. Each of the § rows of this matrix is a

different unit vector of IR””, and the ¢ non-zero
columns, are those whose indeces are congruent with d,
modulu N. Equations (14), (15) and (18), thus yield a
simplified version of the new method, applied directly
to the design of the lowpass prototype in uniform filter
banks.

It is also shown in Appendix B, that for this case all
N output SNR's of the complex individual filters are the
came and their value is:
S"t B,

N _ - 17)
1\.’0‘ 1+ 5, -rsso(o )-g_ T-/?;_,; g (a7

where H, 1s obtained by substituting the prototype
specifications, R and f . in (5), witn 1=0.

For d,=(M;—1)/ 2 (and of course M, is odd), (13a)
and (13b) are equivalent to (10a) and (10b), respec-
tively, and thus all N individual filters, as well as the
prototype filter, have linear phase. This can also be
verified directly in the solution's equations (14) - (16). It
is also easily verified that for a=0, (@ +ay-)i=1,..,N~-1,
are real vectors and so is gy, thus the complex filter
bank can then be reduced to a real filter bank of
(N/2)+1 individual filters. For

-




2=1/2, (g +ay-1—) i=1,..,N—2, are real vectors and so
is (@y_;+ay), thus the complex filter bank can then be
reduced to a real filter bank of N/ 2 individual fitters.

1V. Design Example and Conclusions

To illustrate the new method, the following design
example is presented:

The problem we consider is the design of an
Octave-band filter bank composed of five individual
filters with real coeflicients and linear phase. The com-
posite response is specified to be flat, with a composite
delay (d;). equal to the delay of the longest individual
filter in the bank. The first filter in the bank is a
lowpass filter and Lhe last one is a highpass filter and
the other three are bandpass filters. The i-th filter has
bandwidth which is twice the bandwidth of the {(i—1)-th
filter, starting with a lowpass filter having a passband
width of 200Hz. The transition bandwidths of the i-th
filter are proportional to the i-th filter bandwidth. Thus
the last (highest) filter has the widest transition band.
The length of the individual filters is specified to be in
the range of 139 to 19 samples, with the aim to keep the
product ‘filter-length transition-bandwidth' constant.
This selection of filter lengths assures equal perfor-
mance for all the five filters in the bank, while having an
average complexity of a filter-bank with five filters hav-
ing each the length of 83 samples. The sampling fre-
quency is specified to be B000Hz and in the optimization
process all the weights were chosen to be equal (G =1).
The power of the input signal to each of the filters was
set to be unity, whereas the power of the input noise to
the filters was set to be four in the lower stopband and
nine in the upper stopband of all filters. Table 1 sum-
marizes the exact passband/stopband frequencies of
the individual filters, their lengths and the SNR in df,
obtained for a Wiener fllter bank and for the optimal
filter bank designed using (8). The SNR values for the
optimal filter bank are seen to be degraded by 10-15dB.
However, the composite response of the Wiener filter
bank (solid line in Fig. 1), has a ripple of 4dB, compared
to the flat composite response of the optimal filter
bank, i.e. 0dB ripple (dashed line in Fig. 1).

The frequency response of each of the optimal
filters is illustrated in Fig. 2a, and the frequency
responses of the Wiener filters in Fig. 2b, both on a
linear magnitude scale. The frequency response of the
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fourth filter in the optimal filter bank is illustrated in
Fig. 3a, and for comparison, the frequency response of
the fourth Wiener filter is ilustrated in Fig. 3b.

The above design example illustrates the strength
of the new design method in that it guarantees the
specified composite response, even if the individual
filters have different length. The composite respornse
can be specified to be flat, as in the above example, or
it can be any other desired response {e.g., when the
sampling frequency of the input process is higher than
the Nyqguist rate, a lowpass type of composite response
can be specified). Furthermore, the exact
specifications that guarantees lincar-phase oplimnal
individual filters, were given. For the important special
case of uniform filter banks, two types of specifications
were considered. When the specifications are in terins
of real individual filters, the conventional design
approaches which are based on a lowpass prototype
filter are necessarily sub-optimal. However, when these
specifications are in terms of complex individual filters,
the optimal solution, according to the new method, can
be expressed in terms of frequency translations of a
lowpass filter prototype, which simplifies the design
process. It is also shown that this optimal prototype
filter has real coeflicients and linear phase. The new
design method is derived in this work from a statistical
point of view, as the maximization of the weighted har-
monic mean of the output SNR’s of the individual filters,
while having a specified composite response. The new
design method has also the deterministic interpretation
of a WMMGSE design of the individual filters in the bank,
subject to the composite response specification [2]. In
this work the relations between the statistical and the
deterministic interpretations of this method were
elaborated.

The extension of this method to general complex
filter banks is not difficult. A generalization of this
method for the design of filter banks with composite
response specifications having a given tolerance, is now
in progress.
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Table 1

o
Individual | Filters Lower Passband Higher B;(5) N‘—(Q
%
Filter's Length Stopband Frequencies Stopband
Number Frequencies Irequencies | )
Hz Hz Hz [aB] | [aB]
1 139 - 0-200 300-4000 32.94 | 21.35
2 139 0-200 300-500 600-4000 28.41 | 18.97
3 79 0-400 600-1000 1200-4000 35.14 | 20.81
4 39 0-800 1200-2000 2400-4000 34.78 | 22.08
5 19 0-1600 2400-4000 - 38.57 | 28.43
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Appendix A
Combining (1), (2) and (7b) the optimization cri-
terion is:
sin 9 S
{9_‘][’,1&5; i=1 Tss((o)

with the following definitions:

Wo(f )2 2 Fire (k)) DS )RF rea, (k —d)y/ We(F )P

(Tgs,(0) —20 Res, s, + & Rz @)} (A1)

G

Tss (O) : (a2)

Hi(F) 2 Flog(k)} © K2

where F{-] denotes Fourier transformation, (A1) is
equivalent to the following minimization problem:

6.5
Min [ f)iﬁzf Wil I D:(f )—-Hilf ) [Pdf
fagdflyes, L i=1 05
This is easily seen to be similar to the WMMSE criterion
defined in [2].

The following relations between the statistical and
the deterministic functions are the outcome of (A2):
The input spectrum is related to the weight function in
the WMMSE, the desired output signal spectrum divided
by the input spectrum is related to the desired fre-
guency response in the WMMSE, and the relative weight
constant C, is related to the relative weifht constarrt

(A3)

(K?) in the WMMSE. The solution to (A3) which is the
solution to (A1)), was already given in [2]). We shall

briefly summarize the solution as follows:
(a). Under the following change of variables:

o =a + b . i=1,...,N (A4)
(A1) becomes in terms of the new variables:
G
Min ﬁ —i——ﬁiT-Rn‘-Qi (A5)
&(]{v:l i=1 TE‘(O)
subject to:
b = .l_lc'—ﬁ&'m (%p) (A6)

i=1 i=1
where a i=1,....N, are the Wiener (filters,
obtained from (4), and g is the desired composite
filter.

(b). Solving (A5) and (A6). by introducing a Lagrange
multiplier A, and differentiating with respect to the
&;lﬂ:, results in the unique optimal solution:

. A .
_i__.]{n‘bi:)\(i_b_lwg-—p)‘m ("—'q 1;1‘) . 1:1,---JV(A7)
Tw‘(o ) i=1 - -

where the value of X is set so that (A8) holds.
By simple algebra, (A7) and (A4) result in (8) ( Rz
is p.d., thus non-singular).

(c). Substitution of the solution of (8), in (R) (which
gives the definition of No‘); and using (1), results
immediately in the optimal output SNR value, given
in (9).

(d). The value of g is obtained by substituting the solu-
tion (8) in the constraint (8), and is given by:

Tes, (O ‘

g=[ 3 royw 11 p (48)

Matrix augmentation from M;XM; dimension to M, %M,

dimension, follows from the corresponding vector aug-

mentation definition in (6). '])'J'Je rows are first aug-
mented as vectors in /& to [F°, and then the columns
are augmented in the same manner.

(AB) and (A8) together with (8) and (9) define the
solution completely.

If the Wiener filters resulting in (4), satisfy the con-
straint (8), it follows from (A6) that p=o0, and then from
(A8) that g=o. Thus, in this case thé solution of the new
method (in (8) and (9)) coincides with the Wiencr filters
solution in (4).

We shall now prove that (10) is a sufficient condi-
tion for all N optimal individual filters to have a linear
phase. .

(a). Since the matrices Rz and R, defined in (3), are
toeplitz symmetric matrices, and thus are also
centro-symmetric matrices (i.e. symmetric with
respect to both main diagonals), it follows that for
d; which are set according to (10a), @;" has even
symmetry.

(b). Since (10) is satisfied, the vectors g’ and {a/}{,
have even symmetry, and it follows that the vector
p defined by (AB) has also even symmetry (the aug-
Thentation does not harm the symmetry).

(c). Since Ru‘, are centro-symmetric matrices, so are
R,;}. The augmented linear combination of the
matrices Rl in (AB) preserves the centro-
symmetric property of its components. The vector
p is symmetric, thus [rom (AB), the veclor g is also
symmetric. -

(d). Since g is symmetric, g | , is also symmetric (pro-
viding of course (10a) and (10b) are satisfied).
Since Rz, are centro-symmetric, and ﬁ_q_|M{§iN=1 and
fa" i, are symmetric, it follows from (8), that all
the optimal individual filters fa; 1/, are also sym-
metric, and therefore have linear phasec.

Q.E.D.

Appendix B
» We shall prove that the optimal filter bank solution
in (8), can be expressed in terms of a frequency
translated lowpass prototype, as shown in (14), if the
filter bank specifications are according to (13a) - (13d).

(a). From (13d) it follows that:

R = AVWURZH-WE-A (B1)

and

Tca‘(o) = Tssn(o) . i=},-- - N (B2)

(b). Due to (13a) all augmentation and reduction opera-
tions are ignored, since all the filters have the
same length and signal delay. Substiluting (13a)-
(134) along with (B1) and (B2) in the optimal fiiter .
bank equations (4), (8), (A8) and (AB), the
st;}mpllﬁed solution is given by the following equa-
ions:

Z; = A—l'W_i(R::‘:: 'Rssa)W('A'll:dc + (BS)
+ Tasa(o ).A—I.W—i.j?z;‘l, -t Aq
— Wr-Ror WY LA
9 T, (0) ;‘%’1 Rz, -W*)™"-Ap (B4)
=[7/—-A"1 - -1. CWE.AT.
2 [ 1§1W (Rzzo Rssa) w A] Hdc (BS)
éﬁg; follows from (8), (B4) from (A8), and (B5) from
(c). We now state several properties that will ease our
proof:
An important property of the matrix ¥ is the fol-
lowing:

)
~

Ug~puLy YVOULUL D3, L UL LLLIGL MLUL © uac L3 UL LI THIVELLUL UL o

with eigenvalue w:/d”. Applying (B8) to A-g and Ay,

(B3) becomes:
gzoy AT W RE Ry, g, 7, (0)-0n TA-q)} (BS)

Letting géw;“‘-A-g_, (B9) becomes the union of (14) and

(15).
QED

Since in both (15) and (16) all the terms are real, it
is enough to prove (16), in order to prove that g, has
real coefficients.

As a first step in the proof of (16), we combine (B4),
(B5) and the above definition of g to obtain:

oob
- N
= N (B10)
1 Tsso(o ) _

& ipa -1 ~¢l -1 {
BRI L VG R} B ) W b
Ty s eigenvector of A with eigenvalue w;?/dc. and the two

matrices in brackets are NV-poly matrices, according to
(B8). We shall denote by (4)wep, the N-poly matrix

84

_ THSD(O)
Tss, (o )—léfc * K, Rx—:: *Fys, U, '

-~

Using the definition of g, and the fact thal §A '={8-7q),
we get from (B13) and'%E 5) {using also theTact that ¢

B, i=1,..N  (B15)

is real):

S°( _ B, =1 N

-~ = = =~ , v=1,...,

Noy 1+ 5, Tes, (o )Q_ T'Rx_z: q (B16)

(B16) proves that the output SNR is the same for
all N individual filters, and is given by (17).

Q.E.D.



