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Skeleton Redundancy Reduction
Based on a Generalization of Convexity

Renato KRESCH and David MALAH

Department of Flectrical Engineering, Technion - Israel Institute of Technology, Haifa 32000,
Israel, Tel/Fax: +972 [4] 294 745 / 323 041, E-Mail: malah@ee.lechnion.ac.il

Abstract. We present a generalization of the concept of Convex Sets, based on the Morphological Closing operation,
and study some of its properties. We also define Extreme Points of such Generalized Convex Sets, which generalize

the notion of Extreme Points of Convex Sets.

Moreover, we apply the above notions to skeleton redundancy removal, and present an algorithm for obtaining an
Error-Free Skeleton representation with reduced amount of redundant points, using morphological operations only.

1. Introduction

The concept of Convezity is of great interest in several areas,
such as Shape Analysis, Pattern Recognition, Image Decom-
position, and others. Many properties and relations concern-
ing Convex Sets have been extensively studied and analyzed,
and a number of generalizations of Convexity were proposed
before (see [1] for example), in order to extend some of these
properties and relations to sets which are not strictly convex.
The latter is the purpose of this work too.

The generalization proposed here is based on the Mor-
phological Closing (one of the four Morphological basic op-
erations). The proximity between the Conves-Hull operator
and the Closing operator has already been pointed out in [2],
but a close look at the structure of their definitions shows
that there is more than a proximity; the Convex-Hull is actu-
ally a particular case of Closing. Therefore, some important
properties of the former operator are naturally extended for
the latter one.

In section 2, we remind the definition and some proper-
ties of Convex Sets and present the proposed generalization,
based on the Closing operator.

In Convex Sets, one can find Extreme Points, which have
several properties. Among those properties, there is the abil-
ity of fully representing the whole set (if it is bounded), i.e.,
one can recover a bounded Convex Set from its Extreme
Points only (this is done by simply applying the Convex-Hull
operator). In section 3, we define Extreme Points for the pre-
viously generalized Convex Sets, and present Morphological
formule for calculating them. We also study conditions for
perfect reconstruction of the generalized Convex Sets from
their Extreme Points.

Section 4 presents an application of the proposed general-
ization for reducing the redundancy in Skeleton representa-
tions. It consists of an entirely morphological algorithm for
removing most of the redundant points of a given Skeleton.

Throughout the paper, we use the following notation: For
Aand B setsin R?, A@B, Ao B* and Ae B are, respectively,
the Morphological Dilation, Erosion and Closing of A by B;

B ={b e R*| b & B} is the complement of B, B* =
{—b| b€ B}is the transposed set of B, and B, = {b+z| b €
B} is the translation of B to the point z € R2.

2. Convex Sets and Proposed Generaliza-
tion

There are several acceptable definitions for Convex-Hull and
Convex Sets. They are all equivalent, up to topological dif-
ferences concerning the points on the boundary of the shapes.
We can also define first the Convex-Hull and then use this
definition for defining Convex Sets, or we can do the oppo-
site.

The definitions of the Convex-Hull and Convex sets we
choose to work with are the following:

e Convex-Hull: CH(X) is the Convex-Hull of a set
X iff it is the intersection of all the half-planes that
contain X.

o Convex set: A set X is Convex iff it is identical to
its Convex-Hull, ie., X = CH(X).

The generalization we propose is obtained by replacing
the half-plane used in the above definition of the Convex-
Hull by a generic set (B*)°, which is the transposed of the
complement of any structuring-element B. We denote the
generalized Convex sets as B-Convex sets and the general-
ized Convex-Hull as B-Convex-Hull because of the depen-
dence on the structuring-element B:

¢ B-Convex-Hull: CHF(X) is the B-Convex-Hull of
X iff it is the intersection of all the translations of
(B*)° that contain X.

o B-Convex set: A set X is B-Convex iff it is identical
to its B-Convex-Hull ji.e., X = CHZ(X).

Actually, the B-Convex-Hull, as defined above, is not a
new operation; it is known in Mathematical Morphology as



the Morphological Closing. In other words:
CHB(X)=XeB. (1)

If we choose B to be a disc, and make its radius go to
infinity, then the above Closing converges to the conventional
Convex-Hull (as pointed out in [2, p. 100]), meaning that
the conventional Convex-Hull is indeed a particular case of
the generalized Convex-Hull.

Table 1 shows that some of the basic properties of the
Convex-Hull and of Convex sets are naturally extended to
the B-Convex-Hull operation and to B-Convex sets.

Property of the Proposed
Generalization

CH(-) is idempotent. CHPB(.)is idempotent.
CH(X) is the “smallest” | CHT(X) is the “smallest”
convex set that contains | B-Convex set that con-
X. tains X.

X is convex iff any two | If X is B-
points z and y belong- | Convex, then V{z,y} C X,
ing to X are connected | CHE({z,y}) C X.

by a segment contained in
X. in other words: X is
convex iff V{z,y} C X,
CH({=z,y}) C X.

The intersection of convex | The intersection of B-

Known Property

sets is a convex set. Convex sets is a B-Convex

set.

X is convex iff every point | X is B-Convex iff every
outside X can be separated | point outside X can be
from X by a half-plane, | separated from X by a
ie, ¢ X = 3 a half- | translation of B® ie., =z &
plane that contains ¢ and | X = 3z € R? such that
does not intersect X. (B*). contains ¢ and does
not intersect X.

Table 1: Properties of Convex-Hull and Convex sets.

3. Extreme Points

3.1 Definition and Calculation

Like the Convex-Hull and Convex Sets, there are many ways
to define Extreme Points of a Convex Set. Table 2 shows one
of the classical definitions of Extreme Points for conventional
Convex sets, and presents its generalization for B-Convex
sets. We denote the set of Extreme Points of a given Convex
Set Y by £(Y) and the set of Extreme Points of a given
B-Convex Set X by £5(X).

Extreme Points

Convex sets | B-Convex sets

A point ¢ is an Extreme | A point ¢ is an Extreme
Point of a Convex set X | Point of a B-Convex set
iff the set (X —{t})is also | X iff the set (X — {t}) is

convex. also B-Convex.

Table 2: Extreme Points

The following Morphological closed-form formule provide
two ways of calculating the set of Extreme Points of a given

B-Convex Set X:

X=X~ |[|(X—{zheB|cB (2

X)=x-|(xeB-{}h|sB (3)

The outline of the proofs of (2) and (3) are given in appen-
dices A and B, respectively.

If we consider the computational efficiency of the above
equations, when implemented on a computer, then (2) is
preferable over (3) if X contains fewer elements than B, and
(3) is preferable over (2) otherwise.

3.2 Reconstruction from Extreme Points

If a conventional Convex set Y is bounded, then it can be
reconstructed back from its Extreme Points by performing
the Convex-Hull operation, i.e., CH(E(Y)) =Y. The set of
Extreme Points can be seen as a compact representation of
a Convex set.

For a B-Convex Set X, a necessary condition for perfect
reconstruction from its set of Extreme Points £7(X)is: [X —
EB(X)]© B = 0. This suggests that X should be “smaller”
(in a certain way) than B. Notice that the erosion of any
bounded shape by a half-plane is always empty.

The above considerations motivate the definition of a Re-
construction Window for a given structuring-element B, in-
side which every B-Convex Set can be reconstructed from its
Extreme Points. A B-Convex Set W is called a Reconstruc-
tion Window for B iff YX B-Convex, CHP[£Z(X nW)] =
Xnw.

For example, if B is a rectangle, then B itself is a Re-
construction Window for B. If B is a discrete rectangle of
integer sides n and m, then any discrete rectangle of sides ¢
and j, such that 0 <i<(n+4+1)and 0 < j< (m+1),isa
Reconstruction Window for B.

4. Application: Skeleton Redundancy

Reduction

It is well-known that the Skeleton representation of images
usually contains redundant points, i.e., some of its points
may be discarded and still a perfect reconstruction can be
obtained [3].

In [3], Maragos and Schafer introduced the concept of
Minimal Skeleton, which is defined as any subset of the Skele-
ton containing no redundant points, from which perfect re-
construction of the original image is possible. They also pre-
sented an efficient algorithm for obtaining a Minimal Skele-
ton, from a given Skeleton. However, this algorithm is not
fully morphological, and therefore can not be implemented
on a parallel morphological machine. Fully morphological
methods for reducing the Skeleton redundancy are studied
in [4] and [5].

In the sequel we present an algorithm for morphologically
obtaining a redundancy-reduced skeleton, based on the B-
Convexity theory discussed above.



4.1 The Algorithm

The algorithm is presented below, together with an example.
Figure 1 shows the steps of the algorithm for the example.
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Fig. 1: Proposed algorithm. (a) A discrete binary shape
(black dots: foreground, white dots: background), (b)
S1, (¢) Z1, and the partition blocks, (d) Extreme Points
of the blocks, (e) Si, and (f) resulting reduced skeleton
(black points) compared to the original skeleton (black
and grey points).

1. Let X be a given binary image. Choose a structuring-
element B, and a family of Reconstruction Windows
{WnB)} for all the dilations nB of B. (In the exam-
ple, X is the digital binary shape shown in Fig. 1(a)
(described by the black dots), B is a 3 x 3 square, and
wW(nB) are (2n +2) x (2n 4 2) squares). Set n = 0.

2. Calculate the skeleton subset S, 2 X oSnB — (X =)
nB) o B, and the set Z, £x 5 nB. If Z, is empty

then stop. (In the example, for n = 1, S; is shown in

Fig. 1(b) and Z; is seen in Fig. 1(c)).

3. Obtain a partition of Z,, into blocks Yp" such that: Yp"
is the contents of 7, inside the Reconstruction Win-
dow W(B) centered at p, i.e., Yy = [W("B)]p N Zn,
and the blocks cover the whole set 7, i.e., Up Y, =
Zn. (In the example, the blocks Y, were obtained by
translating the Reconstruction Window horizontally
and vertically by steps of p = 2n + 1 pixels, so that

Fig. 2: (a) A binary image and its skeleton, using a
3 x 3 squared structuring-element, (b) a reduced skeleton
obtained by the proposed algorithm.

there is a 1-pixel-wise overlapping between the blocks.
The overlapping by one pixel contributes for the re-
dundancy reduction. Fig. 1(c) shows the first block in
grey, and the thin solid lines indicate the position of

the other blocks.)

4. Calculate the Extreme Points of every block Y}', ac-
cording to nB, £"P(Y"). Note that Y is a (nB)-
Convex set, since it is the intersection of two (nB)-
Convex sets. (Fig. 1(d) shows the result of this oper-
ation in the example).

5. Define C,, = Up S"B(Yp") to be the set of the result-
ing Extreme Points of all the blocks, and intersect it
with the skeleton subset S, obtaining §n =C, NS,
(Fig. 1(e) shows 51)

6. Increment n, and go to 2.

The collection of sets {S,} is the Redundancy-Reduced
Skeleton. For comparison between {S,} and the original
skeleton {5}, in the scope of the above example, Fig. 1(f)
shows the reduced skeleton composed of black dots, and the
original skeleton, composed by both the black and grey dots.
The grey dots are redundant points removed by the above
algorithm.
Exactly as for the conventional Skeleton, the following re-
lation holds:
| SnanB=x0kB (4)
n>k
which guarantees partial (k > 0) and perfect (k = 0) recon-
struction of the original image.

4.2 Simulation

Figure 2(a) shows a binary image (Most-significant bit-plane
of 256 x 256-pixel “House”), and its morphological skeleton,
calculated with a 3 x 3 squared structuring-element. The
skeleton contains 3173 points.

Fig. 2(b) shows the result of applying the above algorithm
to the same binary image. The structuring-element and the
Reconstruction Windows are the same as in the example of
Fig. 1. The resulting skeleton fully represents the original
binary image, and contains 1533 points, i.e., only 48% of the
points in the original skeleton.



For comparison, a Minimal Skeleton of the above image,
using the non-morphological algorithm given in [3], was cal-
culated. It contains 1362 points, i.e., 43% of the points in
the original skeleton, and 89% of the number of points in
the proposed reduced skeleton. According the above num-
bers, the proposed skeleton was able to remove 91% of the
redundant points in the original skeleton.

5. Conclusion

A generalization of Convexity is presented, where some of
the properties of Convex Sets are extended to sets which are
not convex in the traditional sense. Extreme Points of the
generalized convex sets are defined, and their ability to fully
represent the original set is considered.

Furthermore, an algorithm, based on the above notions,
is proposed for morphologically reducing the amount of re-
dundant points in the skeleton. Simulation results indicate
that most of the redundancy in the skeleton is removed by
the proposed algorithm, which is fully morphological.

The proposed approach is also suitable for morphological
calculation of the set of Fssential Points of the Skeleton,
which 1is the set of points none of which can be removed from
the original skeleton if a perfect reconstruction is desired [6].
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Appendix A
Proof of equation (2)
The set (X —{z}) e B, for + € X, X a B-Convex set, can
be equal either to (X — {z}) or to X. This is because:

X—{s} S (X—{z})eBC
CXeB=X (A.1)

By definition of Extreme Points, (X — {z}) ¢ B is equal to
(X —{z}) iff © is an Extreme Point. Otherwise it is equal to
X. Therefore:

X=[MexX—{zhe Bl &
X - [ﬂmegB(X)(X - {x})] -
UEGSB(X){x} =£5(X) (A.2)

B =

Appendix B
Outline of the proof of equation (3)
It 1s enough to prove that for any sets A and B:

(NA-{aheB=[)Aa(B-{}) (B.1)

a€A veB

First, let us denote the left hand of the above equation
as H, and then write the dilation explicitly in the following

way:
H=J U ta+v (B.2)

a€AbER 4€A,a#a

Then, after some logical and set manipulations; we notice
that a point z = @+b belongs to H iff there is another pair of
points @ and b, in A and B respectively, such that ¢ +b = z.
In other words:

H={:=i+b=a+beA®B| a#ab#b} (B.3)

Since equation (B.3) is symmetric, i.e., the roles of A, a,a
and B, I;,b are respectively interchangeable, then we can in-
terchange the above sets and elements also in the original
expression, which provides (B.1).



