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Abstract

In this work, a shifted wavelet packet (SWP) library, containing all the time shifted wavelet packet
bases, is defined. A corresponding shift-invariant wavelet packet decomposition (SIWPD) search
algorithm for a “best basis” is introduced. The search algorithm is representable by a binary tree, in
which a node symbolizes an appropriate subspace of the original signal. We prove that the resultant
“best basis” is orthonormal and the associated expansion, characterized by the lowest information
cost, is shift-invariant. The shift-invariance stems from an additional degree of freedom, generated at
the decomposition stage and incorporated into the search algorithm. The added dimension is a relative
shift between a given parent-node and its respective children-nodes. We prove that for any subspace
it suffices to consider one of two alternative decompositions, made feasible by the SWP library. These
decompositions correspond to a zero shift and a 2¢ relative shift where ¢ denotes the resolution level.
The optimal relative shifts, which minimize the information cost, are estimated using finite depth
subtrees. By adjusting their depth, the quadratic computational complexity associated with STWPD
may be controlled at the expense of the attained information cost down to O(Nloga N).
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I. Introduction

Wavelet packets (WP) were first introduced by Coifman and Meyer [15] as a library of orthonormal
bases for L2(IR). The proposed library, generated via a generalized version of the multiresolution
decomposition [16, 34], is cast into a binary tree configuration, in which the nodes represent
subspaces with different time-frequency localization characteristics [18]. This library encompasses
as special cases both octave-band (wavelet) as well as uniform filter-bank representations (Fig. 1)

[48].

Implementation of a best basis selection procedure for a prescribed signal (or a family of
signals) requires the introduction of an acceptable cost function which translates “best” into a
minimization process. A decisive simplification takes place whenever the cost function is of an
additive nature as is the case when “entropy” [18, 51] or rate-distortion [41] criteria are used. The
efficiency associated with the minimization of additive cost functions are intimately linked to the
computationally efficient determination of an optimal tree decomposition. Specifically, at each
resolution level, further decomposition of a given parent-node is carried out based exclusively on a
local cost function reduction. The orthonormality of the representation together with the additivity
of the cost function render the decomposition of a prescribed node independent of any other node
at the same resolution level. The “best” decomposition tree is obtained recursively on a complexity
level O(N L) [18], where N is the signal length at its highest resolution level, and L denotes the
number of decomposition levels (L < log, N).

The cost function selection is closely related to the specific nature of the application at hand.
Entropy, for example, may be used to effectively measure the energy concentration of the generated
nodes [19, 29, 50]. Statistical analysis of the best-basis coefficients may provide a characteristic time-
frequency signature of the signal, potentially useful in simplifying identification and classification
applications [6, 31]. A major deficiency of this approach is the lack of shift-invariance. Both
the wavelet packet decomposition (WPD) and local cosine decomposition (LCD) of Coifman and
Wickerhauser [18], as well as the extended algorithms proposed by Herley et al. [26, 27], are
sensitive to the signal location with respect to the chosen time origin.

Shift-invariant multiresolution representations exist. However, some methods either entail
high oversampling rates (e.g., in [44, 4, 5, 30, 42] no down-sampling with the changing scale is
allowed) or immense computational complexity (e.g., the matching pursuit algorithm [38, 23]). In
some other methods, the resulting representations are non-unique and involve approximate signal
reconstructions, as is the case for zero-crossing or local maxima methods [35, 28, 36, 37, 3]. Another
approach has given up obtaining shift-invariance and settled for a less restrictive property named
shiftability [46, 1], which is accomplished by imposing limiting conditions on the scaling function
[49, 1, 2].

Recently, several authors proposed independently to extend the library of bases, in which the
best representations are searched for, by introducing additional degrees of freedom that adjust the
time-localization of the basis functions [40, 8, 12, 24, 33, 14]. It was proved that the proposed
modifications of the wavelet transform and wavelet packet decomposition lead to orthonormal
best-basis representations which are shift-invariant and characterized by lower information costs.
The principal idea is to adapt the down-sampling when expanding each parent-node. That is,



following the low-pass and high-pass filtering, when expanding a parent-node, retain either all the
odd samples or all the even samples, according to the choice which minimizes the cost function.

In this work, which is summarized in [8], we generate a shifted wavelet packet (SWP) library
and introduce a shift-invariant wavelet packet decomposition (SIWPD) algorithm for a “best basis”
selection with respect to an additive cost function (e.g., entropy). We prove that the proposed
algorithm leads to a best-basis representation that is both shift-invariant and orthogonal. To
demonstrate the shift-invariant properties of SIWPD, compared to WPD which lacks this feature,
we refer to the expansions of the signals g(t) (Fig. 2) and g(t —27%). These signals contain 27 = 128
samples. For definiteness, we choose Dg to serve as the scaling function (Dg corresponds to 8-tap
Daubechies minimum phase wavelet filters [21, page 198] [20]) and entropy as the cost function.
Figs. 3 and 4 depict the “best-basis” expansion under the WPD and the SIWPD algorithms,
respectively. A comparison of Fig. 3b and Fig. 3d readily reveals the sensitivity of WPD to temporal
shifts while the best-basis SIWPD representation is indeed shift-invariant and characterized by a
lower entropy (Fig. 4). It is worthwhile mentioning that the tiling grids in Figs. 3 and 4 do not in
general correspond to actual time-frequency energy distributions. In fact, the energy distribution
associated with each of the nominal rectangles may spread well beyond their designated areas
[17]. However, when a proper “scaling function” is selected (i.e., well localized in both time
and frequency), the SIWPD based time-frequency representation resembles shift-invariant time-
frequency distributions. Fig. 5 displays the Wigner and smoothed Wigner distributions [7] for
the signal ¢(¢). The smoothing kernel (here we chose a Gaussian) attenuates the interference
terms at the expense of reduced time-frequency resolution. Obviously, the smoothed distribution
(Fig. 5b) has a closer relation to the SIWPD based representation (Fig. 4b), than to the WPD
based representation (Fig. 3b) [13, 11].

Pursuing the SIWPD algorithm, shift-invariance is achieved by the introduction of an additional
degree of freedom. The added dimension is a relative shift between a given parent-node and its
respective children-nodes. Specifically, upon expanding a prescribed node, with minimization of
the information cost in mind, we test as to whether or not the information cost indeed decreases.
We prove that for any given parent-node it is sufficient to examine and select one of two alternative
decompositions, made feasible by the SWP library. These decompositions correspond to a zero shift
and a 27¢ shift where ¢ (=L <€ <0) denotes the resolution level. The special case where, at any
resolution level, only low frequency nodes are further expanded corresponds to a shift-invariant
wavelet transform (SIWT) [32, 39]. An alternative view of SIWPD is facilitated via filter-bank
terminology [43, 47]. Accordingly, each parent-node is expanded by high-pass and low-pass filters,
followed by a 2:1 down-sampling. In executing WPD, down-sampling is achieved by ignoring all
even-indexed (or all odd-indexed) terms. In contrast, when pursuing SIWPD, the down-sampling
is carried out adaptively for the prescribed signal. We stress that owing to the orthogonality of
the representation and the presumed additive nature of the cost functions (e.g., entropy or rate-
distortion), the decision at any given node is strictly local, i.e., independent of other nodes at the
same resolution level.

The STWPD expansion generates an ordinary binary tree [18]. However, each generated branch
is now designated by either fine or heavy lines (Fig. 6) depending on the adaptive selection of the
odd or the even terms, respectively. It can be readily observed that in contrast to WPD, SIWPD
expansion leads to tree configurations that are independent of the time-origin. Fine and heavy lines



may, however, exchange positions (e.g., compare Fig. 4a and Fig. 4c).

The computational complexity of executing a best-basis SIWPD expansion is O[24(L —d+2)N],
where N denotes the length of the signal (at its highest resolution level), L + 1 is the number of
resolution levels (L <log, N) and d is the maximum depth of a subtree used at a given parent-node
to determine the shift mode of its children (1 < d < L). In the extreme case d = 1, the complexity,
O(N L), is similar to that associated with WPD, and the representation merges with that proposed
n [24]. As a rule, the larger d and L, the larger the complexity, however, the determined best basis
is of a higher quality; namely, characterized by a lower information cost.

For d = L and for an identical number of resolution levels, SIWPD leads necessarily to an
information cost that is lower than or equal to that resulting from standard WPD. This observation
stems directly from the fact that the WP library constitutes a subset of the SWP library. In other
words, WPD may be viewed as a degenerate form of SIWPD characterized by d = 0. In this case,
the relative shift of newly generated nodes is non-adaptively set to zero and generally leads to
shift-variant representations.

The best-basis expansion under SIWPD is also characterized by the invariance of the information
cost. This feature is significant as it facilitates a meaningful quantitative comparison between
alternative SWP libraries. Usually such a comparison between alternative libraries lacks meaning
for WP, as demonstrated by the example summarized in Table 1.

Here, the entropies of the signals g(¢) (Fig. 2) and g(¢t—27%) are compared. The expansions are
on the best bases stemming from both the WPD and SIWPD algorithms and for Dg and Cj scaling
functions (Cs corresponds to 6-tap coiflet filters [21, page 261] [22]). We can readily observe the
shift-invariance under SIWPD and the fact that the selection of Dg is consistently advantageous
over Cg. Just as obvious is the futility of attempting a comparison between the Cg and Dg based
libraries under WPD. (g is better for g(¢) while Dg is advantageous in representing g(t — 27%).

This paper is structured as follows. In section II, we introduce a shifted wavelet packet library
as a collection of orthonormal bases. Section III describes a best-basis selection algorithm. It
is proved that the resultant best basis decomposition and the corresponding expansion tree are
indeed shift-invariant. A shift-invariant wavelet transform is described in section IV. The trade-off
between computational complexity and information cost is the subject matter of section V, while
section VI briefly discusses the important extension to two-dimensional signals.

II. The shifted wavelet packet library

Let {h,} denote a real-valued quadrature mirror filter (QMF) obeying (e.g., [20, theorem (3.6),
page 964],

> hp—aphn—z = bpy (1)

S hy= V2. (2)



Let {¢,(2)} be a wavelet packet family (e.g., [16, 52]) defined and generated via
Uon(2) = V2 (20 — k) (3)
k
Yopp1(z) = \/izgkll’n(% — k) (4)
k

where gp = (—=1)*hy_y, and ¥,(2) = ¢(x) is an orthonormal scaling function, satisfying

(p(z —p)olz—q)) =04, pP.gEZ. (5)

Furthermore, let f(z) be a function specified at the j’th resolution level, i.e. f € V; where
V= CIOSLQ(]R) {Qj/QQL'O(QJx —k): ke Z} . (6)

It may be observed that the expansion of f(z) on the standard basis {2//2, (272 — k) : k €
Z} remains invariant under 27/m shifts (m € Z). However, as f(z) € V; is decomposed into
orthonormal wavelet packets using the best-basis algorithm of Coifman and Wickerhauser [18], the
often crucial property of shift-invariance is no longer valid. One way to achieve shift-invariance is
to adjust the time-localization of the basis functions [40, 8, 12, 32]. That is, when an analyzed
signal is translated in time by 7, a new best-basis is selected whose elements are also translated
by 7 compared to the former best-basis. Consequently, the expansion coefficients, that are now
associated with translated basis functions, stay unchanged and the time-frequency representation
is shifted in time by the same period. The ordinary construction of a wavelet packet (WP) library
precludes the above procedure, since translated versions of library-bases are not necessarily included
in the library. The proposed strategy in obtaining shift-invariance is based on extending the library
to include all their shifted versions, organizing it in a tree structure and providing an efficient
“best-basis” search algorithm.

To further pursue the stated objective we introduce the notation [8, 40]
B‘Zn’m = {2(é+j)/2¢n [QZ(QJx —m)— k] ke Z} (7)

U;Z’n’m = closL2(]R) {Bi,n,m} (8)

and define shifted-wavelet-packet (SWP) library as a collection of all the orthonormal bases for
V; which are subsets of
(Bl teZ nez 0<m<27'}. (9)
This library is larger than the WP library by a square power, but it can still be cast into a tree
configuration facilitating fast search algorithms. The tree structure is depicted in Fig. 7a. Each
node in the tree is indexed by the triplet (¢,n,m) and represents the subspace U] . Likewise
the ordinary binary trees [18], the nodes are identified with dyadic intervals of the form Iy, =
[2n, 2%(n 4+ 1)). The additional parameter m provides degrees of freedom to adjust the time-
localization of the basis functions. The following proposition gives simple graphic conditions on
subsets forming orthonormal bases.



Proposition 1 [8] Let E = {({,n,m)} C Z_ x Zy x Zy, 0 < m < 27°, denote a collection of
indices satisfying

(i) The segments I;,, = [2'n, 2'(n + 1)) are a disjoint cover of [0, 1).
(ii) The shift indices of a pair of nodes ({1,n1,my), ({2, n3,my) € E are related by

my; mod 2_2"”1 = my mod Q_E‘H (10)

where { is the level index of a dyadic interval I; . that contains both Iy, ,,, and Iy, ,,.

Then E generates an orthonormal (ON) basis for V; = Ug,o_ro, i.e. {Bj s (Ln,m) € E} is an

ln,m

ON basis, and the set of all I as specified above generates a SWP library.

Condition (ii) is equivalent to demanding that the relative shift between a prescribed parent-
node ({,n,m) and all its children-nodes is necessarily a constant whose value is restricted to either
zero or to 27¢. In the dyadic one-dimensional case, each parent-node ({,n,m) generates children-
nodes (¢ —1,2n,m’) and (£ — 1,2n 4+ 1, m”) where, according to condition (ii), their shift indices
may take the value m’ = m” = m or m’ = m” = m+2~* (the generated branches are respectively
depicted by thin or heavy lines. ¢f Fig. 6).

The expansion tree associated with a given signal describes the signal’s representation on an
orthonormal basis selected from the SWP library. The index set F is interpreted as the collection
of all terminal nodes. That is, all nodes beyond which no further expansion is to be carried out.
A specific example of an expansion tree is shown in Fig. 7b. The proposed configuration ensures
that the set of terminal nodes satisfies the conditions of proposition 1. In particular, refer to the
terminal nodes (—3,0,6) and (—4,5,10). These nodes are descendants of (—1,0,0). Hence, their
related dyadic intervals I_3q = [0,1/8)and I_45 = [5/16,3/8) are contained in the dyadic interval
I_10=1[0.1/2), and their shift indices are indeed related by

6 mod 22 = 10 mod 2% = 2.

The nodes of each level in this example have a natural or Paley order. It is normally useful to
rearrange them in a sequency order [52], so that the nominal frequency of the associated wavelet
packets increases as we move from left to right along a level of the tree. The rule to get a sequency
ordered tree is to exchange the two children-nodes of each parent-node with odd sequency (inverse
Gray code permutation [52, page 250]). The resultant tree is depicted in Fig. 7c.

III. The best basis selection

Alike the wavelet packet library [18], the tree configuration of the extended library facilitates an
efficient best basis selection process. However, in contrast to the WPD, the best-basis representation
is now shift-invariant.

Let feV; = Uéj,o,Ov let M denote an additive cost function and let B represent a SWP library.



Definition 1 [18] The best basis for f in B with respect to M is B € B for which M(Bf) is
minimal. Here, M(Bf) is the information cost of representing f in the basis B € B.

Let Aénm denote the best basis for the subspace Uénm. Accordingly, Aooo constitutes the
best basis for f € V; with respect to M. Henceforth, for notational simplicity, we omit the fixed
index j. The de51red best basis can be determined recursively by setting

(11)

A[] _ Bﬁ,n,m if M(Bkm,mf) S M(Aﬁ—LQn,mcf) + M(A/—1.,2n-|—1,'rncf)
o Ar—1,2n,me D Ar—12041,m.. else

where the shift indices of the respective children-nodes are given by

m. — m, if Z}:O M(AZ71,2n+i,mf) < Z}:OM(AZ—1,2n+i,m+2—ef) (12)
c — -y \
m+ 27", else

The recursive sequence proceeds down to a specified level { = —L (L < log, N), where
A—L,n,m = B—L‘n,‘m . (13)

The stated procedure resembles that proposed by Coifman and Wickerhauser [18] with an added
degree of freedom facilitating a relative shift (i.e., m. # m) between a parent-node and its respective
children-nodes. It is re-emphasized that the recursion considered herein restricts the shift to one
of two values (m, —m € {0,27*}). Other values are unacceptable if the orthonormality of the best
basis is to be preserved. As it turns out, the generated degree of freedom is crucial in establishing
time-invariance. The recursive sequence proposed in [18] may be viewed as a special case where
m. — m is arbitrarily set to zero.

Lemma 1 Let Fi and Fy denote index collections obeying proposition 1, and let By and By be
the corresponding orthonormal bases. Then By and By are “identical to within a time-shift” if and
only if there exists a constant q € Z such that for all ({,n,m) € Fy, we have ({,n,m) € Fy where
m = (m+ ¢q) mod 2-¢,

Proof: Bases in V; are said to be identical to within a time-shift if and only if there exists ¢ € Z
such that for each element in B; we have an identical element in B, that is time-shifted by ¢277.
Namely, if

24Ny 124270 — m) — k] € By

then _ _ ,
2(HD2 1242 (2 — q277) —m) — k] € By .

If F denotes index collection obeying proposition 1 and B is its corresponding basis, then (£, n,m) €
E is equivalent to B? C B. Therefore, by observing that

{m,m

%1[26(23'(36 o q2_j) o m) - k] = ¢n[2£(2jx o ﬁ’t) o k} ’

where 1 = (m+ ¢) mod 2= and k = k+ |2°(m + ¢)|, the proof is concluded.



Definition 2 Binary trees are said to be “identical to within a time-shift” if they correspond to
bases that are “identical to within a time-shift”.

Fig. 4a and Fig. 4c depict identical to within a time-shift trees representing the identical to within
time-shift signals.

Proposition 2 The best basis expansion stemming from the previously described recursive algo-
rithm is shift-invariant.

Proof: Let f,g € V; be identical to within a time-shift, i.e. there exists ¢ € Z such that g(z) =
f(z —¢277). Let A; and A, denote the best bases for f and g, respectively. It can be shown
(appendix A) that
Bk,n,’m C Af
implies
Bons C Ay, i = (m+q) mod (27°)

for all m,n € Z and ( € Z_. Hence, Ay and A, are identical to within a time-shift.
0.

The number of orthonormal bases contained in the shifted WP library can be computed
recursively. Let S7, denote the number of bases associated with a (L 4 1)-level tree expansion
(i.e., the expansion is to be executed down to the { = —L level). The tree comprises a root and
two L-level subtrees. Since two options exist for selecting the relative shift, we have

S, =14+281 4, So=1. (14)
Consequently, it can be shown by induction that for L > 2
0.5(2.48)%" < §1 < 0.5(2.49)*" . (15)

A length N signal may be represented by Sy, different orthonormal bases (I < logaN), from which
the best basis is selected. While the associated complexity level is of O(NQLH), we demonstrate in
Section V that the algorithmic complexity may be reduced substantially (down to a level of O(N L))
while still retaining shift-invariance. The reduced complexity, however, may lead to representations
characterized by a higher cost function values.

For the sake of comparison with the established WPD algorithm [18], let s;, denote the number
of bases associated with a (L + 1)-level tree. Then

sp=14s1_4, s,=1 (16)
and consequently, for L > 2 3 3
(1.50)%" < sp, < (1.51)%". (17)

The WPD algorithm has an attractive complexity level of O(NL). However, the best basis
representation is not shift-invariant. It is worthwhile stressing that despite the fact that S7, > s%
for L > 2, the complexity level characterizing SIWPD is significantly below the squared WPD
complexity. Specifically, O(N25+1) < O(N2L?).



IV. The shift-invariant wavelet transforms

The property of shift-invariance can also be achieved within the framework of the wavelet transform
(WT) and a prescribed information cost function (M) [32, 39]. It may be viewed as a special case
whereby the tree configuration is constrained to expanding exclusively the low frequency nodes.
The signal is expanded by introducing a scaling function (1,) or a “mother-wavelet” (¢;). To
achieve shift-invariance, we again permit the introduction of a relative shift between children-nodes
and their parent-node. The shift selection is, once again, based on minimizing the cost function
(M) at hand. This procedure yields the wavelet-best-basis for a signal f € V; with respect to (M),
among all the orthonormal bases generated by
{BJ' : éez_,ne(o,l),0§m<2—‘}.

{n,m

Let Wy, denote the wavelet-best-basis for Ugﬂm. The wavelet-best-basis for f € V; = Ugoo
may be determined recursively via

Wi = Wi, & Bg—l,l,mc (18)
where
_— { m, if M(Wi1f) + M(BL_1 1 0) € MWois =i )+ MOBLy ) )
m+ 275, else \
The expansion is performed down to the level { = — L (L < log, N), namely
Wotm =B 1o, (20)

A N-element signal may be represented by 2% different orthonormal wavelet bases. The associated
complexity level is O(N L) and the resultant expansion is indeed shift-invariant.

As an example, we now refer to the signal g(t), depicted in Fig. 2, and its translation g(t —27°).
The corresponding wavelet transforms, with Cg as the scaling function [21, page 261] [22], are
described in Fig. 8. The variations in the energy spreads of ¢(¢) and g(t — 27%), stemming directly
from the lack of shift-invariance, are self-evident. Moreover, the transformed cost function (entropy)
is shift dependent as well. In complete contrast, the wavelet-best-basis decompositions depicted in
Fig. 9, yield identical (to within a time-shift) energy distributions. The corresponding entropy is
lower and independent of the time-shift.

V. The information-cost complexity trade-off

So far we have observed that WPD lacks shift-invariance but is characterized by an attractive
complexity level O(N L), where L denotes the lowest resolution level in the expansion tree. Com-
paratively, the quadratic complexity level, O(N2M+1) associated with SIWPD is substantially
higher. In return, one may achieve a potentially large reduction of the information cost, in addition



to gaining the all important shift-invariance. However, whenever the SIWPD complexity is viewed
as intolerable, one may resort to a sub-optimal SIWPD procedure entailing a reduced complexity,
and higher information cost while still retaining the desirable shift-invariance.

The best basis for f € V; with respect to M is, once again, obtained recursively via (11), but
contrary to the procedure of Section III, now the selection of a relative shift at a given parent-node
does not necessitate tree expansion down to the lowest level. While an optimal decision on the
value of a shift index is provided by (12), a sub-optimal shift index may be determined by

m. = m, if 221:0 ’M(Cé—lﬂn‘l'i,m,df) < Z}:O M(C€—1,2n+i,m+2—e,df) (21)
¢ — —0 \
m+ 275  else

where C,, ,, 4 denotes the best basis for Uy, ,, subject to constraining the decomposition to d
(1 < d < L) resolution levels. Accordingly, the shift indices are estimated using subtrees of d;
resolution levels depth (d; < d), where

d, d-—-L<(<0
di = { L+, else (22)
For d = 1 or at the coarsest resolution level £ = —L we have Cy ;. m.q4 = Bonm. For £ > —L and
d>1 Crmdqis obtained recursively according to
Bﬁ,n,m
Cf,n,m,d = Céfl,Qn,m,dfl S Cffl,2n+1,m,d71 (23)

Cﬂfl,Qn,m+2_£,d71 @ C£71,2n+1,m+2_£,d71
where (', ,, 4 takes on that value which minimizes the cost function M.

The shift-invariance is retained for all 1 < d < L. The cases d = I and d < L should be
viewed as optimal and sub-optimal with respect to the prescribed information cost function (M).
The best-basis search algorithm of Coifman and Wickerhauser [18] corresponds to the special case
m. = m for all nodes (d = 0). Quite expectedly, the non-adaptive selection yields representations
that are not, in general, shift-invariant. Fig. 10 depicts the time-frequency representations of the
signals ¢(t) and g(¢ — 279), using the sub-optimal SIWPD(d=1) with 8-tap Daubechies minimum
phase wavelet filters. The resultant entropy is higher than is obtained using the optimal SIWPD
(Fig. 4). Yet, the valuable property of shift-invariance is provided with a significant reduction in
the computational complexity.

Since, at each level (, the subtrees employed in estimating the shift indices are restricted to dy
levels depth (d; < d), the complexity is now O[N2%(L — d + 2)]. More specifically, the algorithm
requires rN[2%(L—d+2)—2] real multiplications, where r is the length of the filters. In the extreme
case, d = 1, the complexity, O(2N L), resembles that associated with WPD, and the representation
merges with that proposed in [24]. As a rule, the larger d and L, the larger the complexity, however,
the determined best basis is of a higher quality; namely, characterized by a lower information cost.
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V.1. Example

To demonstrate the trade-off between information-cost and complexity we refer to Figs. 11, 12 and
13. These figures depict the expansion trees of the signal g(t), either when the relative shifts are
arbitrarily set to zero (the WPD algorithm), estimated using one-level-depth subtrees (sub-optimal
SIWPD with d=1), or estimated using two-levels-depth subtrees (sub-optimal STWPD with d=2).
The numbers associated with the nodes of the tree represent the entropies of g in the corresponding
subspaces. For the best expansion trees, the numbers represent the minimum entropies obtained
by the best-basis algorithms.

The initial entropy of the signal g is 3.58. The children-nodes of the root-node have lower entropy
when we introduce a relative shift (regarding to Fig. 11a and Fig. 12a: 1.85 4 1.41 < 1.84 4 1.48).
Hence the root-node decomposition in Fig. 12a is carried out with “heavy lines”. Now, consider
the expansion of the node specified by ({,n,m) = (—=1,0,1) (the left node at the level { = —1). If
the relative shift is based on a one-level-depth subtree, then no relative shift is required (regarding
to Fig. 12a and Fig. 13a: 1.02 4 0.63 < 1.09 4+ 0.70). However, a deeper subtree reveals that a
relative shift is actually more desirable, and a lower entropy for the node (—1,0,1) is attainable
(regarding to Fig. 12b and Fig. 13b: 1.23 < 1.49). The eventual entropy of the signal g is 2.84
when implementing the WPD algorithm, 2.32 when using the sub-optimal SIWPD(d=1), and 1.92
when using the sub-optimal SIWPD(d=2). The number of real multiplications required by these
algorithms are respectively rNL = 5120, 2rNL = 10240 or rN(4L —2) = 18432, where the
length of the signal is N = 128, the number of decomposition levels is I = 5, and the filters’
length is » = 8. In this particular example, larger d values do not yield a further reduction in
the information cost, since d = 2 has already reached the optimal SIWPD (compare Fig. 13b and
Fig. 4a).

V.2. Experiment

Normally, as was the case for the above example, the information cost decreases when the shift
indices are evaluated based on deeper subtrees (larger d). Notwithstanding an assured reduction
in information cost using the optimal SIWPD, sub-optimal SIWPD may anomalously induce an
increase. We have performed an experiment on 50 acoustic transients, generated by explosive
charges at various distances (these signals are detected by an array of receivers and used to evaluate
the location of explosive devices). Fig. 14 shows a typical acoustic pressure waveform containing
64 samples. We applied the WPD algorithm, the sub-optimal SIWPD with d=1 or d=2, and
the optimal SIWPD to the compression of this data set. The decomposition was carried out to
maximum level L=5 using 8-tap Daubechies minimum phase wavelet filters. The number of real
multiplications required by these algorithms for expanding a given waveform in its best basis are
respectively 2560, 5120, 9216 and 31744.

Table 2 lists the attained entropies by the best-basis algorithms for an arbitrary subset of ten
waveforms. Clearly, the average entropy is lower when using the SIWPD. It decreases when d
is larger, and a minimum value is reached using the optimal SIWPD (d = L). Moreover, the
variations in the information cost, which indicate performance robustness across the data set, are
also lower when using the SIWPD. Notice the irregularity pertaining to the eighth waveform. While
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its minimum entropy is expectedly obtained by implementing the optimal SIWPD, the sub-optimal
SIWPD with d=1 fails to reduce the entropy in comparison with the conventional WPD.

To illustrate the improvement in information cost of the SIWPD with various d values over the
conventional WPD, we plot in Fig. 15 the reduction in entropy relative to the entropy obtained using
the WPD. We can see that for some signals the entropy is reduced by more than 30%. The average
reduction is 10.8% by the sub-optimal SIWPD(d=1), 16.4% by the sub-optimal SIWPD(d=2), and
18.1% by the optimal STWPD. Thus the average performance of SIWPD is increasingly improved
as we deepen the subtrees used in estimating the shift indices.

V1. Extension to 2D wavelet packets

Referring to Section III, the best-basis representation of a signal is rendered shift-invariant by
allowing a relative shift between a parent-node and its respective children-nodes in the expansion
tree. The procedure remains essentially the same and leads to analogous results when applied to 2D
signals [25, 33]. In this case, a shift with respect to the origin is a vector quantity m = (mg, .my).
If we desire to generate a best-basis decomposition that remains invariant under shifts in the X-Y
plane, we must permit a, now two-dimensional, parent-children relative shift, to be determined
adaptively. Let m, and m. denote the parent and children shift with respect to the origin (z =
y = 0). The relative shift (m, — m,) may take on any one of four values

Me — My = {(0,0), 27,0), (0,2*5),(2*‘,24)} .

The value to be adapted is, once more, the one that minimizes the information cost. The proof
follows along the lines charted in the one-dimensional case.

It should be stressed, however, that while the 21 expansion thus attained is shift-invariant in
x and y, it is not invariant under rotation.

VII. Concluding remarks

A library of orthonormal Shifted Wavelet Packets is defined and a search algorithm leading to a
Shift Invariant Wavelet Packet Decomposition (SIWPD) introduced. When compared with the
WPD algorithm proposed in [18], SIWPD is determined to be advantageous in three respects.
First, it leads to a best basis expansion that is shift-invariant. Second, the resulting representation
is characterized by a lower information cost. Third, the complexity is controlled at the expense of
the information cost.

The stated advantages, namely the shift-invariance as well as the lower information cost, may
prove crucial to signal compression, identification or classification applications. Furthermore, the
shift-invariant nature of the information cost, renders this quantity a characteristic of the signal
for a prescribed wavelet packet library. It should be possible now to quantify the relative efficiency
of various libraries (i.e., various scaling function selections) with respect to a given cost function.
Such a measure would be rather senseless for shift-variant decompositions.
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The complexity associated with the STWPD algorithm is O(2¢N (L — d 4 2)) (recall, N denotes
the length of the signal, L is the number of tree decomposition levels and d limits through (22) the
depth of the subtrees used to estimate the optimal children-nodes). One may exercise a substantial
control over the complexity. The key to controlling the complexity is the built-in flexibility in the
choice of d. Lower d implies lower complexity at the expense of a higher information cost. At its
lower bound, d = 1, the attained level of complexity, O(N L), resembles that of WPD while still
guaranteeing shift-invariance.

The presented procedure is based on the general approach: extend the library of bases to include
all their shifted versions, organize it in a tree structure and provide an efficient “best-basis” search
algorithm. It is of course not limited to wavelet-packets and shift-invariance. Other types of bases
can be used, and various extended libraries are available [12, 10, 9, 14].

Appendix A: Proof of Proposition 2

Let f,g € V; be identical to within a time-shift, and let Ay and A, denote their respective best
bases. Hence there exists ¢ € 7 such that

g(z) = f(z — ¢27). (A.1)
We show by induction that
B(m,m C Af (AQ)
implies
Bups C Age i = (m+ q) mod (27) (A3)
for all m,n € Z, and ¢ € 7 _.
First we validate the claim for the coarsest resolution level £ = — L. Suppose that
B_Lnme CA;  0<n<2b, (A.4)

That is, m = mg minimizes the information cost for representing f in the subspace U_p, . m, t.e.

Argosrqglig,‘{M(BfL,n,mf)} = mg. (A.5)
It stems from (A.1) that
(g(2), 02270 —m) = K]) = (f(2). 2270 —m 4 q) = k]). Ln.jkomeZ (A.6)
and accordingly
M(Biynmg) = M(Biym—qf) - (A7)

Hence the information cost for representing ¢ in the subspace U_p ,, 5, is minimized for m = mg+ ¢,
i.€.

Arg min {M(B_1.mg)} = (mo+ q) mod (25) (A.8)
0§m<2L
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and
B—L,n,?‘hg C Ag7 Mg = (mO + q) mod (QL) . (Ag)

Now, suppose that the claim is true for all levels coarser than (o ({; > —L), and assume that (A.2)
exists for £ = (5. Then by (11)

M(-Blo,n,mf) S M(Aﬁg—l,Qn,mcf) + M(A€0—1,271+1,m5f)7 me € {m7 m+ 2_20} . (AAlO)

The inductive hypothesis together with equation (A.7) lead to

M( A1 204eme f) = M(Ap 1 204emerq9)s € €{0,1}. (A.11)

Consequently,
M(Bry nmiq9) < M(Ap 21 20me4q9) + M( Al 1 2011,m04q9),  Me € {m,m + 271 (A12)
and again by (11) we have
Bigmm C Ay, = (m+q) mod (277) (A.13)

proving as well the validity of the claim for {y. Thus, Ay and A, are identical to within a time-shift.
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Three-level expansions trees: (a) The short-time Fourier transform. (b) The wavelet trans-
form. (c) Typical expansion trees of Wavelet Packet Decomposition (WPD). (d) Typical
expansion trees of Shift-Invariant Wavelet Packet Decomposition (STWPD).

Test signal g(t).

Effect of a temporal shift on the time-frequency representation using the WPD with 8-tap
Daubechies minimum phase wavelet filters: (a) The best expansion tree of g(t). (b) g(?)
in its best basis; Entropy= 2.84. (c) The best expansion tree of g(t—27). (d) g(t—27%)
in its best basis; Entropy= 2.59.

Time-frequency representation using the SIWPD with 8-tap Daubechies minimum phase
wavelet filters: (a) The best expansion tree of g(t). (b) g(t) in its best basis; Entropy=
1.92. (c) The best expansion tree of g(t —27%). (d) g(t—27%) in its best basis; Entropy=
1.92. Compared with the WPD (Fig. 3), beneficial properties are shift-invariance and
lower information cost.

Contour plots of time-frequency distributions for the signal ¢(¢): (a) Wigner distribution;
(b) Smoothed Wigner distribution. Notice the close relation between the smoothed Wigner
distribution and the SIWPD based time-frequency representation which is depicted in
Fig. 4b.

A “parent” node binary expansion according to SIWPD: (a) High and low-pass filtering
followed by a 2:1 downsampling. (b) High and low-pass filtering followed by a one sample
delay (D) and subsequently by a 2:1 downsampling.

(a) The extended set of wavelet packets organized in a binary tree structure. FEach
node in the tree is indexed by the triplet ({,n,m) and represents the subspace U] .
(b) Exemplifying a SIWPD binary tree. The children-nodes corresponding to (£, n,m) are
({—1,2n,m) and ({—1,2n+1,1m), where m = m (depicted by thin lines) or 1 = m +27°
(depicted by heavy lines). (¢) Rearrangement of the nodes in a sequency order.

Time-frequency representation in the wavelet basis using 6-tap coiflet filters:  (a) The
signal ¢(¢); Entropy= 3.22. (b) The signal g(¢t — 27°); Entropy= 3.34.

Time-frequency representation in the wavelet-best-basis using 6-tap coiflet filters: (a) The
signal ¢(t); Entropy= 3.02. (b) The signal g(t — 27%); Entropy= 3.02.

Time-frequency representation using the sub-optimal (d=1) SIWPD with 8-tap Daubechies
minimum phase wavelet filters: (a) The signal g(¢); Entropy= 2.32. (b) The signal
g(t —27%); Entropy= 2.32.

Wavelet packet library trees of the signal g(t): (a) Five-level expansion tree; The numbers
represent the entropies of g in the corresponding subspaces. (b) The best expansion tree;
The numbers represent the minimum entropies obtained by the best-basis algorithm.

Shifted wavelet packet library trees of the signal g(¢): (a) Five-level expansion tree,
where the relative shifts are estimated using one-level-depth subtrees (d=1); The numbers
represent the entropies of ¢ in the corresponding subspaces. (b) The best expansion tree;
The numbers represent the minimum entropies obtained by the sub-optimal (d=1) best-
basis algorithm.
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Fig. 13: Shifted wavelet packet library trees of the signal g(¢): (a) Five-level expansion tree, where
the relative shifts are estimated using two-levels-depth subtrees (d=2); The numbers
represent the entropies of ¢ in the corresponding subspaces. (b) The best expansion
tree; The numbers represent the minimum entropies obtained by the sub-optimal (d=2)
best-basis algorithm.

Fig. 14: Typical acoustic pressure waveform in free air from explosive charges.

Fig. 15: Percentage of reduction in entropy over the conventional WPD using the optimal SIWPD
(heavy solid line), the sub-optimal SIWPD with d=2 (fine solid line) and the sub-optimal
SIWPD with d=1 (dotted line).

Table Captions

Table 1: Entropies of g(¢) (Fig.2) and g(¢ — 27°) represented on “best bases” obtained via WPD
and SIWPD using libraries derived from Dg and Cjg scaling functions. Dg corresponds to
8-tap Daubechies wavelet filters, and Cg corresponds to 6-tap coiflet filters.

Table 2: Entropies attained by the conventional WPD, sub-optimal SIWPD (d <L) and optimal
SIWPD (d=L) for acoustic pressure waveforms. The average entropy and the variance are
lower when using the SIWPD, and they further decrease when d is larger.

Table 1
WPD SIWPD
Dg | CG D8 | CG
g(t) 2.84 [ 2.75 || 1.92 | 2.35
g(t—27%) 1 2.59 | 2.69 || 1.92 | 2.35

Table 2
waveform# | WPD SIWPD
L=5 d:]|d:2|(l:ﬂ:5

1 1.829 || 1.706 | 1.659 1.494

2 2.463 || 1.997 | 1.997 1.997

3 2.725 || 2.347 | 2.256 2.045

4 2.501 || 2.086 | 2.078 2.078

5 1.656 || 1.606 | 1.606 1.593

6 2.398 || 2.339 | 2.251 2.212

7 2.461 || 2.281 | 2.020 2.020

8 2.277 || 2.280 | 2.151 2.141

9 1.720 || 1.572 | 1.449 1.419

10 2.154 || 1.626 | 1.623 1.623
mean 2.218 || 1.984 | 1.909 1.862
variance 0.367 || 0.327 | 0.297 0.295
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