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Abstract

A technique for global-motion estimation and compensation in image sequences of 3-D scenes is described in this
paper. Each frame is segmented into regions whose motion can be described by a single set of parameters and a set of
motion parameters is estimated for each segment. This is done using an iterative block-based image segmentation
combined with the estimation of the parameters describing the global motion of each segment. The segmentation is done
using a Gibbs-Markov model-based iterative technique for finding a local optimum solution to a maximum a posteriori
probability (MAP) segmentation problem. The initial condition for this process is obtained by applying a Hough
transform to the motion vectors of each block in the frame obtained by block matching. In each iteration, given
a segmentation, the motion parameters are estimated using the least-squares (LS) technique. To obtain the final
segmentation and the more appropriate higher-order motion model for each segment, a final stage of splitting/merging of
segments 1s needed. This step is performed on the basis of maximum-likelihood decisions combined with the determina-
tion of the higher-order model parameters by LS. The incorporation of the proposed global-motion estimation technique
in an image-sequence coder was found to bring about a substantial reduction in bit-rate without degrading the perceived
quality or the PSNR.
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1. Introduction

Techniques for global-motion estimation in
image sequences are of great interest in image
sequence coding [1,7,17]. The better the motion
compensation, the better is the prediction of

the picture to be coded, thus bringing about a
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reduction in bit-rate and/or improved quality. The
savings in bit-rate is due to the smaller prediction
error as well as to the reduction in motion-vector
information that needs to be coded, as global
motion can be described by a rather small number
of parameters. Current coding standards (e.g. H.261
[5], MPEG [12,16]) apply only local-motion com-
pensation, assuming that blocks in the image have
translatory motion only. However, for image se-
quences of 3-D scenes this is usually an inadequate
assumption, even when the camera is just panned,
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since the motion magnitude may vary gradually
from pixel to pixel in the block depending on the
distance of the corresponding object from the cam-
era. If the camera is zoomed, this situation occurs
even for 2-D scenes.

Most reported methods attempt to find a single
set of parameters describing the global motion us-
ing techniques like least squares (LS) [1,7, 17], iter-
ative search for a parameter set giving a minimal
frame difference [9], or using a modification of the
block-matching (BM) technique to include match-
ing over pan and zoom parameters [1]. These ap-
proaches could give a good description of the glo-
bal motion when 2-D scenes are involved. For 3-D
scenes, a single set of motion parameters is usually
unable to describe the global motion if different
pixels in the picture are at different distance from
the camera. Furthermore, large locally moving ob-
jects reduce the accuracy of the estimated para-
meters. Hough-based [ 7] and feature-Hough-based
[13] methods are more robust than the above
methods when there is more than one dominant
motion in the picture. Still, in those works only the
motion of the largest moving region is found and
the full description of the global motion in the
picture is not obtained.

For general 3-D scenes, segmentation-based
methods are therefore needed, with each segment
having its own set of motion parameters. In [11],
the peaks of the cosine area transform determine
both the motion parameters and the segmentation
in different regions, whose motion can be described
by the mathematical model assumed. This method
requires processing of a large group of future
frames, and therefore is not attractive for image
coding, because of storage requirements and the
delay caused. Another problem with this method is
that long-term consistency of the motion is as-
sumed [11]. There are also methods which try to
minimize the frame difference, but usually are com-
putationally costly even when an hierarchical ap-
proach is used [4]. Also, when used in coders,
a large overhead results from transmitting pixel-
based segment boundaries. Therefore, we preferred
using in our work a block-based segmentation.

The approach described in this paper is found to
provide good performance for quite general 3-D
scenes. Unlike the methods mentioned above there

is no requirement for processing a large group of
frames or for motion consistency, and the block-
based segmentation used requires only a small
amount of side information to be transmitted to the
decoder.

The method proposed in this work combines the
block-based segmentation with the estimation of
the parameters describing the global motion of
each segment. The segmentation is based on
a Gibbs—Markov model with an iterative optimiza-
tion process. This process requires initial condi-
tions for the segmentation and the motion para-
meters. These are obtained by a Hough transform,
using the motion vectors obtained by BM. The
Hough transform is performed according to a 3-
parameter motion model, because of computation
considerations, rather than a more appropriate
higher-order 8-parameter model of a perspective
projection of a planar surface in space which we
eventually compute. Finally, splitting/merging of
segments is applied in order to turn the 3-para-
meter motion-segmentation description into an 8-
parameter description. The details of these steps are
given below.

2. Description of segmentation and parameter
estimation algorithms

2.1. Motion-vectors extraction

In current image-sequence coding standards
(CCITT/H.261, ISO/MPEG), the motion between
two consecutive frames in an image sequence is
assumed to consist of translatory motion of blocks.
The motion vectors of the image blocks are usually
found by BM techniques [19] and hardware chips
capable of doing this type of motion estimation are
available. The algorithms presented in this paper
are using these block motion vectors in order to
segment the image and to estimate the global-
motion parameters for each one of the segments. In
most image-sequence coding applications motion-
vector components have integer values (or option-
ally half-pixel values — as in MPEG), which is only
an approximation of the real motion. In later stages
of the proposed algorithm, sub-pixel accuracy
of the vectors is found to be very helpful and is
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obtained directly from the mean absolute difference
(MAD) function calculated by the BM algorithm.
The MAD function is assumed to be parabolic in
the vicinity of its minimum and the location of the
minimum is then computed with subpixel accuracy.
This method is chosen because it requires only
a small amount of computations.

2.2. Initial Hough-based segmentation

As mentioned above, LS provides a good estima-
tion of the motion parameters if it uses motion
vectors which describe the motion of a homogene-
ously moving area. That is, it consists mainly of the
motion of a single region moving according to an
expected motion model. However, when the picture
contains several objects or regions having different
motion parameters, LS will find an ‘average’ para-
meter set, which does not describe accurately the
motion of any of the objects. Therefore, segmenta-
tion should be done first, and only after the seg-
mentation defines a region whose motion can be
well described by the assumed motion model, LS
can be applied to get a good estimation of the
motion parameters.

A robust method for segmentation is the Hough
transform [7, 13]. In this method, the BM motion
vectors are used for voting for parameter sets in the
parameter space, representing the motion of the
different segments. The Hough transform used is
based on a 3-parameter model (zoom, pan and tilt).
By this model a pixel whose coordinates are (x., y.)
in the current frame is originated from a pixel at the
coordinates

(XpsYp) = (EXc + Pres Gy + Py) o

in the previous frame, where ¢ is the zoom-out
factor and P,, P, are the pan and tilt parameters,
respectively. The BM techniques are performed
under the assumption that all the pixels in a block
have the same translatory motion. This is not the
case when the camera is zoomed, and hence the
motion vector found by the BM technique is only
an approximation to the real motion in the block.
The displacement (motion vector) of a block with
the coordinates (X, Y ) in the current frame, accord-
ing to the 3-parameters motion model in (1), is

assumed therefore to be given by
(Xp = Xes Vo — Ye) £ (Ax,Ay)
=(X{& = 1)+ Py, Y( = 1)+ P,). (2)

We use at this point only a 3-parameter model
since the amount of computations involved in per-
forming the Hough transform increases exponenti-
ally with the number of the model parameters.
Hence, applying it to a model of order higher than
3 is usually computationally prohibitive. The vo-
ting process is done by making each data measure-
ment (in our case block-displacement measure-
ments) vote for each of the values in the parameter
space that are compatible with that measurement.
The parameter space is represented by an accumu-
lator array of N, dimensions, where N, is the num-
ber of parameters in the motion model (three in our
case). Each array cell represents a ‘cube’ in the
parameters space, and a displacement measure-
ment will vote for this cell if the parameter set
corresponding to that cube results in a motion
vector sufficiently close to that of the voting block.
Every set of parameters, which carries enough sup-
port in the voting process (i.. represented by a peak
in the parameter space), defines a distinct segment.
To avoid aliasing of high-valued peaks, an iterative
‘back cleaning’ process is used. At each iteration the
highest peak is found; the blocks which support it
define a segment, and their votes are not considered
in the following iterations. This process stops when
the highest peak is smaller than some threshold.
This threshold is set to be the smallest number of
blocks needed for defining a distinct segment.

The parameter set accuracy is defined by the
Hough cell resolution, which is limited because of
computational considerations. In order to obtain
more accurate parameters, an LS-based parameters
estimation is performed for each segment, as was
explained at the beginning of this section.

In a general linear model the vector of measure-
ments d is a linear function of the set of parameters
a:

Ma =d, 3)

where M is a given matrix. Usually, in an LS prob-
lem the number of measurements is gieater than the
number of variables. Such is also the case in the
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problem of estimating the global-motion para-
meters (3 or 8 in our case) according to the displace-
ment vectors (usually several tens or hundreds).
Therefore, this is an overdetermined system of
equations. Assuming additive noise in the measure-
ments, the problem can be put in the form

Ma +n=d, (4)

where n is an additive noise vector. The estimated
vector is the one which minimizes the squared
error, defined as

e 2 n"'n = (d — Ma)"(d — Ma). (5)

The estimated parameter vector is then obtained
from [14]

d=(M"™™)"*Md. (6)

In the case of estimating the parameters of the
3-parameter global-motion model, the formulation
in (3) takes the form

X' 1 0 | | axt |
Yt o ‘ Ay' |
I (S— |
X2 1 0 =1} | Ax? |
Y2 0 1 | P, |= | Ay
| . Lo
o SN [ —
- T :
X 1 0 | @ |
Yt 0 1 Axt |
Ay* l
—_— s d
M d

where (X', Y') are the coordinates of the center of
the ith block, i =1, 2, ... ,L, in relation to the
center of the frame and L is the number of blocks in
the group of blocks for which the parameters are
estimated. In the case of estimating the parameter
set of a segment this group is the group of blocks
that belong to that segment.

Following the determination of the parameter
sets for segments corresponding to the selected
Hough transform peaks, the initial segmentation
can now be completed. A block which is not in any

of those segments, because it did not support any of
the peaks in the Hough transform domain, is now
associated with one of the neighboring segments.
The segment chosen is the one having an associated
parameter set which gives the lowest MAD for that
block.

2.3. Gibbs—-Markov model-based segmentation

The Hough transform gives a segmentation
which is unsatisfactory in some ways. First there
could be individual blocks or groups of blocks that
are erroneously matched to another segment as can
be seen in Fig. 1(b). This can be the result of stray
motion vectors, and of the fact that a vector may
vote for more than one set of parameters. Another
problem 1is inaccuracy, especially at segment
boundaries. Both of these effects are corrected by
the algorithm proposed below, using a Gibbs—-
Markov model-based segmentation. The Gibbs
model is used in many applications, including
motion smoothing [15] and segmentation [6].

The problem we wish to solve is: Having two
successive frames (A4, B) of a sequence, we look for
the best compensation (in a sense to be defined) of
global and local motion of frame B with respect to
frame 4. The compensation is done by first ap-
plying global-motion compensation and then lo-
cal-motion compensation of the residual local dis-
placement vector field V. Local-motion compensa-
tion is needed in order to correct for
(a) inaccuracy of the global-motion parameters,
(b) global motion that cannot be described by the

global-motion model used,
(c) small moving objects within the frames.

The global motion of a segment is defined by its
global-motion parameters. However, since these
parameters can be completely determined once the
segmentation is given, we concentrate on the seg-
mentation problem. The local displacement field is
estimated between frame B and the prediction of
frame B, obtained by global-motion compensation
from frame A. Therefore, in order to perform the
best compensation, we wish to find the best seg-
mentation field S and the best residual local-
motion-vector field V, where in ‘best’ we mean here
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Fig. 1. (a) Original picture from the Flower-Garden sequence. (b) Hough-based segmentation results. (c) Gibbs-model-based segmen-

tation results. (d) Final segmentation results by proposed algorithm.

finding those V and S which will maximize the
conditional probability mass function P(V, S| A, B),
i.e., finding the maximum a posteriori probability
(MAP) solution. Using Bayes’ rule,

P(V,S,A,B)
P(A, B)
:P(A,B|S,V)P(V|S)P(S) ®)
P(A, B) ’

where P(V,S|A, B) is the probability of the specific

segmentation S and motion-vector field V to be

occurring, out of all the possible segmentations and

motion-vector fields between the two given con-

secutive frames A and B. P(S) is the probability of

the segmentation field S out of all the possible seg-
mentation fields. For example, a checkered segmen-

P(V,S|A,B) =

tation field is expected to have a small probability.
P(V|S) is the probability of the motion-vector
field ¥ out of all the possible vector fields to be
occurring when the segmentation field is S.
P(A, B|S, V) is the probability that the frame B was
created from the frame A4 by global and local
motions which can be determined from the segmen-
tation field S, the original block motion vectors,
and the residual local motion-vector field V.
P(A, B) is the probability of having the two con-
secutive frames 4 and B (under the assumption that
there was no scene cut). P(4, B, S, V') is the prob-
ability of having the combination of two consecut-
ive frames A and B and that the segmentation field
and motion-vector fields S and V, respectively, de-
scribe the motion between these two frames.
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Since P(A, B) does not affect the minimization,
we have to find V and S such that P(A4,B|S,V)
x P(V|S) P(S) is maximized, or equivalently such
that —In{P(4,B|S,V)P(VIS)P(S)} is mini-
mized.

Using the assumptions of a Laplacian distributed
frame difference, with zero mean and quasi-station-
arity of the frame difference, so that the standard
deviation ¢ can be assumed constant in the minim-
ization region (which is chosen to be a block, as will
be elaborated later), P(A, B|S, V') can be shown to
satisfy the following relation:

LG —d(i

P(4,B|S,V) c ]| —exp( (’)), 9)
i=10 4

where K is the size, in pixels, of the area on which

the minimization is done, and d(i) is the absolute

value of the frame difference at the ith pixel. The

value of ¢ in the minimization region is estimated

using the maximum-likelihood estimator

. \/5 K -

¢="5 d(j) o« MAD(B, B). (10)

=1

1

The proportionality relation in (9) becomes
therefore

P(4,B|S,V) oc MAD(B, B) X, (11)

where B is the prediction of image B and is ob-
tained from A4 by global- and local-motion com-
pensation. In [15] a similar relation is obtained for
the mean squared error (MSE), assuming a Gaus-
sian distribution of the frame-difference data. Since
in most image-sequence coding standards, the
MAD is calculated, rather than MSE, computa-
tions are saved by using the MAD. However, more
significant is the fact that the error distribution
measured in our simulations appeared to be closer
to a Laplacian rather than to a Gaussian.

As expected, the likelihood that frame B is the
result of applying to frame A, V and global motion
compensation is maximized when the displaced (i.e.
compensated) frame difference is minimized. The
global-motion compensation is done according to
the global-motion parameters which were esti-
mated according to the segmentation S.

P(V|S) (see (8)) is the probability of the residual
local motion-vector field V occurring, given the

segmentation S (with its associated global-motion
parameter set). It is desirable, of course, that the
global-motion model will fully describe the motion
between the two frames so that the residual local
vector field will be zero everywhere, except at
blocks belonging to small moving objects. How-
ever, because of parameter inaccuracy and the pos-
sibility of having a global motion which cannot be
fully described by the assumed motion model, we
usually obtain nonzero residual local motion vec-
tors also at other blocks. The segmentation process
can also be considered as segmenting the initial
displacement vector field, obtained by BM (see
Section 2.1) such that each segment contains
smooth motion, meaning that there could be
a large change in the displacement vector field only
at segments boundary. This means that we can
assume an interaction between the displacement
vectors of each segment. This interaction is
modeled here by a second-order Gibbs—Markov
random field.
A Gibbs-Markov field [2] has the form

P[V[S)ocexp( — i‘: Di), (12)

where M denotes the number of cliques in the frame
and D; (which is defined in (13)) stands for the cost
associated with the ith clique. A clique can be any
combination of blocks but because of computa-
tional considerations only a second-order model is
used here. Therefore, only cliques consisting of two
blocks, where one of the blocks is in the 8-neighbor-
hood of the other, are considered. For example, for
vectors v; and v, of a clique (belonging to segments
sy and s,, respectively), a cost term supporting
smooth motion inside each segment (allowing a dis-
continuity at segment boundaries) is defined as

k o(sy —s
Dé'l—l"% “92""};—2),

$1.2

(13)

where k, is a weight factor representing the import-
ance of the motion smoothness term relative to the
importance of the MAD term in (11). [ is the dis-
tance between the two blocks, i.e., I = 1 for blocks
in a 4-neighborhood and I=./2 for diagonal
neighbors. The Kronecker delta function assures
that smoothness is required only for blocks of the
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same segment, i.e., only when s, = s,. N;, , is the
number of neighboring blocks that belong to the
same segment as the blocks of the examined clique,
which consists here of blocks 1 and 2. It is used in
o_rder to get, in the total cost term, the average
distance of the motion vector from those of the
neighboring blocks of the same segment. v, and v,
are the vectors found after global compensation,
and their difference is the local-motion difference in
the same segment, and hence is expected to be
rather small. The intuitive explanation to (13) is
that D is a positive term which is proportional to
the norm of the difference between the two vectors.
Therefore, when the difference is large it is seen
from (12) that it less likely that the two blocks
belong to the same segment.

) P(S) (see (8)) is the probability of the segmenta-
tion field S. The segmentation field is also assumed
to be a second-order Gibbs-Markov field, and its
probability function is of the form

P(S) o exp( -y cl.)_ (14)
i=1

The cost term C for two blocks of a clique which
beIOFJg to segments s, and s, and belonged in the
previous frame to the segments s¢'¢ and s§'¢,
respectively, is defined as

k
CLCo—6(s1 —s2)

k
= [8(s1 — s§9) + (s, — s¢'9)], (15)

Wher? Co is a constant value ensuring that the cost
funptlon C is positive, and k,, k4 are weight factors
}vhxch relate to the importance of the correspond-
Ing two terms in comparison to other terms in the
total cost defined below (see (16)).

The first term in (15) tends to oppose ‘holes’ in
the segmentation field, so that the probability that
a l?loc_k belongs to a segment is high if many of its
nelgh!)ors belong to the same segment. The second
tgrrn 1S supportive of consistency in the segmenta-
tion of the current and previous frames.

The Gibbs cost function should be optimized
globally over the entire segmentation field and the
motion-vector field. Using the terms defined in
(IT}15), we wish to find the fields S, ¥ which will

minimize the total cost J, defined as
J 2 KIn[MAD(B, B)]

k 0(sa —
. e

(a,b)e all cliques i Sa.b

(a,b)e all cliques

B 17 TR )

(a,b)e all cliques I
+ 8(sp — s')]. (16)

The minimization (min,_,J) is over all the possible
combinations of fields S and V in the entire frame,
which is an extremely large number of combina-
tions. Because of the extensive computational load,
a suboptimal approach is used, by which the optim-
ization is done locally (for each block separately),
thus finding a local minimum of the cost function.
This means that we seek

£ 5050 )

min J,, (17)
where

8 k Bie: v
Ju& NIn[MAD(, )] + 3 2 [0, - o) 25—
b=1 Sa.b

8
— Y 2ol —s)

b=1
c k3 5 (old) P (old) 18
—b;T[ (sa = sPD) + 6(sp — 557 )], (18)
where N is the size of a block (we use 8 x 8 blocks),
‘@’ denotes the tested block and ‘@’ denotes its
prediction. The summation on b from 1 to 8 is over
the 8 neighboring blocks to the tested block ‘a’.
These blocks form cliques with the tested block.

Because the minimization of J,, is over s,, v, only,
the term (s, — s°'%) does not affect the minimiz-
ation and can therefore be removed from (18). The
minimization of J, is done iteratively using the
so-called iterated conditional modes (ICM) algo-
rithm [6, 2], which requires a reasonable amount of
computation while providing good results.

In each iteration, the cost function in (18) is
evaluated for all the possible segment labels for the
block ‘@’ but only for few vector candidates of ‘v,
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(to save computation). In our simulations those

candidates were the following 14 vectors:

(1) The vector calculated in the previous itera-
tions.

(2) The four vectors differing from candidate (1) by
0.5 pixel.

(3) The 8 neighboring vectors of the vector cal-
culated in the previous iteration.

(4) The weighted average of the eight neighbor
vectors applying weights 1/I (see (13)).

After obtaining S, the sets of parameters for each
one of the segments can be evaluated by applying
LS (Section 2.2) to the motion vectors (which were
found by BM, as described in Section 2.1) of the
blocks belonging to that segment. The residual
displacement vectors can also be used in the para-
meter estimation. Every block which has a residual
displacement vector larger than some threshold
(for example 2 pixels) will be considered as having
local motion and will not be taken into account in
the LS estimation of the global-motion parameter
sets.

It is usually convenient to separate the Gibbs
segmentation process from the Gibbs local vector
estimation process. This is done by using at first
ky =0, and finding V after the segmentation is
obtained. The results are not affected much and the
computational load is largely reduced. It is only
natural to chose k, > ks, since the segmentation at
the current frame should affect the estimation more
than the segmentation at the previous frame. The
values k, = 2.5, ky = 0.5 were found empirically.
These values performed well for the sequences that
were tested (for example the ISO test sequence
‘Flower-Garden’). Choosing very small k,, k5 (for
example 0.1) is not useful since they will hardly
affect the cost function. On the other hand, very
large k,, k3 (for example 20) is not beneficial either
since in this case the MAD function, which is very
important as well, will have no effect on the cost
function. Furthermore, using very large values of k,
may constrain the structure of segments by giving
too much weight to the homogeneity of the seg-
ment. Very large values of k3 constrain the change
of the segmentation in time (from frame to frame).
The results were also found not to be sensitive to
different values of k,, ks in quite a wide range. In
simulations, values of k, in the range 1-5 and

(k5 /k3) in the range 2—10 gave similar results. Opii
mizing Eq. (18) without the last three terms
(ie. choosing k; = k; = k3 =0) corresponds to
maximum likelihood (ML) optimization rather
than to MAP optimization. As expected, we found
in simulations that MAP optimization results in
a better segmentation and compensation, as evid-
enced by the larger reduction in bit-rate (e.g., for the
Flower-Garden sequence a reduction in rate of
28.3% was obtained in comparison to 24.2% with
ML optimization). Furthermore, since most of the
computational load is due to the MAD term, there
is certainly no motivation in using here
ky =k, =k;=0.

2.4. Joint splitting | merging decision and detailed
motion description

As explained above the sets of parameters found
by the Hough transform correspond to a 3-para-
meter motion model. The next step involves estima-
tion of the parameters of an 8-parameter model, for
each of the segments. This model can represent the
perspective projection of a planar surface moving
in space. In the 8-parameter model a pixel whose
coordinates are ( x., y.) in the current frame is orig-
inated from the pixel at coordinates (x,, y,) in the
previous frame, given by [18],

(14 Ay)x.+ Asy. + A,
1 + A?xc + AByc

(xp’yp) = (

A4x,._ + (1 + A5) Ve + Aﬁ) (19)

1 + A'?xc 75 Asyc

where 4;,i = 1,2, ..., 8, are the model parameters.
Note that if 4; = 0 Vi, then (x,,y,) = (X, y.). The
expected motion vector (displacement), according
to the 8-parameter motion model, of a block
centered at coordinates (X, Y') is therefore

A X + AY + Az — A.X? — AgXY
1+ A X + AgY

Ax = » (20)

oy AsX ASY + g — XY — AqY? &)
y 1+ AX + AgY '
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The LS problem associated with the 8-parameter
global-motion model is therefore

hypothesis 1 — that they have different models. To
make this decision we apply the maximum-likeli-

— —

. A _
XUyl 0 0 0 X'(—X'+Ax) Y!(—X'+Ax') ] A’ Ax?
0 0 0X! Y!1 XY(=Y'+Ap') Y=Y +Ap") Az Ay
X2 Y21 0 0 0 X*(—X?+Ax3) Y3 (—X*+Ax?) A3 Ax?
0 0 0X2 Y1 X*(— Y2+Ay)Y( Y2+Ay) A" = —|ay | 22)
_______________________________ S —.———
------------------------------- A, o
i35 1 0 0@ X"( XL+Ax) Yi(— XL+Ax'~) | Axt
[0 0 0 Xt YE 1 XE(—YE4ApY) YH(—YE+AY") A7 | Ay

[§ > ) L8 | I

M Y d
a

In order to create a better segmentation into
regions whose motion can be described by an 8-
parameter motion model, the estimation is com-
bined with the spllttmg/mergmg of segments. The
splitting of a segment is done in cases like the one
seen in Fig. 1(c) for the segment composed of the
tree branches and the lower garden region. The two
regions have the same parameters according to the
3-parameter model, but have different parameters
according to the 8-parameter model. In this case,
leaving them joined will result in wrong parameter
values when the 8-parameter motion model is com-
puted; therefore, splitting should be done. The
merging of segments is done in cases like the one
seen at the garden region in Fig. 1(c). When de-
scribed by a 3-parameter model, for zoom, pan and
tilt, the garden was divided into 2 regions of differ-
ent parameters, while the motion of the two regions
can actually be described by the same set of 8 para-
meters. Merging them produces more accurate
parameters and reduces discontinuity effects at seg-
ments boundaries.

In the literature, pixel-difference-based splitting/
merging decisions are mostly used [8]. In our work
the decision is based on the BM local motion vector
of each block, which is less costly computationally.
It is done by a hypothesis testing technique: Each
time a splitting/merging decision is to be made,
we have to decide between hypothesis 0 — that
both segments have the same motion model — or

hood approach. The probability distribution used
is that of the error between the expected motion
vector, according to the model, and the one found
by the sub-pixel BM (see Section 2.1). The error is
empirically assumed to be Laplacian distributed.
We assume that the error vectors are statistically
independent and also that the x and y components
of the error are statistically independent. Therefore,
the probability for the x component of hypothesis
0is

g - (1 (452)
ieGiuG2 2

x exp{ — sl x; — ma“:;n), 23)

and the probability of hypothesis 1 is
P(HY*)

a{:’x] w y

{vx)
(I (2 )ospt = a1 - mwx’l}),(w

ieGa

where «; and m; are the parameters of the Laplacian
distribution of segment i, &, and m;, are the
parameters of the Laplacian distribution of the
merged segment, G, G, and G, are the sets of
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elements (blocks) belonging to segment 1, segment
2 and the merged segment, respectively. Expres-
sions similar to (23 and 24) are obtained for the
y components of hypotheses 1 and 0 and the deci-
sion is made by the following test:

P(H(ux}) (H(Uy)) split

> Th. 25
P(HSD)PLHS) merge il

Using the maximum-likelihood estimators of
o and m for each of the distributions we get, after
some mathematical manipulations, that the test for
splitting/merging two segments is

Z [Ux.-_mtl'jX)l Z vy, —m{™|
Nl log ieG, ieG,
N, + N, N2

o[ Do T = m)

2 ieGa ieGa

I SN
N +N, & N2

Y o =miS) ¥ (v, —mi3)

_]0 ieGiya ieGiua
: (N1 + No)?
split
Z Th, (26)

merge

where N, N, are the number of blocks in segments
1 and 2, respectively.

We can use a larger threshold value for segments
which were connected in the previous frame, thus
increasing the probability that they will also be
merged in the current frame. This will support
consistency in the segmentation and improve the
results.

In the decision rule (26) it is possible that the
variance of the y component is getting considerably
worse but the improvement in the variance of the
x component compensates it (or vice versa) and the
merge is done. This is usually an incorrect merge.
The results can be further improved, if the variance
of each component is also separately examined to
avoid such a wrong merge.

As a result of this last step (of splitting/merging
of segments), we get the segmentation and global

motion parameters set of each segment according
to an 8-parameter motion description.

The splitting/merging process is done as follows:
Every two segments that were found in the segmen-
tation process of Section 2.3 are being first con-
sidered as candidates for merging according to de-
cision rule (26). Then, we check for every segment if
it is composed of regions which are not connected.
If it is so, each one of these regions is considered as
a candidate to be split from this segment according
to the decision rule (26). If splitting or merging of
a segment is done, then the new segments that were
created by this process are again being considered
to be merged to one of the other segments.

In scenes containing a significant distortion of
the frame (a large zoom or rotation for example),
the BM motion vectors usually contain large
errors. In such cases, the accuracy of the estimated
parameters can be improved by using an iterative
process, as demonstrated in Fig. 2 and elaborated
in Appendix A. The idea behind this process is that
once the global motion between the two consecut-
ive frames was estimated, most of the distortion can
be compensated and more accurate motion vectors
can be obtained. Using these more accurate motion
vectors, a refinement of the global-motion para-
meter sets can be evaluated.

3. Simulation results

The global-motion compensation method de-
scribed above was incorporated in an RM8-based
image-sequence coder [3] as shown in Fig. 3. The
shaded boxes are the proposed added units to the
standard coder. The global-motion estimation and
compensation units provide a prediction which is
usually better than the standard prediction method.
However, since the usual prediction (using local-
motion compensation only) is also done and the
better prediction between the two is taken, the
proposed coder can only improve the RM8 coding
results. The local-motion estimation units are the
BM units which calculate BM motion vectors be-
tween the current frame and the previous recon-
structed frame (in estimation unit 1) or the previous
reconstructed frame after global-motion compensa-
tion (in estimation unit 2). The block matching
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Fig. 2. The iterative process for improving the parameters’ estimation accuracy.
(BM) was done using the full-search algorithm. The discrete cosine transform (DCT) coefficients |
A prediction frame is created in the compensation of each difference block are quantized (in unit Q) |
and prediction units according to the previous re- and are transmitted to the receiver with additional :
constructed frame, the local-motion vectors, and side information such as motion vectors, segmenta- ]

the global-motion parameters and segmentation. tion, and global-motion parameters. When the |
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Fig. 3. The proposed coder (the shaded blocks are the blocks
which were added to the standard coder.
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prediction of the block is not adequate, the quan-
tized DCT coefficients of the current input block is
transmitted. The reconstructed frame is computed
both at the receiver and at the transmitter, using
inverse quantization (Q~!) and inverse DCT
(IDCT).

The side information of the global-motion para-
meters and segmentation is also sent to the de-
coder. The global-motion parameters are sent with
10 bits per parameter. The segmentation is repres-
ented by its morphological multistructuring-ele-
ment skeleton (MSES) representation [10]. The
total cost, in bits, of encoding the segmentation
information, the global-motion parameters, and the
local-motion vectors was found, on average, to be
somewhat less than the number of bits needed for
encoding the local-motion vectors only in RMS.

This is because the global-motion compensation
reduces the total number of non-zero local motion
vectors.

Table 1 shows simulations results in coding the
first 100 frames of the ISO test sequence (luminance
only, CIF format) ‘Flower-Garden’, with and with-
out global-motion compensation (GMC), using
a constant quantization step g, = 16.

In comparison to RM8, almost 30% reduction in
bit-rate is obtained by using the proposed GMC-
based coder, when the sequence is coded in each
case with the same quantization step (quantization
step = 16). This result is obtained without any no-
ticeable change in quality as judged by an informal
subjective comparison. Similar reduction factors
were obtained for a wide range of bit-rates. This
reduction in bit-rate is due to the reduced predic-
tion error obtained by the improved motion-com-
pensation technique proposed. If zoom or rotation
were present an even larger savings in bit-rate
could be expected.

Simulations were done also on frames 24-89 of
the ISO test sequence (luminance, CIF format)
“Table-Tennis’, which is approximately a 2-D scene
containing zoom. The coder was activated with and
without global-motion compensation (GMC) with
a constant quantization step g, = 16. The results in
Table 2 show a 32% reduction in bit-rate for this
sequence. In this case, the segmentation process
results in the whole image being a single segment

Table 1
Simulation results of coding 100 frames (luminance, CIF format)
of the ‘Flower-Garden’ image sequence, with and without glo-
bal-motion compensation

Coding method Rate (Mbps) PSNR (dB)
Standard RM8 2.406 29.54
RMS8 with GMC 1.724 30.15

Table 2

Simulation results of coding frames 24-89 (containing zoom) of
the ‘Table-Tennis" image sequence (luminance, CIF format),
with and without global-motion compensation

Coding method Rate (Mbps) PSNR (dB)
Standard RM§ 0.948 32.19
RM8 with GMC 0.651 33.01
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with global motion due to the zoom-out, since the
moving parts of the player are not large enough to
justify a distinct segment. The local motion of the
player is then compensated by the local-motion
vectors.

4, Conclusions

The global-motion algorithm described in this
paper proves to be promising for coding image
sequences of general 3-D (as well as 2-D) scenes
which contain global motion. In comparison to
a standard coder (RM8-type), about 30% reduction
in bit-rate for a wide range of bit-rates was ob-
tained using the proposed GMC-based coder, while
maintaining similar subjective image quality.

The main problem is that the computational
load is large and probably cannot be implemented
at present in real time. For example, the computa-
tion time for coding the sequence Flower-Garden
with RM8 + GMC is five times more than coding
it with an RM8 coder (it should be noted however,
that the GMC code was not optimized and a more
efficient code could give a somewhat better compu-
tation time). However, for off-line applications, the
proposed approach appears to be very useful. It
should also be noted that the parts of the algorithm
which are computationally demanding (like the
Hough transform, the Gibbs iterative procedure,
the interpolation, and BM) can all be implemented
using parallel computing units. This is because the
computations required for each ‘cell’ (Hough accu-
mulator cell, a block in the Gibbs iterative process,
a pixel in the interpolation, and a motion vector of
a block) can be done independently of the other
‘cells’ and the computation speed can be boosted in
proportion to the number of processors.
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Appendix A. Iterative procedure for improving
the accuracy of motion

A.l1. Model parameters

The parameters estimated, after applying the al-
gorithm described in Section 2, can be further re-
fined using the iterative process demonstrated in
Fig. 2. Following the splitting/merging operation
combined with estimation of the 8-parameter
model parameter sets, we have the segmentation
field S and the parameters sets a'® which allow the
prediction of the current frame I, from the previous
frame I, ;. Because of inaccuracy in the estimation
of the parameters (and some additional reasons,
which are mentioned in Section 2.3) the prediction
frame T and I, are not identical. However, since
19 is closer to I, than I,_,, because part of the
distortion (which can be the result of zoom, rota-
tion, or gradually changing motion), was compen-
sated, further improvement of the accuracy of the
global-motion parameters is possible. The next step
is, therefore, to find the local-motion vectors be-
tween the frames I, and I'\?. This is done using the
suboptimal 2-D-log search [19] with an initial
search step of 0.5 pel and a search step of 0.25 and
0.125 pel in the second and third steps. The block
matching with subpel resolution is done by match-
ing blocks which are interpolated by a factor Nj.
Motion of a pixel in the enlarged block is equiva-
lent to a motion of 1/N; in the original block. From
the resulting motion vectors one can estimate,
using the LS method, an additional set of motion
parameters a'*) for each one of the segments. Now,
using superposition of a'” and a‘*) a more accurate
set of global-motion parameters is obtained. The
superposition of two parameter sets, A, ... ,Ag,
and By, ..., Bg, such that

_(L+ A)X + A,Y + 4,

’

1+ A4,X + AgY
g AX +(L+45)Y + A
L4+ 4.:X +4,¥ ° A1)
yr -1+ B)X + B,Y' + By
14+ B, X' +BgY'
yr o BeX' + (1 +By)Y' + Be

1+B:X'+BgY' °
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results in a third parameter set, C,, ... , Cg (relating

(X", Y") directly to (X, Y)), such that

1+CHX+C, Y +C;

1+C7X+C3Y ?

_CGX 1 4 CIY G
- 1+C'}X+C8Y

"

(A2)

YH

The parameter set {C;} is computed from the
parameter sets {4;} and {B;}, according to the
relations

(1 +A;)(1 + By) + A4B, + A:B; _

Cl W 1)
Ay(1 + By) + (1 + As) B, + AgB;
Cg = H]
w
As(1 + By) + A¢B, + Bs
Ca = % P
(1 + A,) By + A4(1 + Bs) + A,Bg
C4 - ]
w
(A.3)
C. = A;B, + (1 + As)(1 + Bs) + AgBs _q
5 — W ]
A3B, + Ag(1 + Bs) + Bg
C6 o 3
W
(1 4+ Ay)B; + A4Bg + A
C, = - ,
A;B; + (1 + A5)Bg + Ag
Cg = 7% ,

where W = A3;B,; + AgBg + 1.

The iterative step can be repeated, but simula-
tions show that most of the improvement was
gained in the first iteration.
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