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Skeleton Redundancy ReductionBased on a Generalization of ConvexityRenato KRESCH and David MALAHDepartment of Electrical Engineering, Technion - Israel Institute of Technology, Haifa 32000,Israel, Tel/Fax: +972 [4] 294 745 / 323 041, E-Mail: malah@ee.technion.ac.ilAbstract. We present a generalization of the concept of Convex Sets, based on the Morphological Closing operation,and study some of its properties. We also de�ne Extreme Points of such Generalized Convex Sets, which generalizethe notion of Extreme Points of Convex Sets.Moreover, we apply the above notions to skeleton redundancy removal, and present an algorithm for obtaining anError-Free Skeleton representation with reduced amount of redundant points, using morphological operations only.1. IntroductionThe concept of Convexity is of great interest in several areas,such as Shape Analysis, Pattern Recognition, Image Decom-position, and others. Many properties and relations concern-ing Convex Sets have been extensively studied and analyzed,and a number of generalizations of Convexity were proposedbefore (see [1] for example), in order to extend some of theseproperties and relations to sets which are not strictly convex.The latter is the purpose of this work too.The generalization proposed here is based on the Mor-phological Closing (one of the four Morphological basic op-erations). The proximity between the Convex-Hull operatorand the Closing operator has already been pointed out in [2],but a close look at the structure of their de�nitions showsthat there is more than a proximity; the Convex-Hull is actu-ally a particular case of Closing. Therefore, some importantproperties of the former operator are naturally extended forthe latter one.In section 2, we remind the de�nition and some proper-ties of Convex Sets and present the proposed generalization,based on the Closing operator.In Convex Sets, one can �nd Extreme Points, which haveseveral properties. Among those properties, there is the abil-ity of fully representing the whole set (if it is bounded), i.e.,one can recover a bounded Convex Set from its ExtremePoints only (this is done by simply applying the Convex-Hulloperator). In section 3, we de�ne Extreme Points for the pre-viously generalized Convex Sets, and present Morphologicalformul� for calculating them. We also study conditions forperfect reconstruction of the generalized Convex Sets fromtheir Extreme Points.Section 4 presents an application of the proposed general-ization for reducing the redundancy in Skeleton representa-tions. It consists of an entirely morphological algorithm forremoving most of the redundant points of a given Skeleton.Throughout the paper, we use the following notation: ForA and B sets in R2, A�B, A	Bs and A�B are, respectively,the Morphological Dilation, Erosion and Closing of A by B;

Bc = fb 2 R2 j b 62 Bg is the complement of B, Bs =f�b j b 2 Bg is the transposed set of B, and Bz = fb+z j b 2Bg is the translation of B to the point z 2 R2.2. Convex Sets and Proposed Generaliza-tionThere are several acceptable de�nitions for Convex-Hull andConvex Sets. They are all equivalent, up to topological dif-ferences concerning the points on the boundary of the shapes.We can also de�ne �rst the Convex-Hull and then use thisde�nition for de�ning Convex Sets, or we can do the oppo-site.The de�nitions of the Convex-Hull and Convex sets wechoose to work with are the following:� Convex-Hull: CH(X) is the Convex-Hull of a setX i� it is the intersection of all the half-planes thatcontain X.� Convex set: A set X is Convex i� it is identical toits Convex-Hull, i.e., X = CH(X).The generalization we propose is obtained by replacingthe half-plane used in the above de�nition of the Convex-Hull by a generic set (Bs)c, which is the transposed of thecomplement of any structuring-element B. We denote thegeneralized Convex sets as B-Convex sets and the general-ized Convex-Hull as B-Convex-Hull because of the depen-dence on the structuring-element B:� B-Convex-Hull: CHB(X) is the B-Convex-Hull ofX i� it is the intersection of all the translations of(Bs)c that contain X.� B-Convex set: A set X is B-Convex i� it is identicalto its B-Convex-Hull ,i.e., X = CHB(X).Actually, the B-Convex-Hull, as de�ned above, is not anew operation; it is known in Mathematical Morphology as



the Morphological Closing. In other words:CHB(X) = X � B: (1)If we choose B to be a disc, and make its radius go toin�nity, then the above Closing converges to the conventionalConvex-Hull (as pointed out in [2, p. 100]), meaning thatthe conventional Convex-Hull is indeed a particular case ofthe generalized Convex-Hull.Table 1 shows that some of the basic properties of theConvex-Hull and of Convex sets are naturally extended tothe B-Convex-Hull operation and to B-Convex sets.Known Property Property of the ProposedGeneralizationCH(�) is idempotent. CHB(�) is idempotent.CH(X) is the \smallest"convex set that containsX. CHB(X) is the \smallest"B-Convex set that con-tains X.X is convex i� any twopoints x and y belong-ing to X are connectedby a segment contained inX. in other words: X isconvex i� 8fx; yg � X,CH(fx;yg) � X. If X is B-Convex, then 8fx; yg � X,CHB(fx; yg) � X.The intersection of convexsets is a convex set. The intersection of B-Convex sets is a B-Convexset.X is convex i� every pointoutside X can be separatedfrom X by a half-plane,i.e., x 62 X ) 9 a half-plane that contains x anddoes not intersect X. X is B-Convex i� everypoint outside X can beseparated from X by atranslation of Bs, i.e., x 62X ) 9z 2 R2 such that(Bs)z contains x and doesnot intersect X.Table 1: Properties of Convex-Hull and Convex sets.3. Extreme Points3.1 De�nition and CalculationLike the Convex-Hull and Convex Sets, there are many waysto de�ne Extreme Points of a Convex Set. Table 2 shows oneof the classical de�nitions of Extreme Points for conventionalConvex sets, and presents its generalization for B-Convexsets. We denote the set of Extreme Points of a given ConvexSet Y by E(Y ) and the set of Extreme Points of a givenB-Convex Set X by EB(X).Extreme PointsConvex sets B-Convex setsA point t is an ExtremePoint of a Convex set Xi� the set (X�ftg) is alsoconvex. A point t is an ExtremePoint of a B-Convex setX i� the set (X � ftg) isalso B-Convex.Table 2: Extreme Points

The following Morphological closed-form formul� providetwo ways of calculating the set of Extreme Points of a givenB-Convex Set X:EB(X) = X � "\x2X(X � fxg)� B#	 Bs (2)EB(X) = X � "\b2BX � (B � fbg)# 	Bs (3)The outline of the proofs of (2) and (3) are given in appen-dices A and B, respectively.If we consider the computational e�ciency of the aboveequations, when implemented on a computer, then (2) ispreferable over (3) if X contains fewer elements than B, and(3) is preferable over (2) otherwise.3.2 Reconstruction from Extreme PointsIf a conventional Convex set Y is bounded, then it can bereconstructed back from its Extreme Points by performingthe Convex-Hull operation, i.e., CH(E(Y )) = Y . The set ofExtreme Points can be seen as a compact representation ofa Convex set.For a B-Convex Set X, a necessary condition for perfectreconstruction from its set of Extreme Points EB(X) is: [X�EB(X)]	B = ;. This suggests that X should be \smaller"(in a certain way) than B. Notice that the erosion of anybounded shape by a half-plane is always empty.The above considerations motivate the de�nition of a Re-construction Window for a given structuring-element B, in-side which every B-Convex Set can be reconstructed from itsExtreme Points. A B-Convex Set W is called a Reconstruc-tion Window for B i� 8X B-Convex, CHB[EB(X \W )] =X \W .For example, if B is a rectangle, then B itself is a Re-construction Window for B. If B is a discrete rectangle ofinteger sides n and m, then any discrete rectangle of sides iand j, such that 0 � i � (n + 1) and 0 � j � (m+ 1), is aReconstruction Window for B.4. Application: Skeleton RedundancyReductionIt is well-known that the Skeleton representation of imagesusually contains redundant points, i.e., some of its pointsmay be discarded and still a perfect reconstruction can beobtained [3].In [3], Maragos and Schafer introduced the concept ofMinimal Skeleton, which is de�ned as any subset of the Skele-ton containing no redundant points, from which perfect re-construction of the original image is possible. They also pre-sented an e�cient algorithm for obtaining a Minimal Skele-ton, from a given Skeleton. However, this algorithm is notfully morphological, and therefore can not be implementedon a parallel morphological machine. Fully morphologicalmethods for reducing the Skeleton redundancy are studiedin [4] and [5].In the sequel we present an algorithm for morphologicallyobtaining a redundancy-reduced skeleton, based on the B-Convexity theory discussed above.



4.1 The AlgorithmThe algorithm is presented below, together with an example.Figure 1 shows the steps of the algorithm for the example.(a) (b)(c) (d)(e) (f)Fig. 1: Proposed algorithm. (a) A discrete binary shape(black dots: foreground, white dots: background), (b)S1, (c) Z1, and the partition blocks, (d) Extreme Pointsof the blocks, (e) ~S1, and (f) resulting reduced skeleton(black points) compared to the original skeleton (blackand grey points).1. Let X be a given binary image. Choose a structuring-element B, and a family of Reconstruction WindowsfW (nB)g for all the dilations nB of B. (In the exam-ple, X is the digital binary shape shown in Fig. 1(a)(described by the black dots), B is a 3� 3 square, andW (nB) are (2n+ 2)� (2n+ 2) squares). Set n = 0.2. Calculate the skeleton subset Sn 4= X 	 nB � (X 	nB) � B, and the set Zn 4= X 	 nB. If Zn is emptythen stop. (In the example, for n = 1, S1 is shown inFig. 1(b) and Z1 is seen in Fig. 1(c)).3. Obtain a partition of Zn into blocks Y np such that: Y npis the contents of Zn inside the Reconstruction Win-dow W (nB) centered at p, i.e., Y np = [W (nB)]p \ Zn,and the blocks cover the whole set Zn, i.e., Sp Y np =Zn. (In the example, the blocks Y np were obtained bytranslating the Reconstruction Window horizontallyand vertically by steps of p = 2n + 1 pixels, so that

(a) (b)Fig. 2: (a) A binary image and its skeleton, using a3�3 squared structuring-element, (b) a reduced skeletonobtained by the proposed algorithm.there is a 1-pixel-wise overlapping between the blocks.The overlapping by one pixel contributes for the re-dundancy reduction. Fig. 1(c) shows the �rst block ingrey, and the thin solid lines indicate the position ofthe other blocks.)4. Calculate the Extreme Points of every block Y np , ac-cording to nB, EnB(Y np ). Note that Y np is a (nB)-Convex set, since it is the intersection of two (nB)-Convex sets. (Fig. 1(d) shows the result of this oper-ation in the example).5. De�ne Cn 4= Sp EnB(Y np ) to be the set of the result-ing Extreme Points of all the blocks, and intersect itwith the skeleton subset Sn, obtaining ~Sn = Cn \ Sn.(Fig. 1(e) shows ~S1).6. Increment n, and go to 2.The collection of sets f ~Sng is the Redundancy-ReducedSkeleton. For comparison between f ~Sng and the originalskeleton fSng, in the scope of the above example, Fig. 1(f)shows the reduced skeleton composed of black dots, and theoriginal skeleton, composed by both the black and grey dots.The grey dots are redundant points removed by the abovealgorithm.Exactly as for the conventional Skeleton, the following re-lation holds: [n�k ~Sn � nB = X � kB (4)which guarantees partial (k > 0) and perfect (k = 0) recon-struction of the original image.4.2 SimulationFigure 2(a) shows a binary image (Most-signi�cant bit-planeof 256� 256-pixel \House"), and its morphological skeleton,calculated with a 3 � 3 squared structuring-element. Theskeleton contains 3173 points.Fig. 2(b) shows the result of applying the above algorithmto the same binary image. The structuring-element and theReconstruction Windows are the same as in the example ofFig. 1. The resulting skeleton fully represents the originalbinary image, and contains 1533 points, i.e., only 48% of thepoints in the original skeleton.



For comparison, a Minimal Skeleton of the above image,using the non-morphological algorithm given in [3], was cal-culated. It contains 1362 points, i.e., 43% of the points inthe original skeleton, and 89% of the number of points inthe proposed reduced skeleton. According the above num-bers, the proposed skeleton was able to remove 91% of theredundant points in the original skeleton.5. ConclusionA generalization of Convexity is presented, where some ofthe properties of Convex Sets are extended to sets which arenot convex in the traditional sense. Extreme Points of thegeneralized convex sets are de�ned, and their ability to fullyrepresent the original set is considered.Furthermore, an algorithm, based on the above notions,is proposed for morphologically reducing the amount of re-dundant points in the skeleton. Simulation results indicatethat most of the redundancy in the skeleton is removed bythe proposed algorithm, which is fully morphological.The proposed approach is also suitable for morphologicalcalculation of the set of Essential Points of the Skeleton,which is the set of points none of which can be removed fromthe original skeleton if a perfect reconstruction is desired [6].AcknowledgmentThis work was supported by the Fund for the Promotionof Research at the Technion.References[1] G.T. Toussaint (Ed) (1988): Computational Mor-phology, North-Holland.[2] J. Serra (1982): Image Analysis and MathematicalMorphology. London: Academic Press.[3] P. Maragos and R.W. Schafer (1986): Morpholog-ical Skeleton Representation and Coding of Binary Im-ages, IEEE Trans. ASSP, Vol.34, No.5, 1228-1244, Oc-tober 1986.[4] R. Kresch and D. Malah (1993): Morphological Re-dundancy of Skeleton Redundancy, Proc. of the Inter-national Workshop on Mathematical Morphology and ItsApplications to Image Processing, Barcelona, 145-150,May 1993, to appear in Signal Processing, 1994.[5] J. Goutsias and D. Schonfeld (1991): Morphologi-cal Representation of Discrete and Binary Images, IEEEtrans. on Signal Processing, Vol.39, No.6, 1369-1379.[6] G. Sapiro and D. Malah (1994): Morphological Im-age Coding Based on a Geometric Sampling Theoremand a Modi�ed Skeleton Representation, JVCIR, Vol.5,No.1, 29-40.

Appendix AProof of equation (2)The set (X �fxg) �B, for x 2 X, X a B-Convex set, canbe equal either to (X � fxg) or to X. This is because:X � fxg � (X � fxg) � B �� X �B = X (A.1)By de�nition of Extreme Points, (X � fxg) � B is equal to(X�fxg) i� x is an Extreme Point. Otherwise it is equal toX. Therefore:X � �Tx2X(X � fxg)�B�	Bs =X � hTx2EB(X)(X � fxg)i =Sx2EB(X)fxg = EB(X) (A.2)Appendix BOutline of the proof of equation (3)It is enough to prove that for any sets A and B:\a2A(A� fag) �B = \b2BA� (B � fbg) (B:1)First, let us denote the left hand of the above equationas H, and then write the dilation explicitly in the followingway: H = \a2A [b2B [~a2A;~a6=af~a+ bg (B:2)Then, after some logical and set manipulations, we noticethat a point z = ~a+b belongs to H i� there is another pair ofpoints a and ~b, in A and B respectively, such that a+~b = z.In other words:H = fz = ~a+ b = a+~b 2 A�B j a 6= ~a;~b 6= bg (B:3)Since equation (B.3) is symmetric, i.e., the roles of A;a; ~aand B;~b; b are respectively interchangeable, then we can in-terchange the above sets and elements also in the originalexpression, which provides (B.1).
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