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ABSTRACT 
A new approach for image coding based on bit-plane 

decomposition and binary morphological operations is 
presented. The image is first processed by an error- 
diffusion technique in order to reduce the number of bit- 
planes without a significant quality degradation. The bit- 
planes of the resulting image are converted to Gray code 
and are represented by a modifEd morphological skele- 
ton which uses an increasing size structuring element. 
Redundancy in this representation is reduced with an algo- 
rithm motivated by a Geometric Sampling Theorem which 
we present. These reduced modified morphological skele- 
tons are coded with an entropy coding scheme which was 
particularly devised for efficient skeleton coding. A post- 
processing operation, as well as the possibility of 
geometric progressive transmission, are also discused. 

1. INTRODUCTION 
Most of the research in image coding in the last three 

decades has concentrated on the use of orthogonal 
transformations or prediction models, which exploit the 
algebraic structure of the image. Recently, Maragos and 
Schafer [l] presented a scheme for binary image coding 
which exploits the geometry of these images via morpho- 
logical skeleton representation. In this work we extend 
their approach for both binary and multilevel image coding. 

The proposed image coding scheme consists of the 
following steps: First, the image is pre-processed by an 
error-diffusion technique in order to reduce the number of 
bit-planes, without significant quality degradation. The 
pixel values are subsequently represented in Gray-code, 
obtaining more uniform bit-planes. Next, each of the bit- 
planes is represented by means of a modified morphologi- 
cal skeleton which uses an increasing size structuring ele- 
ment instead of the single size one used in [l]. Redun- 
dancy in the modified skeletons is reduced based on a 
Geometric Sampling Theorem. These modified and 
reduced morphological skeletons, which are sparse 
representations of the bit-planes, are coded with a combi- 
nation of different entropy coders particularly devised for 
efficient skeleton coding. These include Huffman coding of 
the number of consecutive lines having no skeleton points, 
and Elias coding followed by Ziv-Lempel universal coding 
for the remaining lines. Geometric errors in the bit-planes 
can also be introduced for bit-rate reduction. In such a 
case, post-processing operations for quality enhancement 
of the image, like random filling of undefined areas in the 
partially reconstructed bit-planes, are also suggested. 

The remainder of this paper gives the underlying 
theory and describes in more details the coding algorithm. 
Section I I  introduces the modified morphological skeleton, 
and section I l l  presents the Geometric Sampling Theorem. 
In section IV, description of all the coding steps and of the 
suggested geometric progressive transmission scheme is 
given. Experimental results are contained in section V, 
and a summary and conclusions in section VI. 

11. MORPHOLOGICAL SKELETON 
In the following, A 0 B ,  A @ B ,  A o B ,  and A o B  

denote the basic morphological operations of erosion, dila- 
tion, opening, and closing, respectively, of a set A by a 
structuring element B (both A ,  B are in R2 or Z2)  [2] . 

A. DEFINITIONS 
Let X be a closed subset of R2 such that the Convex 

Hull of X c  is equal to R2 (a necessary condition for the 
exact reconstruction of X, see [2-61) and such that the cur- 
vature IC(.) of the boundary of X ,  dX ,  is well defined every- 
where, except at a finite number of points, where it may 
have only one sided tangents. 

Let D ( x ,  p) be a closed disk of center x and radius 
p20 (in a two-dimensional Euclidian space). Then, a maxi- 
mal disk in X and the skeleton of X are defined as follows: 
Maximal Disk: A maximal disk D (x , p,) is one which is 
included in the object X ,  but not included in any other disk 
in X .  
Skeleton: The skeleton y ( X )  of an object X is defined as 
the family of centers of all maximal disks in X [5-71. 
It is well known [3, 5, 61 that under the assumed condi- 
tions, X can be reconstructed from the set w(X) together 
with the set of radii p, ( skeleton pair ): 

In a similar way we can define the skeleton S E  (X) of 
a discrete subset X (a subset in Z2) in relation with the 
discrete structuring element B , as the centers of all maxi- 
mal structuring elements (nB ),, where (nB )* represents 
the subset obtained after dilating B n-times and shifting 
the result by z ;  and (nB), is maximal if and only if it is 
included in X and there is no other ( ~ Z B ) ~ ,  m > n ,  such 
that ( n B ) , c ( m B ) y c X  [l, 21. 

Lantuejoul [ A  proved that the skeleton can be com- 
puted via basic morphological operations. We present the 
discrete version of the algorithm, as was used by Maragos 
and Schafer in [l] for binary image coding. Assume X to 
be a discrete subset, and B a discrete structuring element 
(i.e. subsets in Z 2 ) ,  then the skeleton SKB ( X )  is given by 
[I, 21: 

N ( B )  
S K E ( X ) =  n U =O S,B(X) 

where 
S ; ( X ) = ( X e n B ) - ( X G n B ) o B  , n =0, 1 ,..., N ( B ) ( 3 )  
The subset S f ( X )  is called the n -th skeleton subset of X ,  
computed with the structuring element B ,  and 
NAB) = max { n : X 8 n B # 0 } .  The n-th skeleton subset 
Sn ( X )  contains all the points X E  X (and only those 
points), such that the element (nB), is maximal i n X .  
Opened versions of X can be obtained via: 

N ( B )  
X o k B  = U S,B(X)O, nB (4) 

n =k 

Hence, if k=O the original image is reconstructed. " - -  
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B. MODIFIED MORPHOLOGICAL SKELETON 
We propose a new morphological skeleton, for which 

the structuring element size increases with subsequent 
skeleton steps (n) (the shape is not changed). This new 
representation is motivated by the fact that when larger 
structuring elements are used, less skeleton subsets are 
obtained; enabling this way the increasing of the compres- 
sion ratio (see section IV). In the modified morphological 
skeleton of X, each skeleton subset is computed with the 
largest possible structuring element; i.e. an element kB 
such that if Y=XokB, then YokB = Y  and 
Yo(k+l)B G Y. From equation (4) we can see the fol- 
lows: 

XoB =Xo2B + S f ( X ) @ B  (5) 
Now, we can decomposeXo2B in a different way: 

X o 2 B  = U Snm(X)@n2B =Xo4B +S?(X)@2B(6) 

Where Sn,(X), n = 1,2, . . . , N ( 2 B ) ,  are the skeleton 
subsets of X computed with the structuring element 28 
(note that the union goes from n=1). 
Subsequently, Xo4B can be decomposed using 4B as a 
structuring element and this procedure can be continued 
using at each step a twice as big structuring element as in 
the previous step. We obtain this way the modified mor- 
phological skeleton M S  ( X )  [4]: 

N(m) 
n =1 

NM (E ) 
M S ( X ) =  U M n ( X )  (7) 

MO(X) = X - X o B  = S t @ )  ( 8 4  

~ ~ ( ~ ) = ( ~ e 2 ~ - ~ ~ ) - ( ~ e 2 ~ - ~ ~ ) o 2 ~ - ~ g  , n>O(8b) 

The skeleton subset M n ( X )  contains all the points x~ X 
(and only those points) such that the element (2"-'B), is 
maximal i n X ;  andNM(B)= max {n :X82n-1B+0}.  We 
observe that with this modified morphological skeleton, 
less skeleton subsets are obtained due to the use of an 
increasing size structuring element, i.e., 

The original image can be reconstructed from the modified 
morphological skeleton as follows: 

n =O 
where 

NM (B 1 = r logfl(B )1 < N @  ). 

N M  (B ) 
X = C [Mn(X)@ 2"-'B] + M,(X)  (9) 

n =1 

Opened versions of X can also be obtained if we omit 
some of the skeleton subsets. More details about this 
modified morphological skeleton are given in [4]. 

111. GEOMETRIC SAMPLING THEOREM 
Let X be a set in R2, satisfying the same conditions 

as in section II, and Y = X o  pB (where here B is selected 
to be the unit disk in #). Then, we define the following. 
Singular Point: A skeleton point x , x E yf(X),  is a singu- 
lar  point if and only if there exists a pointy in X such that 
the maximal diskD (x ,px) is the only one which contains it. 
Let S (X) be the set of singular points in X and let X' be a 
subset of X defined by: 

Boundary Singular Point: Similarly, we say that a point 
X E  yf(X) is a boundary singular point, if and only if there 
exists a pointy on JX (the boundary of X )  such that the 
maximal disk D (r ,p,) is the only one which contains it. 

We are interested in a set of points ym (X) G yr(X), 
that we denote as the minimal skeleton, which guaran- 
tees exact reconstruction of X, and satisfies the condition 
that X can not be recovered from any subset of ym(X). 
Such a set exists, because in the worst case 
ym (X) = y(X). Similarly, we are interested in the minimal 
set for recovering X .  
For demonstration, Figure 1 shows a set in R2 with its 
skeleton and singular points. In this case ym (X) = S (X). 
All the proofs of the following results can be found in [4]. 
Lemma 1: All singular points are in ym(X), i.e., 

Theorem 1: x is a boundary singular point if and only if 
x is a singular point. 
This theorem means that a singular skeleton point contri- 
butes t o X  if and only if it contributes to a x .  
Theorem 2 - The Geometric Sampling Theorem: 
a) X' covers all the X boundary, except for a finite number 
of points (a subset of the points with undefined curvature). 
b) The subset of S ( X )  with corresponding radii r>p, is 
enough for reconstruction of all the Y, boundary, except 
for a finite number of points (these points are the same as 
in the first part of the theorem). 

From the above two theorems we see the importance 
of the unique set S(X)  for the reconstruction of X, since 
each singular point contributes to dX and almost all of dX 
is covered by the maximal disks of S ( X ) .  By the second 
part of Thm. 2 one is motivated to denote the morphologi- 
cal operation XopB as a geometric low pass filter, in 
analogy to the filter used in classical signal processing, 
where band-width is replaced here by the inverse of the 
radii of maximal disk. For an extension of the theorem, 
and an extended analysis of the analogy between this 
theorem and the classical Sampling Theorem, see [4]. 

In the case of discrete images (i.e. sets in Z2) ,  singu- 
lar and boundary singular points can be defined in a simi- 
lar way. Simulation results suggest that a discrete version 
of Thm. 1 may be valid. Concerning Thm. 2, a dual 
geometric sampling theorem for discrete images does not 
exist. However, as explained in the next section, the set of 
singular points plays an important role in the representa- 
tion of discrete images as well. 

IV. IMAGE CODING 

algorithm. We describe in this section each of the stages. 

s ( X ) ~ m I x ) .  

Figure 2 presents the block diagram of the coding 

A. PRE-PROCESSING 
The goal of the pre-processing stage is to represent 

the original image in a new form, more appropriate for our 
coding method. 

The first step in this stage reduces the number of bit 
planes via the Floyd-Steinberg error diffusion algorithm [8]. 
We found that when reducing an 8-bit image to a 4-bit one 
with this method, reasonably good quality is obtained (in 
contrast with the poor quality obtained by simple trunca- 
tion). With this technique we eliminate the least significant 
bit-planes of the 8-bit image, which due to their random- 
like structure, are typically difficult to compress. Thus, 
using 4 bit planes with error diffusion, the compression 
ratio is increased with no significant degradation. Subse- 
quently, pixels in these bit-plane are represented in Gray- 
code, obtaining more uniform bit-planes which improves 
the coding algorithm performance. 
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The original image can also be pre-filtered with a 
two-dimensional 3x3 median filter or with a morphological 
filter, before the error diffusion step. On the basis of the 
Human Visual System properties [9], this filter improves 
the coder performance without significant changes in 
visual quality (see experimental results section). 

B. B IT-P LAN E REPRESENTATION 
Each one of the four bit-planes obtained after the 

pre-processing stage is represented by means of the 
modified morphological skeleton described in the previous 
section (equations (7)-(9)). We use a 3x3 square as the 
basic structuring element ( B ) .  Usually, no more than 6 
skeleton subsets were obtained for the different bit-planes 
(NM (B )=5, see eqn. (9)). 

C. SKELETON REDUCTION 
Some skeleton points can be removed and exact 

reconstruction of the image from the reduced morphologi- 
cal skeleton can still be obtained. Maragos and Schafer 111 
proposed an algorithm for redundant skeleton points elimi- 
nation. However, their algorithm does not ensure that it 
always finds the minimal possible number of skeleton 
points which still allows reconstruction. Our approach for 
removing redundant skeleton points is based on their algo- 
rithm but is improved by using results from the Geometric 
Sampling Theorem described in the previous section. We 
found that the singular points of a discrete skeleton 
(defined in a similar way as the singular points of a con- 
tinuous one), are not sufficient for exact image reconstruc- 
tion, but they do reconstruct most of it (typically close to 
goo/,). Therefore, the set of singular points is almost 
sufficient; and we have to care about the "optimal" cover- 
age of only a small part of the image (typically loo/,) 
instead of the optimal coverage of the whole image as 
needed in [l]. The resulting search space is much smaller 
than the original one, and a solution closer to the optimal 
one can be found with simpler methods. We decided to 
select the skeleton points, needed in addition to the singu- 
lar points, according to the contribution of their 
corresponding maximal element to the partial recon- 
structed image (see equations ( l ) ,  (4), and (9)). We 
denote by M,  (X) the reduced skeleton subset obtained 
from M,(X).  We obtain this way that each of the bit- 
planes is being completely represented by its reduced 
modified morphological skeleton (RMMS). 

D. RMMS CODING 
Each skeleton subset M i  ( X ) ,  of the RMMS bit-plane 

representation, is coded as a binary image (these are very 
sparse binary images). 

Two different entropy coding schemes are used, one 
for coding lines of the skeleton subsets having no skeleton 
points (empty lines), and another for the remaining lines. 
First, a Huffman code of the number of consecutive empty 
lines is generated. Then, the exact position of non-empty 
lines can be pointed out. The position of each skeleton 
point in its corresponding non-empty line, is coded by an 
Elias code (11 with four different symbols (three for the run- 
lengths of "zeros" expressed in ternary basis, and a 
"comma" symbol for the "ones", which represent skeleton 
points and separates the zeros runs). Therefore, two bits 
are needed for representation of these four symbols [l]. 
Finally, the binary output of the Elias code is compressed 
with the Ziv-Lempel uhiversal coding algorithm. 

This coding strategy was found to be very efficient for 
RMMS coding, because of their special structure as men- 
tioned above. An improvement in the compression ratio 
was obtained using the RMMS representation instead of 
the original morphological skeleton representation pro- 
posed by Maragos and Schafer [ l ] ,  mainly due to the 
reduction in the amount of bits needed for coding the 
empty lines. 

By introducing geometrical errors in the different bit- 
planes, the compression ratio can be increased. These 
errors correspond to the omission of RMMS subsets 
M,(X), n I R W M ( B ) ,  where R is selected according to 
the bit-plane importance (for more significant bit-planes, R 
is smaller or even zero); obtaining with this method 
smoothed versions of the bit-planes (equation (9), [4]). If 
just the smoothed bit-plane is coded, some points of X 
would appear in the reconstruction as part of the back- 
ground. This causes considerable degradation of the sub- 
jective image quality. To circumvent this problem, we code 
the smoothed versions of both X and its complement, X c ,  
and subsequently fill-in randomly the undefined regions or 
"holes" (Fig. 3d). 
Skeleton subsets that were initially omited can be progres- 
sively added in subsequent steps until the image quality is 
satisfactory, or the desired bit-rate is achieved. We denote 
this procedure as Geometric Progressive Transmission 
(see Fig. 4). 

V. SIMULATION RESULTS 
To evaluate the performance of the proposed coding 

scheme, it was simulated on a SUN 4/260, and a Gould 
IP8500 image display system was used. A woman's head 
and shoulder image ( "Lena" ) of size 512x512 pixels was 
used as a test image (for more examples see [4]) .  Perfor- 
mance of the algorithm is evaluated based only on the 
subjective quality of the images. 

Fig. 3a shows the original image. Fig. 3b shows the 
image represented using only four bit-planes with error- 
diffusion. This image was coded at the rate of 0.35 bits per 
pixel (b/p), and represents what we call the "Four bits 
error-free image". The same picture, when represented via 
the morphological skeleton proposed in [l], instead of the 
RMMS, is coded at the rate of 0.40 blp. Fig. 3c shows an 
image that was initially filtered with a 3x3 median filter fol- 
lowed by 4-bit error-diffusion. This image was coded at 
0.29 b/p. Fig. 3d shows the reconstruction of an image in 
which the least significant bit-plane (of the 4-bit error- 
diffusion representation) was coded with no skeleton 
points of radii zero; both the image and the background 
were coded and "holes" were filled randomly (the remain- 
ing bit-planes were coded error-free). This image required 
0.29 blp. 

Fig. 4 shows a simulation of the Geometric Progres- 
sive Transmission approach. In all the pictures, the two 
most significant bit-planes were coded error free. If X 
stands for the least significant bit-plane and Y for the next 
one, then: In Fig. 4a both X and Xc opened by 4B, and Y 
and Y' opened by 2B were coded. The bit-rate was 0.18 
b/p. In Fig. 4b, the necessary points for error-free recon- 
struction of Y were addzd (i.e. skeleton points of radii zero 
and one), achieving a bit rate of 0.23 blp. In Fig 4c, skele- 
ton points with maximal disk 2B where added for the 
reconstruction of X o 2 B  and X ' o 2 B ;  and the bit rate is 
0.25 b/p. The next step of the transmission can be seen in 
Fig. 3d, whereXoB andX'oB were coded (0.29 b/p). 
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Fig. 4d is similar to Fig. 3d, but some skeleton points of 
radius zero were added according to a subjective criterion 
[4]. The bit-rate is 0.30 b/p. 

VI. SUMMARY AND CONCLUSIONS 
In this paper an image coding scheme based on sim- 

ple binary morphological operations is presented. The 
image bit-planes are represented by a modified morpho- 
logical skeleton which uses an increasing size structuring 
element. Redundancy in this representation is reduced 
with an algorithm motivated by a Geometric Sampling 
Theorem. An entropy coding scheme was particularly dev- 
ised for efficient coding of the reduced representation. The 
algorithm was developed both for error-free compression 
(of four bits images), and for compression with geometric 
errors in the bit-planes. The use of the proposed coding 
scheme for geometric progressive transmission is also 
considered. 

The presented coding scheme can be seen as a first 
step in geometric coding of grayscale images. It is quite 
different from morphological approaches which are based 
on image segmentation and labeling (e.g. [9]) which cause 
undesired false contours. Also, in contrast to the quantiza- 
tion and blocking errors introduced by standard image cod- 
ing algorithms. the error introduced by geometric deforma- 

ERRORDIFF. SKELETON 

IN GRAYCODE 1/ REPRESENT. 

tions -of the 
observer. 

-I\ SKELETON ENTROPY 
CODER O W  -l/ REDUCTION 

image is in general more pleasant to the 
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Fig. 1 - The two marked points are singular. Fig. '2 - Block diagram of the coding scheme. 
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