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Abstract

This research addresses the representation of binary and grayscale images by means of Math�
ematical Morphology�

Mathematical Morphology is a relatively new non�linear theory for Image Processing�
based on Set Theory� It considers images as sets �instead of vectors� as in the classical
Linear Image Processing�� which permits geometry�oriented transformations of the images�
This approach seems very appropriate for dealing with objects in images� and it has gained
increasing attention in recent years� It was �rst developed for binary images� then extended
for grayscale images� and �nally� generalized for sets in a generic mathematical space� called
Complete Lattices�

One of the main image representations in Mathematical Morphology is the Skeleton Rep�
resentation� Its original purpose was to provide a symmetry axis of planar shapes� for Pattern
Recognition and Shape Analysis applications� but it can also be considered as a shape de�
composition� useful for Image Compression� and Pattern Recognition�

In recent years� the Skeleton representation was generalized a number of times� to extend
the scope of its algebraic characteristics as much as possible� With these generalizations�
the Skeleton�s role as a symmetry axis lost its importance� while its ability to serve as an
e�cient image decomposition tool was extended to discrete images� grayscale images� and
sets in Complete Lattices�

This work follows the above line� and further develops it� First� a new evolutionary
branch is added to the Skeleton�s development� by the introduction of a Multi�Structuring�
Element Skeleton �MSES�� which permits a Skeleton�type decomposition of images into
�multi�parameter	 families of elements� Previously� Skeleton representations were based only
on �
�parameter	 families of elements for image decomposition� In addition� a Generalized
Skeleton framework is proposed� unifying the new branch� as well as all the previous Skeleton
generalizations� It deals generically with sets in Lattices� and families of decomposition ele�
ments indexed by indices in a generic set I� which is totally or partially ordered� Extension
of the uni�ed generalized framework to include grayscale images is also considered� and two
approaches are proposed and compared�

As particular cases of the proposed Generalized Skeleton Representation� one can obtain
new relevant representations� as well as well�known representations� like the Quadtree and
the Bit�Plane decompositions� which were not previously recognized as morphological ones�
Applications and properties of the Generalized Skeleton Representation are presented� and
illustrated by computer simulations�

Another Morphological representation� which is not part of the above generalized frame�
work� called Two�Sided Skeleton� is also proposed in this work� As opposed to the above






generalized framework� the Two�Sided Skeleton is a self�dual �almost� representation� since
inverting the gray levels of the pixels in the image almost does not a�ect it� Motivation and
applications are also presented�

The second main topic addressed in this research is the Redundancy in the Skeleton rep�
resentation� It is well known that the Skeleton representation contains redundant points�
which� if removed� do not a�ect the perfect reconstruction property of the Skeleton� Previ�
ously� all the redundant points were considered as belonging to a single group� In this work�
a study on the types of redundancy is performed� and redundancy categories are proposed�
Each redundant point is mathematically classi�ed into one or more of the proposed categories�
Furthermore� a generic approach for obtaining Redundancy�Reduced Skeletons is developed�
By this approach� Reduced Skeletons which are free of redundant points from all but one of
the proposed categories can be obtained by means of morphological closed�form formul��

Still concerning the redundancy in the Skeleton� a second approach is proposed for remov�
ing most of the redundant points from that category which the �rst approach is not able to
deal with� This second approach is based on a generalization of the concept of �Convexity	�
which we call B�Convexity� proposed and developed in this thesis� B�Convexity is de�ned�
keeping an analogy with the original concept of Convexity� and is studied by means of several
theorems� forming a theory� This theory is applied to Redundancy Removal� as mentioned
above�

Another main topic addressed in this research is Skeleton�based Coding of binary and
grayscale images� In the last years this area has lost much of its interest� because unsatisfact�
ory results� when compared to other classical coders� However� as demonstrated here� much
of the poor coding performance by the previous coders is because they have neglected to take
in consideration several correlation characteristics of the Skeleton� In this work� new theoret�
ical properties of the Skeleton Representation� related to the above mentioned correlation� are
presented� Furthermore� a Skeleton�based coding algorithm for binary and grayscale images
is developed� which e�ciently takes into consideration the above properties�

Computer simulations� also presented� show that� for binary images� the proposed coding
scheme substantially improves the results obtained by previous Skeleton�based Coders� and
performs better than classical coders� For facsilime images� it usually performs better than
the Group � standard� but� at this point� it is weaker than the most advanced standards�
Group � and JBIG�

For grayscale images� the proposed algorithm performs well for images containing large
�at areas and abrupt edges� like multi�layer maps and images obtained by a segmentation
process�

Finally� this work performs a comparison between Linear and Morphological Repres�
entations� The profound algebraic similarity� and the qualitative di�erences between the
approaches are presented and analyzed� Hybrid representations� which combine both ap�
proaches� and their applications in Coding� are also considered�
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C Set of Complex Numbers
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N Set of Naturals
O The origin in an Euclidean space
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P��� Set of all subsets of ���
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Xb Translation of the set X to the point b
E Euclidean Space or an arbitrary set
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Sn� Si Skeleton Subsets of order n� i
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r Radius of a disc �non�negative real�
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Chapter �

Introduction

��� Background and Motivation

Image Representation is a key component in many tasks in Computer Vision and Image
Processing� It consists generally of presenting an image in a form� di�erent from the original
one� in which desired characteristics of the image are emphasized and more easily accessed�

For grayscale images� most of the known representation are based on linear methods�
Unitary Transforms �Fourier� Wavelets� etc��� Multi�resolution pyramids� Linear Prediction�
and so on� Fractal approaches has also been studied� For binary images� the classical methods
are not derived from a unifying theory� as opposed to the grayscale methods� The best�known
methods are� Contour representation� Quadtree Decomposition� Skeleton representation and
Run Lengths�

In this thesis� we consider morphological methods for both binary and grayscale image
representation� They are based on Mathematical Morphology� which is a relatively new� and
rapidly growing� nonlinear theory for Image Processing�

Mathematical Morphology ��
� ��� 
�� 
�� ��� is part of Set Theory� and it has a strong
geometric orientation� Its theory was developed by Matheron and Serra� in the middle 
��s�
with the purpose of describing the structure of materials by image analysis of their sections�
Being originally developed for binary images� it was later �during the ���s� generalized for
grayscale images as well �����

For binary images� Mathematical Morphology provides a well founded theory for ana�
lysis and processing� Therefore� Binary Morphological Representations can be developed
and analyzed� For grayscale images� Mathematical Morphology yields a nonlinear method
for geometrical processing of images� Grayscale Morphological Representations are a gener�
alization of the binary representations� and they emphasize geometrical characteristics of the
image� which are not easily accessed in a linear representation�

The main morphological representation for binary images is the Skeleton ���� ��� ���� The
Skeleton �de�ned in section 
�� below� was originally proposed and developed independently
of Mathematical Morphology� and several works concerning it are still performed today with
no aid from the morphological theory �see ������ On the other hand� it was proved that
the Skeleton can be calculated entirely by the basic operations of Mathematical Morphology
����� which makes the Skeleton a morphological representation� suitable for analysis by mor�
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Figure 
�
� The �Grass��re	 model for obtaining the Skeleton�

phological tools� Moreover� following the generalization of the whole Morphological theory�
from binary to grayscale images� the Skeleton Representation could be generalized as well to
grayscale images �����

The motivation of this work is to investigate the use of Morphological Skeletons for binary
and grayscale Image Representation� and their applications� with special interest in Coding�

��� The Skeleton

����� De�nitions

Blum ��� introduced the notion of Skeleton by means of the following intuitivemodel� Suppose
a given shape to be a grass �eld� and suppose that at time t � � its whole boundary is set
on �re� The �re then propagates inwards at a constant speed� The set of points at which
the �re extinguishes is the Skeleton of the shape� Fig� 
�
 illustrates the above �Grass��re	
model�

Since its intuitive introduction� the Skeleton was de�ned mathematically in a number of
ways� The various de�nitions are di�erent characterizations of the �Grass��re	 model� and
they provide �almost� equivalent results for continuous planar shapes� Two of the main
de�nitions of Skeleton are the following ��
��

De
nition � Let a maximal disc inscribable in a given shape X � R� be a disc included in
X� and not contained in any other disc included in X�

The Skeleton of X is the set of centers of all its maximal discs�

De
nition � Let the distance function r�x� for a given shape X � R� be the map relating
to each point x inside X its distance to the boundary of X� Let d�x� y� be the Euclidean
metric in R��

The Skeleton of X is the set of points fs � R�g satisfying r�y� � r�s� 
 d�s� y�� for all
y � R��






The shape

Maximal discs

Not a Maximal disc

�a�

The shape

Skeleton
�b�

Figure 
��� The de�nition of Skeleton in terms of maximal discs� �a� Maximal discs in a
shape� �b� the Skeleton as the centers of all the maximal discs�

Fig� 
�� and Fig� 
�� illustrate the above de�nitions� respectively�

����� Algebraic Versus Topological Points of View

According to Serra ����� the study of Morphological Skeleton was historically split into two
branches� algebraic and topological�

Topological Approach

The topological branch considers the Skeleton mainly as a shape descriptor� In this case� the
Skeleton is supposed to provide a simpli�ed version of the original shape� and to summarize
important geometrical information about it� Therefore� the Skeleton�s shape and connectivity
�among other geometrical and topological properties� can be considered as relevant features
for Image Analysis and Pattern Recognition�

From the topological and geometrical points of view� the most important properties of
the Skeleton are�


� It is thin� composed of lines and or points�

�� It represents a symmetry axis �also called medial axis� of the original shape�
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r(b)

r(a)
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Figure 
��� The de�nition of Skeleton in terms of distance function� The point a is not a
Skeleton point since r�b� � r�a� � d�a� b�� On the other hand the points b� p� and q are
Skeleton points� Notice that r�q�� r�p� 
 d�p� q� as well as r�p�� r�q� 
 � 
 d�p� q��

�� It usually preserves homotopy� that is� the number of connected components and the
number of �holes	�

�� The Skeleton points are disjoint� i�e�� the same point in space cannot be the center of
more than one maximal disc�

�� There are e�cient algorithms for calculating the Skeleton�

On the other hand� the Skeleton presents also some negative topological characteristics�

� Small perturbations on the boundary of the original shapeX can produce large branches
in the Skeleton� and a very small hole in the shape can considerably alter the Skeleton�
In this sense� skeletonization is not a continuous operation�

� Connectivity preservation is not always assured�

Among the main issues addressed by researchers in the topological branch are�


� How to produce more robust Skeletons� less in�uenced by small perturbations�

�� How to produce Skeletons where connectivity preservation is assured�

�� How to produce discrete Skeletons in grids� so that homotopy� axial symmetry and the
thin aspect are preserved�

Algebraic Approach

The algebraic branch relates to the Skeleton in a quite di�erent way� From the algebraic point
of view� the Skeleton is the result of the decomposition of a given set into the superposition
of simpler elements� selected from a pre�de�ned family of elements �discs of increasing sizes��
The above decomposition provides an image representation which can be used in Coding
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Figure 
��� Partial Reconstruction of the Skeleton Representation� Simpli�cation of the shape
is obtained by removing Skeleton points related to maximal discs with value smaller than a
threshold�

for data compression purposes� The algebraic approach also yields another tool for Pattern
Recognition�

The important Skeleton characteristics in the algebraic approach� as opposed to those in

����� are�


� The original image is fully represented by the collection of Skeleton points� together
with the radius of the related maximal discs �or equivalently� the value of the distance
function at each Skeleton Point�� The shape reconstruction is obtained by the union of
all the maximal discs� The above collection of Skeleton points and radii is called the
Skeleton Representation�

�� The Skeleton Representation provides simpli�ed versions of the original shape when
Skeleton points with radius smaller than a threshold are discarded in the reconstruction
process �see Fig� 
����

�� The Skeleton provides a decomposition of the original shape into features �discs� of
di�erent sizes� which can be seen as components in di�erent �scales	� The smallest
maximal discs can often be considered as details� whereas the largest ones can often be
considered as the main structure� This provides a hierarchical or pyramidal interpret�
ation to the Skeleton Representation�

�� The Skeleton Decomposition can be calculated by means of an algebraic closed�form
formula �see section �����

The main negative characteristics of the Skeleton� in this branch� are�

� It usually contains redundant points� that is� many Skeleton Points can be discarded
and still the original shape can be fully reconstructed� �See Fig� 
����

� It is not a self�dual representation �like the Chain�code or Quadtree� for instance�� since
the Skeleton of Xc �the complement of X� is totally di�erent from the Skeleton of X��

Some of the main issues addressed by researchers in the algebraic branch are�

�See ���� for background on self�dual operators�
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Figure 
��� Skeleton Redundancy� Only the points a and b are not redundant in this Skeleton
Representation�


� How to reduce Skeleton�s redundancy�

�� How to decompose the shape into elements other than discs�

�� How to produce discrete Skeletons on grids� containing as few as possible points�

�� How to e�ciently code the Skeleton Representation of shapes�

��� A Generic Approach to Skeleton�Based Coding

����� Coding as an Optimization Problem

Consider the following optimization problem� illustrated in Fig� 
�
�

Problem � Let fFig be a given family of �simple� shapes �e�g�� squares of di	erent sizes�
discs of di	erent radii
� with indices i belonging to a set I �e�g�� I � f�� 
� �� � � �g
�

For any given shape X� what is the smallest subset of fFig which exactly covers X�

By solving Problem 
 �if there is a solution�� one is usually calculating an e�cient lossless
representation of X in terms of a set of indices I�X� contained in I� Coding I�X� typically
leads to a compression of X� Decoding� on the other hand� can be performed by superposing
those elements of fFig which are indicated in I�X��

Unfortunately� a simple� closed�form solution for Problem 
� supposing an arbitrary family
fFig� is not expected to exist� In this case� high�complexity optimization algorithms are
required�

Library

Given
shape

Figure 
�
� Shape representation by the union of elements from a given family of shapes�
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����� The Algebraic Skeleton as a Sub�Optimal Solution

In this context� the Skeleton Decomposition� seen from the algebraic point of view� can be
considered as a �low�complexity�� sub�optimal solution to Problem 
� in the particular case
of fFig being equal to the family of all discs� The �low�complexity	 is due to the existence of
a closed�form formula for the Skeleton calculation� And it is a sub�optimal solution because
it contains redundancy �see previous discussion� and chapter 
��

The algebraic approach serves as a framework to Skeleton�Based Coding of binary images�
In this framework� topological issues or negative characteristics concerning the Skeleton �like
lack of connectivity preservation� discontinuity of the operation� etc�� are of little importance
�or not at all important�� as long as coding e�ciency is not a�ected�

��� Previous Works in Coding

In recent years� the algebraic branch of the Skeleton development has brought the Skeleton
closer to be the optimal solution of Problem 
� This development can be observed in two
main fronts�


� Generalizations of the Skeleton framework� so that families fFig other than the family
of discs can be used ��
� ��� ��� ��� ��� ��� �
�� This generalization development is
detailed in chapter ��

�� Approaches to remove the redundant elements in the Skeleton representation� so that it
becomes an actual �locally� optimal solution to Problem 
 �for the speci�c families fFig
mentioned in item 
 above�� ���� ��� ���� This development is described in chapter 
�

Although the structure of the Skeleton has been extensively studied� only a small number
of works address to coding schemes for the Skeleton� The only articles known to us� which
seriously propose a scheme to code the Skeleton Representation are ���� ��� The schemes
proposed by them are described in general lines in chapter ��

On the other hand� the above coding schemes are related to binary Skeletons only� i�e��
Skeletons of binary images� Although grayscale Skeleton Representations are known for about

� years ��
� ���� we have not seen any work proposing and analyzing a coding scheme for
them� Skeleton�based coding of grayscale images has been performed by �rst decomposing
the image into binary images �bit�plane decomposition ����� or segmentation ���� ����� and
then coding their binary Skeletons�

Other Morphological Approaches

Another morphological representation method� for binary images� is called Morphological
Shape Decomposition ���� ��� �
�� It consists of �rst calculating the discs �or other prede�ned
convex shapes� with the greatest size contained inside the shape� then taking the residue �set�
di�erence� between the original shape to the above greatest discs� and �nally reiterating
the above procedure on the residue until the whole shape is decomposed� The resulting
decomposition elements are� therefore� disjoint�







The Morphological Shape Decomposition shares with the Morphological Skeleton Rep�
resentation the attention of the researchers� The question of which of the representations is
preferable for coding are yet to be answered� In ����� a comparison between the two methods
is performed� but it does not present real coding results�

For grayscale images� the most popular image representation for coding is the Morpholo�
gical Pyramid ���� ��� 

� ���� The Morphological Pyramid decomposes a grayscale image into
di�erent �resolution	 levels� where �resolution	 in this case is related to �size	� as opposed
to linear pyramids where �resolution	 relates to �frequency	 or �scale	� The Morphological
Pyramid can be obtained with the same algorithm as used for calculating the linear Lapla�
cian Pyramid ���! the only di�erence is that the low pass �lters in the latter are replaced by
morphological �lters in the former�

��� Original Contributions and Organization of the

Thesis

The following are the main contributions of this thesis�


� Concerning the Skeleton�s algebraic framework�

�a� A new branch is added to the evolutionary tree with the proposal of a Multi�
Structuring�Element Skeleton �MSES��

�b� A Generalized Skeleton�s framework is proposed� unifying the new branch and the
previous general framework�

�c� The Quadtree and the Bit�Plane decompositions are shown to be particular cases
of the proposed Generalized Skeleton Representation�

�d� New particular cases of the Generalized Skeleton representation of binary and
grayscale images are proposed� including multi�parameter generalizations of the
Quadtree and the Bit�Plane decompositions�

�e� An �almost self�dual	 Skeleton representation �for which an image and its inverse�

are similarly represented� is developed�

�� Concerning the Skeleton�s redundancy�

�a� A classi�cation of the redundant points in the Skeleton into categories is proposed�

�b� A generic approach for obtaining Redundancy�Reduced Skeletons is proposed� and
Morphological closed formul� for obtaining Skeletons with no redundant points
in most of the above categories are derived�

�c� The concept of B�Convexity� generalizing the concept of Convexity� is proposed
and its theory developed� B�Convexity is then applied to Skeleton redundancy
reduction�

�The inverse of a grayscale image f�x� y	 is considered here to be the image g�x� y	 
 ���� f�x� y	�


�



�d� Morphological closed�formul� are developed for the calculation of the Essential
Points of the Skeleton ��
� ���� which are those points in the Skeleton which cannot
be discarded if a perfect reconstruction is desired�

�� Concerning Skeleton�based Coding�

�a� New theoretical properties of the Skeleton� applicable to Coding� are proved� Ac�
cording to the �rst property� the radius of most of the Skeleton points can be
removed from a Discrete Skeleton Representation� and still the original image can
be completely recovered� The second property permits deterministic prediction of
information about the Skeleton points of radius r� from the information about the
Skeleton points with radius greater than r�

�b� A Skeleton�based coding scheme for binary and grayscale images� using the above
theoretical properties� is proposed and compared to other standard coders� The
use of the scheme in segmentation�based coding ��
� ��� is also considered and
demonstrated�

The thesis is organized as follows�
Chapter � provides a theoretical background on Mathematical Morphology� and the Mor�

phological Skeleton� It also describes the generalizations of Morphology� from planar shapes�
through functions� up to elements in a mathematical generic framework called Lattice�

Chapters ���� and �� as well as Appendix D� concern the Skeleton�s framework and its
generalization� Chapter � describes the evolution of the algebraic framework representation�
and our contributions to this evolution� Chapter � considers Grayscale Skeletons� as fur�
ther generalizations of the framework� Chapter � presents special particular cases of the
Generalized Skeleton Representation� and its applications� In Appendix D� the de�nition�
applications� and simulation results for the �almost self�dual	 Skeleton� called Two�Sided
Skeleton� is presented�

Chapter 
� �� and Appendix B� concern Skeleton�s redundancy reduction� Chapter 

presents the classi�cation of the skeleton points into categories� and one of two approaches for
redundancy reduction� Chapter � summarizes the B�Convexity Theory� and its application as
a second approach for redundancy reduction� The details of B�Convexity Theory is presented
in Appendix B�

Chapter � concerns Skeleton�based Coding of binary and grayscale images� and our con�
tributions to the �eld� Simulation results are also presented� and are compared to standard
approaches� In Appendix C� mathematical generalizations of the above results are described�

Chapter � compares linear methods with morphological methods for grayscale image rep�
resentation� Moreover� hybrid methods� combining the morphological with the linear ap�
proaches� are considered� In this context� the application of the proposed coding scheme
�presented in chapter �� in segmentation�based coding of grayscale images is demonstrated�

Finally� chapter 
� provides conclusions and proposes future research lines� Detailed
proofs of some of the theorems presented in the work can be found in Appendix A�
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Chapter �

Theoretical Background on

Mathematical Morphology

��� Binary Morphology

Mathematical Morphology is a nonlinear Image Processing theory� which was initially de�
veloped for binary images �see ���� ��� 	
� ���
� In Morphology� a binary image is interpreted
as a set X in an Euclidean space E� The elements of X are the foreground points of the
image� whereas the background points form the set�s complement Xc� The Euclidean space�
E� is equal to either Rd� if the image is continuous� or equal to Zd� if the image is discrete�
Usually the binary images are bi�dimensional� and therefore d � �� but multi�dimensional
volumes can also be considered as images�
This original framework of Mathematical Morphology is called here Binary Morphology�

to distinguish it from its generalizations� which were developed later� and are described in
the sequel�

����� Basic Morphological Operations

In Binary Morphology� a binary image is processed by interacting with it via a pre�de�ned
�simple� shape B� also considered as a set� called structuring element� For instance� B can
be an open disc in R�� The basic morphological operations concern� usually� the interaction
between a given image X� and a structuring element B�

Translation

Before the basic morphological operations are presented� the concept of translation� which is
fundamental in binary morphology �and in general Morphology as well
� must be properly
de�ned�
Let B be a set contained in E� and let x be a point in E� The translation of the set B

by the point x� denoted Bx� is de�ned as follows�

Bx
�
� fb� x j b � Bg ����


��



x
B

Bx

x
Translation
of B by x

Figure ���� Translation of a set B by the point x� If we considered B �centered� at the
origin� then after the translation� Bx is centered at x�

If B is a disc� or a square� centered at the origin� then Bx is centered at x� From this
point on� we denote the origin of E as the �center� of the set B� even if B has no geometrical
center� and even if the origin is not contained in B� Therefore� in the same way� Bx is said
to be �centered� at x �see Fig� ���
�

Dilation

The Dilation of the image X by the structuring element B� X �B� is de�ned by�

X �B
�
�
�
x�X

Bx ����


In words� the Dilation is obtained by centering the structuring element at each point x in X�
and then taking the union�
If B is a connected shape� containing the origin� then the Dilation adds to the image X a

�layer� around it �see Fig� ����a

� The width of the �layer�� and its shape� are determined
by the structuring element�s characteristics�
The most important properties of the Dilation operation are�

�� Dilation is distributive with the union� that is� for any sets A� B� and C in the Euclidean
space E�

�A �B
� C � �A� C
 � �B � C
� ���	


�� Dilation is an increasing operation�

A � B � �A�C
 � �B � C
� �A�B�C ����


Moreover� Dilation is commutative and associative� i�e��

A�B � fa� b j a � A� b � Bg � B �A ����


�A�B
� C � A� �B � C
 ����


And� if the origin belongs to B� then Dilation is extensive�

X �B � X ����
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Figure ���� The basic operations of Binary Morphology� �a
 Dilation� �b
 Erosion� �c
 Open�
ing� and �d
 Closing�
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Erosion

The Erosion of X by B� denoted X 	B� is de�ned in the following way�

X 	B
�
�
�
b�B

X�b ���



Erosion is the dual operation to Dilation� because applying an Erosion to a set is the same
as applying a Dilation to its complement� in the following way�

X 	Bs � �Xc �B
c ����


where Bs is the symmetric of B� de�ned by Bs �� f
b j b � Bg�
Erosion can be also characterized in the following way�

X 	B � fx � E j Bx � Xg �����


This means that the Erosion of X by B is the set of points at which B can be �centered��
and be totally contained in X�
If B is a connected set� containing the origin� then Erosion removes a �layer� from X

�see Fig� ����b

� Again� the width and the form of the layer are determined by B�
The most important properties of the Erosion operation are�

�� It is distributive with the intersection� that is�

�A �B
	 C � �A	 C
 � �B 	C
��A�B�C� �����


�� It is an increasing operator� that is�

A � B � �A	C
 � �B 	 C
��A�B�C� �����


As opposed to Dilation� Erosion is neither commutative� nor associative� It satis�es
instead�

�A	B
	 C � A	 �B � C
 ����	


If B contains the origin� then Erosion is anti�extensive�

X 	B � X �����


Opening and Closing

Although being dual� Dilation and Erosion are not inverse operation of each other� that is�
generally�

�X 	B
�B �� X� �����


�X �B
	B �� X� �����


Actually� neither Dilation� nor Erosion� have an inverse� Both are operations which usually
remove part of the information in the image� which cannot be restored�

��



On the other hand� the above compositions of Dilations and Erosions lead to two other
morphological basic operations� which are called opening and closing� The opening of X by
B� denoted X 
B� and the closing of X by B� denoted X �B� are de�ned� respectively� by�

X 
B
�
� �X 	B
�B� �����


X �B
�
� �X �B
	B� ����



Opening can be characterized also by the following relation�

X 
B �
�
fBy j y � E � By � Xg �����


This means that the opening of X by B is the set of points in X which are contained in
some translation of B� totally included in X� �see Fig� ���
� It usually removes details of
the foreground of the image� which do not �t inside the structuring element� This makes the
Opening a non�linear binary �lter� which removes� from the foreground� features �smaller�
than a certain �size�� where �size� is determined by the structuring element�
The most important properties of Opening are�

�� It is idempotent� i�e��
�X 
B
 
B � X 
B �����


�� It is always anti�extensive� regardless to whether the origin is or is not contained in B�

	� It is increasing�

Closing is dual to Opening� in the same sense as Dilation is dual to Erosion� i�e��

X �Bs � �Xc 
B
c �����


Therefore� Closing can be seen as the set of points which are not contained in a translation
of Bs� totally included in Xc �see Fig� ����c

� It usually closes �holes� or thin background
features� which do not �t inside the symmetric of the structuring element� This makes the
Closing also a non�linear binary �lter� which removes� from the background� features �smaller�
than a certain �size�� where �size� is determined by the structuring element�
The most important properties of Closing are�

�� It is idempotent�

�� It is always extensive� regardless to whether the origin is or is not contained in B�

	� It is increasing�

�




SrX X rB =

r

Figure ��	� Skeleton calculation by morphological operations� The Skeleton points are the
�vertices� of the regions X 	 rB� for r � ��

��� Skeleton Computation Via Morphological Operations

����� Lantu�ejoul�s Formula

In ����� Lantu�ejoul proved that the Skeleton S�X
 of a topologically open shape X in R� can
be calculated by means of binary morphological operations� in the following way�

S�X
 �
�
r��

Sr�X
 �
�
r��

�
X 	 rB 


�
�r��

��X 	 rB
 
�rB�

�
�����


where Sr�X
� for r � �� is the set of maximal discs of radius r� and rB and �rB are�
respectively� the topologically open discs with radii r� and the topological closed disc with
radius �r� centered at the origin�
In Lantu�ejoul�s Formula �����
� the set X 	 rB represents the portion of the �grass �eld�

not yet burned by the �re� at time t � r� in the �Grass��re� model for the Skeleton �see
section �����
� By increasing r with positive values� one simulates the ��re propagation��
The set

S
�r����X	rB

�rB� represents the points at which the �re does not extinguish at

time t � r� and therefore� the di�erence between the above sets provide the Skeleton points
at t � r�
Lantu�ejoul�s Formula can be easier understood with the following simpli�cation� Noting

that the union
S
�r�� in �����
 acts here actually as a lim�r��� one can write the �informal


equation�
Sr�X
 � X 	 rB 
 ��X 	 rB
 
 drB� ����	


where drB denotes an open disc with in�nitesimal radius dr� The opening by a disc with
in�nitesimal radius excludes from a shape its boundary points with in�nite curvature �the
�vertices�
� Therefore� the Skeleton points� with radius r� of a shape X are the �vertices� of
its eroded version X 	 rB �see Fig� ��	
�
The sets fSrg are called the Skeleton Subsets� and the function q�s
 relating to each

Skeleton point s the radius of the respective maximal disc is called Quench Function�

��



����� Reconstruction and Representation

From the collection of Skeleton subsets fSr�X
gr�� one can perfectly reconstruct the original
shape X in the following way�

X �
�
r��

Sr�X
� rB �����


In other words� the union of all the maximal discs �centered at the points in Sr�X
� for each
r � �
 equals the original image�
Equation �����
 means that the collection of Skeleton subsets can be considered as a shape

representation�
The Skeleton Representation permits also partial reconstructions� yielding simpli�ed ver�

sions of the original shape� This is obtained by�

X 
 kB �
�
r�k

Sr�X
 � rB �����


Note that X 
 kB is a smooth version of X� and that it was obtained by discarding the
Skeleton subsets with radii smaller and equal to k� Moreover� �����
 is obtained from �����

by setting k � ��

��� Grayscale Morphology

In the late ���s� a number of approaches were proposed to generalize the binary morphological
operations for grayscale images �considered as functions from E to R
 ���� ��� ����
The most primitive of these approaches� proposed by Serra in ����� considered the

thresholded binary versions of the given image� for all possible threshold values� and the
application of binary morphology to each one of those binary images separately� Since the
binary morphological operations are increasing� the result of the operation on the thresholded
images can be piled back to form a function� This approach� described in ���� pages �����	���
is not considered here�
The two other approaches were proposed by Sternberg ����� and we call them in this thesis

the umbra approach� and the sup�inf approach� respectively� The latter one can be seen also
as a morphological formalization of the approach independently developed by Rosenfeld �����

����� The Umbra Approach

Let f be a function from E to R� The umbra of f � denoted U�f
� is de�ned as�

U�f

�
� f�x� t
 � E �Rj f�x
 � tg� �����


If f is a surface� representing a ��D image� then its umbra is the volume below the surface
�see Fig� ���
�
The umbra is actually a binary shape in the Euclidean space E � R� Therefore� it can

be operated upon by Binary Morphology� as described in section ���� The result of a binary

��
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U(f)
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Figure ���� The umbra of two functions� f and g�

morphological operation between umbr� is also an umbra� and this is transformed back into
a function by the following operator�

�W �U
��x

�
�
�
ft j �x� t
 � Ug �����


where U is an umbra� and � denotes set�supremum� The above operatorW returns a function�
which is the upper envelope of the umbra�
For example� the Dilation of a function f by a structuring element g �which is also a

function
 is given by�
f � g � W �U�f
� U�g
� ����



This is illustrated in Fig� ����
Similarly� Erosion of functions is obtained by�

f 	 g � W �U�f
	 U�g
� �����


As in Binary Morphology� opening and closing are given by�

f 
 g � �f 	 g
� g ���	�


f � g � �f � g
	 g ���	�


����� The Sup�Inf Approach

The Sup�Inf approach consists of a direct transposition of ����

 and �����
 into an algebraic
form�
Equations ����

 and �����
 can be written in the following form�

�f � g��x
 �
W
y�E�f�y
 � g�x
 y
� ���	�


�f 	 g��x
 �
V
y�E�f�y

 g�y 
 x
� ���		


��
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Figure ���� Grayscale Dilation by binary Dilation of umbr�� The functions to be dilated are
those presented in Fig� ����
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where � denote set�in�mum� These equations permit the implementation of Grayscale Mor�
phology directly on functions� without the need to work in the higher�dimension umbra�
domain�
Usually� the structuring element g relates to a shape of �nite support �a square or a disc�

for instance
� In this case� we set g�x
 � 
� for the points x outside the support� Similar
consideration is taken for f � if it has a �nite support�
If indeed� g has a �nite support� then only the points of f that are inside the translated

version of the window� g�x
 y
� y � E� are considered in the computation of the Dilation of
f by g at the point x� Therefore� the region of support of g can be considered as a moving
�window�� inside which the operation is performed for each point x in space� A similar
conclusion can be achieved for the Erosion� but this time the symmetric of the region of
support of g is the moving �window��
Very often� the structuring element g is a �at function� i�e�� it has a constant null value

inside the region of support� In this case� ���	�
 and ���		
 assume the following simpli�ed
form�

�f � g��x
 �
W
y� S�g�x
 y
� f�y
 ���	�


�f 	 g��x
 �
V
y� S�g�y 
 x
� f�y
 ���	�


where S��� returns the region of support�
Grayscale Morphology with �at structuring elements is very popular� not only due to its

simple implementation� but also because it usually preserves edge contrast�
Opening and Closing� as before� are obtained by the appropriate compositions of Dilation

and Erosion�
Fig� ��� show an example of applying the basic grayscale morphological operations on the

���� ����pixel image �Lena�� The structuring element used here is a �at �� ��pixel square�

��� Morphology on Complete Lattices

In late 
��s� Serra generalized the whole framework of Mathematical Morphology� so that
the generalized framework includes both Binary and Grayscale Morphology� and other new
particular cases� This generalization is extensively described in ����� The material in this
section is a summary of chapter � of �����
Instead of being restricted to Euclidean spaces� or functions from Euclidean spaces to the

real axis� the generalized framework is based on generic mathematical spaces called Complete

Lattices�

����� Complete Lattices

A Lattice is� by de�nition� a set P� in which are de�ned a supremum operation �denoted
generically by �
� and an in�mum operation �denoted generically by �
� satisfying for any
elements X�Y�Z � P�

�	



�a


�b
 �c


�d
 �e


Figure ���� Example of Grayscale morphological operations� �a
 Original image� �b
 Dilation�
�c
 Erosion� �d
 Closing� and �e
 Opening�
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�� Commutativity�
X � Y � Y �X� X � Y � Y �X� ���	�


�� Associativity�

�X � Y 
 � Z � X � �Y � Z
� �X � Y 
 � Z � X � �Y � Z
� ���	�


	� The law of absorption�

X � �X � Y 
 � X� X � �X � Y 
 � X� ���	



Every Lattice has a relation of order �generically denoted by �
� de�ned in the following
way�

X � Y � X � Y � X� X � Y � X � Y � X� ���	�


The Lattice P is called a Complete Lattice� if for any family of elements fXigi�I in P� I
being a �nite or in�nite set of indices� the supremum and the in�mum are in P� i�e��

W
i�I Xi � P �����
V
i�I Xi � P �����


In a Complete Lattice� there exist two elements� � and U �called respectively the �null�
element and the �universe�
� such that� for any X � P�

X � � � �� X � U � U �����


Notice that there is no direct relation between the above de�ned �Lattice�� with the
notion of lattice� used in Signal Processing as a grid of points� Actually� as mentioned below�
a continuous space �e�g�� R
 can be a Lattice�

����� Examples of Complete Lattices

Complete Lattice of sets in an Euclidean space

Let P��
 denote the operator which returns the set of all subsets of a given set� For example�

P�fa� b� cg
 � f�� fag� fbg� fcg� fa� bg� fb� cg� fa� cg� fa� b� cgg ����	


Let us consider the set of all subsets of an Euclidean space E� i�e�� P�E
� This set is
a Complete Lattice if we choose its supremum and in�mum operations to be� respectively�
the union and the intersection� The induced ordering in this case is the inclusion� In this
case� the null element and the universe are� respectively� the empty set ��
� and the Euclidean
space itself �E
�
The above Complete Lattice is actually the basic framework of Binary Morphology�

��
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Figure ���� The supremum and in�mum operations in the Lattice of functions�

Complete Lattice of Real Numbers

The set of real numbers� R� is a Lattice� with the common supremum and in�mum operations
for real numbers� Here� the order relation is the usual order for real numbers� This Lattice�
however� is not a Complete Lattice�

If we attach to R the in�nity and minus in�nity� i�e� P
�
� R � f��
�g� and remain

with the same supremum and in�mum as before� then we obtain a Complete Lattice� where

� and � are now� respectively� the null element and the universe�

Complete Lattice of Functions

The basic framework for Grayscale Morphology is obtained as follows� Let P be the set of all
functions from E to R� with the following supremum and in�mum operations� respectively�

�f � g��x

�
� f�x
 � g�x
� �x � E� �����


�f � g��x

�
� f�x
 � g�x
� �x � E� �����


where the supremum and in�mum operations in the right side of the equations are those of
the Lattice of real numbers �see Fig� ���
� In this Lattice �which is not complete
 the order
relation is a partial one� and it is characterized by�

f � g � f�x
 � g�x
��x � E� �����


In order to turn the above Lattice into a Complete Lattice� the set of functions from E to
R� f��
�g should be considered instead� The null element and the universe are now the
functions returning� respectively� 
� and � to every point x � E�

����� Dilations and Erosions in Complete Lattices

A Dilation is de�ned in a Complete Lattice to be any operator which commutes with the
supremum of the Lattice� and preserves its null element� i�e�� the operator ���
 is a Dilation
i��

�fXig�Xi � P� i � I ��
W
i�I Xi
 �

W
i�I ��Xi
 �����


���
 � � ����



��



Similarly� an operator ���
 in P is called an Erosion if it commutes with the in�mum of
the Lattice� and preserves the universe� i�e��

�fXig�Xi � P� i � I ��
V
i�I Xi
 �

V
i�I ��Xi
 �����


��U
 � U �����


Both Dilation and Erosion are increasing operations in the Complete Lattice� that is�

�X�Y � P� X � Y �

�
��X
 � ��Y 

��X
 � ��Y 


�����


For each Dilation � in a Complete Lattice there is one and only one associated Erosion ��
satisfying�

�X�Y � P� ��X
 � Y � X � ��Y 
 �����


Similarly� for each Erosion there is one and only one Dilation� such that �����
 is satis�ed�
The pairs ��� �
 satisfying the above duality are called adjoint�
Given a Dilation �� its adjoint Erosion is given� for all X � P� by�

��X
 �
�
fY � P j ��Y 
 � Xg ����	


Conversely� the Dilation adjoint � of a given Erosion � can be calculated by�

��X
 �
�
fY � P j ��Y 
 � Xg �����


Notice that the Dilations and Erosions de�ned in Binary Morphology and in Grayscale
Morphology are particular cases of the above de�ned Dilations and Erosions in Complete
Lattices�
Adjoint Erosions and Dilations satisfy the following property� for all X � P�

����X
 � ��X
� ����X
 � ��X
� �����


����� Openings and Closings in Complete Lattices

An algebraic opening �or� simply� opening
 � in a Complete Lattice is an operator satisfying
the following requirements�

�� It is idempotent� i�e�� ���X
 � ��X
� �X � P�

�� It is increasing� i�e�� X � Y � ��X
 � ��Y 
� �X�Y � P�

	� It is anti�extensive� i�e�� ��X
 � X� �X � P�

Similarly� an algebraic closing �or just closing
 � is an operator in P which satis�es�

�� It is idempotent� i�e�� ���X
 � ��X
� �X � P�

�� It is increasing� i�e�� X � Y � ��X
 � ��Y 
� �X�Y � P�

��



	� It is extensive� i�e�� ��X
 � X� �X � P�

Important particular cases of openings and closings are� respectively� the operators �� and
��� de�ned for X � P by�

���X

�
� ���X
� ���X


�
� ���X
� �����


where ��� �
 is an adjoint pair� These operators are called� respectively� the morphological

opening and the morphological closing� associated with the Dilation ��
Given a Dilation �� the morphological opening and closing associated with it are given�

for all X � P� by�

���X
 �
W
f��Y 
 j Y � P� ��Y 
 � Xg �����


���X
 �
W
fY � P j ��Y 
 � ��X
g ����



When there is no ambiguity� the index � is removed from the notation of morphological
openings and closings� All the openings and closings considered in this thesis are morpho�
logical� and therefore� the index is omitted� i�e�� � and � denote morphological opening and
closing� respectively�

��� Boolean Lattices

As described in chapter 	� Skeletons are de�ned in a particular type of Complete Lattices�
called Boolean Lattices� Details about Boolean Lattices and their use in Mathematical Mor�
phology can be found in chapter � of ����� This section provides a summary of that material�

��	�� De
nitions of Boolean Lattices

Original De�nition

A Complete Lattice P is called complemented� if� for eachX � P� there is an elementXc � P�
called the complement of X� such that�

X �Xc � �� X �Xc � U� �����


If P is a complemented Complete Lattice� for which the complement of each element is
unique� it is called a Boolean Lattice�
In a Boolean Lattice� one can de�ne the operation of set�di�erence �denoted 

� in the

following way�
X 
 Y � X � Y c� X� Y � P �����


The set�di�erence is fundamental for the Skeleton calculation�
The Lattice of subsets of an Euclidean space� P�E
� as de�ned in section ������ is an

example of a Boolean Lattice� On the other hand� the Lattice of functions is not a Boolean
Lattice� since one cannot de�ne the complement of a function in the sense of �����
� This
leads to theoretical di culties in de�ning a Grayscale Skeleton �see chapter �
�

�




Usual De�nition

Let us take a generic set E �not necessarily an Euclidean space
� and consider the set of its
subsets P�E
� with the supremum and in�mum operations being equal� respectively� to union
and intersection� The above is a Boolean Lattice� regardless to the nature and contents of
the set E�
It turns out that for every Boolean Lattice P� there exists a set E� for which the associated

Boolean Lattice P�E
 �or part of it
 is isomorphic to P�
For this reason� it is usual ���� to rede�ne a Boolean Lattice as being a set of the form

P�E
� for some set E� associated with the union and the intersection� as supremum and
in�mum� respectively�

��	�� Structuring Functions and the Basic Operations

There are two �levels� in a Boolean Lattice P�E
�

�� The �level� of �points�� consisting of the elements of E� It is usual to denote �points�
by lower�case letters� like x� y� etc�

�� The �level� of �sets�� consisting of the elements of P�E
� i�e�� subsets of E� The �sets�
are denoted by capital letters� like X� Y � etc�

A structuring function ��x
 in a Boolean Lattice P�E
 is de�ned as being any function
from �points� to �sets�� i�e�� � � E � P�E
� Although the generic notation for structuring
functions ��
 is the same as the one used above for Dilations� it is rare to confuse between
them� since the latter one maps �sets� to �sets�� i�e�� � � P�E
� P�E
� Structuring functions
are� in Morphology of Boolean Lattices� the analogous of structuring elements in Binary and
Grayscale Morphology�
The reason for using the same notation �which is introduced in ����
 for both operators� is

that there is a one�to�one relationship between structuring functions and Dilations in Boolean
Lattices� Every structuring function ��x
 determines an unique Dilation ��X
 in the following
way�

��X
 �
�
x�X

��x
 �����


Conversely� every Dilation ��X
 is related to an unique structuring function ��x
 by�

��x
 � ��fxg
 �����


where fxg denote the set in P�E
 containing only the point x�
Since every structuring function automatically de�nes an unique Dilation� and since every

Dilation uniquely determines an Erosion� a morphological opening and a morphological clos�
ing� it follows that the de�nition of a structuring function in a Boolean Lattice automatically
de�nes the four basic morphological operations�

��



Chapter �

Generalization of the Skeleton

Framework

According to the discussion in section ������ a generalization of the Skeleton framework
should be sought� based either on a topological or an algebraic approach� In the topological
approach� such a generalization should aspire to solve problems like robustness� connectivity
and precision as a shape descriptor� whereas� in the algebraic one� framework �exibility�
self�duality� and representation e	ciency are the main issues�

The algebraic approach is the one adopted throughout this thesis� as justi
ed in sec�
tion ������ Therefore� framework �exibility is extensively analyzed and generalized in this
chapter� a quasi self�duality is proposed in Appendix D� and representation e	ciency is
studied in chapters � and 
�

��� Historical Background

Serra suggested in ���� that� in order to obtain an appropriate representation from the algeb�
raic point of view� the following requirements concerning a skeleton decomposition should be
satis
ed�

�� Existence and uniqueness of the Skeleton of a set� for a given family of decomposition
elements�

�� Perfect reconstruction of the original set from the Skeleton representation�

�� An explicit formula for computing the Skeleton�

The work of Lantu�ejoul �see section ���� showed that the original Skeleton satis
es the above
requirements� where requirements � and � can be satis
ed using morphological operations�

During the last few years� the algebraic framework of the Skeleton was extended several
times� The purpose was always to obtain decompositions according to richer families of
elements �other than just discs�� not failing to satisfy the above algebraic requirements� In
this evolutionary development� the �Grass�
re� model and the de
nition in terms of distance
function �De
nition � in page �� were abandoned� the Generalized Morphological Skeleton�

��



at every stage of its evolution� was de
ned only as the collection of �centers� and �radii� of
maximal �elements� �as in De
nition �� in page ��� with the notions of �center�� �radius��
and �element� being extended�

In this section� the above evolution is described� Then� in the following sections� a new
evolutionary branch is added to it� And 
nally� a general framework is proposed� unifying all
the Generalized Skeletons in the evolution� and permitting us to obtain new representations�
as particular cases of it�

Throughout its theoretical development� the Morphological Skeleton Decomposition was
mainly related to sets in Euclidean spaces or Lattices� little was done concerning Skeletons
of functions� The historical development presented here is also related to sets� Most of
the generalizations can nevertheless be directly extended to functions� this is considered in
chapter ��

The historical evolution presented here has its mathematical aspects summarized in
Tables ��� to ���� Tables ���� ���� ��� present the evolution of the conditions on the de�
composition family and on the original set to be decomposed� whereas Tables ��� and ���
show the evolution of the computation �Lantu�ejoul�s� and reconstruction formul�� respect�
ively� The historical evolution is presented in the sequel� with emphasis on its main ideas�

����� Discrete Skeleton

The original Skeleton decomposes a shape into maximal discs �see Fig� ����a��� However� on
a rectangular grid one can not de
ne an Euclidean disc� Therefore� skeletonization of discrete
shapes is a di	cult task� It turns out to be an impossible task if one seeks to maintain all
the topological and algebraic properties presented by the continuous Skeleton�

A Skeleton on hexagonal grids� keeping the algebraic properties of the continuous Skeleton�
was proposed by Serra in ���� pp� ��
�� It consists of a direct adaptation of the de
nition in
terms of maximal elements �De
nition �� page ��� where instead of maximal discs� the given
set is decomposed into maximal digital hexagons� The digital hexagons are symmetric around
their centers� and have sides �n � �� pixels� n � �� �� � � �� Maragos and Schafer ���� adapted
this idea also for rectangular grids� where digital squares are used instead of hexagons� The
digital squares are of sizes ��n � �� � ��n � �� pixels� n � �� �� � � �� so that they also are
symmetric around their centers�

The decomposition family of elements� into which a given set X is to be decomposed� is
the above family of digital hexagons or squares� �See Fig� ����b��� They are denoted by nB�
to keep the analogy with the family of discs in the continuous case� and they are all centered
at the origin�

The second column of Table ��� describe the conditions for the Discrete Skeleton� as
compared to those of the original Skeleton �column � of the same table�� The 
rst � lines
characterize the structure of the decomposition family� Lines � to 
 compare conditions on
the family and on the given set X� so that the computation and reconstruction formul� can
be applied� Lines � and � relate to conditions added later to the historical evolution� The
computation and reconstruction formul� for the Discrete Skeleton are shown� respectively�
in the second line of Tables ��� and ���� where a comparison to those of the original Skeleton
�line � in both tables� can be seen� Note that perfect reconstruction is obtained by k � ��
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Figure ���� Decomposition family types for the 
rst branch of evolutionary development of
the Skeleton� �a� increasing discs �Original Skeleton�� �b� discrete disc�like shapes �Discrete
Skeleton�� �c� family recursively generated by a 
xed structuring element �Morphological
Skeleton�� �d� by a size�varying structuring element �Modi
ed Skeleton�� and �e� by a size
and shape�varying structuring element �Generalized�Step Skeleton��
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Original Skeleton Discrete Skeleton Morphological Skeleton

� Decomposition family in�
dexed by r � R� � f�g�

Decomposition family in�
dexed by n � N �

Decomposition family in�
dexed by n � N �

� Decomposition family is the
set of discs o� radii r�

Decomposition family is the
set of discrete squares �or
hexagons	 of sizes n�

Family is recursively gener�
ated


nB � B � � � � �B� �z �
n times

where B is a structuring
element�

� � The single pixel is part of
the family � it is the discrete
square �hexagon	 of 
size
���

The 
single�point� element
belongs to the family


�B
�
� f��� �	g

� X is topologically open� � �

� All the discs in the family
are topologically open�

� B topologically open�

� X is bounded� X is bounded� X is bounded�

� All the discs are centered at
the origin�

All the squares �hexagons	
are centered at the origin�

B contains the origin�

� � � B is 
convex��

� � � �

Table ���� Historical evolution of the conditions on the Skeleton decomposition � part I�
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Skeleton type Lantu�ejoul�s Formula

� Original Skeleton Sr � X � rB � �X � rB	 � �dr	B
where rB is an open disc of radius r� and �dr	B is a closed
disc with an in�nitesimally small radius�

� Discrete Skeleton Sn � X � nB � �X � nB	 �B
where nB is a ��n��	���n��	�pixel square �hexagon with
side n � �	�

� Morphological Skeleton Sn � X � nB � �X � nB	 �B
where B is the structuring element�

� Modi�ed Skeleton Sn � X � �n��B � �X � �n��B	 � �n��B
for n � �� and S� � X �X �B�

� Generalized�Step Skel� Sn � X �A�n	� �X �A�n	� �B�n	

� MSES S�n � X �A��n	�
Sd
����X � A��n	� �B�

� Skeleton on Lattices S� � ���X	�
S
��� �����X	

� Gen� Skel on Lattices S� � ���X	�
S
��� ���������X	

where �� � � R��

� PROPOSED Generaliz� Si � �i�X	�
S
j�i ��j�i��i�X	

where i� j � I � generic�

Table ���� Historical evolution of Lantu�ejoul�s Formula�

We notice that conditions � and �� satis
ed by the original Skeleton� are not needed for
the Discrete Skeleton� since every discrete set is both topologically open and closed� Actually�
condition �� which is needed in the original Skeleton for perfect reconstruction� has its role
replaced here by condition ��

����� Morphological Skeleton

Also in ����� Maragos and Schafer proposed the following further evolution step� Instead of
restricting the Skeleton decomposition to elements of a family of disc�like elements on grids�
let it be a decomposition into increasing versions of any convex shape� like a rhombus� a
triangle� a line� etc� This includes also the previous decomposition into squares and hexagons�

Although basically meant to shapes on grids� the Morphological Skeleton can relate also
to a discrete family of continuous shapes� At this point we wish to di�erentiate between
a discrete family and discrete shapes� A discrete family of shapes is a family indexed by
a discrete index� like n � N � Discrete shapes� on the other hand� are shapes in a discrete
Euclidean space� like ZL� This can be a source of confusion� since a Discrete Skeleton can
be found in the literature relating to both cases� Here� we denote by discrete Skeleton the
Skeleton on discrete spaces� whereas by discrete�family Skeleton the Skeleton based on a
discrete family of �continuous or discrete� shapes� Therefore� the Morphological Skeleton
de
ned by Maragos and Schafer is of the latter type�

The theoretical characterization of the Morphological Skeleton� in terms of Mathematical
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Skeleton type Reconstruction Formula

� Original Skeleton X � sB �
S
r�s Sr � rB

where rB is an open disc of radius r� and sB is a closed disc
with radius s�

� Discrete Skeleton X � kB �
S
n�k Sn � nB

where nB is a ��n��	���n��	�pixel square �hexagon with
side n � �	�

� Morphological Skeleton X � kB �
S
n�k Sn � nB

where B is the structuring element�

� Modi�ed Skeleton X � �k��B �
S
n�k Sn � �n��B

for k � �� and X � �X �B	 	 S��

� Generalized�Step Skel� X �A�k	 �
S
n�k Sn � A�n	

� MSES X �A��k	 �
S
�n��k S�n � A��n	

� Skeleton on Lattices ���X	 �
S
��� ���S�	

� Gen� Skel on Lattices ���X	 �
S
��� ���S�	

� PROPOSED Generaliz� �J�X	 �
S
i�J �i�Si	

where J is an anti�umbra in I�

Table ���� Historical evolution of the Formula for reconstruction from the Skeleton repres�
entation�
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Morphology� is as follows� Let B be a structuring element in an Euclidean space E �continuous
or discrete�� We generate from B a discrete family of elements fnBg� each with �size� n� in
the following manner�

nB � B � � � � �B� �z �
n times

� n � �

�B � ��� ���
�����

Where ��� �� is the origin�
The structuring element B is required to contain the origin �considered as the �center�

of B�� to be topologically open� and to satisfy�

B �B � B� �����

Condition ����� makes B �convex� in a general sense �see section 
�� where the concept of
B�Convexity is introduced�� In the continuous case� any convex shape satis
es ������ In the
discrete case� there is no strict de
nition of convexity� and ����� serves as an appropriate
generalized de
nition�

Because B is convex� the elements nB have roughly the same shape as B� and have sizes
roughly proportional to n times the size of B� If B is� for instance� a continuous square with
side a� then nB is a continuous square with side na� If B is a discrete square on a rectangular
grid with side equal to � pixels� then nB is a discrete square with side �n� �� The variable n
is often called the �radius� of the element� to keep an analogy to the classical family of discs�

The family fnBg can be generated recursively in the following way� as illustrated in
Fig� ����c��

nB � �n � ��B �B� n � � �����

If the conditions shown in column � of Table ��� are satis
ed� then the collection of subsets
fSn�X�gn�� obtained by the adapted Lantu�ejoul�s Formula shown in line � of Table ��� is
indeed a Skeleton Decomposition� That is� an element with �radius� n and �centered� at a

point s� denoted nBs
�
� fb � s j b � nBg� is a maximal element in X i� s � Sn�X� �����

It is also an error�free representation since the original image X can be reconstructed from
fSn�X�g by the reconstruction formula given in line � of Table ���� with k � ��

From the topological point of view� the Morphological Skeleton has great disadvantages�
e�g�� for B equal to a square� shape topology is not expected to be preserved� therefore non�
connected skeletons can be obtained for connected shapes� both in continuous and discrete
cases� But from the algebraic point of view� which is the one in which we are interested
in� the Morphological Skeleton represents an advance towards the solution of the general
optimization problem de
ned in section ������

����� Modi�ed Skeleton

The family of elements fnBgn�N used in the discrete Morphological Skeleton decomposition
is generated by recursively dilating the structuring element B by itself� B serves here as a
generator� being constant at every step of the family generation�

Sapiro and Malah ���� showed that the family generator can have a variable size� The
Modi�ed Morphological Skeleton proposed by them has its subsets fSn�X�g de
ned as in line
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� of Table ���� It was proved ���� that the Modi
ed Skeleton decomposes X into maximal
elements from the family f�B�B� �B� �B� �B� ��B� � � �g �Fig� ����d��� This family can be
generated� as before� by a series of dilations� but not with a constant generator� The sizes of
the generator� at the various steps� are the di�erences f�� �� �� �� �� � � �g between the sizes of
the elements of the family�

We can observe� by comparing the conditions for the Modi
ed Skeleton with those for
the Morphological Skeleton �
rst column of Table ��� and last column of Table ���� respect�
ively�� that the only signi
cant di�erence is in the family generation� Moreover� the Modi
ed
Skeleton also fully represents the original image X �See line � of Table ����� In the Coding
simulations presented in ����� the Modi
ed Morphological Skeleton showed better results than
the previous Morphological Skeleton�

Modi�ed Skeleton Generalized�Step Skel� PROPOSED MSES

� Decomposition family in�
dexed by n � N �

Decomposition family in�
dexed by n � N �

Decomposition family in�
dexed by �n � N d�

� Family is exponentially gen�
erated


A�n	 � �n��B�
for n � ��

A series fB�n	gn�� gener�
ates the family by

A�n� �	 � A�n	�B�n	�

for n � ��

The multi�dimension family
generation

A��n	 � n�B� � � � � � ndBd

where B�� 	 � �� �� 
 
 
 � d�
are structuring elements�

� The 
single�point� element
belongs to the family


A��	 � f��� �	g

The 
single�point� element
belongs to the family


A��	 � f��� �	g

The 
single�point� element
belongs to the family


A���	 � f��� �	g

� � � �

� B is topologically open� Each B�n	 is topologically
open�

Each B�� 	 � �� 
 
 
 � L� is to�
pologically open�

� X is bounded� X is bounded� X is bounded�

� B contains the origin� Each B�n	 contains the
origin�

Each B�� 	 � �� 
 
 
 � L� con�
tains the origin�

� B is 
convex�� Each B�n	 is 
convex�� Each B� is 
convex�� in the
following sense


B� � B� 
Ai�

�i � I


� � �

A��n	x � A��m	y 
�
�n � �m� x �� y�

�n � �m� x � y


Table ���� Historical evolution of the conditions on the Skeleton decomposition � part II�

����� Generalized�Step Skeleton

Goutsias and Schonfeld ���� showed that not only the size of the generator can vary at each
step of the family generation� but also the generator�s shape�

�




Let fB�n�gn�N be a series of structuring elements� all of them containing the origin and
satisfying ������ Let this series generate a family of elements fA�n�gn�N in the following way
�see Fig� ����e���

A�n� �� � A�n��B�n�� n � �� �� �� � � �
A��� � ��� ���

�����

Goutsias and Schonfeld showed that the maximal elements from the above family fA�n�g�
inside a given shape X� have their positions ��centers�� given by the subsets fSng as shown
in line � of Table ���� Therefore� the collection fSn�X�gn�N is called in this case Generalized�
Step Morphological Skeleton�

The conditions for this Skeleton are shown in column � of Table ���� They show no
signi
cant di�erence as compared to the previous Skeletons� apart of the family structure�
X is recovered from the above skeleton as shown in line � of Table ����

Note that both the original Morphological Skeleton and the Modi
ed Morphological Skel�
eton are particular cases of the Generalized�Step Morphological Skeleton� The 
rst is obtained
by choosing B�n� constant and equal to B� whereas the second is obtained with the choice
B�n� � fB�B� �B� �B� � � �g�

����� Skeleton on Boolean Lattices

The Modi
ed Morphological Skeleton and the Generalized�Step Morphological Skeleton can
be seen as a 
rst evolutionary branch in the development of the algebraic Skeleton �Fig� ����
center line��

A second branch �on the right hand side of Fig� ����� also evolved from the Morphological
Skeleton� was proposed by Serra ���� chapter �� as part of the generalization of Mathematical
Morphology from Euclidean spaces into Lattices� This branch is reviewed here�

While the 
rst branch makes possible Skeleton decompositions with any totally ordered
family of elements� generated through recursive Euclidean dilations� the second branch� de�
scribed below� permits�

�� Decompositions of sets in any Boolean Lattice� �

�� Translation�variant decompositions� As opposed to the family generator in the 
rst
branch �the structuring element B�� which is translation�invariant �Fig� ����a��� the
generator in the second branch can vary according to its position �structuring function
��x�� See Fig� ����b���

The above ideas are mathematically characterized in the following way �see ���� chapter
���� Let f���x�g��� be a family of structuring functions in a Boolean Lattice P�E�� I�e�� each
���x� maps �points� in E into �sets� in P�E�� Let X � P�E� be the set to be decomposed�
If E is a continuous set� such as R�� then X is a continuous set� Otherwise� if for instance
E � Z�� X is discrete�

In ����� the family index is supposed to be continuous� i�e�� � is real� However� the
transposition to a discrete�index case� where � is integer� is straight�forward�

�Although many of the morphological tools proposed to Euclidean spaces �like the basic operators� �lters�
etc�� were generalized for generic Lattices� the Skeleton requires Boolean Lattices as framework�
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Figure ���� Evolutionary development of the Skeleton�
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�a�

���

Figure ���� �a� Family generation by a structuring element �translation�invariant structuring
function�� �b� family generation by a translation�variant structuring function�

As any structuring function �see section ������� each element of the family f���x�g auto�
matically de
nes a dilation ���X�� an erosion ���X�� an opening ���X�� and a closing ���X��

The family f���x�g is said to be valid for skeletonization if it satis
es the requirements
shown in column � of Table ���� These conditions are a generalization of those of the previous
Skeletons� each having the same line number at the respective tables� Condition � can be
disconsidered if the Boolean Lattice is discrete� since in this case this condition is naturally
satis
ed �this is true for all the Skeletons in the historical evolution��

An �element� here denotes any set of the form ���x�� � � �� x � E� where � is denoted
the �radius� of the element� and x is denoted its �center�� An element ���x� is a �maximal
element� in X if ���x� � X� and for all 	 	� �� and for all y � E� if ���x� 
 ���y�� then
���y� 	� X�

The Skeleton of X is then de
ned as the collection of the �centers� of all the �maximal
elements��

The Skeleton subsets fS��X�g� each de
ned as the collection of skeleton points related to
a �maximal element� with �radius� equal to �� can be calculated ���� by the generalization
of Lantu�ejoul�s Formula shown in line 
 of Table ���� The reconstruction formula assumes
here the form shown in line 
 of Table ����
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Skeleton on Lattices Generalized Skel� Lattices PROPOSED Gen� Skeleton

� Decomposition family is in�
dexed by � � R��

Decomposition family is in�
dexed by � � R� � f�g�

Decomposition family is in�
dexed by i � I � where I

is any totally or partially
ordered set�

� The family has a semi�group
structure


���� � ����

Granulometry generating
family


� � �

�����Y 	 � ���Y 	�

�Y � P�E	

Generalized granulometry
generating family


j � i

�i�j�Y 	 � �j�Y 	�
�Y � P�E	

� The 
identity� belongs to
the family� i�e��


���x	
�
� fxg

� �

� � X is morphologically open
by the family� i�e��


X �
S
��� ���X	

X is morphologically open
by the family� i�e��


X �
S
i�I �i�X	

� For any chain f��k�xk	g sat�
isfying �	 � k 
 ����x�	 �
��i�xi		
S

k�� ��k�xk	 � ���x	

for some x � E� and � � ��

For any chain f��k�xk	g sat�
isfying �	 � k 
 ����x�	 �
��k�xk		 and ��k� ��k�xk	 �
X	
S

k�� ��k�xk	 � ���x	 � X

for some x � E� and � � ��

For any chain f�ik�xk	g sat�
isfying �	 � k 
 �i��x�	 �
�ik�xk		 and ��k� �ik�xk	 �
X	
S

k�� �ik�xk	 � �i�x	 � X

for some x � E� and i � I �

� X has a global ultimate
erosion


��i� j ���X	 � ��
�� � �i� 


� �

� The family is increasing

� � �
 ���x	 � ���x	�

�x � E


The family is increasing

� � �
 ���x	 � ���x	�

�x � E


�

� 
Generalized Convexity�

�x � E� ��� � � �
���x	 � �������x	

� �

� �

���x	 � ���y	
�
� � �� x �� y�

� � �� x � y


�i�x	 � �j�y	
�
i � j� x �� y�

i � j� x � y


Table ���� Historical evolution of the conditions on the Skeleton decomposition � part III�
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����	 Generalized Skeleton on Boolean Lattices

In ���� Serra uni
ed the two evolutionary branches� described above� into a Generalized
Skeleton on Boolean Lattices �see Fig� ����� As seen above� the 
rst branch is mainly char�
acterized by a �step��variant space�invariant family generator� whereas the second branch is
mainly characterized by a �step��invariant space�variant family generator� Thus� the main
advance in ���� is in permitting a �step� and space variant family generator for the Skeleton
decomposition�

The requirements on the family of structuring functions f���x�g��� for Serra�s Generalized
Skeleton� are presented in column � of Table ���� By comparing them to the conditions for
the original Skeleton on Lattices �column � of same table�� one can see several signi
cant
improvements�

� The structure of the family �condition �� is much more �exible in the generalized Skel�
eton on Lattices� In particular� it permits �step��variant family generation� whereas
the original Skeleton on Lattices does not�

� Condition � is dropped It turns out that this condition� which was historically included
in order to give a self�similarity characteristic to the decomposition family� is not
actually required�

� Condition � is added� It turns out that this condition was overlooked in the previous
Skeletons� without it� in some non�conventional cases� the result of Lantu�ejoul�s Formula
can strictly contain the actual Skeleton �see ������

� Conditions � and � are joined together�

� Condition � is replaced by the more general condition ��

One can also notice that in condition � the value � was excluded from the set of indices�
This is a minor di�erence� though� since Serra could have chosen to de
ne the generalized
Skeleton on Lattice with � � � also� This was probably not done to keep an analogy with
the original Skeleton �Table ���� column ���

Another major di�erence is seen in the generalized Lantu�ejoul�s Formula �line � in
Table ����� Instead of using ��� � 
 �� the new Skeleton uses the opening ������� which is

de
ned as the opening related to the structuring function �������x�
�
� �����x�� This is needed

for a �step��variant family generation� since now the opening in Lantu�ejoul�s Formula is a
function of the �step� �� The reconstruction formula �line � in Table ����� on the other hand�
remains identical to that of the previous Skeleton�

��� Multi�Structuring�Element Skeleton �MSES�

During the above historical development� the family of decomposition elements was always
indexed by a non�negative scalar parameter �� or r in the continuous case� n in the discrete
case��
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Figure ���� Two�parameter families of elements� �a� Structuring elements are an horizontal
and a vertical unit lines� and �b� a unit square and a unit rhombus�

Here we add a new branch to the evolutionary tree described above �Fig� ����� by replacing
the scalar parameter by a vector one The fact that no attempt was made previously to
perform this replacement can be explained� perhaps� by the interest in obtaining a meaningful
Skeleton from the topological and geometrical points of view� However� the Multi�Structuring�
Element Skeleton �MSES� proposed by us in ��
�� and presented below� cannot be considered
as a particular case in Serra�s framework �it demands a partial ordering of the indices of
the decomposition subsets�� and� nevertheless� it satis
es the three algebraic requirements�
Moreover� it is a collection of centers of maximal elements� as it will be shown�

The main contribution of the MSES is in providing a decomposition of shapes into max�
imal elements from a multi�parameter family of elements� fA��n�g�n� where �n � �n�� � � � � nd� �
N d� Given d structuring�elements� B�� B�� � � � � Bd� they generate fA��n�g in the following way�

A��n� � n�B� � n�B� � � � � ndBd� �����

For example� Fig� ��� shows two ��parameter families of planar shapes� in Fig� ����a�� d � �
and B� is a vertical unit line� whereas B� is an horizontal unit line� The family fA�n�� n��g
is the set of all the discrete rectangles� Notice that the ��parameter family of squares is
contained in the ��parameter family just de
ned� In Fig� ����b�� d � � also� and B� is a unit
square� whereas B� is a unit rhombus�

A maximal element in a set X from the family fA��n�g is de
ned as an elementA��n�x with
�radius� �n and �center� x� such that A��n�x � X� and ��m � N d� �y � E� if A��n�x � A��m�y�
then A��m�y 	� X�

We attach to N d its strong order relation ����

�n � �m

m
n� � m�� � � �� �� � � � � d�

�����
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Figure ���� �a� A shape X and its Morphological Skeleton SK�X�� related to a family of
squares� �b� Same shape X and its MSES� related to the family of rectangles shown in
Fig� ����a��

and we de
ne the Morphological Multi�Structuring�Element Skeleton� for the above family�
as the collections of subsets fS�ng� �n � N d� given by the generalized Lantu�ejoul�s Formula
presented in line � of Table ����

Fig� ��� compares a standard Morphological Skeleton and a MSES of a simple shape� In
this case� the MSES contains only two points� because X is composed of only � rectangles�

If the conditions in column � of Table ��� are satis
ed by the multi�parameter family� then
the MSES is the set of center points of the maximal elements in X from fA��n�g �� The proof
of this assertion� together with the proof of the reconstruction formula �line � of Table �����
is postponed to section ������ It is shown there that the MSES is a particular case of the
proposed generalized Skeleton� for which we prove the respective theorems�

����� Generalized�Step MSES

In ����� we presented a Generalized�Step MSES� which can be seen as a uni
cation of the
ideas from the 
rst and third evolutionary branches of the Skeleton development �respectively�
the center and the left branches in Fig� ����� The elements into which the Generalized�Step
MSES decomposes a set X are multi�parameter combinations of elements from one�parameter
sub�families� which are generated each in a generalized�step way �see example in Fig� �����

In mathematical terms� the decomposition family fA��n�g� �n
�
� �n�� n�� � � � � nd� � N d� is

generated in the following way�

A��n� � A��n���A��n��� � � ��Ad�nd� ���
�

where each sub�family A��n�� � � �� �� � � � � d� is generated from a pre�de
ned series of shapes
B��n�� in the same way as in the Generalized�Step Skeleton �see equation ������� The

�Notice that the two�parameter family shown in Fig� ��	�b� does not satisfy condition 
� therefore the MSES
of a shape based on this family is expected the contain a superset of the maximal elements� For practical
applications� this may not represent a problem� especially if one is interested in performing a reduction of
the MSES�s redundancy �Chapter 
�� because this typically removes all the non�maximal elements from the
representation�

��



Figure ���� A generalized�step two�parameter family of elements� suitable for Generalized�
Step MSES decomposition�

Generalized�Step MSES Subsets are given by the following version of Lantu�ejoul�s Formula�

S�n � X 
A��n��
d�

���

�X 
A��n�� �B��n�� �����

The reconstruction formula is identical to that of the original MSES�

��� Proposed General Framework

Our purpose in this section is to propose a generalized de
nition of the Skeleton� having as
particular cases both Serra�s general Skeleton on Lattices �uni
cation of the center and right
branches in Fig� ����� and the Generalized�Step MSES �uni
cation of the center and the left
branches�� thus obtaining a uni
cation of all the three evolutionary branches� More than a
theoretical uni
cation of known decompositions� the proposed General Skeleton provides new
decompositions� presented in the sequel� as particular cases of it�

The generalization is obtained mainly by replacing the previous family indices �r � R� n �
N � � � R� �n � N d� by a generic index i� from any totally or partially ordered set of indices
I� The computation and reconstruction formul� and the family conditions are then adapted
to assure that the algebraic requirements are still satis
ed�

����� Generalized Skeleton De�nition

Let us consider a set E and the Boolean Lattice de
ned by P�E� �the set of subsets of E��
inclusion order� and union and intersection as the supremum and the in
mum� respectively�

��



Let I be a set of indices i� totally or partially ordered by an order �� The set I can be�
for instance� a d�dimensional space� so that the indices i are vectors�

We choose an arbitrary family of structuring functions from E into P�E�� indexed by I�
f�i�x�gi�I� This choice uniquely determines the families of dilations f�i�X�g� adjoint erosions
f�i�X�g and morphological openings f�i�X�g� where X � P�E��

We de
ne an element with �radius� i � I and �center� x� � E� �i�x��� as the image of x�
by the structuring�function �i�x�� and a maximal element in a set X � P�E� as an element
contained in X but not contained in any other element which is contained in X�

As usual� we de
ne the Skeleton of a set X � P�E� as the collection of the centers of all the
maximal elements contained in it� It is unique for the chosen family of structuring�functions
and the given set X� The sets fSi�X�gi�I� each containing the centers of the maximal elements
of �radius� i� are called Skeleton Subsets�

The above de
nitions �and also the theorems in next section� and their proofs� are a
direct generalization of those of Serra�s Generalized Skeleton on Lattices �presented in �����
and described above in the section �������

����� Skeleton Computation and Set�Reconstruction Formul


The following theorem provides an explicit formula for computing the skeleton subsets fSigi�I�

Theorem � If the family of structuring functions f�i�x�gi�I satis�es the following two con�
ditions�

�� i � j � �i�j�x� � �j�x�� �x � E

�i�e�� the family is granulometry�generating 	
�� 
�� 
�
� in a generalized sense��

�� For all i� j � I and x� y � E�

�i�x� � �j�y� �

�
i 
 j� if x 	� y

i � j� x � y

then� for any X 
 P�E�� and for all i � I�

Si�X� � �i�X��
�

j�i�I

��i�j��i�X� �����

where ��i�j� is the morphological opening associated with the structuring function

��i�j��x�
�
� �i�j�x��

The proof is given in Appendix A�
Perfect reconstruction can be obtained from the proposed generalized Skeleton Subsets�

if certain conditions are satis
ed� In order to characterize these conditions� by means of a
theorem� we consider the following de
nitions�

� Let LX be the set of all the elements contained in X� i�e�� LX
�
� f�i�x� j i � I� x �

�i�X�g�

��



� A subset f�ik�xk�gk�K of LX is called an increasing chain in LX � if K is a totally
ordered set of indices� and if k 
 k� implies �ik�xk� � �i

k�
�xk���

� We say that an increasing chain f�ik�xk�g converges to an element �i��x��� ifS
k�K �ik�xk� � �i��x���

� LX is said to be inductive for inclusion ����� if every increasing chain in LX converges
to a unique element in LX �

� Let J be any subset of the set of indices I� We say that J is an anti�umbra in I if the
conditions j � J and i � j imply i � J �

� For an anti�umbra J in I� we de
ne the following opening� �X � P�E�� �J �X�
�
�S

j�J �j�X�

Theorem � Let fSi�X�gi�I be the skeleton decomposition of X� according to the family of
structuring functions f�i�x�gi�I� If LX is inductive for inclusion� and J is an anti�umbra in
I� then �

i�J

�i�Si�X�� � �J �X� ������

The perfect reconstruction is assured whenever X � �J �X�� Equation ������ also provides
a partial reconstruction formula for the skeleton� in case that �J�X� 	� X� The proof of
theorem � is also given in Appendix A�

The conditions in the above theorems are summarized in column � of Table ���� By
comparing them with those of the Generalized Skeleton on Lattices �column � in same table��
and by comparing the computation and reconstruction formul� �see Tables ��� and ����� one
can see that�

�� The proposed Generalized Skeleton is a direct adaptation of Serra�s Generalized Skel�
eton on Lattices� having the scalar index � replaced by a generic index i�

�� Condition 
 was dropped This condition was historically required in order to obtain a
Skeleton with a quench function� i�e�� for which every skeleton point is related to one and
only one maximal element� In other words� the Skeleton was previously required to have
its Subsets mutually disjoint� However� we regard this as an important requirement
from the topological point of view� but not from the algebraic one� since the algebraic
conditions can be met also without it�

����� Multi�Parameter Skeleton and the MSES

Choosing I to be a totally ordered set of indices� such as R� or Z�� brings us to the
Serra�s Generalized Skeleton on Lattices� as de
ned in ����� In this section� we consider more
speci
cally decompositions which are not based on totally ordered sets�

Let us consider the following particular case of the proposed Generalized Skeleton�

� I is a set of d�dimensional vectors� i�e�� every index i is in the form i
�
� �i�� i�� � � � � id��

More speci
cally� I � Rd
� in the continuous case� and I � Zd

� in the discrete case�

�




� The order of I is chosen to be its strong order � i�e�� for any two indices i��	 and i��	 in
I� i��	 � i��	 i� i��	n � i��	n for all n � �� �� � � � � d�

� The conditions of theorems � and � hold�

We denote a such a Skeleton by Multi�Parameter Skeleton� If we denote as kn the d�
dimensional vector having its n�th component equal to � and all the others equal to �� then
the continuous�case Multi�Parameter Skeleton subsets are given by�

Si�X� � �i�X� �
d�

n��

�
� �
�n��

��i�i��nkn��i�X�

�
	 � i � Rd

� ������

where �n� n � �� � � � � d� are scalar variables� Notice that the union in ������ which is performed
over the vector variable j� is replaced in ������ by unions performed over scalar variables� n
and �n� n � �� � � � � d�

The unions performed over �n in ������ express� actually� convergence towards a su�
premum� when �n � �� In the discrete case� these unions converge to maxima� which are
reached when �n � �� n � �� � � � � d� Therefore� in the discrete case� ������ becomes�

Si�X� � �i�X��
d�

n��

��i�i�kn��i�X�� i � Zd
� ������

The MSES� de
ned in section ���� is actually a particular case of Multi�Parameter Skel�
eton� and this is shown in the remainder of this section� Let I � Zd

�� and its order be the strong
partial order de
ned above� Let us select d convex structuring�elements Bn� n � �� � � � � d�
and de
ne for each i in I�

Ai
�
� i�B� � � � �� idBd� ������

Moreover� let the family of structuring�functions �to be used in the decomposition� be in the
form�

�i�x� � Ai � fxg� i � I ������

In this case� it holds�

��i�i�kn��X� � X � �Ai�kn 
Ai�

� X � ��Akn �Ai�
Ai�

� X � �Bn �Ai�� ������

When Bn � Bn � Ai� �i � I� �n � �� � � � � d� �condition � of the MSES� see Table ����� then
the morphological openings ��i�i�kn��X� are independent of i� and equal to X �Bn�

If we replace the above data in ������� then the associated Skeleton Subsets Si�X� are
given by

Si�X� � X 
Ai �
d�

n��

�X 
Ai� �Bn� i � Zd
�� ������

Equation ������ is identical to the MSES�s version of the Lantu�ejoul�s Formula presented in
Table ���� when i is replaced by �n� and n by ��

��



Chapter �

Generalized Grayscale Skeletons

The proposed General Skeleton Representation presented in chapter �� and therefore all its
particular cases� are binary� since they are de�ned in Boolean Lattices� This chapter considers
expanding the scope of the above Skeleton to functions� which leads to aGeneralized Grayscale

Skeleton Representation�

��� Background on Grayscale Skeletons

Among the �rst schemes for calculating a grayscale Skeleton of grayscale images is the work
of Peleg and Rosenfeld ����� In that work� the 	min
max� approach for non
linear image
transformations� developed by Rosenfeld ��
�� is applied to obtain the grayscale Skeleton� and
di�erent ways of representing it are considered� The purpose of the grayscale skeletonization
proposed in ���� is essentially to provide a fuzzy image analysis tool�

In ��
� ���� the above skeletonization method is presented in terms of the Grayscale Mor

phology operations �see section 
��� on page 
��� The resulting grayscale Skeleton is essen

tially the same as in ����� but� in addition� reconstruction of the original function from the
Skeleton is considered�

As a direct generalization of the discrete
family morphological Skeleton �section ����
� on
page ���� each grayscale skeleton 	subset� Sn �which is� in this case� a grayscale image� is
de�ned in ���� by�

Sn
�
� f � ng � �f � ng� � g �����

where f is the original grayscale image� g is a structuring element �also a grayscale image��
� denotes the usual di�erence between functions� and ng is given by�

ng
�
� g � g � � � � � g� �z �

n times

���
�

Fig� ��� presents an example of the �rst steps in a skeletonization process� and the asso

ciated �rst 	subsets� of the Grayscale Skeleton of the image 	House��

Although structurally identical� the calculation of the binary Morphological Skeleton �line
� in Table ��
� on page ��� and the calculation of the grayscale Skeleton ����� have between
them a major di�erence� The minus sign ��� in ����� denotes the usual di�erence operation

��



Figure ���� Grayscale skeletonization� Left side� up
down� Original image f � and its erosions
f � ng� n � �� 
� �� where g is a �at �� �
squared structuring element� Right side� up
down�
The �rst three Grayscale Skeleton 	subsets�� Sn� n � �� �� 
�

��



between functions� whereas in Table ��
 it denotes set�di�erence� The former operation is
not a generalization of the latter� actually� following the discussion in section 
���� �page 
���
there cannot be a direct generalization of the set
di�erence operation for functions�

As a consequence of the above� a direct generalization of the reconstruction formula
�Table ���� cannot be obtained� i�e��

f �mg ��
�
n�m

Sn � ng �����

where � stands for the supremum in the Lattice of functions �see section 
���
� on page 
���
Instead� the following is used for perfect reconstruction�

f � � � � �SN�� � �SN�� � SN � g�� g�� g � � � �����

where N is the order of the highest non
null Skeleton 	subset� Sn�
Another 	imperfection� in the generalization of the Morphological Skeleton for functions

concerns the basic concepts of points and centers� elements� and maximal elements� used in
the Skeleton�s de�nition� These concepts cannot be properly de�ned for functions� and there

fore the Grayscale Skeleton cannot be seen as the collection of centers of maximal elements
	inscribable in the image��

����� Grayscale Skeletons as Pyramids

Although theoretically 	imperfect�� in the sense discussed in the last section� the Grayscale
Skeleton does preserve most of the intuitive properties of the binary Skeleton� especially from
the algebraic point of view�

Notice that the images in Fig� ��� do not present a Grayscale Skeleton condensed in
a single image� like a fuzzy medial axis representation of the original image �which is the
way presented in ������ Instead� the Skeleton 	subsets�� or 	parts�� are shown� This is
because� from the algebraic point of view� we are not interested in seeing a medial axis�
but rather in considering the decomposition obtained by the skeletonization� Similar to the
binary Skeleton� each Grayscale Skeleton 	subset� Sn contains those grayscale features of the
original image with 	size� �or 	width� equal to n� where the concept of 	size� is associated
with the structuring element g�

Therefore� the Grayscale Skeleton �and also the Binary Skeleton� is a hierarchical decom�

position� or in other words� a pyramid� Each 	level� of the pyramid contains details of a
certain 	size�� If we� in a generic way� associate the concept of resolution with size� meaning
that the bigger a feature is� the higher is its resolution� then the Skeleton Representation can
be seen as a multi�resolution pyramid�

In Chapter �� a comparison between the Skeleton decomposition and the Laplacian Pyr�

amid ��� is presented�

��� Generalized Grayscale Skeletons

One �nds the same di�culties in generalizing the Proposed Skeleton framework �chapter ��
from a Boolean Lattice to the �non
boolean� Lattice of functions� We provide here two

��



approaches for obtaining a partial generalization� which are adapted from the two approaches
presented in chapter 
� for generalizing Binary Morphology to Grayscale Morphology� The
�rst is by means of the concept of umbra� and the second is by mean of inf � sup operations�
The latter leads to an adaptation of the grayscale Skeletons presented in the last section�
whereas the former provides a Skeleton with less theoretical 	imperfections��

��� The umbra approach

Suppose we are interested in de�ning a Skeleton decomposition for elements in the Lattice
�Pf of the functions f � E 	 R� where E is any set� The supremum and in�mum of the
above Lattice are the usual ones for functions�

We consider� then� another Lattice �P� this time Boolean� of all the subsets of E �R� i�e��
�P
�
� P�E � R�� Here the supremum and in�mum are union and intersection respectively�

as in any Boolean Lattice in the form P�E�� for some E� Each point in the above Boolean
Lattice is in the form �x� z�� with x 
 E� z 
 R�

Let us de�ne the umbra transformation U��� from the Lattice of functions to the related
Boolean Lattice as�

U � �Pf 	 �P
U�f� � f�x� z� 
 E �Rj z � f�x�g

�����

Similarly� we de�ne the envelope transformation W ��� from the Boolean Lattice to the Lattice
of functions as�

W � �P 	 �Pf

�W �Y ���t� �
W
fz 
 R j �t� z� 
 Y g

�����

Notice that�
W �U�f�� � f� U �W �Y �� � Y �����

Therefore� we say that the above Boolean Lattice contains the Lattice of functions�
In the above Boolean Lattice� a Skeleton decomposition of a set X is then de�ned with

respect to a family of structuring functions which are umbr�� i�e�� each �i � E � R 	 �P
has to satisfy for all �x� z� 
 E � R� if �x�� z�� 
 �i�x� z� 
 �z� � z�� �x�� z�� 
 �i�x� z��
Moreover� translation invariance in z is also required� i�e�� �i�x� z� � �i�x� ��z�

The Skeleton decomposition in the Lattice of functions of a function f � W �X� is then
de�ned by 	projecting� the Skeleton decomposition de�ned in Chapter � in the Lattice of
functions by means of W ���� In other words�

� �Si��t�
�
� �W � �Si���t���i 
 I �����

where f� �Si��t�g are the Grayscale Skeleton Subsets� and f �Sig are the related Skeleton Subsets
in �P�

Is f� �Si��t�g a Skeleton� i�e�� does it consist of 	centers� of 	maximal elements� The
answer is yes� Let us consider the family of functions fW ��i�x� z���t�gi�I in �Pf � It is the
	projection� of the family of structuring elements from the Boolean Lattice into the Lattice of
functions� Each function W ��i�x� z���t� is denoted an 	element� with 	radius� i and 	center�
�x� z�� Notice that� since �i�x� z� is translation invariant in z� W ��i�x� z���t� is equal to

�




W ��i�x� ����t� � z� i�e�� o�set
invariant� We say that an element is a maximal element under
a given function f if�

� W ��i�x� z���t� � f�t���t 
 E�

� � �y 
 E�w 
 R and j 
 I such that�

W ��i�x� z���t� �W ��j�y�w���t� � f�t���t 
 E

Each subset � �Si��t� consists of the 	center� of all the 	maximal elements� with 	radius� i under
the given function f � W �X�� therefore the resulting decomposition is indeed a Skeleton�

A version of the reconstruction formula �the evolution of which is described in Table ����
is also obtained for the above Skeleton of functions�

f�t� �
�
i�I

W ��i� �Si���t�� �����

where �i��� in ����� is the dilation associated with the structuring element �i�x� z�� The proof is
simple� In the Boolean Lattice� it holds� X �

S
i�I �i� �Si�� Therefore� W �X� � W �

S
i�I �i� �Si���

Equation ����� is then obtained since W ��� is actually a dilation between the two Lattices�
and since W �X� � f �

In summary� in order to decompose a function f�t�� its umbra is calculated and decom

posed in the associated Boolean Lattice w�r�t� a family of structuring functions which are also
umbr� �and translation
invariant in z�� The resulting Skeleton Subsets are then projected
back to the Lattice of functions�

��� The �sup�inf� Approach

In this approach� as opposed to the previous one� the calculation is performed entirely in the
Lattice of functions�

Let f 
 �Pf � and de�ne the family of structuring functions f�gi�x���t�g� i 
 I� x 
 E� We
suppose that the umbr� of f and the family of elements satisfy the conditions required by
the Generalized Skeleton in the associated Boolean Lattice�

We derive for each structuring element �gi�x���t�� i 
 I� the following operations in the
Lattices of functions�

� Dilation�
�
g
i �f�t��

�
�

�
x�E

f�gi�x���t� � f�x�g

� Erosion�
�
g
i �f�t��

�
�
�
fz 
 R j �gi�x���t� � z � f�t���t 
 Eg

� Opening�

�
g
i �f�t��

�
� �

g
i �

g
i �f�t��

��



� Closing�

�
g
i �f�t��

�
� �

g
i �

g
i �f�t��

The Skeleton decomposition is then de�ned by its subsets fSg
i �t�g� i 
 I�

S
g
i �t�

�
� �

g
i �f�t���

�
j�i

�
g

�i�j��
g
i �f�t�� ������

where the minus sign relates to the usual minus operation between functions� and �
g

�i�j���� is

the opening associated to the structuring function ���i�j��x���t�
�
� f�gi �gj�x��g�t��

��	 Comparison between the approaches

The morphological operations de�ned above for the Lattice of functions are actually the direct
transposition of the morphological operations in the associated Boolean Lattice� Therefore�
equation ������ can be written as�

S
g
i �t� � �W ��i�X���t��

�
�W

�
�	
j�i

��i�j��i�X�



A
�
� �t� ������

where X � U�f�� and the morphological operations are those of the associated Boolean
Lattice� On the other hand� notice that� by de�nition �equation ������� the umbra approach
gives�

� �Si��t� �

�
�W

�
��i�X��

	
j�i

��i�j��i�X�



A
�
� �t� ����
�

A comparison between ������ and ����
� shows that the only fundamental di�erence between
the approaches is in the nature of the subtraction operation�

Similarly� the umbra approach can be realized entirely in the Lattice of functions� by
means of a formula similar to ������� Actually� one can use the same equation ������� just
replacing the meaning of the subtraction operation by the following one�

�t 
 E� f�t�� g�t�
�
�



f�t�� g�t� � f�t�
�� g�t� � f�t�

������

The above rede�nition of the subtraction operation is the transposition into the Lattice of
functions of the set
di�erence operation in the Boolean Lattice� followed by W ����

Fig� ��
 compares the result of grayscale skeletonization by each of the two approaches� for
a simple �
D discrete signal� For both Skeletons� a constant translation invariant generator
g is used� The generator �structuring element� g is the �at function with region of support
f��� �� �g� In the umbra approach �Fig� ��
�b���c���d��� the Skeleton 	points� �	impulse�
functions� have the same graylevels as the decomposition elements they represent� In the sup

inf approach �Fig� ��
�e���f���g��� the graylevels of the Skeleton 	points� are the numerical
di�erence between the element they represent and their local background�

��



121110987654321-1 E

R f

�a�

121110987654321-1 E

R
S0

121110987654321-1 E

R

S0

�b� �e�

121110987654321-1 E

R

S1

121110987654321-1 E

R

S1

�c� �f�

121110987654321-1 E

R

S2

121110987654321-1 E

R

S2

�d� �g�

Figure ��
� A comparison between the two Grayscale skeletonization approaches� �a� An �
D
discrete signal� �b�� �c�� and �d� The three 	subsets� Sn� n � �� �� 
� according to the umbra

approach� �e�� �f�� and �g� The three 	subsets� according to the 	sup
inf� approach�
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Both approaches are imperfect generalizations of the Skeleton decomposition into the
Lattice of functions� In the second approach �subtraction as the usual minus sign�� the
concept of 	maximal element� is not properly de�ned� and the usual reconstruction formula
is not valid� In the umbra approach� there is much redundancy in the resulting representation�
because the sum of the energy of the decomposition elements is much higher than that of the
original image� and of the Skeleton obtained by the sup
inf approach�
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Chapter �

Applications and Particular Cases of the

Proposed Generalized Skeleton

��� Applications of the Proposed Generalized Skeleton

The applications of the one�parameter skeleton �I being a totally ordered ��dimensional
space�� are well known� In this section� we present some applications of skeletons based on
partially ordered sets� such as Multi�Parameter Skeletons�

From the topological and geometrical points of view� a Multi�Parameter Skeleton may
have little interest� First� it is far less connectivity�preserving than the conventional skeleton�
Also� it fails to exactly provide a Medial Axis of the shapes under study� And� �nally� a
Multi�Parameter Skeleton usually can not be characterized by a quench function� because a
point x � E may be the 	center
 of two �or more� di�erent maximal elements� The latter is
consequence of I being partially ordered�

On the other hand� from the algebraic point of view� a Multi�Parameter Skeleton can be
very useful� First� it can decompose an image into an assortment of shapes richer than the
one a conventional skeleton is able to provide� Moreover� if we consider the element indices
i to be a degree of 	importance
� or as a 	category classi�er
� as is often done regarding
the conventional skeleton� then a Multi�Parameter Skeleton can provide �ner distributions
and classi�cations� In addition� there is greater diversity of possible partial reconstructions�
where their proximity to the original image are controlled by the choice of the anti�umbra J
in ����
�� Finally� each of the scalar parameters of the multi�dimensional index i may have
a di�erent physical interpretation� such as size� time duration� gray�level� etc�� in contrast to
the conventional skeleton decomposition� where di�erent physical characteristics of the image
can not be treated independently�

����� Shape Classi�cation

Let us consider a MSES representation of a binary image composed by several objects� By
considering the relation between the projections n�� � � �� � � � � d� of the index �n associated
to a MSES point� one can decide whether the related maximal element is similar to either of
the family generators B�� or none of them�
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�a� �b� �c�

Figure ���� Shape Classi�cation via an MSES� �a� An image composed of rectangular features�
�b� Features for which C� � ���� �c� Features for which C� � ����
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�a� �b� �c�

Figure ���� �a� A binary image containing a partially occluded disc� �b� elements detected
by a conventional skeleton� �c� elements detected by a ��parameter skeleton�

Let the concentration C� of the generator B� for an MSES point with 	radius
 �n �

�n�� � � � � nd� be de�ned as C�
�

� n���
Pd

m�� nm�� It can be seen as a measure of the similarity
of a maximal element to the structuring element B��

For example� Fig� ����a� shows an image X composed of several rectangular features� A
two�parameter MSES representation of X� with the rectangular family shown in Fig� ����a��
was calculated� Fig� ����b� shows the maximal elements corresponding to MSES points for
which C� � 
���� Those features are similar to B� �vertical line�� Fig� ��c� shows maximal
elements corresponding to Minimal MSES points for which C� � 
���� Those features are
similar to B� �horizontal line��

����� Pattern Recognition

Suppose we are interested in �nding a pattern in a binary image� and that this pattern is not
corrupted with holes but may be partially occluded� E�g�� the disc in Figure ����a��

In order to detect the shape� let us consider a family of translation invariant structuring�
functions� with the structure shown in ������� If the pattern we are interested in is one of the
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shapes of the family fAig� then it should be easy to locate such a pattern using the associated
skeleton decomposition� since it provides the centers of maximal elements from that family
in the given image� In other words� we consider patterns to be located as maximal elements�
and de�ne a proper family of shapes fAig for decomposition� Thus� in order to detect the
disc in Fig� ���� we may calculate the skeleton w�r�t� a family of increasing discs�

However� for a conventional skeleton� the above idea does not work well� In Fig� ����b�
we see that we may �nd� in the subsets Sn of the skeleton� maximal elements other than the
pattern we are looking for�

On the other hand� a MSES could give better results� For the example in Fig� ���� we
choose a ��parameter skeleton� based on � structuring�elements� a unit disc �which we want
to detect�� and � unit lines in four di�erent directions� In this case� we are interested in the
subsets of the form S�n��������� only� As seen in Fig� ����c�� most of the 	false alarms
 obtained
by the conventional skeleton are now in di�erent subsets than S�n����������

����� Coding Using a Hybrid Skeleton

Let us compare a Multi�Parameter Skeleton� w�r�t� a partially ordered family of structuring�
functions F � to a conventional one�parameter skeleton w�r�t� a totally ordered sub�family �F
contained in F � For example� if we consider the family of open rectangles shown in Fig� ����a�
to be F � then �F could be the family of open squares� Because of the partial ordering� the
number of skeleton points in the multi�parameter skeleton is expected to be larger than the
number of skeleton points in the one�parameter skeleton� But after removing redundant points
in both skeletons �see chapter ��� the situation is inverted� the multi�parameter skeleton is
expected to contain considerably fewer points than the one�parameter skeleton� which could
be of great advantage for Coding purposes�

However� since the number of subsets in the multi�parameter skeleton is usually much
bigger than the number of subsets in the one�parameter skeleton �about Nd in comparison to
N�� this turns out to be too costly in terms of coding e�ciency� Moreover� its computational
burden� usually of orderO�d�� is very high if compared to O��� of the one�parameter skeleton�

However� the General Skeleton Decomposition presented in section ��� does not restrict
us to either a one�parameter or a multi�parameter skeleton� combinations of them are also
possible� For example� instead of considering a decomposition w�r�t� the family of all the
rectangles� as presented in section ���� or w�r�t� the family of squares only� We can arbitrarily

select any sub�family of rectangles for the skeletonization� This combines� at some extent�
the advantages of both the multi�parameter and the one�parameter skeletons� We call such
decomposition a Hybrid Skeleton�

As opposed to a full multi�parameter decomposition� which in the general case is not
substantially advantageous when compared to the one�parameter skeleton� Hybrid Skeletons
showed promising results in preliminary simulations� For the facsimile image in Fig� ���� for
example� the standard Run�length�Hu�man coder ���� gives a compression of 
��� bits per
pixel for the MSES w�r�t� the hybrid Skeleton� compared to 
��� bits per pixel for the original
Skeleton w�r�t� the family of squares���

�Both Skeletons had their redundancy removed� by the algorithm proposed in ����� previous to coding�
See chapter � for details�
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Figure ���� A facsimile image� Its Hybrid Skeleton decomposition is coded with higher com�
pression rate than its original Skeleton decomposition� for the Run�Length�Hu�man coder�

����� Filtering by Partial Reconstruction

Discarding lower�order Skeleton Subsets in the reconstruction process produces simpli�ed
�morphologically opened� versions of the original image� as seen in Table ���� Usually� a
Multi�Parameter Skeleton has a greater variety of options for �ltering the original image by
partial reconstruction than a one�parameter Skeleton�

One can see that discarding S����X� alone from a two�parameter MSES produces the same
result as the union of the openings by the � structuring elements B� and B�� This is a more
selective �ltering than the opening by a single structuring element� Generally� for an MSES
with d structuring elements� the removal of the lowest MSES subset gives the union of the
openings by each of the d structuring elements� which was shown to have good noise cleaning
properties in �����

Many other morphological �lters can be obtained by removing di�erent combinations of
lower�order subsets� Fig� ��� shows the result of removing the MSES subsets with n��n� � ��
in contrast to the result of removing the original Skeleton subsets with n � �� when the MSES
is calculated with the family of discrete rectangles �Fig� ����a�� and the original Skeleton with
the family of discrete squares�

����� Image Analysis

The Regular Skeleton is closely related to a morphological pattern spectrum ��
�� The pattern
spectrum conveys geometrical information which can be further analyzed and processed� The
discrete morphological pattern spectrum is de�ned in ��
� as�

PSB
n �X� � ��X � nB �X � �n� ��B��

where ���� denotes �nite set cardinality�
The MSES� because of its multi�parameter structure� may be seen as closely related to a

multi�dimensional pattern spectrum� which contains the ��dimensional pattern spectrum and
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�a� �b� �c�

Figure ���� Image Filtering by partial reconstruction� �a� Noisy image� �b� Filtered recon�
struction from the original Skeleton �n � ��� �c� Filtered reconstruction from the MSES
�n� � n� � ���

conveys more and �ner details for analysis� The same type of generalization used to generate
the ��element MSES may be used to de�ne a ��dimensional pattern spectrum�

PSB��B�

n��n�
�X� � �fX � �n�B� � n�B���

�X � ��n� � ��B� � n�B��� � �X � �n�B� � �n� � ��B���g

��� Special Cases of the Generalized Skeleton Decom�

position

This section shows how the Quadtree Decomposition of binary images and the Bit�Plane
decomposition of Grayscale pictures can both be seen as particular cases of the Generalized
Skeleton Decomposition�

Apart from its theoretical relevance� in relating image representations thought previously
to be unrelated� this result makes it possible to obtain multi�parameter generalizations of
the Quadtree and the Bit�Plane decompositions� supported by the generalized framework of
Skeleton Decomposition� These generalizations are also presented in this section�

����� Quadtree Decomposition

Let us select the Boolean Lattice as the set P�N �� of all the subsets of N �� where N is the
set of natural numbers� and let the structuring�function � � N � � P�N �� be �as depicted in
Figure ����a�� de�ned by�

��i� j� � f��i� �j�� ��i� �� �j��
��i� �j � ��� ��i� �� �j � ��g�

�i� j� � N �
�����

The dilation ��X� derived from the above structuring function is equivalent to an inter�

polation process� it �rst upsamples the input binary imageX� and then �lls the gaps between
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�a� �b�

Figure ���� �a� The structuring�function for the Quadtree Decomposition� �b� Original binary
��� 	 ����pixel image�

samples by dilating it �in the translation�invariant sense� i�e�� performing �� by a �	 ��pixel
squared structuring element� Therefore� the adjoint erosion 	�X� is equivalent to a decim�

ation process� where X is �rst eroded �in the translation�invariant sense � 
� by the same
�	 � pixel structuring element as above� and then downsampled� The related opening 
�X�
is the result of 	decimation
 followed by 	interpolation
�

A constant generator family of structuring functions f�n�x�g is obtained by the n�fold
composition of ��x� with itself� I�e��

�n�x� �

�
���n�x�� n � 

fxg� n � 


�����

The decomposition of a binary image� using the Generalized Skeleton ����� with the
above family� is the Quadtree decomposition of the foreground of the image� For example�
Figure ����b� shows a binary image� and Figure ����a� shows its Skeleton subsets Sn� n �

� �� � � �� The black pixels are the Skeleton Points� each representing a maximal element� In
this case� maximal elements are squares of sizes �n 	 �n pixels� Figure ����b� shows the
maximal elements for the above image�

By inverting each pixel of the image �interchanging foreground and background� and
applying the above decomposition again� one obtains the Quadtree decomposition of the

background� The corresponding maximal elements are shown in Figure ����c�� Full Quadtree
representation consists of both foreground and background decompositions�

����� Bit�Plane Decomposition

For a Bit�Plane decomposition� we select the Lattice of grayscale functions complemented
with �� i�e�� functions with values in the range f
� �� � � � � ���g � f�g�

We select the following dilation ��f� in the above Lattice �f being a function��

��f�x�� �

�
�f�x�� 
 � f�x� � ���
�� f�x� � ���

�����
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�a�

�b� �c�

Figure ���� Quadtree decomposition as a Skeleton� �a� Skeleton Subsets Sn� n � 
� �� � � ��
of the foreground decomposition� �b� Maximal Elements �foreground decomposition�� �c�
Maximal Elements �background decomposition��
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�a� �b�

Figure ���� Bit�Plane Decomposition as a grayscale Skeleton� �a� Original discrete function�
�b� decomposition into 	Maximal Elements
 �the rectangles�� each 	Maximal Element
 rep�
resents a 	�
 in the appropriate Bit�Plane �rectangles of the same color correspond to same
Bit�Plane��

If we consider an ��bit�plane image f �i�e�� a function with values in the range f
� � � � � ���g��
then the corresponding erosion is 	�f� � bf��c� and the opening is 
�f� � �bf��c� The sets
Sn of the Grayscale Skeleton in this case� are the Bit Planes of f �

For example� Figure ����a� shows an one�dimensional discrete function� Figure ����b�
shows the result of the decomposition� Each decomposition 	rectangle
 has a height �m�
m � 
� �� � � � � � �note that rectangles with same m have same color�� where each 	rectangle

represents a 	�
 �Skeleton Point� in the appropriate Bit�Planem �Skeleton subset�� Although
maximal elements can not be de�ned in this case �see section ����� the above 	rectangles

o�er a suitable approximation�

����� Generalized Quadtree Decomposition

Let us de�ne the following structuring functions�

���i� j� � f�i� �j�� �i� �j � ��g �����

���i� j� � f��i� j�� ��i� �� j�g� �����

The above structuring functions are depicted in Figure ����
We de�ne a ��parameter Quadtree decomposition� by using equation ����� with the fol�

lowing family�
�i�x� � ����

i�����
i��x� �����

where i � �i�� i�� � N ��
The above Generalized Quadtree decomposes a binary image into rectangles rather than

squares �see Figure �����
As opposed to the original Quadtree decomposition� where the decomposition squares are

disjoint� the decomposition rectangles of the Generalized Quadtree may overlap �see the light
grey areas in Figures ����b� and ����c��� On the other hand� as opposed to standard Skeleton
decompositions� where some Skeleton points are redundant and may be removed� there are
no redundant rectangles� The number of decomposition rectangles is usually much smaller
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Figure ���� Structuring functions for the proposed Generalized Quadtree Decomposition�

than the number of decomposition squares� as can be seen when comparing Figure ����a�
with Figure ����a�� This has potential use in coding�

����� Bit�Plane	Quadtree Decomposition

Consider the dilation ��X� which we used for performing the standard Quadtree Decom�
position in section ������ As mentioned in section ������ this ��X� is an 	interpolation
�
obtained by upsampling the image� followed by a translation invariant dilation ��� with a
�	 ��squared structuring element� Let us adapt the above 	Quadtree
 dilation ��X� �hence
also the erosion� opening and closing� so that it is applied to grayscale functions� We do this
simply by replacing the above binary translation invariant dilation ��� with a grayscale one�
with a �	 ��pixel  at structuring element�

A Bit�Plane�Quadtree Decomposition can be de�ned� by using Lantu!ejoul"s generalized
equation ����� with the family f�i�x�g� i � �i�� i��� as de�ned in ������ where �� is selected
to be the 	Bit�Plane dilation
 ������ and �� is selected to be the above 	Grayscale Quadtree
dilation
 �	interpolation
��

This provides a decomposition of a grayscale image into squares of size �i� and graylevel
�i� each� where i�� i� � N � The number of such squares is usually much smaller that the
number of 	�
s in the Bit�Plane decomposition� This also could be of potential use in
coding�
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�a�

�b� �c�

Figure ���� Proposed Generalized Quadtree decomposition� �a� Generalized Skeleton Subsets
Sn�m� �n�m� � N �� for the foreground decomposition� �c� Maximal Elements �foreground
decomposition�� The light grey areas represent overlapping of the decomposition rectangles�
�d� Maximal Elements �background decomposition��
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Chapter �

Generic Approach for Morphological

Reduction of Skeleton Redundancy

In this chapter we study morphological methods to reduce the amount of redundant points
in the Skeleton representation of images� The advantage of removing redundant points using
morphological operations only� lies in the computational e�ciency of these operations� when
implemented on parallel machines�

��� Background

As pointed out in chapter �� the Skeleton is a redundant representation� i�e�� some of its
points may be discarded without a�ecting its error�free representation characteristic� From
the algebraic point of view� it is of interest to remove redundant Skeleton points� so that the
representation contains as few as possible points�

For this purpose� Maragos and Schafer de�ned in 	
�� a Minimal Skeleton as being any
set of points from the Skeleton which fully represents the original image and does not so if
any of its points is removed� A Minimal Skeleton always exists since in the worst case it is
the Skeleton itself� On the other hand� there can be more than one Minimal Skeleton for a
given image� Fig� 
���a� shows a binary picture and its Morphological Skeleton computed
with a �x� square structuring�element� Fig� 
���b���c� show two of the Minimal Skeletons of
Fig� 
���a��

Maragos and Schafer propose in 	
�� an algorithm for �nding a Minimal Skeleton from
the Skeleton representation of a binary image� However� this algorithm is not fully morpho�
logical and therefore cannot be e�ciently implemented on a parallel machine� in contrast to
the Morphological Skeleton itself which is amenable to a parallel implementation� A fully
morphological algorithm for �nding Minimal Skeletons could take advantage of the parallel
properties of the morphological operations and perform the computation in a more e�cient
way�

Sapiro and Malah de�ned in 	�
� ��� �see also 	���� an Essential Point of the Skeleton as
any Skeleton point that cannot be removed from the original Skeleton without a�ecting its
error�free property� The Essential Points are contained in any Minimal Skeleton� although
usually are not su�cient for exact reconstruction� The set of Essential Points is unique and
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Figure 
��� �a� A shape and its Skeleton �computed with a �x� square�� �b���c� two of its Minimal Skeletons�
�d� the Essential Points�

it is typically the major part of Minimal Skeletons ���� and more� 	���� Because of the above
properties� Sapiro and Malah suggested in 	��� that the Essential Points of the Skeleton should
be found �rst� and then the remaining Minimal Skeleton points could be searched for in a
more e�cient way� The Essential Points of the shape in Fig� 
���a� are shown in Fig� 
���d��
Notice that they are present in the two Minimal Skeletons shown in the �gure�

Another important related topic is the �Reduced Skeleton� de�ned by Maragos in 	����
The Reduced Skeleton has fewer points than the regular Skeleton and it is also error�free�
It is not a Minimal Skeleton but it is obtained by morphological operations only� �The
mathematical de�nition is reviewed in section 
���� below��

In this chapter� �rst a classi�cation of the redundant points of a generic morphological
representation into categories is proposed in section 
�
� and its speci�c relation to the Skel�
eton is considered� Then� section 
�� considers the Essential Points� Their mathematical
de�nition� a theorem stating that the Essential Points are the intersection of all the Min�
imal Skeletons� and the de�nition of a new type of Essential Points� Local Essential Points�
Moreover� it is proposed an approach which takes into the account the above classi�cation of
the redundant points� and leads to a Reduced Skeleton which has less points than Maragos�s
Reduced Skeleton and is also error�free� And �nally� morphological formul� for calculating
the Essential Points are also presented� The approach is suitable for any particular case of
the Generalized Skeleton Representation presented in chapter ��

��� Redundancy Classi�cation

The concepts discussed in this chapter are suitable for both binary and grayscale images�
However� we consider in this thesis only the binary case� The images can be sets in any
Boolean Lattice P�E�� in particular they may be continuous sets in E � R�� or discrete sets
in E�Z��
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����� Types of Redundant Points

Let I be any totally or partially ordered set of indices� and let us consider a collection of
subsets fTig� i � I� which represents a given set X � P�E� in the following way�

X �
�
i�I

�i�Ti�� �
���

where f�i�X�g� i � I� is a given family of dilations in P�E��
A point t belonging to the subset of index i� t � Ti� represents the element �i�t� � X�
If t � Ti is redundant� then the element it represents ��i�t�� is contained in a region

represented by some or all the other representation points� i�e��

�i�t� �

�
��
j ��i

�j�Tj�

�
A � 	�i�Ti � ftg�� �
�
�

We propose to classify each of the redundant points into one or more of the following re�
dundancy categories�

Single�Element Redundancy� if there exists at least one element with index greater than
i that covers �i�t�� i�e��

�j � i� �y � Tj j �i�t� � �j�y�� �
���

Higher�level Redundancy� if there exists a union of elements with index greater than i

that covers �i�t�� i�e��
�i�t� �

�
j�i

�j�Tj�� �
���

Note that every �Single�Element� redundant point is also a �Higher�level� redundant
point�

Lower�level Redundancy� if there exists a union of elements with index smaller than i

that covers �i�t�� i�e��
�i�t� �

�
j�i

�j�Tj�� �
���

Higher�Lower�level Redundancy� if there exists a union of elements with indices
greater or smaller than i that covers �i�t�� i�e��

�i�t� �
�

j�i or j�i

�j�Tj�� �
�
�

Hence� every higher�level or lower�level redundant point is also a higher�lower�level
redundant point�

Interlevel Redundancy� if there exists a union of elements with indices di�erent from i

that covers �i�t�� i�e��
�i�t� �

�
j ��i

�j�Tj�� �
���

Hence� every higher�lower�level redundant point is also an interlevel redundant point�
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Intralevel Redundancy� if the redundant point is not Interlevel redundant� i�e��

�i�t� ��
�
j ��i

�j�Tj�� �
���

In this case� every set of elements �excluding �i�t�� that covers �i�t� contains at least
one element with index i�

Total Ordering

An important particular case is obtained when I is a totally ordered family of indices� In this
case� we associate this totally ordering to the ordering in which the elements are calculated�
i�e�� we suppose that the lower�order elements are calculated before the higher�order elements�
sequentially� This gives a �temporal� meaning to the index i�

Therefore� if I is totally ordered� we denote the Higher�level Redundancy also by Future�
level Redundancy� and the Lower�level Redundancy by Past�level Redundancy� In this case�
the Higher�Lower�level Redundancy and the Interlevel Redundancy are identical� and we use
the name of the latter�

����� The Morphological Skeleton and Its Redundancy

The Generalized Morphological Skeleton representation of a binary imageX �see section �����
being the set of points which are centers of maximal elements� does not contain redundant
points from the �Single�Element� category� i�e�� it does not contain �Single�Element Redund�
ancy�� On the other hand� it may contain redundant points from all the other categories�

For demonstration� Fig� 
�
 shows a continuous binary image composed by the union of

 disks� P and Q� which are centered at the points p and q� respectively� The Skeleton of the

shape� computed with �i�X�
�
� X 	 iB� where iB is a disc with radius i � I

�
� R� �totally

ordered�� is the segment 	p� q�� In this case� all the skeleton points are redundant� except for
p and q� The point a in Fig� 
�
�a� is a �Future�level� redundant point� because the element
it represents �the dotted disk� is contained in the union of 
 bigger maximal disks �P and
Q�� The point b in Fig� 
�
�b� is �Interlevel� redundant� because it represents a disk �the
dotted one� which in this example is contained in the union of a bigger maximal disk �Q� and
a smaller maximal disk �P �� The point c in Fig� 
�
�c� is �Intralevel� redundant� because the
dotted disk� which it represents� is contained in the union of a larger maximal disk �Q� and
a maximal disk with the same size �P �� and it is not contained in any union of only larger
and smaller maximal disks�

Similarly� Multi�Parameter Skeletons can contain Higher�level� Lower�level�
Higher�Lower�level� Interlevel and Intralevel Redundancy�

��� Essential Points

An Essential point of a Skeleton Representation is de�ned to be a point of the Skeleton
which� if it is removed from the original Skeleton� makes the exact reconstruction impossible
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Figure 
�
� Types of redundant points in the Skeleton� �a� A binary image composed by
two disks �P and Q�� and its Skeleton �the segment 	p� q��� The point a is a �Future�level�
redundant point� �b� the point b is a �Interlevel� redundant point� and �c� the point c is a
�Intralevel� redundant point�

	�
� ���� More speci�cally� a point t belonging to the Skeleton subset Si is a Essential Point
of order i i��� �

��
j ��i

�j�Sj�

�
A � �i�Si � ftg� �� X �
���

As an example� Fig� 
���a� shows a binary image� Fig 
���b� shows its Morphological
Skeleton �computed with a �x� square as structuring�element�� Fig� 
���c� shows a Minimal
Skeleton and Fig� 
���d� shows its Essential Points �which is a subset of theMinimal Skeleton��

Theorem � The Essential Points of a discrete Skeleton are the intersection of all its Min�
imal Skeletons�

Proof Since� obviously� the Essential Points are a subset of any Minimal Skeleton� it is
su�cient to prove that there does not exist a point p� belonging to all the Minimal Skeletons�
which is not an Essential Point�

Suppose� by contradiction� that there is such a point p� Since it is not an Essential
Point� the Skeleton representation without it is still error�free� If we go on removing other
Skeleton points� at some point we will obtain a Minimal Skeleton� since the original Skeleton
is discrete and therefore it has a �nite number of points� The obtained Minimal Skeleton
does not contain the point p� and therefore p does not belong to the intersections of all the
Minimal Skeletons� �

�The de�nition presented here is a generalization of that in �	
��
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�c� �d�

Figure 
��� �a� The binary picture �Tools
� �b� its Skeleton computed with a ��� square� �c� a Minimal
Skeleton subset of �b�� �d� the Essential Points of �b��

Global and Local Essential Points

The Essential Points� as de�ned above� is the set of points necessary �and not su�cient� for
perfect reconstruction of the image X� by means of the reconstruction formula ������ with
J � I� Here we de�ne Local Essential Points as the points necessary �and not su�cient� for
the partial reconstruction �i�X�� obtained by removing all Skeleton points with radius which
are not greater or equal to i� 
i � I�

De�nition � A point t � X is a Local Essential Point of order i of the Skeleton of X� i�
for the anti�umbra� J � fj � I j j � ig�

�
��
j�J

�j�Sj�

�
A � ��i	Si � ftg�� �� �i�X� �
����

In order to avoid confusion� we denote� from this point on� by Global Essential Points the
Essential Points previously de�ned� The set of Local Essential Points contains �or is equal
to� the set of Global Essential Points�

�See de�nition in Theorem ��

�




In the particular case of the original Morphological Skeleton� for which� I � N � i � n�
and �i�X� � X 	 nB� for some structuring element B� the de�nitions of Local and Global
Essential Points are written in the following way�

Corollary � A point t � X is a Local Essential Point of order n of the Skeleton of X�
based on the structuring�element B� i�

� �
m�n

Sm 	mB

�
� �	Sn � ftg�	 nB� �� X � nB �
����

Corollary 	 A point t � X is a Global Essential Point of order n of the Skeleton of X�
based on the structuring�element B� i�

�
� �
m��n

Sm 	mB

�
A � �	Sn � ftg�	 nB� �� X �
��
�

where Sm is the Skeleton subset of order m�

In section 
���
 below� e�cient formul� for calculating the Global Essential Points of a
Generalized Skeleton are presented� In section ��� below� e�cient formul� for calculating the
Local and the Global Essential Points for the original Morphological Skeleton are presented�

��� Redundancy Reduction

The approach presented in this section is developed for the Generalized Skeleton Represent�
ation presented in chapter �� and therefore for any of its particular cases�

����� Reduced Skeletons

In 	
�� and 	���� the approach used to remove redundant points from the Skeleton was �rst
to calculate the Skeleton and then to apply a reduction algorithm to remove the redundant
points�

However� we note that the skeletonization itself is a partial reduction process� as we demon�
strate below� If the Skeleton subsets Si would have been de�ned as Si � �i�X�� 
n� �where
�i�X� is the adjoint erosion of �i�X�� then the exact reconstruction property �
���� for Ti � Si�
would still be satis�ed� but this �Skeleton� would contain too many points� In fact� if

���X�
�
� X� then S� itself would then be equal to X� Instead� the sets

S
j�i ��i�j��i�X� of

redundant points are removed from �i�X� for all i in the de�nition of the Generalized Skel�
eton ������ �page �
�� so that a compact representation is obtained� However� as mentioned
before� only the �Single�Element Redundancy� is removed this way�

We propose to remove as many redundant points as possible during the skeletonization
process� which is fully morphological� so that a more e�cient error�free decomposition than
the ordinary Skeleton is obtained by morphological operations only�

��



The proposed approach is based on the following relation�

RSi �

�
�representationpoints of order
i

�
A�

�
�redundantpoints of
order i

�
A �
����

where fRSig are the Reduced Skeleton subsets�
The representation points are the centers of elements with index i� therefore the above

relation can be written as follows�

RSi � �i

�
�representationregion of order
i

�
A� �i

�
�redundantregion of
order i

�
A �
����

The �representation region of order i� is actually the opening �i�X�� By replacing the
�eld �redundant region of order i� in �
���� by appropriate sets� one can obtain di�erent
Reduced Skeletons�

Higher�Level Redundancy�Free Skeletons

A Skeleton with no 	Higher�level Redundancy
 is obtained if we choose �redundant region�
to be the union of all the maximal elements with index greater than i� which we denote Fi�

A simple formula for obtaining Fi before the calculation of the elements with index greater
than i is obtained by setting J � fj � I j j � ig in ������� �page ����

Fi
�
�
�
j�i

�j�Sj� � �J �X� �
�
j�i

�j�X�� �
����

The subsets RS��	
i of the resulting Reduced Skeleton with no �Higher�level� redundancy are

therefore given by�

RS
��	
i

�
� �i	�i�X��� �i

�
��
j�i

�j�X�

	



� �i�X�� �i

�
��
j�i

�j�j�X�

	



� �i�X�� �i

�
��
j�i

�i��i�j���i�j��i�X�

	



� �i�X�� �i

�
��
j�i

��i�j��i�X�

	

 �
��
�

where �i��� is the closing related to the index i� and ��i�j����� ��i�j����� and ��i�j���� are respectively

the dilation� erosion and opening associated with the structuring function ��i�j��x�
�
� �i�j�x��

From �
��
�� one concludes that RS��	 is the generalization of the Reduced Skeleton pro�
posed by Maragos in 	��� �see also 	�����

RSn � X 
 nB � 	�X 
 nB� �B� � nB� �
����

��
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Figure 
��� �a� The same binary image as shown in Fig�
� and its Reduced Skeleton RS��	�
�b� its Reduced Skeleton RS��	� �c� its only Minimal Skeleton�

In 	���� I � N � the index n is used instead of i� and �n�X�
�
� X 	 nB� where nB is

the n�fold dilation of a structuring element B by itself �as in the Morphological Skeleton�
see section ����
�� Notice also that �
��
� is identical to the calculation formula for the
Generalized Skeleton ����� with the addition of the closing �i����

Fig� 
���a� shows the result of the calculation of RS��	 associated with the Skeleton of the
binary image shown in Fig� 
�
� It contains the point p and the segment 	c� q�� where c is the
same �Intralevel� redundant point shown in Fig� 
�
�c�� The points from the segment �p� c��
which are �Future�level� redundant in the Skeleton� are not present in RS��	�

Higher�Lower�Level Redundancy�Free Skeletons

If we include in �redundant region� of equation �
���� the union of all the representation
elements with order smaller than i as well� we obtain an error�free Reduced Skeleton� which
we denote as RS��	� with no Higher�Lower�level redundancy�

The union of the representation elements with order smaller than i� which we denote as
Pi� is de�ned by�

Pi
�
�
�
j�i

�j�RS
��	
j �� �
����

Notice that Pi depend only on the sets RSj with indices strictly smaller than i�
The subsets of RS��	 are given by�

RS
��	
i

�
� �i�X�� �i�Pi � Fi� �
����

Fig� 
���b� shows the result of the calculation of RS��	 for the same binary image as
before� It contains only the points p� q and c� The points from the segment �c� q�� which

��



are �Interlevel� redundant in the Skeleton� are not present in RS��	� The point c� which is
�Intralevel� redundant� is still present�

If I � N �totally ordered and discrete�� than Pi can be computed recursively in the
following way� �

Pi � Pi�� � �i���RS
��	
i���� i � �

P� � ��
�
�
��

This permits an e�cient calculation of Pi and� thus� of RS��	�

Interlevel Reduction for Multi�Parameter Skeletons

When I is totally ordered� the interlevel redundancy and the Higher�Lower�level redundancy
are identical� as stressed above� and therefore calculating a Higher�Lower�level Redundancy�
Free Skeleton provides also an Interlevel Redundancy�Free Skeleton�

In the case of Multi�Parameter Skeletons �like the MSES�� an Interlevel Redundancy�Free
Skeleton can be obtained in the following way� Let us disregard the strong partial ordering
of N d� used for the Skeleton calculation� and instead let us consider its lexicographic order�

�n�� � � � � nd� 	 �m�� � � � �md�
m�

BBBB�
n� 	 m� or

�n� � m� and n� 	 m�� or
���

�n� � m� and � � � and nd�� � md�� and nd 	 md�

�
CCCCA

�
�
��

Notice that this is a total ordering�
In this case� the union of all the maximal elements with index greater than i� Fi� is given

by�

Fi �
�
���

h
��n�����������	�X� � ��n������nd������	�X� � � � � � ��n������nd���nd��	�X�

i
�
�

�

The union of the elements with index smaller than i� Pi� is still obtained by �
����� but using
the lexicographic order this time�

With the above rede�nitions of Fi and Pi� an Interlevel Redundancy�Free Skeleton for the
Multi�Parameter Skeletons is obtained by the same relation �
���� as above� Notice that the
recursive calculation of Pi� �
�
��� is valid for the Multi�Parameter Skeleton� if we interpret
i� � as the previous value of i in the lexicographic order�

Intralevel Reduction

To obtain a Minimal Skeleton� the intralevel redundancy should also be removed� Unfortu�
nately� it seems not possible to de�ne a �redundant region� that would remove this kind of
redundancy without a�ecting the property of exact reconstruction of the Reduced Skeletons�
In the example of Fig� 
��� the Minimal Skeleton �which is unique in this example� is shown
in Fig� 
���c��

�




Example

Fig� 
�� shows the result of calculating the Reduced Skeletons de�ned above� for a �real� bin�
ary picture� the 
�
�
�
 �Co�ee�Grains�� Its Generalized�Step Skeleton �see section �������
Fig� 
���a�� was calculated using the shapes shown in Fig� 
�
 as the �rst 
 elements of fB�n�g�
so that fA�n�g is approximately a family of increasing disks� and the Skeleton is as thin as
possible� The other elements of fB�n�g were derived from them cyclically by the formula�
B�n� � B�n mod 
�� This Skeleton contains ��
� representation points� Fig� 
���b� shows
the Reduced Skeleton RS��	� containing ���� points ������ less than the original Skeleton��
and Fig� 
���c� shows the Reduced Skeleton RS��	� containing ��
 points �
���� less than the
original Skeleton�� For comparison� Fig� 
���d� shows a Minimal Skeleton� obtained with the
non�morphological algorithm presented in 	
��� It contains ��� points ������ less than the
original Skeleton�� According to the above numbers� the Reduced Skeleton RS��	 was able to
remove in this example ��� of the redundant points� using morphological operations only�

Minimal MSES

For a particular but important choice of the families of shapes for the MSES with 

structuring�elements� RS��	 yields a representation with no redundant points� i�e�� a Min�
imal MSES� The families of shapes which provide this result are in the form A�n�� n�� �
n�B� 	 n�B�� where B� and B� are elements containing exactly 
 points� which we call dis�
crete elementary directional structuring�elements� The shapes in Fig� 
�
 are examples of
discrete elementary directional structuring�elements�

It is well known 	
�� that the ordinary Skeleton� computed with any directional
structuring�element� contains no redundancy� As an extension to this property� the Reduced
MSES RS��	� computed with any pair of structuring�elements from Fig� 
�
 �or any other
pair of elementary directional elements�� contains no intralevel redundancy�

Since RS��	 has no interlevel redundancy� the conclusion is that it contains no redundant
points at all� It is therefore a Minimal MSES�

In contrast to ��parameter families of directional shapes� in which there is little interest
as kernels� the families of shapes generated by pairs of elementary directional structuring�
elements are important ones� E�g�� in the case of the horizontal and the vertical elementary
structuring�elements �the �rst two elements shown in Fig� 
�
�� the family A�n�m� obtained
is composed of all discrete rectangles �see Fig� ����b���

We compared the Minimal MSES representation� obtained by the proposed approach�
of the binary image �Co�ee�Grains� �Fig� 
��� calculated with the horizontal and vertical
elementary structuring�elements mentioned above� with a Minimal Skeleton representation
of the same image calculated with a � � � square as structuring�element� Note that the

�parameter family of rectangles� used for the MSES calculation� contains the ��parameter
family of squares� used for the Skeleton calculation� In this case� the number of points in
the Minimal MSES is expected to be much smaller than the number of points in the Minimal
Skeleton� Indeed� in the above simulation the Minimal MSES obtained contains ��� points�
whereas the Minimal Skeleton contains ��� points �a di�erence of 
������ The Minimal
Skeleton calculation was performed using the non�morphological algorithm presented in 	
���

��



�a� �b�

�c� �d�

Figure 
��� Reduced Skeletons� �a� Binary image and its Skeleton� �b� its Reduced Skeleton
RS��	� �c� its Reduced Skeleton RS��	� and �d� a Minimal Skeleton�

��



u u u

u

u

u

B��� B��� B�
�

u

u

u u u

u

B��� B��� B���

Figure 
�
� Series of shapes fB�n�g used in the calculations of the Skeletons in Fig�� �The
symbol ��� represents the origin��

����� Extraction of Essential Points

The same approach that yields the Reduced Skeletons of the last section� also permits us
to obtain the Global Essential Points of the Skeleton using morphological operations only�
The calculation is performed at each step of the skeletonization process� so that the Essential
Points of order i are obtained before the calculation of the Skeleton subsets of orders greater
than i� Since we do not consider Local Essential Points here� throughout this section the
expression �Essential Points� denotes the Global Essential Points�

To extract the Essential Points� equation �
���� is written in the following way�

EPi � Si �

�
�Non�Essential
Points of order
i

�
A �
�
��

where EPi is the set of Essential Points of order i� and �Non�Essential Points of order i� are
those Skeleton points of order i which are not Essential Points�

Equation �
�
�� may also be written as follows�

EPi � Si � �i�  Pi � Fi �Ri� �
�
��

The union  Pi � Fi �Ri �  Pi and Ri are de�ned below� refers to the region represented by all
the Non�Essential Points of order i� i�e�� a subregion from the representation region of order
i� which is represented more than once�

As before�  Pi and Fi are related� respectively� to elements with indices �smaller� and
�bigger� than i� Fi is the same as computed in �
���� or �
�

�� respectively to the cases
where I is totally ordered or I � N �  Pi is computed recursively as was done for Pi in �
�
���
�accumulating� the regions covered by Skeleton points of order smaller than i��

 Pi �  Pi�� � �i���Si���� i � �
 P� � ��

�
�
��

��



The sets fRig are those regions which are covered more than once by elements of size i
only� An exact expression for computing Ri is�

Ri �
�
s�Si

	�i�Si � fsg�� �
�

�

The proof is presented in Appendix A�
Formula �
�

� is an e�cient way to calculate Ri only for large values of i� because in

that case Si contains only few points� For small values of i� though� there are many points
in the corresponding Skeleton subsets� in which case this formula looses its e�ciency�

When �i��� is translation invariant� i�e�� �i�Y � � Y 	B�i��
Y � P�E�� for some structur�
ing element B�i�� then �
�

� is equivalent to �see Appendix A for proof��

Ri �
�

b�B�i	

	Si 	 �B�i�� fbg�� �
�
��

For small values of i� equation �
�
�� is preferable to �
�

� because B�i� in this case usually
contains a small number of points�

Once Ri� Fi and  Pi are found� the Essential Points of order n can be obtained by �
�
���
Since the above sets can be obtained with morphological operations only� as shown in �
����
or �
�

�� �
����� and �
�

� or �
�
��� and since �
�
�� is also morphological� the conclusion
is that the extraction of Essential Points can be implemented by a morphological machine�

��



Chapter �

Morphological Reduction of Skeleton

Redundancy Based on The B�Convexity

Theory

In this chapter we propose a redundancy reduction approach� based on a generalization of
the concept of Convexity�

Many properties and relations concerning Convex Sets have been extensively studied and
analyzed� and a number of generalizations of Convexity were proposed before �see ���� for
example	� in order to extend some of these properties and relations to sets which are not
strictly convex�

In Appendix B� we present a generalization of the concept of Convex Sets� developed in
this work� based on the Morphological Closing operation� and study some of its properties�
We also de
ne Extreme Points of such Generalized Convex Sets� which generalize the notion
of Extreme Points of Convex Sets� In this section we summarize the main results�

We then apply the above notions to Skeleton redundancy removal� and present an al�
gorithm for obtaining an Error�Free Skeleton representation with reduced amount of Intra�
level Redundancy� using morphological operations only� as well as morphological formul� for
calculating Local and Global Essential Points�

Finally� it is given a qualitative comparison between the redundancy approach proposed
in Chapter � and the one proposed in the chapter�

All the results in the remainder of this chapter relate to the original Morphological Skeleton
Representation� i�e�� a Skeleton for which the decomposition family is in the form fnBg�
n � N � where B is a structuring element� See section 
�����

��� Convex Sets and Proposed Generalization

The material in this section ����	 and in ��� is a summary of the B�Convexity theory� de�
veloped and presented in Appendix B� which the reader should address for further details�
and proofs of the theorems�

There are several acceptable de
nitions for Convex�Hull and Convex Sets� They are all
equivalent� up to topological di�erences concerning the points on the boundary of the shapes�

��



We can also de
ne 
rst the Convex�Hull and then use this de
nition for de
ning Convex Sets�
or we can do the opposite�

The de
nitions of the Convex�Hull and Convex sets we choose to work with are the
following�

� Convex�Hull� CH�X	 is the Convex�Hull of a set X i� it is the intersection of all the
half�planes that contain X�

� Convex set� A set X is Convex i� it is identical to its Convex�Hull� i�e��X � CH�X	�

The generalization we propose is obtained by replacing the half�plane used in the above
de
nition of the Convex�Hull by a generic set �Bs	c� which is the complement of the symmetric
of any structuring�element B� We denote the generalized Convex sets as B�Convex sets and
the generalized Convex�Hull as B�Convex�Hull because of the dependence on the structuring�
element B�

� B�Convex�Hull� CHB�X	 is the B�Convex�Hull of X i� it is the intersection of all
the translations of �Bs	c that contain X�

� B�Convex set� A set X is B�Convex i� it is identical to its B�Convex�Hull �i�e��
X � CHB�X	�

Actually� the B�Convex�Hull� as de
ned above� is not a new operation� it is known in
Mathematical Morphology as the Morphological Closing� In other words�

CHB�X	 � X �B� ����	

If we choose B to be a disc� and make its radius go to in
nity� then the above Closing
converges to the conventional Convex�Hull �as pointed out in ���� p� ����	� meaning that the
conventional Convex�Hull is indeed a particular case of the generalized Convex�Hull�

Table ��� shows that some of the basic properties of the Convex�Hull and of Convex sets
are naturally extended to the B�Convex�Hull operation and to B�Convex sets�

��� Extreme and Internal Points

����� De�nition and Calculation

Like the Convex�Hull and Convex Sets� there are many ways to de
ne Extreme Points of a
Convex Set� Table ��� shows one of the classical de
nitions of Extreme Points for conventional
Convex sets� and presents its generalization for B�Convex sets� We denote the set of Extreme
Points of a given Convex Set Y by E�Y 	 and the set of Extreme Points of a given B�Convex
Set X by EB�X	�

The following Morphological closed�form formul� provide two ways of calculating the set
of Extreme Points of a given B�Convex Set X�

EB�X	 � X �

� �
x�X

�X � fxg	�B

�
�Bs ����	

��



Known Property �in traditional
Convexity	

Property of the Proposed Generaliza�
tion �B�Convexity	

CH��	 is idempotent� CHB��	 is idempotent�
CH�X	 is the �smallest� convex set
that contains X�

CHB�X	 is the �smallest� B�Convex
set that contains X�

X is convex i� any two points x and
y belonging to X are connected by
a segment contained in X� in other
words� X is convex i� �fx� yg 	 X�
CH�fx� yg	 	 X�

If X is B�Convex� then �fx� yg 	 X�
CHB�fx� yg	 	 X�

The intersection of convex sets is a con�
vex set�

The intersection of B�Convex sets is a
B�Convex set�

X is convex i� every point outside X
can be separated from X by a half�
plane� i�e�� x 
� X � � a half�plane
that contains x and does not intersect
X�

X is B�Convex i� every point outside
X can be separated fromX by a trans�
lation of Bs� i�e�� x 
� X � �z � R�

such that �Bs	z contains x and does not
intersect X�

Table ���� Properties of Convex�Hull and Convex sets�

Extreme Points
Convex sets B�Convex sets

A point t is an Extreme Point of a
Convex set X i� the set �X � ftg	 is
also convex�

A point t is an Extreme Point of a
B�Convex set X i� the set �X �ftg	
is also B�Convex�

Table ���� Extreme Points

EB�X	 � X �

�
��
b�B

X � �B � fbg	

�
��Bs ���
	

If we consider the computational e�ciency of the above equations� when implemented on
a computer� then ����	 is preferable over ���
	 if X contains fewer elements than B� and ���
	
is preferable over ����	 otherwise�

We also de
ne Internal Points of B�Convex sets� They are all the points in the set that
are not Extreme� Denoting the set of Internal Points of a B�Convex set X� by IB�X	� we
may write IB�X	 � X � EB�X	� And� since EB�X	 	 X� it is also true that

EB�X	 � X � IB�X	� ����	

Note� therefore that�

IB�X	 �

� �
x�X

�X � fxg	�B

�
�Bs ����	

�

�
��
b�B

X � �B � fbg	

�
��Bs ����	

�




����� Reconstruction from Extreme Points

If a conventional Convex set Y is bounded� then it can be reconstructed back from its Extreme
Points by performing the Convex�Hull operation� i�e�� CH�E�Y 		 � Y � The set of Extreme
Points can be seen as a compact representation of a Convex set�

For a B�Convex Set X� a necessary condition for perfect reconstruction from its set of
Extreme Points EB�X	 is� �X � EB�X	��B � 
� This suggests that X should be �smaller�
�in a certain way	 than B� Notice that the erosion of any bounded shape by a half�plane is
always empty�

The above considerations motivate the de
nition of a Reconstruction Window for a given
structuring�element B� inside which every B�Convex Set can be reconstructed from its Ex�
treme Points� A B�Convex SetW is called a Reconstruction Window for B i� �X B�Convex�
CHB�EB�X �W 	� � X �W �

For example� if B is a rectangle� then B itself is a Reconstruction Window for B� If B
is a discrete rectangle of integer sides n and m� then any discrete rectangle of sides i and j�
such that � � i � �n� �	 and � � j � �m� �	� is a Reconstruction Window for B�

��� Reduced Skeleton

In the sequel we present an algorithm for morphologically obtaining a redundancy�reduced
skeleton� based on the B�Convexity theory discussed above� The algorithm is presented
below� together with an example� Figure ��� shows the steps of the algorithm for the example�

�� Let X be a given binary image� Choose a structuring�element B� and a family of
Reconstruction Windows fW �nB�g for all the dilations nB of B� �In the example� X is
the digital binary shape shown in Fig� ����a	 �described by the black dots	� B is a 
�

square� and W �nB� are ��n� �	 � ��n� �	 squares	� Set n � ��

�� Calculate the skeleton subset Sn
�
� X �nB� �X �nB	 �B� and the set Zn

�
� X �nB�

If Zn is empty then stop� �In the example� for n � �� S� is shown in Fig� ����b	 and Z�

is seen in Fig� ����c		�


� Obtain a partition of Zn into blocks Y n
p such that� Y n

p is the contents of Zn inside

the Reconstruction Window W �nB� centered at p� i�e�� Y n
p � �W �nB��p � Zn� and the

blocks cover the whole set Zn� i�e��
S
p Y

n
p � Zn� �In the example� the blocks Y n

p were
obtained by translating the Reconstruction Window horizontally and vertically by steps
of p � �n � � pixels� so that there is a ��pixel�wise overlap between the blocks� The
overlap by one pixel contributes to the redundancy reduction� Fig� ����c	 shows the

rst block Y �

p in grey� and the thin solid lines indicate the position of the other blocks�	

�� Calculate the Extreme Points of every block Y n
p � according to nB� EnB�Y n

p 	� Note
that Y n

p is a �nB	�Convex set� since it is the intersection of two �nB	�Convex sets�
�Fig� ����d	 shows the result of this operation in the example	�

��



�a	 �b	

�c	 �d	

�e	 �f	

Figure ���� Proposed algorithm� �a	 A discrete binary shape �black dots� foreground� white
dots� background	� �b	 S�� �c	 Z�� and the partition blocks� �d	 Extreme Points of the blocks�
�e	 �S�� and �f	 resulting reduced skeleton �black points	 compared to the original skeleton
�black and grey points	�
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�a	 �b	

Figure ���� �a	 A binary image and its skeleton� using a 
 � 
 squared structuring�element�
�b	 a reduced skeleton obtained by the proposed algorithm�

�� De
ne Cn
�
�
S
p E

nB�Y n
p 	 to be the set of the resulting Extreme Points of all the blocks�

and intersect it with the skeleton subset Sn� obtaining �Sn � Cn � Sn� This equivalent
to�

�Sn � Cn � �X � nB	 �B ����	

�Fig� ����e	 shows �S�	�

�� Increment n� and go to ��

The collection of sets f �Sng is the Redundancy�Reduced Skeleton� For a comparison between
f �Sng and the original skeleton fSng� in the scope of the above example� Fig� ����f	 shows the
reduced skeleton composed of black dots� and the original skeleton� composed by both the
black and grey dots� The grey dots are redundant points removed by the above algorithm�

Exactly as for the conventional Skeleton� the following relation holds�

�
n�k

�Sn � nB � X � kB ����	

which guarantees partial �k � �	 and perfect �k � �	 reconstruction of the original image�

����� Simulation

Figure ����a	 shows a binary image �Most�signi
cant bit�plane of ��� � ����pixel �House�	�
and its morphological skeleton� calculated with a 
 � 
 squared structuring�element� The
skeleton contains 
��
 points�

��



Fig� ����b	 shows the result of applying the above algorithm to the same binary image�
The structuring�element and the Reconstruction Windows are the same as in the example of
Fig� ���� The resulting skeleton fully represents the original binary image� and contains ��


points� i�e�� only ��� of the points in the original skeleton�

For comparison� a Minimal Skeleton of the above image� using the non�morphological
algorithm given in ����� was calculated� It contains �
�� points� i�e�� �
� of the points
in the original skeleton� and ��� of the number of points in the proposed reduced skeleton�
According the above numbers� the proposed skeleton was able to remove ��� of the redundant
points in the original skeleton�

����� Proof of the validity of the method

We prove here that ����	 holds� We do it using induction�
Let us assume that ����	 holds for k � � and prove that� in that case� it holds also for k�

S
n�k

�Sn � nB �

� �Sk � kB	 �
hS

n�k��
�Sn � nB

i
�

� �Sk � kB	 � �X � �k � �	B� �

� �Sk � �X � kB	 �B�� kB �

Cn � kB � ����	

�
S
z E

nB�Y k
z 	�� kB �S

z�E
nB�Y k

z 	� kB� �S
z Y

k
z � kB � �X � kB	� kB

X � kB �����	

Now it remains to prove that ����	 holds for k � N � the highest order of the Skeleton�
Indeed� �SN � CN � and going back to the above proof� starting at ����	� we get the proof for
k � N �

��� Extraction of Essential Points

B�Convexity can be used also for calculating the Essential Points in a Skeleton Representa�
tion� This is demonstrated in this section�

����� Essential Points of Ribbons

Let�s start with a particular case� the Essential Points of simple shapes called ribbons� Rib�
bons are considered in �
�� 
�� and here we give an extended de
nition�

De�nition � A ribbon is a shape for which its Skeleton� calculated with a given structuring�
element B� has all its points concentrated in one single subset�

��



S.E. (B)

X

S k

Figure ��
� A constant�width image �generalized ribbon	� based on a squared structuring�
element� its Skeleton� and the Extreme Points of the Skeleton �which coincide to its Essential
Points	�

More precisely� if the Skeleton representation of a ribbon� using B as the structuring�element�
is the collection of subsets fSng� then there is a number k for which Sk 
� 
� and Sm � 
 for
every m 
� k�

Proposition � The Global Essential Points and the Local Essential Points of the Skeleton
of a ribbon are the same and they coincide with the Extreme Points of Sk �in the case of a

ribbon� Sk is a �kB��Convex set�� I�e�� the set of Essential Points of a ribbon� E�ribbon�� is
given by�

E�ribbon� � EkB�Sk	 �����	

Proof First� let	s prove that Sk is �kB��Convex� Sk � X � kB � �X � kB	 � B� But
since every Skeleton subset of order higher than k is empty� �X � kB	 �B � 
 and therefore
Sk � X � kB� And since X � kB � �X � kB	 � kB� Sk is �kB��Convex�

Now� let	s consider the de
nitions of Essential Points� First� note that since� in the case
of a ribbon�

S
m��k Sm �mB �

S
m�k Sm �mB � 
� and X � kB � X� the de
nitions ����
�

and ������ are identical� For a ribbon shape� ����
� is simpli
ed� and we can say that a point
t is an Essential Point of a ribbon shape i��

�Sk � ftg�� kB 
� X �����	

On the other hand� t is an Extreme Point i� �Sk � ftg�� kB 
� Sk � kB� Since� in the case
of a ribbon� Sk�kB � X� the su�cient and necessary condition to t to be extreme is ����
��
�

Fig� ��
 shows a ribbon and its Skeleton� using a square as the structuring�element� The
enhanced points are the Essential Points of the Skeleton� which are also its Extreme Points�

Does this direct relation between Extreme Points and Essential Points hold for a generic
imageX The answer is no� but we show below that there is a strong relation between them�
even though not so direct as above�
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S.E. (B)

X

Figure ���� Local Essential Points of a given shape� The black points and the white circles
are the Extreme Points of X�nB� for n � �� The black points are the Local Essential Points
of order n � ��

����� Local Essential Points of Any Image

Now� let�s leave the particular case of ribbons� and consider any image� The next proposition
indicates how the Local Essential Points of the Skeleton of any image can be obtained using
B�Convexity�

Proposition � The Local Essential Points of order n� LEn�X	� of the Skeleton represent�
ation of a given image X is given by�

LEn�X	 � EnB�X � nB	 � Sn ����
	

Proof Note that�

�
S
m�n Sm �mB	 � ��Sn � ftg�� nB	 �

��
S
m�n Sm � �m� n	B	 � �Sn � ftg��� nB �

��X � nB	� ftg�� nB �����	

Therefore� de
nition � can be rewritten in the following way� t � Sn is a Local Essential
Point of order n i�

��X � nB	� ftg� � nB 
� X � nB �����	

Which means that t is an Extreme Point of X�nB� By calculating the set of Extreme Points
of X�nB and keeping only those ones that belong to Sn� we obtain the Local Essential Points
of the Skeleton� �

Fig� ��� shows a shape X� the set X�nB �for n � �� and its Extreme Points �the black points
and the white circles	� The black points belong to Sn and therefore are the Local Essential
Points of order n�

����� Global Essential Points of Any Image

A greater amount of computation time is required for obtaining the Global Essential Points�
if compared to that required for the Local Essential Points� The next proposition gives a
morphological formula for the calculation�

��



S.E. (B)

X

Figure ���� Global Essential Points of a given shape� The black points and the white circles
are the Extreme Points of X � nB� for n � �� The black points are the Global Essential
Points of order n � �� The marked region is �Pn

Proposition � The set of Global Essential Points of order n� GEn�X	� of the Skeleton
representation of a given image X is given by�

GEn�X	 � Sn �
	
�Pn � �InB�X � nB	� nB�



� nB �����	

where
�Pn

�
�

�
m�n

Sm �mB �����	

and InB is the set of Internal Points w�r�t� the structuring element nB �see section ��
��

The proof is shown in Appendix A� Fig� ��� shows a shape X� the set X � nB �for
n � �	� and its Extreme Points �the black points and white circles	� The black points are the
Global Essential Points of order n � �� Note that one of the Local Essential Points �shown
in Fig� ���	 is not Global Essential� because of the e�ect of the set �Pn� represented in the

gure by the marked region�

��� Comparison Between the Two Approaches

In this section we compare the two approaches developed above for calculating Reduced
Skeletons and extracting Essential Points�

����� Reduced Skeletons

Let us consider 
rst the Reduced Skeleton obtained by means of the B�Convexity� Most of
the Future�Level and Intralevel redundant points are removed using the related algorithm�
This is because the sets �X � nB	� for each value of n� contain all the information about the
present level and the future levels� By removing Internal Points of the blocks of �X � nB	�
we are actually removing most of the redundant points of these two categories� However�
some of the Future�Level and Intralevel redundant points are not removed due to the arti
cial
con
guration of the window�blocks �W �nB��z� some of the Extreme Points of the blocks are

��



not removed� but are redundant points� Moreover� the general Interlevel redundancy� is not
removed�

We can combine the above Reduced Skeleton with the Reduced Skeletons RS��� and
RS��� obtained by the 
rst approach� This combination is rather simple and leads to a
Reduced Skeleton with no Interlevel redundancy at all �characteristic of the RS��		 and
without most of the Intralevel redundancy �characteristic of the Reduced Skeleton obtained
by B�Convexity	� A Minimal Skeleton� however� is still not obtained�

The combination� as said above� is simple� it is obtained by substituting the step � of the
algorithm �section ��
	 by the following�

�Sn � Cn � RS
���
n �����	

where fRS���
n g are the subsets of the Reduced Skeleton with no InterlevelRedundancy presen�

ted in Chapter �� Perfect reconstruction is still assured� but equation ����	 �partial recon�
struction	 no longer holds for k � � �just like it doesn�t for RS���

n 	�

����� Essential Points Extraction

Let us compare now equation �����	 for obtaining Global Essential Points of the Skeleton�
with the formula �����	 presented in ����� for obtaining �Global	 Essential Points� For the
case of the one�parameter� translation�invariant� and discrete�family Morphological Skeleton
we are considering here� �����	 assumes the form�

GEn � Sn � � �Pn �Rn � Fn	� nB �����	

where

Fn
�
�

�
m�n

Sm �mB � X � �n� �	B �����	

Rn �
�
t�Sn

��Sn � ftg	� nB� �����	

and �Pn is identical to the one de
ned in �����	 above�
By comparing equations �����	 and �����	� we see that the only di�erence is that union

Rn � Fn from �����	 was replaced by InB�X � nB	� nB in �����	�
As stressed before� Fn is the �Redundant Region� covered by elements bigger than nB

and Rn is the �Redundant Region� covered by more than one element with the same size
as nB� Therefore� the conclusion is that the union of these two regions can be obtained by
dilating the Internal Points of X � nB by nB�

Furthermore� by looking at equation �����	 and at formula ����	� we note that Rn is
actually the dilation of the Internal Points of Sn by nB� i�e��

Rn � InB�Sn	� nB �����	

Therefore� another way of obtaining GEn using the B�Convexity is�

GEn � Sn � � �Pn � �InB�Sn	� nB� � Fn	� nB ����
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Chapter �

Skeleton Representation Coding

As discussed in section ���� the Skeleton decomposition of images is suitable for Compression
���	� However� the compression rates reported until now by lossless
coding of the Skeleton
were only comparable to �and sometimes even worse than� other simpler methods �such as
Chain Coding� Quadtree Decomposition and Run
length
Hu�man Coding� applied directly
to the original image� This made many researchers skeptical about Skeleton
based Coding�
In this chapter� we present a number of theorems concerning properties of the Skeleton

Representation� These properties are not used by conventional Skeleton
coders� and this is
re�ected in their unsatisfactory performance� By taking these properties into account� one
can either considerably improve the previous schemes� or design new e�cient ones�
An example of such a scheme is also presented� Computer simulations indicate that�

typically� the proposed coding scheme substantially improves the coding rates obtained by
the best previous schemes for Skeleton coding� and is more e�cient than coding the original
binary image by Chain Code� Ziv
Lempel� Quadtree and Run
length
Hu�man methods�
The theorems and the coding scheme presented in this chapter relate only to Generalized�

Step Skeletons �see section ������ on page ��� column � of Table ����� Appendix C presents
a partial generalization of the theorems� for the proposed Generalized Skeletons �column � of
Table ����� and their proofs� An adaptation of the results and the coding scheme for grayscale
functions is presented in Appendix C� section C���

��� Previous Coding Schemes

In recent years� several authors have proposed simpli�cations and generalizations of the
Morphological Skeleton decomposition� in order to try to increase the compression ratio
���� ��� ��� ��	� Nevertheless� the improvement was generally small� and in many cases
accompanied by a large increase in computation time�
On the other hand� little was proposed concerning the improvement of the coding scheme

itself� ���� �	
For binary images� There are variations of two main Skeleton coding schemes in the

literature�

�� Chain Coding of the Skeleton lines ��	�
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�� Run
length Coding of the Skeleton Subsets ���	�

The motivation for the �rst of the above schemes is that� in the continuous case� the
Skeleton lines of connected shapes are almost always connected� Therefore� to take advantage
of this� it is proposed in ��	 to code the skeleton lines by an extended Chain Code� with symbols
indicating at each point if the related radius increases� decreases or is unchanged� in addition
to the direction of the next point� and with a header for each line indicating the position and
the radius of its �rst point� However� in the discrete case� as opposed to the continuous case�
the skeleton lines may have many gaps� and this considerably reduces the e�ciency of the
Chain Coding�
The second method considers each Skeleton Subset as a very sparse binary image� and

therefore suitable for very low bit
rate coding� In ���	� each Skeleton Subset has its run�lengths
coded by a Hu�man code or an Elias �ternary� code� The Skeleton Subsets Sn are coded
in decreasing order of n� providing a progressive transmission scheme� since according to the
reconstruction formula �Table ����� if the decoding is halted at a certain point� a simpli�ed
version of the original image is obtained� However this coding method is ine�cient because
coding each skeleton subset independently does not take into account the strong correlation
existing between them �which is a consequence of the above mentioned partial connectivity
of the skeleton lines��
A redundancy
reduction algorithm is usually performed in order to remove most or all the

redundant points in the skeleton �see chapter ��� This improves considerably the e�ciency of
the second scheme� but the correlation is still not taken into account� Moreover� the removal
of redundant points breaks even more the continuity of digital skeleton lines� and this reduces
by a great deal the performance of the �rst scheme� On the other hand� some authors propose
to arti�cially connect the broken lines of the digital skeleton using dummy skeleton points�
so that the �rst scheme is improved� but this increases the amount of redundant points in
the skeleton� A trade
o� between connectivity and redundancy removal is therefore created
and the preferred approach is not clear�
For grayscale images� no Skeleton
based coding scheme was found by us in the literature�

��� Basic De�nitions and Notation

In this section� we review some basic morphological concepts� which are fundamental for the
understanding of the sequel�

����� Generalized�Step Skeleton

As mentioned above� the theorems in this chapter are related to a Generalized
Step Skeleton
Representation of a given image X� Recall from chapter � that this is a discrete�family
Skeleton� which means that the family of elements used in the Skeleton decomposition is
indexed by natural numbers ��� �� � � ��� On the other hand� notice that X and the shapes in
the above decomposition family are not restricted to be discrete� They can be discrete �sets
in Z��� continuous �sets in R�� or grayscale images �functions over Z� or R���

��



For simpli�cation� we adopt from this point on the following notation�

Xn

�
� X �A�n� �����

Yn��
�
� Xn�� �B�n� � �X �A�n�	 �B�n� �����

where fA�n�g and fB�n�g are� respectively� the decomposition family and the generator
family� as de�ned in section ����� �page ����
With the above notation� we can write the related Lantu�ejoul�s Formula �line � in

Table ���� in the following way�
Sn � Xn � Yn�� �����

Moreover� in this chapter� we denote the Euclidean space where the decomposition is
de�ned �R� in the continuous case� or Z� in the discrete case� by E�

����� Descendance and Connectivity

The de�nitions of Descendance and Connectivity presented here are adapted from ���� pages
�� and ��	�

De�nition � �Direct Descendance� Let B be a structuring element in P�E�� A point
y � E is a direct descendant of a point x� � E� under the given structuring element� i��

y � fx�g �B �����

De�nition � �Descendance� A point y � E is a descendant of a point x� � E� under the
given structuring element� i� there is a chain of points� each being a direct descendant of a
previous one� starting with x� and ending with y�

De�nition � �Connectivity� Two points x� and y are connected �under a pre�de�ned
structuring element B	 i� each one is a direct descendant of the other� under B� i�e��

x� � fyg �B and y � fx�g �B �����

Intuitively�B de�nes a neighborhood for which Descendance and Connectivity are considered�
A point directly descends from another if the former belongs to the neighborhood of the latter�
Similarly for connectivity� If� moreover� B is symmetric �i�e�� b � B � �b � B�� then y is
a direct descendant of x� i� x� is a direct descendant of y� Therefore� in this case� Direct
Descendance and Connectivity are equivalent�

����� Reconstruction Operator

Reconstruction is a very useful morphological operator� which �nds several applications� such
as extraction of connected components and �ltering�

De�nition � �Reconstruction� Let A�D be two sets in a Boolean Lattice� such that D �
A� and B be a pre�de�ned structuring element� The Reconstruction of A from D under B�
RecfA�DgB is given by the following recursive formula�

RecfA�DgB
�
� f��D �B� 	A	�Bg 	A � � � �����
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=A
=D =Rec{A,D}

�a� �b�

Figure ���� The Reconstruction operator� �a� Two sets A and D� such that D 
 A� �b� The
result of Reconstruction of A from D� under an in�nitesimal circular structuring element B�

The Reconstruction operator returns those points in A which descend from D� under B and
restricted to A� When B is a symmetric structuring element� the Reconstruction of A from
D is the collection of connected components of A which contain points of D �see Fig� �����
Notice that the notion of connected component depends on the structuring element B chosen
in the Connectivity de�nition� If it is too �big�� then relatively distant points can eventually
be considered connected� Therefore� B is usually selected to be as small as possible �an
�
pixel or �
pixel neighborhood� in the discrete case� or a in�nitesimally small disc in the
continuous case��
It is important not to confuse the above operation of Reconstruction with the reconstruc�

tion of the original image X from its Skeleton Representation� considered in the previous
chapters�

����� Ultimate Erosions

In ���	� the Ultimate Erosions are de�ned in terms of a decreasing family of erosions fX �
nBg� where n is a natural number� For each n� the Ultimate Erosions of order n� denoted
Un� of a given set X � P�E�� is de�ned by�

Un
�
� X � nB � RecfX � nB� �X � nB	 �Bg

B
�����

In words� the Ultimate Erosions of order n are the points of X � nB which do not descend�
under B� from the opening of X � nB by B�
Intuitively� the Ultimate Erosions� at each erosion step� mark the �convex regions� of X

which are going to disappear after a further erosion� Fig� ��� shows an example� with B being
a disc� Notice that� although the original set X is composed of two connected components�
the Ultimate Erosions consist of three connected components� because one of the components
of X is a union of two �convex regions��
Here� we adapt the de�nition of Ultimate Erosions for generalized
step families as well�

De�nition 	 We de�ne the Ultimate Erosions Un as�

Un
�
� Xn � Rec fXn� Yn��gC�n� �����
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Figure ���� Discrete Ultimate Erosions Un of a setX composed of two connected components�
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�a� �b� �c�

Figure ���� �a� A binary image �indicated by the thick line�� and its Skeleton points� �b� the
Ultimate Erosions �the darker points�� �c� The only point in the Skeleton which needs to
have its radius coded� according to Corollary �

where Xn and Yn�� are as de�ned in �
��	 and �
��	� respectively� and�

C�n� �

�
B�n� ��� n � �
Any structuring element B� n � �

�����

When de�ned by De�nition �� the Ultimate Erosions are contained in the Generalized�
step Skeleton of X� when it is calculated by Lantu�ejoul�s Formula ������ with the same family
fA�n�g� This is because the result of the Reconstruction operation in ����� contains the set
Yn��� which is subtracted from Xn in Lantu�ejoul�s Formula�
In practice� the Ultimate Erosions are those Skeleton points with maximal �radius� within

each �convex region� of the original shape� They are usually a small percentage of the
Skeleton� For example� consider the image in Fig� ����a�� and its Skeleton� calculated with
a constant generator B�n� � B� equal to a � � �
squared structuring element� Fig� ����b�
shows its Ultimate Erosions� which belong in this case to U� only� Fig� ����a�� shows another
example� where the Skeleton is calculated in the same way as in the �rst example�
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�a� �b�

Figure ���� �a� Skeleton and Ultimate Erosions of a portion of the image �Co�ee Grains��
The Ultimate Erosions are the black Skeleton points� �b� A subset of the Ultimate Erosions
�the four black points�� Their radius� in addition to the position of all the Skeleton points�
are su�cient for perfect reconstruction�

��� New Skeleton Properties

Our main theoretical results concerning Coding are presented in this section� They are related
only to discrete
family Generalized
step Skeleton Representations� See Appendix C for a
generalization of part of the results� for the Generalized Skeleton Representation proposed in
chapter ��
The theoretical results are new Skeleton properties� divided into two categories� Quench


Function Sampling� and Deterministic Prediction�

����� Quench�Function Sampling

According to Chapter �� the position and the �radius� of each Skeleton point is needed for
perfect reconstruction of the original set X� In this section� we show that� for a discrete�
family Generalized�step Skeleton� one can discard the �radius� of most of the Skeleton points
from the representation� and still a perfect reconstruction is possible�
The following lemma helps us formulate the above assertion in the form of a theorem�

Lemma � Let fSngn�N be the Skeleton subsets of a Generalized�step Skeleton� satisfying

the conditions in Table 
��� Let S
�
�
S
n�� Sn�

The following holds�
Rec fS� Yn��gC�n� 
 Un � Xn ������

The above result is used in the proof of the next theorem� and leads to the corollaries presented
below� The proof of Lemma � is given in Appendix A�
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The following theorem is the main result in this section�

Theorem � Let fSngn�N be the Skeleton subsets of a Generalized�step Skeleton� satisfying

the conditions in Table 
��� for a given image X� and S
�
�
S
n�� Sn� Let Ultimate Erosions

be de�ned as in �
�
	�
X is perfectly represented by the sets fUngn�N and S�

In other words� the radius of the Skeleton points which are Ultimate Erosions� together with
the position of all the Skeleton points� are su�cient for perfectly representing the original set
X�

Proof We use induction in the following way�

�� If N is the maximal radius in the Skeleton� then XN � UN �

�� Once Xn�� is known� each set Xn� N � n � �� can be calculated �see below	� and


� the original image X is equal to X��

In order to obtain the second part of the above induction� suppose that Xn�� is available�
Therefore Yn�� is also available� From the hypothesis� the Skeleton S and the Ultimate
Erosions fUng are provided� Then Xn is obtained from the above by Lemma �� �

The above proof is constructive� it provides a reconstruction algorithm for the original
image from the resulting �sampled� Skeleton� It consists of calculating at each step n� which
varies from N down to �� the set Xn according to ������� This can be implemented in the
following way �illustrated by Fig� �����

�� An intermediate image� which we call Z� is created and initially set to the highest
Ultimate Erosions� i�e�� Z � UN �

�� n� N � �� �We assume n � �� otherwise� we trivially obtain X � UN ��

�� Z � Z �B�n�� At this point Z is equal to Yn���

�� The points of S that descend from Z� under Cn� in addition to Un� are equal to Sn
�this is a consequence of Lemma ��� If Cn is symmetric� then the above means that
Sn are those connected components of S which �touch� Z� in addition to the Ultimate
Erosions Un �see Fig� �����

�� Z � Z 
 Sn� At this point Z is equal to Xn�

�� If n � �� then stop� and X � Z� Otherwise� n� n� ��

�� Go to step ��

The above algorithm is also the heart of the coding scheme proposed in section ����
The following corollaries are direct consequences of �������

Corollary 
 If s is a Skeleton point with radius n� then all the Skeleton points which descend
from it� under C�n�� have also radius n�

��
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�a� �b�

Figure ���� Reconstruction algorithm from a Skeleton with sampled Quench Function� The
Skeleton is the same as in Fig� ���� N � �� and U� is indicated by the dark gray pixels in �a��
�a� Step n�� of the algorithm� �b� Step n�� of the algorithm� In �a� and �b�� Z is indicated
by the thick line� and the points in Sn are those connected components of S �the light gray
pixels�� touching Z �in this case� Un� n � �� �� are empty��

Corollary � Suppose that C�n� is symmetric� i�e�� c � C�n���c � C�n��
In this case� if s is a Skeleton point with radius n� then all the Skeleton points in the

connected component to which it belongs �with connectivity being under C�n�	 have also
radius n�

According to Corollary �� if the decomposition elements are symmetric� then not all the
Ultimate
Erosion points need to have their radius stored� For every connected component in
the set of ultimate erosions� one needs to store only the radius of one point� Note that the
set of ultimate erosions is usually a very small subset of the Skeleton points� and� due to the
above consideration� only a small percentage of them need to have their radius stored� This
provides a sampling scheme of the Quench Function�� �See Fig� ����b��� Similar results can
be deduced for non
symmetric decomposition elements� by means of Corollary ��

Corollary � A Skeleton point s has radius n if and only if s belongs to Un� or s �� Yn�� but
s descends from Yn��� under C�n��

The above corollaries are used in the Coding scheme proposed in section ����

����� Deterministic Prediction

The second theorem on which the proposed scheme is based is presented below� It permits
deterministic prediction of information about Sn from the knowledge about the previously
coded points�
Suppose a Coding procedure where� at a certain step� the Skeleton Subset of order n� Sn�

is to be coded� and that Yn�� is known to be available both to the coder and the decoder� Since

�Quench Function is de�ned in Chapter � as the function relating to each Skeleton point the radius of the
related maximal element�

��



Sn � Xn � Yn��� it follows that there are no points of Sn inside the region Yn��� Therefore
the coder does not need to code the status �whether belonging� or not� to Sn� of the pixels
inside Yn��� and the decoder does not need to �look for� Skeleton points in that region at
that moment� Particular versions of this result was used in the coding schemes proposed in
���	�
It turns out that there is also a region outside Yn�� that can be predicted not to contain

Skeleton points from Sn� This region can be characterized by the following theorem�

Theorem � Let p � E� If the following holds�

��Yn�� 
 fpg� �A�n�	 �B�n� � fpg ������

then p cannot belong to Sn�

Proof The proof is by contradiction� Suppose that p is in Sn� and let us de�ne the following
operator�

��Z�
�
� �Z �A�n�	 �B�n�� ������

By de�nition of Yn��� ��X� � Yn��� Also the set Yn���A�n� gives Yn�� when operated upon
by �����

Therefore� since ���� is an increasing operation �it is composed of basic morphological
operations� which are increasing	� then any set Z�� such that �Yn�� � A�n�	 � Z� � X�
satis�es ��Z�� � Yn��� In particular� Z� � �Yn�� 
 fpg� �A�n�� p � Sn� satis�es it�

However� according to �
���	� ��Z�� � fpg� and� therefore� p � Yn��� which contradicts
that p � Sn� �

Theorem � provides a test for each point in E� If it passes it� i�e� ������ holds� then
its status as a Skeleton point need not to be coded because it is known to both coder and
decoder to be negative� On the other hand� if the test fails ������� does not hold�� nothing
can be said about the point�s status� and it must be coded�
The above test is however practically inviable� because it is extremely computation


demanding� Luckily� a simpli�ed� much faster test is possible in many cases by the following
corollary�

Corollary � Let F be a structuring element� not containing the origin �which we denote o	�
and satisfying�

��F 
 fog� �A�n�	 �B�n� � fog ������

and let p � E�
If fpg � F � Yn��� then p cannot belong to Sn�

In other words� one can pre
select a template F � excluding the origin� and usually con

taining few points� such that it satis�es ������� Since it is independent of the input image X�
the above selection is done �o�
line�� and only once for a given decomposition family fA�n�g�
During an �on
line� Coding algorithm� the �prediction test� is performed� for each point p�
by placing F �on� p� and examining the status of the points indicated by the template�
The points found in the above test are only a subset of the �predictable points� found in

the test of Theorem ����� In order to �nd all the predictable points� a family fFig of all the
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Figure ���� A point �i� j� predicted not to belong to Sn according to Corollary ��

templates satisfying ������ should be de�ned� and the test in Corollary � must be repeated
for each Fi� This could also be very computation
demanding� Often� however� a small subset
of fFig is enough for �nding most of the desired points� As an example� let E � Z�� and
consider a Skeleton decomposition of X� where B is a ����pixel squared structuring element�
In this case� Corollary � above can assume the following speci�c format�

Corollary � Let �i� j� � Z�� and consider a Morphological Skeleton with a � � ��pixel
squared structuring element� If any of the triplets

f�i k�� j�� �i� j  k��� �i k�� j  k��g�
f�i� k�� j�� �i� j � k��� �i� k�� j � k��g�
f�i k�� j�� �i� j � k��� �i k�� j � k��g�
f�i� k�� j�� �i� j  k��� �i� k�� j  k��g�

for any integers k�� k� and k� in the interval ��� �n �	� is contained in Yn��� then the point
�i� j� does not belong to Sn�

The above triplets represent a subset of the family fFig related to the given squared struc

turing function� Fig� ��� shows an example of a point �i� j� which is predicted not to belong
to Sn in this speci�c case� Fig� ��� shows another example� in this case� n � �� and Yn�� is
indicated by the thick line� The dark points are those which can be predicted not to belong
to S�� according to Corollary ��

��� Proposed Coding Scheme

In this section we propose an e�cient coding scheme of the Skeleton Representation of binary
images�
In comparison to the two previous schemes described in section ���� it is an hybrid

method� since it takes into account the Skeleton connectivity� as the �rst scheme� and is
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Figure ���� An example of deterministic prediction� The thick line indicate Yn��� The dark
points cannot be Skeleton points in S�� according to Corollary ��

suitable to progressive transmission� as the second one� Moreover� it is based on the new
theoretical properties of the Skeleton Representation� presented in last section� which are
not considered in the previous schemes� As a consequence of all of the above� the proposed
scheme typically provides better compression of binary images than the previous schemes
�see section ��� below��
The proposed Coding scheme is restricted to discrete
familyGeneralized
step binary Skel


etons� de�ned on Z� �discrete binary images�� An adaptation of this scheme for discrete

family Generalized
Step Grayscale Skeletons is presented in Appendix C� section C���

����� The Algorithm

After the Skeleton Representation is calculated� the coding is performed in the same way as
the decoding� i�e�� by reconstructing the original image� Let N be the maximum radius�
Initially� for each of the Ultimate Erosions Un� � � n � N � a set !Un is formed� in such

a way that if a point s belongs to !Un� then it does not descend from any other point in !Un�
under C�n�� If C�n� is symmetric� the above means that !Un contains only one point of each
connected component of Un� under C�n�� The points in the above sets !Un have their position
and radius coded�
At this point� the main loop starts� At each step n� which varies from its maximum value�

N � down to �� a scanning procedure is performed on the external boundary of Yn�� and of
!Un� External boundary of a set A is considered here to be the points outside A� which are
direct descendants of points in A� under C�n��
Only the external boundary have to be searched for points in Sn� since the Skeleton points

in Sn are necessarily linked either to Yn��� if it is not an Ultimate Erosion point� or to !Un�
otherwise� Some points in the above scan can be predicted not to belong to Sn by the test
in Theorem �� these points are skipped� The Skeleton points found in the above scan must
belong to Sn �according to the reconstruction algorithm related to Theorem ��� and their
position are coded by an arithmetic coder ���	� When a skeleton point is found� its boundary
is searched for other connected skeleton points in a recursive way� before the main scanning
procedure goes on�
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This procedure is detailed in the following algorithm�

�� Calculate the Skeleton Subsets Sn� � � n � N � Form the sets !Un as speci�ed above�

�� n� N � �� YN � ��

�� Z � �Yn�� 
 !Un��

�� p� �an external boundary point of Z�� If there are no more external boundary points
to scan� go to step ��

�� Check �by means of Theorem �� if p can belong to Sn or not� If it cannot� go to step ��

�� Send to the Arithmetic Coder a ��� if p is not a skeleton point or a ��� otherwise� Use
an adaptive probability model��

�� If a ��� was sent� Z � �Z 
 fpg�� Otherwise� go to step ��

�� Recursively� scan the direct descendants of p for other connected Skeleton points� Code
non
predictable points with ��� or ��� accordingly� but use a di�erent adaptive prob

ability model than the one in step �� After the whole connected component is scanned
and coded� go to step ��

�� If n � �� then STOP�

��� n� �n� ��� Yn�� � Z �B�n�� Go to step ��

��� Coding after Redundancy Reduction

The theoretical results and the algorithm presented above are related to Skeletons with all the
centers of maximal elements� i�e�� for which no redundant point is removed� Before present

ing simulation results �sections ��� and ���� for the above coding scheme� let us consider
adaptations of the algorithm for Redundancy Reduced Skeletons� or Minimal Skeletons�

����� Coding of Reduced Skeletons

Let us consider a Redundancy
Reduced Generalized
Step Skeleton� obtained by the general
approach presented in chapter �� In this case� equation ������� on page ��� is written in the
following form�

RSn � Xn �

�
�redundantregion of
order n

�
A�A�n� ������

�A probability model in an arithmetic coder is the collection of the probabilities of appearance of each of
the symbols to be coded� An adaptive model is an empiric probability model� for which all the probabilities
are initially set to ��M � where M is the number of symbols� and� during the coding process� updated to
�mi � �	�M � where mi is the number of appearances of the symbol i�
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Let us rede�ne Ultimate Erosions in the following way�

Un � Xn � Rec

��
�Xn�

�
�redundantregion of
order n

�
A�A�n�

�	


C�n�

������

With this rede�nition� Theorem � �page ��� is valid also for the above Reduced Skeleton�
whatever is set as �redundant region of order n�� The proof is very similar to that of
Theorem ��
Moreover� since the resulting Reduced Skeleton is a subset of the original Skeleton� The


orem � too remains valid�
Therefore� the proposed coding scheme can be directly adapted for Reduced Skeletons�

such as the versions of RS��� and RS��� for Generalized
Step Skeletons�

����� Coding of Minimal Skeletons

Let us consider now a Minimal Generalized
Step Skeleton� In this case� as before� Theorem �
remains valid� and an adaptation of the de�nition of Ultimate Erosions makes Theorem �
stay valid as well�
The di�erence� now� is that the adapted Ultimate Erosions is such that it can be calculated

only after the whole Minimal Skeleton fMSng is computed� Moreover it has to be calculated
in decreasing order of n� The rede�nition in this case is�

Un �MS �RecfMS 
 Zn� ZngC�n� ������

where�

MS
�
�
S
m��MSm ������

Zn
�
�
S
m�nMSm ������

With the above considerations� the coding scheme is suitable also for Minimal Generalized

Step Skeletons�

����� Which is Preferable	

Does the proposed coding scheme perform better with the original Generalized
Step Skeleton�
a Redundancy
Reduced version of it� or one of its Minimal Skeletons"
The answer is not totally clear because of the following trade
o� between redundancy

and connectivity� The less redundancy� the fewer points have to be coded� but part of the
connectivity is lost and the number of Ultimate Erosions grows� The more connected is the
Skeleton� fewer Ultimate Erosions are expected to be found� but all the redundancy has to
be coded�
On the other hand� the connectivity is mainly related to Intralevel redundancy� Therefore�

an Interlevel
Free Skeleton �RS���� seems to be the most suitable type of Skeleton� among
the above indicated ones� for the proposed coding scheme� because it removes as much as
possible redundant points� but keeping the Intralevel redundancy� and therefore preserving
connectivity�

���



�a� �b�

Figure ���� A Redundancy Reduction scheme for a Skeleton calculated with a �� �
squared
structuring element� �a� Original Skeleton� �b� Reduced Skeleton�

����� Coding with the Squared Structuring Element

The simulation results� presented in the next sections� relate to a Skeleton calculated with a
���
square structuring element� as constant generator� This structuring element was chosen�
so that Corollary � can be used�
For the above structuring element� most of the redundancy is Intralevel� Therefore� al


though a RS��� kind of Skeleton seems to be the most appropriate for the proposed coding
scheme� it was not used in the simulations presented below� since RS��� is expected to be
very close to the original Skeleton� on one hand� and its computation time is expected to be
much longer� on the other hand�
A particular Redundancy scheme� suitable only for the Skeleton with the � � � square

structuring element� was used instead� It removes a large part of the Intralevel redundant
points� without a�ecting the connectivity� The redundancy scheme consists of sequentially
discarding points of the Skeleton �with radius greater than ��� for which at least � out of the
� closest neighbors are also Skeleton points� Fig� ��� demonstrate the result of applying the
scheme in a simple image� Note that the representation remains error
free�

��	 Simulation Results 
Binary Images�

The simulations of the proposed scheme� presented here� relate to the a Skeleton with constant
generator B�n� � B� equal to the � � � squared structuring element centered at the origin�
Moreover� B��� � B�
Two sets of simulation tests are presented�
The �rst one compares� in terms of lossless compression e�ciency� the proposed algorithm

with some simple� well
known coding schemes for binary images� The test image is the
��� � ���
pixel �Tools� �Fig� ����b�� on page ���� and the results� in bits
per
pixel� are
presented in Table ���� According to it� the proposed Skeleton coder provides the best
compression�
The second set of simulation tests examines the e�ciency of the proposed Skeleton coder

in coding scanned documents �fax�� and compares it to existing standard coders ��� ��	� The
previous Skeleton
Based scheme proposed in ��	 �denoted d� Skeleton� is also compared� The
eight CCITT facsimile standard test ����� ����
pixel images� of documents scanned at ���
dpi� are lossless coded by the proposed algorithm� Table ��� compares the size of the obtained
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Coder Bit
rate
Ziv
Lempel
��Compress� in Unix� �����
Run
length  Hu�man �����
Quad
tree �����
Chain
Code �����
Skeleton �proposed� �����

Table ���� Lossless compression rates� in bpp� of the proposed Skeleton coder and other known
schemes� for the image �Tools��

CCITT d� Proposed Progressive
Images G�D� Skeleton G�D� Skeleton G� JBIG
#� ����� ����� ����� ����� ����� �����
#� ����� ����� ����� ����� ����� ����
#� ����� ����� ����� 
��
� ����� �����
#� ������ ������ ����� ���	� ����� �����
#� ����� ����� ����� ����	 ����� �����
#� ����� ����� ����� ����� ����� �����
#� ������ ������ ����� �

	� ����� �����
#� ����� ����� ����� ����� ����� �����

Table ���� File sizes of compressed facsimile standard CCITT documents� obtained by the proposed
Skeleton algorithm� compared to previous Skeleton	Based coder and existing standards�
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Lena
� bpp � bpp � bpp Mosaic Map

Ziv
Lempel ��Compress�� ���� ���� ���� ���� ����
Error
free JPEG ���� ���� ���� 
 ����
Binary Skeleton 
 
 ���� 
 ����
Grayscale Skeleton ���� ��
� ���� ���� ����

Table ���� Simulation results for the proposed Grayscale Skeleton
based coding scheme�

coded �les with the results given in ��	 and ��	� Comparison of our results to the d� Skeleton
shows a substantial improvement in Skeleton
based Coding� At this point� it is still weaker
than the most advanced Standards �G� and JBIG�� but it is comparable to the �
dimensional
Group � Standard �G�D�� with k � ��� being usually more e�cient than it �with exception
of the �hardest� images� #� and #���
Since the scanning in the algorithm is performed on the boundaries of the expanding

set Z only� the coder and the decoder procedures are fast� On a Digital DECStation �����
programmed in Standard C� coding of the �������
pixel image �tools� takes about � seconds�
and its decoding about � seconds�

��� Simulation Results 
Grayscale Images�

The same algorithm presented above for Skeleton
based coding of binary images can be
adapted for coding Grayscale Skeletons� Such a generalization is described in Appendix C�
section C��� In this section� we present simulation results for the Grayscale coding scheme�
The Skeleton used in the simulations was with a constant and �at � � �
pixel squared

family generator �structuring element�� Only error�free coding was investigated� This is
because the in�uence of quantization on the theoretical results �Theorems � and �� are still
to be studied�
The results are summarized in Table ���� As the results in the �rst column indicate for the

��� � ���
pixel� � bit
per
pixel image �Lena� �Fig� ����a��� the proposed Grayscale scheme
does not provide good compression for natural images� By natural images� we mean images
with large areas of slow variation in the gray levels� The reason for the incompatibility is�
Images with slow gray
level variation require a great number of �at decomposition elements
for a perfect representation� as demonstrated in Fig� �����a��
On the other hand� images containing large �at areas� and abrupt gray
level variations�

can be more e�ciently represented by �at Skeleton elements� as one can see in Fig� �����b��
This assumption is con�rmed by the remaining results in Table ���� Column � presents
the results for the � bit
per
pixel �Lena� seen in Fig� ����b�� obtained by discarding the �
least
signi�cant bit
planes of �Lena�� We can see that the proposed Skeleton� in this case�
provides results similar to those of the �compress� algorithm� and the error
free JPEG� The
advantage of the Grayscale Skeleton over the other methods for �at images is stressed in
the third column of the table� where the results for �Lena� with only its � most
signi�cant
bit
planes �Fig� ����c�� is presented� Note also the advantage of the Grayscale Skeleton
based
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�a� �b�

�c� �d�

Figure ���� Grayscale images� used for the simulations� �a� � bit
per
pixel� ������� �Lena��
�b� � bit
per
pixel �Lena�� �c� � bit
per
pixel �Lena�� and �d� �Mosaic� of �Lena�� obtained
by means of a segmentation procedure�

grey
levels

space

f
f

grey
levels

space

�a� �b�

Figure ����� The e�ciency of the Grayscale Skeleton Representation� �a� Slow gray
level
varying functions are not well represented� whereas �b� �at and abrupt varying functions are
more e�ciently represented�
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Figure ����� A �
layer ��� � ��� multi
layer map�

method over the Binary Skeleton
based method� applied to each of the � layers separately�
A �
bit
per
pixel version of natural images are not typically of interest� on the other hand

some important applications do relate to �at images� This is the case of Segmentation
based
Coding� described and considered in chapter �� for which the result of a segmentation process
can be summarized in the form of a �Mosaic� image �see Fig� ����d��� The gray level of a
pixel in the presented �Mosaic� image is equal to the average of gray levels in the segment
to which it belongs� According to column � in Table ���� such an image is more e�ciently
coded by the proposed scheme than by the other investigated methods� As seen in chapter ��
this can be used as part of a Segmentation
based coding scheme of natural images�
Another suitable kind of images for Grayscale Skeleton
based coding is that of multi�

layer maps� The layers are arranged in the form of a grayscale image� and then coded by the
method� The results for the �
layer ��� � ���
pixel map� presented in Fig� ����� is shown in
the last column of Table ���� and the advantage of the proposed scheme can be observed�
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Chapter �

Linear Versus Morphological Methods in

Image Representation

In this chapter� a comparison is performed between the Morphological methods for image
representation� considered throughout this thesis� and the Linear methods� which are the
most common and well�known ones in Image Processing and Representation� Furthermore�
hybrid methods� combining both approaches� are considered�

Section ��� below reviews the many algebraic similarities between the two methods� more
particularly� between the Linear mathematical framework �Linear Spaces	 and the Morpho�
logical mathematical framework �Complete Lattices	� between Convolution and Dilation and
Erosion� and between some Linear representations �Wavelets and Laplacian Pyramids	 and
the Skeleton representation�

Section ��
� on the other hand� stresses the basic di�erences between the methods� from
the Image Processing point of view� It turns out that Linear methods better represent smooth

regions in a natural grayscale image� whereas Morphological methods better represent edges�
Section ��� considers hybrid methods� which combine the two methods in order to better

represent both smooth regions and edges� The rapidly growing �eld of Segmentation�based
coding is considered as a particular case of this approach� The potential contribution of the
Grayscale Skeleton�based coding algorithm presented in chapter 
 to this area is demon�
strated by a computer simulation�

��� Algebraic Similarities

����� Framework comparison

Linear Image Processing is based on Linear Spaces� These are sets� to which a sum operation
is attached� This sum operation induces a certain structure for the space� characterized by a
scaling operation called multiplication by a scalar� The most important operators in a Linear
Space L �let us denote them generically by �	 are those which�

�� Commute with the sum operation� i�e�� ��
P

xi	 �
P

��xi	� �fxig � L�

���




� Preserve the scaling structure of the elements in the space� i�e�� x � a � y � ��x	 �
a � ��y	� x� y � L� a � C �set of complex numbers	�

Such an operator is called a linear operator�
As described in chapter 
� Mathematical Morphology is based on Complete Lattices�

These are sets� to which two operations are attached� supremum and in�mum� These oper�
ations induce in the space a certain structure� characterized by the order relation ��	� The
most important operators in a Complete Lattice P are those which�

�� Commute either with the supremum operation� i�e�� ���Xi	 � ���Xi	� or with the
in�mum operation� i�e�� ��	Xi	 � 	��Xi	� �fXig � P�


� Preserve the ordering structure of the elements in the space� i�e�� X � Y � ��X	 �
��Y 	� X�Y � P� Or� in other words� � is increasing�

Among such operators� the ones which commute with the supremum are called dilations� and
those which commute with the in�mum are called erosions�

This analogy between the two frameworks� pointed out by Serra in the preface of ��
��
makes several notions and structures be common for both approaches�

For instance� the most useful operator in Linear Image Processing is convolution� It is
the only one in a Linear space� which is both linear and translation invariant� �A translation
invariant operator satis�es� ��T �x	� � T ���x	�� where T ��	 is a translation	� In the Linear
Space of 
�D functions from Z� to R� the convolution has the form�

�f 
 g��x	 �
X
y�Z�

�f�y	 � g�x� y	� ����	

In Binary and Grayscale Morphology� the most useful operators are the Minkowski sum and
subtraction� � and 
� respectively� The Minkowski sum is the only operator which is both a
Dilation and translation invariant� whereas the Minkowski subtraction is the only translation
invariant Erosion� As pointed out in chapter 
� for Grayscale Morphology� these operators
assume the following form� in the discrete case�

�f � g��x	 �
�

y�Z�

�f�y	 � g�x� y	� ���
	

�f 
 g��x	 �
�

y�Z�

�f�y	� g�y � x	� ����	

Note the resemblance between the structure of the convolution and the above operators�
In ���� �
�� Maragos transposes many of the concepts known in Linear Image Processing

to Mathematical Morphology of functions� The notion of a Dilation System was de�ned� as
an analogy to Linear Systems� as an operator D satisfying�

D

��
i

�ci � xi�v	�

�
�
�
i

fci �D�xi�v	�g ����	

The impulse signal for Grayscale Morphology is de�ned there in the following way�

��v	
�
�

�
�� v � ��
��� v �� ��

����	

���



In classical linear processing� Translation�Invariant Linear Systems are totally characterized
by their impulse response� This is also the case for Translation�Invariant Dilation Systems�
Maragos showed ��
� that any Translation�Invariant Dilation System is of the form�

D�x	 � x� g ����	

where g is the impulse response D��	� As the reader can notice� this is the same Minkowski
sum as considered above� where g is the structuring element� Therefore� a structuring element
is the analogous in Morphology for the impulse response in Linear Systems�

A similar transposition can be performed for Erosions Systems� since erosion is dual to
dilation�

Also in ���� �
�� Maragos proposed an analogy in Morphology for the frequency response

of signals� It turns out that� just like harmonic signals are the eigenvectors for Linear
Translation�Invariant Systems� hyperplanes are the eigenvectors for Dilation and Erosion
Translation�Invariant Systems� Since harmonic signals are characterized by constant fre�

quency� and hyperplanes are characterized by constant slope� one concludes that slope in
Morphological systems is the analogous of frequency in Linear systems� An A�transform�
which is the analogous of the Fourier transform� was de�ned in ����� but this can be applied
consistently only to convex functions�

Parallel and independently to Maragos� Dorst and Boomgaard �
� �� proposed the same
analogy of frequency response by slope response� which they� called Slope Transform� Their
transform �contains� the A�transform proposed by Maragos� in the sense that the former can
be applied for any function and is invertible�

����� Generic Image Representations

Representation Models

Linear Image Representation is based on the following model�

f�x	 �
X
i�I

ai � �i�x	 ����	

where f�i�x	g is a family of pre�de�ned functions� and faig �called representation coe�cients	
is a representation of f�x	 according to that family�

If the family f�i�x	g is real and orthonormal� and supposing that there exists a set of
coe�cients faig that satis�es ����	� then the representation coe�cients can be calculated by
the scalar product�

ai �
X
x�R�

f�x	 � �i�x	 ���
	

If the functions �i�x	 are harmonic functions each in a spatial frequency� then faig is the
frequency response of f�x	�

The above is well�known in Linear Image Processing� and has the following analogy in
Mathematical Morphology� The most common model for morphological image representation
is the following�

f�x	 �
�
i�I

�ai � �i�x	� ����	
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If the functions �i�x	 have disjoint regions of support �which is the analogous of saying
that the family is orthogonal	� and if there exists faig for which ����	 is satis�ed� then the
representation �coe�cients� are given by�

ai �
�

x�R�

�f�x	� �i�x	� �����	

If the functions �i�x	 are hyperplanes each with a di�erent spatial slope� then faig is the
slope response of f�x	�

Projections and Partial Representations

Equation ����	 can be seen as characterizing a map from the space of indices I to the image
spaceR�� This map is a linear operator because it preserves linear superposition� In addition�
���
	 characterizes another linear map� this time from R� to I� If there exists a unique faig
satisfying ����	 for each function f�x	� then this second map is the inverse of the �rst�

Similarly� equation ����	 characterizes a dilation from I to R�� since it preserves super�
position by supremum� Equation �����	 is actually the adjoint erosion from R� to I� of the
above dilation�

Let us consider now the case where there does not exist a collection of coe�cients faig
which satisfy the linear representation ����	 for some f�x	� Still� a set of coe�cients faig
can be calculated by the inverse mapping ���
	� The question which is asked is� What is
the relation between the function �f�x	� obtained by the direct mapping characterized by
����	� and the original function f�x	� It is well known in Functional Analysis� that �f �x	 is
the projection of f�x	 on the subspace generated by f�i�x	g� This process of projection in
idempotent� and the resulting projected element is the element in the subspace which is the
closest to f�x	�

Analogous conclusions can be drawn for the Morphological Representation� Since ����	
and �����	 characterize� respectively� a dilation and an erosion� which we denote by �� and ���
we can rewrite those equations in the form�

f � ���a	 �����	

a � ���f	 ����
	

where f denote the original function f�x	� and a the set of coe�cients faig� Usually� though�
the above system cannot be satis�ed for all f � and the �rst equation should be written�

�f � ���a	 �����	

By substituting ����
	 in �����	� we get�

�f � �����f	 � ���f	 �����	

where �� is the morphological opening associated with �� �see section 
����	�
Like any opening� �� is idempotent� The function �f is an element of the subspace of

functions which can be represented by means of f�ig� therefore this subspace is �generated�
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by that family� Furthermore� �f �x	 � f�x	� �x � R�� since ��� like every opening� is anti�
extensive� And �nally� �f�x	 is the �biggest� function �that with the highest values for each
x	 in the above subspace� which is �smaller� than f�x	 �again this is a property of every
opening	� The conclusion is that �f�x	 is the projection of f�x	 in the space of functions
morphologically represented by f�i�x	g� such that it is the �closest� one to f�x	 �the error
f�x	� �f�x	� which is always positive� is the smallest� for all x	�

Therefore� a provides in this case the �best� partial representation of f in terms of f�i�x	g�
If� on the other hand� the family f�i�x	g in not disjoint� then generally the representation

obtained by �����	 is redundant� and a subset of this representation is to be calculated �see�
for example� the discussion and general approach in chapter �	�

����� Wavelets and Skeleton Representations

Let us consider here a Wavelets Representation and a Grayscale Skeleton Representation as
particular cases of the above Linear ����	 and Morphological ����	 Image Representations�
respectively�

A simple Grayscale Skeleton fSn�x	gn�N � generated with a constant structuring element
g�x	� and calculated using the umbra approach �see section ���	� represents the original image
f�x	 in the following manner�

f�x	 �
�
n�N

�Sn � ng��x	 �
�
n�N

�
y�R�

�Sn�y	 � ng�x� y	� �����	

where ng�x	 is the function obtained by the n�fold grayscale translation�invariant dilation of
g�x	 by itself�

Now� if we assume I to be R��N � so that each index i is in the form �y� n	� where y is a
point in the 
�D space� and n is a non�negative integer� then by comparing ����	 with �����	
we conclude that� in the case of the Grayscale Skeleton�

��y�n��x	 � ng�x� y	 �����	

and that Sn�y	 are the representation �coe�cients��
Therefore� a grayscale image is represented� in terms of a Grayscale Skeleton� by the

superposition of dilated and translated versions of a single function� g�x	� A Wavelet Rep�

resentation� on the other hand� can be described in the very same way as the superposition
of dilated and translated versions of a �Mother Wavelet�� The basic di�erences rely on the
nature of the superposition� which is linear for Wavelets� and morphological for the Skeleton�
and the nature of the �dilation�� which is actually a scaling for Wavelets� and a morphological
dilation for the Skeleton�

����� Laplacian Pyramids and The Skeleton Representation

Although intuitively similar� the Wavelet and the Skeleton representations di�er in many
of their algebraic properties� For instance� the Wavelet representation is not translation
invariant� whereas the Skeleton representation is� On the other hand� in the discrete case� the
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number of representation coe�cients in the Wavelet representation is identical to the number
of pixels in the original image� whereas for the Skeleton representation it is much larger�

A Linear representation which is closer to the Skeleton� in terms of the above properties�
is the Laplacian Pyramid� In section ������ the Skeleton has already been considered as a
pyramid� Here we stress this� by comparing the way in which it is calculated to that of the
Laplacian Pyramid�

Let us consider here the same discrete�family� constant generator� grayscale Skeleton� as
that of the last section� The calculation of the Skeleton �subsets� Sn�y	 in this case is given
by the following version of Lantu�ejoul s Formula�

Sn � f 
 ng � �f 
 ng	 � g �����	

A simple algebraic manipulation on �����	 leads to�

Sn � f 
 ng � �f 
 �n � �	g�� g ����
	

Equation ����
	� together with the fact that f 
 ng � �f 
 �n � �	g� 
 g� permit us to
implement the Skeleton decomposition according to the algorithm described in Fig� ����a	�
The reconstruction can be implemented as shown in Fig� ����b	�

Let us consider now the decomposition diagram �Fig� ����a		� a little more closely� Notice
that� if one replaces the �erosion� operations by a �decimation� �linear low�pass �ltering
followed by a down�sampling	� and the �dilation� operation by �interpolation� �up�sampling
followed by a linear low�pass �ltering	� then the resulting algorithm is that of the Laplacian
Pyramid� Therefore� the Skeleton decomposition can be seen as a Laplacian�like pyramid�
with the erosion acting as a decimation� and the dilation acting as an interpolation�

The similar structures of both representations lead to the above mentioned similar algeb�
raic properties�

��� Di�erences Between the Approaches

We have seen that on one hand� there is a great similarity between the algebraic structures of
Linear and Morphological Image Representations� yet� on the other hand� the two approaches
lead to qualitatively very di�erent results�

For demonstration� consider the two series of �ltering operations presented in Fig� ��
� The
left column of Fig� ��
�a	 consists of a linear low�pass pyramid� Each image was obtained
by averaging the pixel values of the original image �at the top	� with a moving squared
window with increasing sizes� The right column represents a band�pass pyramid� obtained
by subtracting each pair of images of the low�pass pyramid� The left column of Fig� ��
�b	
consists of a morphological �low�pass� pyramid� obtained by performing a grayscale opening
with squared structuring elements of increasing sizes� The sizes of the structuring elements
are identical to the sizes of the windows used in the linear �ltering operations� The right
column represents the respective �band�pass� pyramid�

Notice that the edges of the image are smoothed and blurred as we move down along the
Linear low�pass pyramid� Consequently� all the edges of the image appear in all the levels
of the band�pass pyramid� In other words� the �energy� of each edge is spread out across
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Figure ���� Calculation and reconstruction of the Skeleton decomposition� �a	 Calculation
diagram� where �erosion� denotes ��	
 g� and �dilation� denotes ��	� g� �b	 reconstruction
diagram�
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�a	 �b	

Figure ��
� Linear and Morphological Filtering� �a	 Left column� Linear low�pass pyramid�
Right column� Linear band�pass pyramid� �b	 Left column� Morphological �low�pass� pyr�
amid�� Right column� Morphological �band�pass� pyramid�
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the band�pass pyramid� and the conclusion is that representations based on multi�level linear
�ltering do not e�ciently represent edges�

On the other hand� no smoothing or blurring is noticed in the low�pass morphological
pyramid� The morphological �ltering operations remove bright features of the original image�
without a�ecting the edge contrast� The bright features that are removed� are retained in
the band�pass morphological pyramid levels� according to their size �or width	� Therefore�
each edge does not have its �energy� spread out� but� on the contrary� it is concentrated in
a speci�c band�pass pyramid level� The conclusion is that morphological representations are
usually more suitable for representing edges�

The opposite conclusion is obtained for the smooth regions in an image� as already ex�
plained in section 
�� �see Fig� 
��� on page ��
	� That is� the morphological representations
do not e�ciently represent slow�varying regions of the image� whereas it is well known that the
linear representations usually do� Similarly to the linear representation in relation to edges�
the morphological representation usually makes the �energy� of a smooth region to be spread
out across its representation levels� whereas the linear representation keeps is concentrated
in a certain representation level�

��� Hybrid Methods

As discussed in the last section� the morphological and the linear representations are com�

plementary� because the former e�ciently represents edges and does not e�ciently represent
smooth regions� whereas the latter e�ciently represents smooth regions and does not e��
ciently represent edges�

In this section� we consider hybrid methods� combining both approaches in order to obtain
an e�cient representation of both edges and smooth regions in images�

Combined Framework

The ideal hybrid representation would be one� which is based on a combined mathematical

framework� containing as particular cases both linear spaces and complete Lattices� Such
framework would make possible the construction of a combined image model� and its study�

However� this combined framework is now just an ideal� It looks like that such a uni�c�
ation is not possible at all� Therefore� other approaches� based at a less extent on a global
mathematical framework are the ones in which we have to base ourselves�

Morphological Representation of a Linear Decomposition

A �rst alternative is to perform a linear decomposition of an image and� then� to represent
the resulting representation by morphological methods�

The aim of such an approach is to try to gather back� by means of the morphological
representation� the energy of the edges� which was spread out by the linear representation�

The method know as �Zero�tree coding of Wavelet Decompositions� ���� �which lately
has found much interest� in the Wavelet�based coding �eld	 could be seen as a representative
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Figure ���� The relation between the coe�cients in a Wavelet Decomposition� as considered
by the zero�tree coding method� This relation can be considered as a structuring function in
a Boolean Lattice�

of this approach� although the zero�tree coding is not recognized by the image processing
community as a morphological method�

The zero�tree coding method takes into consideration that the edge energy is spread out
in a Wavelet representation in an ordered manner� Since the original image is recursively
down�sampled at a 
 by 
 ratio� each representation coe�cient in a lower Wavelet subband
is spatially related to � other coe�cients in the immediately higher Wavelet subband �see
Fig� ���	� This relation structure can be carried out recursively� so that each point in a low
subband can be seen as the root of a quad�tree� Since the energy spread in the Wavelet
decomposition follows this same tree structure� then any coe�cient having an absolute value
below a given threshold is likely to be the root of a zero�tree� in which all the nodes are also
coe�cients with absolute value below the same threshold�

In summary� in the zero�tree method� one searches� for each threshold value �which as�
sumes the values� 
m� m � �� �� � � � � �	� the zero�tree roots and codes them e�ciently�

If we consider the Wavelet representation as a function over a Boolean Lattice� and the
relation� depicted in Fig� ���� as a structuring function in that Boolean Lattice� then the
zero�tree representation can be seen as a morphological representation� closely related to
the Skeleton� Notice the similarity between the above structuring function and that of the
Quadtree Decomposition� presented in section ��
��� Furthermore� by applying thresholds of
the form 
m� one is actually performing a bit�plane decomposition of the absolute value of the
Wavelet Representation� and� as seen in chapter �� this can also be considered as a Skeleton
decomposition�

Therefore� in our opinion� the zero�tree coding can be considered as a morphological
representation� and its study and generalization �which are outside the scope of this thesis	
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Figure ���� A simple Skeleton decomposition of a ��D discrete signal� and the arrangement
of its points into a connected graph�

can be performed by means of morphological methods�

Linear Representation of a Morphological Decomposition

Another alternative is the dual approach� �rst to perform the morphological decomposition
and� then� to calculate its linear representation� The aim with this approach could be to try to
gather back the �energy� of the smooth regions� which was spread out by the morphological
representation�

For binary images �even though they do not contain �smooth regions�	� the method of
linear approximation of the Skeleton lines by parametrized arcs or splines �see ���	� could be
considered as a representative of this approach�

For grayscale images� a similar method could be tried� First� a connectivity criterion
should be de�ned� and connected Skeleton points under this criterion should be arranged
in a graph �see Fig� ���	� Then� a numerical function �or functions	� describing this graph�
should be de�ned� For example� Let �x�t	� y�t	� z�t		 describe the di�erences in coordinates�
and gray level� between a Skeleton point t and its successor t � �� If a Skeleton point has
more than one successor� then all of them �but one	 can be disconnected from the graph
and considered as roots of new graphs� The functions �in the above example x�t	� y�t	� and
z�t		 would� then� be represented by linear methods� The implementation and analysis of the
above proposed method is outside the scope of this thesis�

����� Segmentation�Based Representation

Probably the most popular hybrid scheme� in the last few years� is the segmentation�based
representation and coding ���� ���� This is part of the �Second Generation Image Coding
Techniques�� proposed by Kunt� Ikonomopoulos� and Kocher �
��� who suggest to separate
features of di�erent nature in the image into di�erent classes� and code them separately�

In segmentation�based coding� a segmentation of the original image into disjoint regions
is �rst performed� Then the contents of each region �called the texture of the region	 are
coded individually� and the boundaries of the segments are coded separately� The most usual
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linear method for coding the �texture� is polynomial approximation� The boundary of the
segments are usually coded by chain code ���� or by the binary Skeleton ����

Here we propose a segmentation�based coding scheme� using the Grayscale Skeleton�
coding scheme proposed in chapter 
� The segmentation procedure is a version of the mor�
phological segmentation algorithm� called �Watershed algorithm� ���� ���� which is recently
of increasing interest ��� ��� ��� ��� ���

After a segmentation is performed� a �Mosaic Image� is created� in the same way as
described in section 
��� each of its pixels is set to the average of the gray values inside the
segment to which it belongs� A Mosaic image for �Lena�� shown in Fig� 
���d	� is presented
here again in Fig� ����b	 �The original �Lena� is seen in Fig� ����a		� This Mosaic image� as
mentioned in section 
��� is suitable for e�cient coding by the proposed Grayscale Skeleton�
based coding scheme�

On the other hand� the di�erence between the original image and the Mosaic image is
coded by a linear method� Since the high contrasted edges of the original image are retained
in the Mosaic image� this di�erence image is expected to contain mainly the slow�varying
features of the smooth regions� For �Lena�� the di�erence image is shown in Fig� ����c	�

The result of a very simpli�ed implementation of the above idea is shown here� The
di�erence image was lossy coded by JPEG� with a high �q�factor�� at ��

 bits per pixel�
The use of a high q�factor in this case is possible since mainly low frequency features are
assumed to be found in the image� The high frequencies are allowed to be distorted� since they
usually belong to the interface between the segments� which are retained in the Mosaic image�
The Mosaic image� on the other hand� can be errorless coded at ���
 bits per pixel� as seen
in section 
��� The overall coding rate is therefore ��
 bits per pixel� and the reconstructed
image �with PSNR of ����dB	 is seen in Fig� ����d	�

The above scheme is just a preliminary experiment� pointing out a possible approach�
Much is still to be done� First� 
�D JPEG is certainly not the appropriate linear scheme for
linearly coding the di�erence image� The texture inside each segment should be coded indi�
vidually� avoiding the high frequencies due to the discontinuities at the interface of segments�
Furthermore� the segmentation scheme should be improved and adapted to coding purposes
�see ���� ���	� And� �nally� a lossy coding of the Mosaic image should be considered� instead
of a lossless one�
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�a	 �b	

�d	 �c	

Figure ���� Segmentation�based coding scheme� based on the Grayscale Skeleton� �a	 Original
Image �Lena�� �b	 Mosaic image� �c	 di�erence image� �d	 Reconstructed image�
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Chapter ��

Conclusions and Future Research

���� Conclusions

In this work theMorphological Skeleton Representation of images� and some of its applications
�especially for Image Coding�� are studied� The results and conclusions can be divided into
three main groups�

Generalization of the Algebraic Framework� The Skeleton is not only a symmetry axis
of planar shapes� consisting of a collection of connected lines� In its most generalized
sense� it is also an algebraic hierarchical decomposition� and a pyramidal geometrical
representation of several types of images �binary� grayscale� sequences of images� etc���

The algebraic framework of the Skeleton was generalized several times in recent years�
aiming to extend the scope of the Skeleton representation as much as possible� This
work �rst adds a new evolutionary branch to the above development� Its basic contri�
bution is in showing that an image can be decomposed into multi�parameter families
of elements� using a generalization of the classical and e	cient Lantu
ejoul�s Formula�
Then it proposes a Generalized Skeleton framework� which uni�es all the previous gen�
eralizations� including the Generalized Skeleton on Lattices proposed by Serra �
��� and
the Generalized MSES introduced by us� The above framework also permits the de�ni�
tion of new representations as particular cases� like the Hybrid Skeleton� The extension
of such framework for grayscale images is also analyzed�

In addition� applications and special cases are presented and discussed� It is shown
that the generalized Skeleton framework contains� as particular cases� image repres�
entations previously known� but not recognized as Skeletons� such as the Quadtree
and the Bit�Plane decompositions� Moreover� multi�parameter generalizations of these
decompositions are presented �speci�cally� a multi�parameter Quadtree decomposition
for binary images� and a Quadtree�Bit�Plane decomposition for grayscale images��

Another Morphological Representation� called theTwo�Sided Skeleton� is also proposed
here� It does not belong to the Generalized Skeleton framework� but it seems to us
that is has a great potential for Coding and Pattern Recognition� Its advantage is in
yielding a Skeleton�like� self�dual �almost�� morphological representation for binary and
grayscale images�
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Morphological Reduction of Skeleton Redundancy� An algorithm for obtaining Min�
imal Skeletons had been previously proposed ����� However� this algorithm cannot be
described in terms of morphological operations only� and therefore it is not amenable
for a fully parallel implementation� In this work� we consider redundancy reduction
by means of morphological operations only� which can be e	ciently implemented on
parallel machines�

Previously� all the redundant points in a Skeleton representation were considered as
part of a single group� In this work� we �rst de�ne redundancy categories� and then
classify each Skeleton point according to these categories� Points in di�erent categories
usually have di�erent characteristics� for instance� Intralevel redundant points are often
responsible for connectivity preservation� whereas Interlevel redundant points are those
which usually compose the undesired long Skeleton branches� which are formed when
the boundary of the shape is perturbated� Therefore� removing Interlevel redundancy�
while keeping the Intralevel one� often leads to a more robust Skeleton� without a�ecting
its connectivity�

A generic approach for obtaining Redundancy�Reduced Skeletons is also proposed and
studied� It leads to closed�form morphological formul� for removing redundant points
from most of the proposed categories� The Intralevel redundant points can not be
removed by this method�

A second approach for redundancy removal is proposed� which usually removes most
of the Intralevel redundancy� by means of a morphological algorithm� The approach
is based on a new generalization of the concept of �Convexity�� called B�Convexity�
also developed and studied in this work� A shape is called B�Convex when it is invari�
ant under a morphological closing using a structuring element B� We show that the
morphological closing can be seen as a generalization of the traditional Convex�Hull
operation� and that many of properties of the latter are shared by the former�

Moreover� we show that the Essential Points of the Skeleton �which are proved here to
be the intersection of all the Minimal Skeletons� can be obtained by means of closed�
form morphological formul�� These formul� are obtained from the above approaches
for redundancy reduction�

Coding of the Skeleton Representation� In the last years� many researchers lost their
interest in Skeleton�based coding of binary images� because simpler coding schemes� like
Chain�Coding of the original binary image� showed similar �or even better� compres�
sion results� Furthermore� no coding scheme using a Grayscale�Skeleton is proposed at
all �as far as we know�� On the other hand� the Skeleton coding schemes� used in the
above simulations for binary images� have not taken into consideration the strong cor�
relation existing between Skeleton subsets� Actually� this correlation was not properly
characterized� and it was not clear how to e	ciently use it�

In this work� new theoretically�based properties� characterizing the above correlation�
are found� and a coding scheme� taking them into consideration� is proposed� for both
binary and grayscale images� The proposed coding scheme showed� in simulations�
substantial improvement in the Skeleton�based compression e	ciency� as compared to
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previous Skeleton�based coding schemes� and better results than those presented by the
classical coding methods� including Chain�Coding�

The proposed coding�scheme is found to have similar performance as the Group �
standard coder for facsimile� but is less e	cient than the Group � and JBIG standard
algorithms� It seems to us that much can still be done regarding Skeleton�based coding�
so that it is not clear yet if it can or cannot achieve �or even improve� the performance
of the above mentioned recent standards�

���� Future Research

Non�linear models are usually hard to handle� from a mathematical point of view� This often
makes their analysis di	cult� and does not permit their study� as profoundly as the study of
linear models�
MathematicalMorphology� although being a non�linear theory� is based on a solid algebraic

structure� and this gives us several mathematical tools for analysis� which permit its study
as profoundly as linear theories do�
The above reality� together with the fact that Mathematical Morphology is relatively new�

indicates that there is still much to be discovered in that �eld� not only in applications� but
in theory as well� The more one reveals Mathematical Morphology�s �secrets�� the more he
�nds that there is still a lot to be revealed�
In the sequel� possible directions for future research are suggested� as a continuation of

this work�

������ Hybrid Representations

In section ���� some hybrid approaches� combining morphological with linear methods for
image representation� were considered� Further analysis and possible generalization of those
approaches are suggested�
The zero�tree coding of Wavelets decomposition� considered here as a �linear�followed�

by�a�morphological� approach� could have the zero�tree part of the scheme formulated in
terms of Mathematical Morphology� Its morphological analysis should be then performed�
An adaptation of the zero�tree coding could be tried� in order to make it a particular case
of the Generalized Skeleton Representation� Such a representation is expected to be a �bi�
parameter� one� since it should incorporate both the bit�plane decomposition and an adapted
tree decomposition in one structure� This should be possible� since each of them can be
considered as a particular case of a �one�parameter� Skeleton� Such adaptation could give
better results in Coding�
The �morphological�followed�by�a�linear� approach proposed in section ��� should be

formally de�ned� and analyzed� First� the connectivity criterion should be determined� Then�
an appropriate set of functions� describing the connectivity graph� should be sought and ana�
lyzed� The e�ect of lossy linear coding of these functions on the reconstructed image should
also be studied� and simulations of coding should be performed�
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Probably the most promising among the hybrid methods is the Segmentation�based one�
As mentioned at the end of chapter �� much has to be done yet in this area� First� an adapt�
ation of the proposed grayscale Skeleton�based coding algorithm �chapter �� from lossless to
lossy should be performed� and theoretically analyzed� Furthermore� coding�oriented �pos�
sibly multi�resolution� segmentation of images should be implemented� Moreover� linear
coding schemes which code the contents of each segment separately should be investigated�
These are just some of the topics which have to be studied in this area�

������ Sub�Family Optimal Determination

A more theoretical� and of much interest� research direction is the determination of a sub�
family of elements� from a given family� for optimal skeletonization� according to some cri�
terion� More speci�cally� given a family of elements �for example� the family of rectangles
with sides n and m� both non�negative integers�� what is the speci�c sub�family� for which
a Skeleton representation would give the best coding results� or would most e	ciently per�
mit image analysis� This problem can be seen as the transposition� to Morphology� of the
�Best�Basis Selection� ��� and�or the �Matching Pursuit� ���� problems for Wavelet Repres�
entations�
Suppose we consider the �bi�parameter� family of rectangles� mentioned above� The

skeletonization of any binary set X by this family provides a lossless representation of X�
If we take any sub�family of rectangles� containing the rectangle of sides � and � �a single
point�� then the skeletonization by this sub�family is also error�free�
If we search� for instance� for the �� rectangles� which best represent X �in terms of area

covering�� then we would be trying to solve a �Matching Pursuit� problem�
A �Best�Basis Selection� kind of algorithm would be as follows� for each index �n�m��

during the skeletonization process� decide among proceeding to the index �n � ��m�� the
index �n�m� ��� or to both� This procedure selects a connected subset of the set of indices�
determining a sub�optimal sub�family of rectangles� The question to be answered� �Under
which conditions is this sub�family the optimal one��

������ Generalization and Analysis of the Two�Sided Skeleton

The Two�Sided Skeleton� presented in AppendixD� opens up a new direction in Morphological
Representation of Images� Its properties� its redundancy� and its e	ciency should be further
studied�
First of all� its generalization� in the same sense as performed for the original Skeleton

in chapter �� should be developed� and the scope and the conditions under which it is a
perfect representation should be determined� Its redundancy should also be studied� And�
�nally� theoretical properties similar to those presented in chapter � should be sought� Upon
discovery� an algorithm similar to the one proposed here for Skeleton�based Coding could be
developed and tested�

���



Appendix A

Proofs

A�� Theorems in Chapter �

Proof of Theorem �� page �� � A maximal element from a family f�i�x�� i � I� x � Eg
inside a set X is an element �i�x� contained in X� such that� for any j � i and y � E� if
�j�y� � X� then �i�x� �� �j�y�� But since condition � of the theorem makes it impossible for
�j�y� to contain �i�x� if j �� i �unless i  j and x  y�� we need to check only for j � i� The
skeleton subset Si�X� is the set of points x� such that �i�x� is maximal in X�

The following is always true�

�i�x� � X � x � �i�X� �A���

�i�x� �� �j�y�� x �� �i�j�y�  ��i�j��y� �A���

It is always true also that �j�y� � X implies �i�j�y� � �i�X�� but the equivalence is usually
not assured� However� since the family of structuring�functions is granulometry�generating
�condition 	 of the theorem�� for j � i the equivalence is obtained� which can be written in
the following way�

�j�y� � X � ��i�j��y� � �i�X�� y � ��i�j��i�X� �A���

Therefore� according to �A�	�� �A��� and �A�
�� x � Si�X� i� x � �i�X� and x �� ��i�j��i�X��
�j � i� This leads to �
���� �

Proof of Theorem �� page �	 � The left side of �
�	
� can be written in the following
way� �

i�J

�i�Si�X��  
�
i�J

�
x�Si�X�

�i�x� �A���

which means that it is equal to the union of all the maximal elements contained in X� with
�radius� in J � Therefore� we need to proof that x � �J �X� i� x belongs to some maximal
element with �radius� in J �

If x � X belongs to a maximal element �j�y�� j � J � then x � �j�X� � �J�X�� which
proves one way�

If x � �J �X� then there is j � J such that x � �j�y� � LX �for some j � E�� which is
not necessarily a maximal element� But� since LX is inductive for inclusion �condition of
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the theorem�� every increasing chain in LX converges to a unique element� and therefore� by
Zorn�s Lemma� �j�y� �and hence x too� is contained in a maximal element� The radius of
this maximal element is obviously greater or equal to j and belongs to I� Thus� since J is an
anti�umbra in I �condition of the theorem�� the radius of the maximal element containing x
belongs to J � which proves the way back� �

The above proofs are an extension of those in �
���

A�� Relations in Chapter �

Proof of relation 
������ page 
� �

� The region represented by Skeleton points of order i is�

�i�Si� �A�
�

� The region represented by all the Skeleton points of order i� except a Skeleton point
s � Si is�

�i�Si � fsg� �A���

� The region represented only by the point s is the di�erence of the above sets�

�i�Si�� �i�Si � fsg� �A���

� The union of the above sets� for all the Skeleton points s � Si is�

�
s�Si

��i�Si�� �i�Si � fsg��
�
 Y� �A���

It gives the union of those regions which are each represented by only one point of order
i�

� �i�Si�� Y is the region represented by more than one point of order i� i�e��

�i�Si�� Y  Ri� �A���

� Y may also be written as�

Y  �i�Si��
�
s�Si

�i�Si � fsg� �A����

� relation ������ is then obtained considering the last two items� and the fact that Y is
contained in ��Si��
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Proof of relation 
���	�� page 
� � It is enough to prove that for any sets A and B�

�
a�A

�A� fag�	B  
�
b�B

A	 �B � fbg� �A����

First� let us denote the left hand of the above equation as H� and then write the dilation
explicitly in the following way�

H  
�
a�A

�
b�B

�
�a�A��a��a

f!a� bg �A����

Then� after some logical and set manipulations� we notice that a point z  !a� b belongs
to H i� there is another pair of points a and !b� in A and B respectively� such that a�!b  z�
In other words�

H  fz  !a� b  a�!b � A	B j a � !a�!b � bg �A����

Since equation �A�	
� is symmetric� i�e�� the roles of A� a�!a and B�!b� b are respectively
interchangeable� then we can interchange the above sets and elements also in the original
expression� which provides �A�		�� �

A�� Proposition in Chapter �

Proof of the Proposition �� page �� � Like we did in the proof of Proposition � �page
���� we can rewrite the de�nition of Global Essential Points in terms of X 
 nB� t � Sn is
a Global Essential Point i��

f !Pn � ��X 
 nB�� ftg�	 nBg 
 nB � X 
 nB �A����

On the other hand� the left side of equation �A�	�� can assume only two values� X 
nB

or X 
 nB � ftg� for any t � X 
 nB� This is because� for any t � X 
 nB�

	�

f !Pn � ��X 
 nB�� ftg�	 nBg 
 nB �

� !Pn 
 nB� � ��X 
 nB�� ftg� � nB  

��X 
 nB�� ftg� � nB �

�X 
 nB�� ftg �A��
�

��

f !Pn � ��X 
 nB�� ftg�	 nBg 
 nB �

f !Pn � �X 
 nB�	 nBg 
 nB  

f !Pn �X 
 nBg 
 nB  

�
S
m Sm 	mB�
 nB  

X 
 nB �A����

���



Therefore� t � Sn � X 
 nB is Global Essential i�

f !Pn � ��X 
 nB�� ftg�	 nBg 
 nB  �X 
 nB�� ftg �A����

We note that there are � types of points in X 
 nB�

	� The points that satisfy �A�	�� and belong to Sn � which are the Global Essential Points�
GEn�X��

�� The points that do not satisfy �A�	�� and belong to Sn � which are called the Global
Redundant Points�


� The points that satisfy �A�	�� and do not belong to Sn � which we denote Yn�

�� The points that do not satisfy �A�	�� and do not belong to Sn�

The points that do not satisfy �A�	�� satisfy�

f !Pn � ��X 
 nB�� ftg�	 nBg 
 nB  X 
 nB �A����

If we intersect the left side of equation �A�	�� for every t in X 
 nB� we obtain�

T
t�X�nBf !Pn � ��X 
 nB�� ftg�	 nBg 
 nB  �X 
 nB�� �GEn�X� � Yn�

�n
!Pn �

T
t�X�nBf��X 
 nB�� ftg�	 nBg

o

 nB  

 �X 
 nB�� �GEn�X� � Yn� �A����

And since �
t�X�nB

f��X 
 nB�� ftg�	 nBg  InB�X 
 nB�	 nB �A����

we get� n
!Pn � I

nB�X 
 nB�	 nB
o

 nB  �X 
 nB�� �GEn�X� � Yn� �A����

By set�subtracting both sides of �A��	� from Sn� we obtain the proof� �

A�� Lemma in Chapter 	

Proof of Lemma �� page �	 � Let us de�ne�

Rn
�
 RecfS � Yn��� Yn��gC�n� �A����

 RecfS � Sn � Yn��� Yn��gC�n� �A����

 RecfS �Xn� Yn��gC�n�� �A����

We note that�

RecfS �Xn� Yn��gC�n� � �A��
�

� RecfXn� Yn��gC�n�  �A����

 Xn � Un� �A����

���



Therefore�
Rn � Un � Xn� �A����

On the other hand�

RecfS �Xn� Yn��gC�n� � �A����

� RecfS �Xn�XngC�n�� �A����

And we shall show that�
RecfS �Xn�XngC�n�  Xn� �A����

which gives� together with �A�

��
Rn � Xn� �A����

Let us prove �A�
	��
For n  �� �A�
	� holds trivially� since X	  X �the original images�� and S � X�
Suppose� therefore� n � �� It holds�

�
Xn 	 Cn  Xn 	Bn��

�Xn 	Bn��� � Sn��  �
�A����

Which leads to�
�Xn 	 C�n�� � Sn��  �� �A����

Similarly�
�Xn 	 C�n�� � Sm  �� �m� n� �A��
�

Therefore� since Sm � Xn for all m � n� we get�

�Xn 	 C�n�� � �Xn � S�  Xn� �A����

The conclusion is the validity of equation �A�
	��
Now� from �A���� and �A�
��� we get Rn � Un  Xn� which proves the Lemma� �

���



Appendix B

B�Convexity Theory

B�� Convex Sets and Some of its Properties�

One way to de�ne a Convex Set in R
 is the following�

De�nition �� Let X � R
� X is Convex i� it is identical to its Convex�Hull� i�e�� X  
CH�X��

The above de�nition demands another de�nition� for the operation Convex�Hull� which
should be not based on the concept of Convexity� Such a de�nition is�

De�nition �� The Convex�Hull of a set X� CH�X�� is the intersection of all the half�planes
that contain X�

The two main properties of the Convex�Hull operation are�

�� CH��� is idempotent�

�� For any set X� CH�X� if the �smallest� convex set that contains X�

Some of the basic topological properties of the Convex Sets are�

�� X is convex i� any two points x and y belonging to X are connected by a segment
contained in X� We may also formulate this property in the following equivalent way�
X is convex i� for any to points x and y belonging to X� the Convex�Hull of fx� yg is
contained in X�

�� The intersection of convex sets is a convex set�

�� X is convex i� every point outside X can be separated from X by a half�plane� i�e��
x �� X � exists a half�plane that contains x and does not intersect with X�

���



B�� B
Convex Sets and its Properties�

The proposed generalization of Convexity is obtained by replacing the Convex�Hull operation
in De�nition �� by a generalized Convex�Hull operation� called B�Convex�Hull� The de�nition
of the B�Convex�Hull� in its turn� is similar to the de�nition of the conventional Convex�Hull
�De�nition ���� having only the half�planes of De�nition �� replaced by an arbitrary shape
B�

De�nition �� The B�Convex�Hull of a set X� CHB�X�� is the intersection of all the trans�
lations of �Bs�c that contain X�

In the above de�nition� Bc is the complement of B� i�e�� Bc  fb � R
 j b �� Bg� and Bs is
the symmetric of B� i�e�� Bs  f�b j b � Bg�
Actually� the B�Convex�Hull� as de�ned above� is not a new operation� it is known in

Mathematical Morphology as the Morphological Closing� In other words�

Proposition �
CHB�X�  X �B �B���

where � denotes binary morphological Closing�

Proof

CHB�X�  
�

fz j ��Bs�c�z�Xg

��Bs�c�z

 
�

fz j fzg�Bs�Xcg

��Bs�c�z

 
�

z�Xc�Bs

��Bs�c�z

 

�
� �
z�Xc�Bs

�Bs�z

�
�
c

 ��Xc 
Bs� 	Bs�c

 �Xc 
Bs�c

 X �B �B���

�

We denote the generalized Convex sets as B�Convexity and de�ne them as follows�

De�nition �� A set X is B�Convex i� X  X �B�

B���� Properties of the B�Convex�Hull

The B�Convex�Hull has the following two basic properties�

�� It is idempotent�

���



�� CHB�X� is the �smallest� B�Convex set that contains X�

Note the analogy with the properties of Convex�Hull described above� Proof

	� Idempotency is a property of the morphological Closing� hence it is also of the B�
Convex�Hull�

�� �a� CHB�X� contains X� since this is a property of the morphological Closing�

�b� CHB�X� is a B�
Convex set� since� according to the idempotency� CHB�CHB�X��  CHB�X��

�c� Let Y be a B�Convex set� containing X� such that X � Y � CHB�X�� Since
Closing is an increasing operation� i�e�� A � B � A � C � B � C� for all A�
B and C� we obtain X � B � Y � B � CHB�X� � B  �X � B� � B  X � B�
and therefore� CHB�X� � Y � CHB�X�� which means that CHB�X� and Y are
identical�

From �a� �b and �c� we get the proof�

�

B���� Properties of the B�Convex Sets

The topological properties of B�Convex sets� analogous to those of the Convex sets� are�

�� If X is B�Convex then for any pair of points x and y in X� fx� yg �B is contained in
X�

�� The intersection of B�Convex sets is a B�Convex set�

�� X is B�Convex i� every point outside X can be separated from X by a translation of
Bs� i�e�� x �� X � exists z � R
 such that �Bs�z contains x and does not intersect with
X�

Proof

	� It follows from the increasing property of the Closing operation�

fx� yg � X � fx� yg �B � X �B  X �B���

�� Let fXig be a set of B�Convex sets� Each Xi can be written as follows�

Xi  
�
z�Zi

��Bs�c�z �B���

for some Zi� Therefore� �
i

Xi  
�

z�
S

i
Zi

��Bs�c�z �B�
�

and hence� it is also a B�Convex set�

���




�

X  CHB�X�  

 
�

fz j ��Bs�c�z�Xg

��Bs�c�z

 
�

fz j �Bs�z	X�
g

��Bs�c�z

 

�
�� �
fz j �Bs�z	X�
g

�Bs�z

�
	�
c

�B���

Therefore�
Xc  

�
fz j �Bs�z	X�
g

�Bs�z �B���

This means that� x �� X if and only if x belongs to some translation of Bs such that
this translation does not intersect with X�

�

B�� Extreme Points

The Extreme Points of Convex Sets are points with many special properties� Among them�
there is the ability to fully represent the original set� if it is bounded� In this work we also
extend the de�nition of Extreme Points� for B�Convex sets as well�

B���� Extreme Points of Convex Sets

One way of de�ning Extreme Points of Convex sets is�

De�nition �� A point t is an Extreme Point of a Convex set X i� the set �X�ftg� is also
convex�

The ability of the Extreme Points to fully represent the original shape is expressed in the
following proposition�

Proposition � Let E�X� be the set of the Extreme Points of a convex set X� If X is
bounded� then CH�E�X��  X�

B���� Extreme and Internal Points of B�Convex sets

We now present our generalization of the above concepts� de�ning Extreme Points of B�
Convex set in the following way�

De�nition �� A point t is an Extreme Point of a B�Convex set X� i� the set �X � ftg� is
also B�Convex�

��




In this work� EB�X� will denote the set of Extreme Points of a B�Convex set X�
We also de�ne Internal Points of B�Convex sets� They are all the points in the set that

are not Extreme� Denoting the set of Internal Points of a B�Convex set X� by IB�X�� we
may write IB�X�  X � EB�X�� And� since EB�X� � X� it is also true that

EB�X�  X � IB�X�� �B���

The following equation provides a morphological formula for calculating the set of Internal
Points of a given B�Convex set�

IB�X�  
�
x�X

�X � fxg� �B �B���

Proof According to the increasing property of the Closing�

�X � fxg� � X � �X � fxg� �B � X �B  X� �B����

which means that �X�fxg��B is never bigger than X� But it is never smaller than �X�fxg��
either� Therefore� it can be equal only to either one of these two possibilities� According to
the de�nition� �X � fxg� �B  �X � fxg� i� x is an Extreme Point of X� Hence� we obtain
that if �and only if� x is an Internal Point� then �X � fxg� �B  X�

Therefore�

�
x�X

�X � fxg� �B  X �


�
�

�
x�EB�X�

�X � fxg� �B


�
�

 
�

x�EB�X�

�X � fxg�

 X �
�

x�EB�X�

x

 X � EB�X�  IB�X� �B����

�

The set of Extreme Points is obtained using �B��� and �B����
For a perfect reconstruction from the Extreme Points� the set B must be �big enough� in

comparison to the set X� This situation is analogous to the requirement of X being bounded�
in the last section� since in this case any half�plane �which is not bounded� is �big enough�
in comparison to X� A necessary condition for the perfect reconstruction is stated in the
following proposition�

Proposition � If CHB�EB�X��  X �perfect reconstruction from the Extreme Points��
then B 
 IB�X�  ��

Proof For all A� B and C� the following hold� �A � B�	 C � �A	 C� � �B 
 C�� and
�A�B�
C  �A
C�� �B	C�� Together we get� �A�B� �C � �A �C�� �B 
C�� Since
EB�X�  X � IB�X�� we have�

EB�X� �B � X � IB�X� 
B �B����

By hypothesis� the left member of equation �B�	�� is equal to X� Therefore� IB�X� 
B must
be empty and this happens i� IB�X�
B is also empty� �

���



B���� Properties of the Extreme and the Internal Points

Proposition 	 If X is a B�Convex set� then IB�X� is also a B�Convex set�

Proof In the proof of the formula �B���� we showed that

IB�X�  
�

x�EB�X�

�X � fxg� �B����

where each set �X �fxg� is a B�Convex set� since x is an Extreme Point� Since intersection
of B�Convex sets is also a B�Convex set� IB�X� is B�Convex� �

Proposition 
 A point p is an Extreme Point of a B�Convex set X� i� there exists z such
that

�Bs�z �X  fpg� �B����

Proof The point p is extreme i� �X � fpg� is B�Convex �de�nition of Extreme Point��
�X �fpg� is B�Convex i� every point outside X can be separated from X by a translation of
Bs �proposition 
�� Therefore� p can be separated from �X � fpg�� i�e�� there exists z such
that p � �Bs�z and �Bs�z � �X � fpg�  �� This equivalent to �B�	��� All the other points
�other than p� can also be separated from �X�fpg� because� since X itself is B�Convex� they
all can be separated from X� �

The next property agrees with one�s intuition that the Extreme Points are located at the
boundary of the shape� Before we state it� let us de�ne Isolated Point and Boundary�

De�nition �� A point x � X is an Isolated Point of X� according to a shape B	 containing
the origin� i� �fxg 	B	� �X  fxg�

The shape B	 is called neighborhood�

De�nition �	 The boundary of a shape X� according to a neighborhood B	� is the set 	B�X

de�ned by 	B�X  X �X 
B	�

Now we can state the property�

Proposition � If Bs has no Isolated Points according to the neighborhood B	� then the
Extreme Points of any B�Convex set X belong to the boundary of X� according to B	� i�e��
EB�X� � 	B�X�

Proof Let p be an Extreme Point of X� Then� according to proposition �� there exists a
point z for which relation �B�	�� holds�

Let�s now assume that p belongs to X 
B	� In that case� obviously�

fpg 	B	 � X� �B��
�

Intersecting both sides of �B�	�� with �Bs�z� using �B�	��� and taking into consideration that
p belongs to both B	 and �B

s�z� we obtain�

�fpg 	B	� � �B
s�z  fpg �B����

���



Which means that p is an Isolated Point of �Bs�z� But since Bs has no Isolated Points� none
of its translations has� either� and we have a contradiction� Therefore� p cannot belong to
X 
B	�

The conclusion is that� if p is an Extreme Point� than it does not belong to X 
 B	�
In other words� EB�X� � �X 
 B	�c� But since EB�X� � X� we obtain that EB�X� �
X �X 
B	� �

Proposition �� A B�Convex set X can be perfectly reconstructed from its Extreme Points
by the formula CHB�EB�X��  X if and only if no Internal Point of X can be separated from
EB�X� by a translation of Bs� i�e�� �r � IB�X�� �z such that r � �Bs�z� �Bs�z �EB�X� � ��

Proof

CHB�EB�X��  X �

�EB�X�� �B  X �

�EB�X��	B  X 	B �B����

Therefore every translation of Bs that hits X �or any of its subsets� like IB�X�� hits also
EB�X�� �
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Appendix C

Generalizations of the Coding Theorems

C�� Coding Theorems Adapted to a Generalized Skel


eton Representation

This part of the appendix transposes the theoretical results� which are presented in chapter �
for the Generalized�Step Skeleton� to a form suitable for the Generalized Skeletons proposed
in chapter ��
Not all the theorems in chapter � can be directly adapted� For instance� the version of

Theorem � presented here �Theorem �� requires the set of indices I to be totally ordered�
among other requirements�

C���� Basic De�nitions and Notation

Let X � P�E� and the family of structuring functions f�i�x�gi�I �I being any partial ordered
set� satisfy the conditions required for a Generalized Skeleton decomposition �column � in
Table ��
��
We adopt here the following notation�

Xi
�
 �i�X� �C���

Yi
�
 
S
j�i ��i�j��i�X� �C���

Therefore�
Si  Xi � Yi �C���

De�nition �
 
Descendance� Let ��x� be a structuring function in a Boolean Lattice
P�E�� A point y � E is a direct descendant of a point x	 � E� under the give structuring
function� i��

y � ��x	� �C���

De�nition �� 
Connectivity� Two points x	 and y are connected �under a pre�de�ned
structuring function ��x�� i� each one is a direct descendant of the other� under ��x�� i�e��

x	 � ��y� and y � ��x	� �C�
�

���



De�nition �� 
Reconstruction� Let A�D be two sets in a Boolean Lattice� such that D �
A� and ��x� be a pre�de�ned structuring function� The Reconstruction of A from D using
��x�� RecfA�Dg� is given by the following recursive formula�

RecfA�Dg�
�
 f������D� �A� �A� � A � � � �C���

De�nition �� 
Ultimate Erosions� If i � I is not a �rst point� i�e�� �j � I j j � i� then
the Ultimate Erosion of order i� denoted as Ui� of the given set X� is de�ned by�

Ui
�
 Xi �

�
j�i

RecfXi� Yig��j�i� �C���

where ��j�i��x�
�
 �i�j�x�� �i� j � I� j � i��x � E�

If i � I is a �rst point� then Ui is de�ned by�

Ui
�
 Xi � Rec fXi� Yig��i� �C���

where f��i��x�g is any pre�de�ned set of structuring functions�

C���� Skeleton Properties

Quench Function Sampling

Lemma � Let I be a discrete set� fSig be the Skeleton subsets of a Skeleton satisfying the
conditions in Table 
��� and let Xi and Yi be as de�ned in �C�	� and �C���� respectively�

Then� it holds� �
j�i

Rec


�
�Yi �

�
��
j��i

Sj�

�
� � Yi


�
�
��j�i�

� Ui  Xi �C���

Proof The proof is a generalization of that of Lemma 	�
Let us de�ne�

Ri
�
 

�
j�i

Rec


�
�Yi �

�
��
j��i

Sj�

�
� � Yi


�
�
��j�i�

�C����

 
�
j�i

Rec


�
�Yi � Si �

�
��
j��i

Sj�

�
� � Yi


�
�
��j�i�

�C����

 
�
j�i

Rec


�
�Xi �

�
��
j��i

Sj�

�
� � Yi


�
�
��j�i�

�C����

We note that� T
j�i Rec

n
Xi �

hS
j��i Sj�

i
� Yi
o
��j�i�

� �C����T
j�i Rec fXi� Yig��j�i�  �C����

 Xi � Ui� �C��
�

���



Therefore�
Ri � Ui � Xi� �C����

On the other hand�

T
j�i Rec

n
Xi �

hS
j��i Sj�

i
� Yi
o
��j�i�

� �C����

�
T
j�i Rec

n
Xi �

hS
j��i Sj�

i
�Xi

o
��j�i�

� �C����

And we shall show that�

�
j�i

Rec


�
�Xi �

�
��
j��i

Sj�

�
� �Xi


�
�
��j�i�

 Xi� �C����

which gives� together with �C�	���
Ri � Xi� �C����

Let us prove �C�	���
It holds� �

j�i

��j�i��Xi� � Sj  � �C����

Therefore� for all j � i�

��j�i��Xi� �

�
��
j��i

Sj� �Xi

�
�  Xi �C����

The conclusion is the validity of equation �C�	���
Now� from �C�	�� and �C��
�� we get Ri � Ui  Xi� which proves the Lemma� �

Theorem � Consider Ultimate Erosions as de�ned in De�nition �	� and the Skeleton as
de�ned in Lemma �� Moreover� we require that the decomposition family f�i�x�g be increas�
ing� i�e�� i � j � �i�x� � �j�x���x � E �condition � for the Generalized Skeleton on Lattices�
see column � of Table 
��� on page �	��

If I is totally ordered and discrete� and the above conditions are satis�ed� then the radius
of the Skeleton points which are Ultimate Erosions� together with the position of all the
Skeleton points� are su�cient for perfectly representing the original set X�

Proof Since I is totally ordered and discrete� it is isomorphic to N � and therefore we will
consider I  N � with no lost of generality�

We use induction in the following way� �i� If N is the maximal radius in the Skeleton�
then XN  UN � �ii� Once Xi�� is known� each set Xi� N � i � �� can be calculated �see
below�� and �iii� the original image X is equal to X	�

In order to obtain the second part of the above induction� suppose that Xi�� is available�
Therefore Yi is also available� and since I  N � it holds�

Yi  ��i�i����i�X�  ��i�i����Xi��� �C����

���



From the hypothesis� the Skeleton S
�
 
S
i�I Si and the Ultimate Erosions fUng are provided�

Since the Skeleton points with radius greater than i are available at this point� and since the
Skeleton subsets are disjoint �decomposition family is increasing�� the set of Skeleton points
with radius smaller or equal to i�

S
j��i Sj� � is also available� Then Xi is obtained from the

above by Lemma �� �

The following corollaries are direct consequences of �C����

Corollary 
 For a Skeleton as de�ned in Theorem �� if s is a Skeleton point with index
i� then all the Skeleton points which descend from it� �under ��i���i��x�� if i � �� or ��	��x��
otherwise�� have also index i�

Corollary � Suppose that �i�x� is symmetric� i�e�� �x� y � E� y � �i�x�� x � �j�x��
In this case� for a Skeleton as de�ned in Theorem �� if s is a Skeleton point with index i�

then all the Skeleton points in the connected component to which it belongs �with connectivity
being under ��i���i��x�� if i � �� or �

�	��x�� otherwise� have also index i�

Corollary �� For a Skeleton as de�ned in Theorem �� a Skeleton point s has index i if and
only if s �� Yi and s descends either from Ui or Yi�

Deterministic Prediction

As opposed to the results in the previous section� the results in this section relate to any
Generalized Skeleton representation� i�e�� I is not restricted either to be totally ordered� or
to be discrete�

Theorem 	 Let p � E� If the following holds��
j�i

��i�j� �
i�Yi � fpg�� � fpg �C����

then p cannot belong to Si�

Proof The proof is by contradiction� Suppose that p is in Si� and let us de�ne the following
operator�

��Z�
�
 
�
j�i

��i�j��i�Z�� �C��
�

By de�nition of Yi� ��X�  Yi� Also the set �i�Yi� gives Yi when operated upon by �����
Therefore� since ���� is increasing� any set Z	� such that �i�Yi� � Z	 � X� satis�es

��Z	�  Yi� In particular� Z	  �i�Yi � fpg�� p � Si� satis�es it�
However� according to �C���� ��Z	� � fpg� and� therefore� p � Yi� which contradicts that

p � Si� �

Corollary �� Let �F �x� be a structuring function satisfying� for all x � E�

	� x �� �F �x��

�� �
j�i

��i�j� �
i�fxg � �F �x��� � fxg �C����

and let p � E�
If �F �p� � Yi� then p cannot belong to Si�

���



C�� Coding Algorithm Adapted to a Grayscale Skeleton

Representation

In this part of the Appendix� we brie"y propose a generalization for grayscale functions of
the coding algorithm presented in Chapter � for binary images�
For the generalization� the umbra approach �Section ���� on page 
�� is used� In this

case� a Generalized�Step Grayscale Skeleton decomposition is considered as a Generalized�
Step Skeleton on the Boolean Lattice P�E �R�� and all the de�nitions and propositions of
Chapter � are valid�
The following is an outline of the algorithm for coding a grayscale image� It is based on

the generalization in the umbra domain of the binary algorithm presented in Chapter �� and
it is transposed to the function domain �see section ��
�� The given image is denoted by f �
We suppose here that the structuring element g is symmetric and "at� The function Z is an
intermediate image� initially null� which is equal to f at the end of the process�

�� Calculate the Skeleton Subsets Sn� � � n � N � Form the functions !Un by taking one
pixel from each local maximum of the Ultimate Erosions Un�

�� n� N � �� YN � ��

�� Z � �Yn � !Un��

�� p� �a non�null point from the set Z 	 g � Z�� If there are no more points to scan� go
to step ��


� Check �by means of the generalization of Theorem 
� if Sn�p� can be di�erent of � �i�e��
if p �belongs� to Sn� or not� If it cannot� go to step ��

�� Send to the Arithmetic Coder a ���� if p is �belongs� to Sn� or a ���� otherwise�
Furthermore� if p belongs to Sn� send also to the ArithmeticCoder the di�erence between
its gray value and the maximum gray value of Z in the neighborhood �de�ned by the
region of support of g� of it� Use an adaptive probability model�

�� If a ��� was sent� Z � �Z � Sn�p��� Otherwise� go to step ��

�� Recursively� scan the direct descendants of p for other connected Skeleton points� Code
non�predictable points with ��� or ��� accordingly� but use a di�erent adaptive prob�
ability model than the one in step �� The Skeleton points must have the di�erence
between its gray value and the maximum of Z in its neighborhood �de�ned by the
region of support of g� coded as well� After the whole connected component is scanned
and coded� go to step ��

�� If n  �� STOP�

��� n� �n� ��� Yn�� � Z 	B�n�� Go to step ��

���
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Appendix D�
TWO�SIDED SKELETON

� A Representation Composed of Both

Positive and Negative Morphological Elements

Reference ����

ABSTRACT

This work presents a novel morphological representa�
tion structure � the Two�Sided Morphological Skeleton�
It represents a shape not only by the centers of �positive
elements� �foreground features�� as the ordinary Mor�
phological Skeleton does� but also by the centers of �neg�
ative elements� �background features� such as holes��
I�e�� it represents an image by elements from both sides
of the Pattern Spectrum�

The Two�Sided Morphological Skeleton can be a very
e�cient tool in areas such as Multi�Resolution Rep�
resentation� Shape Analysis and Pattern Recognition�
since negative elements are as much important to im�
age comprehension as positive elements� It has also a
potential in Coding� because it is a compact error�free
representation of the original image�

In this work� the Two�Sided Morphological Skeleton
is de�ned and studied for both binary and grayscale im�
ages�

I� INTRODUCTION

The Morphological Skeleton has been successfully ap�
plied in many Image Processing application areas for ef�
�cient shape representation� and as a feature extractor
and classi�er �according to size	� However� it does not
take directly into account background features such as
�holes� and �negative shapes�� making it less e
cient
in such cases� A simple example is shown in Fig� ��
Fig� ��a	 is a binary picture� where the bigger white
circle is a �positive shape� and the smaller black circle
is a �negative shape�
 its ordinary Morphological Skel�
eton� calculated with a disk as structuring�element� is
a circle between the two circular edges as shown in
Fig� ��b	� There is a need for more e
cient represent�
ations that consider both positive and negative disks�
which would represent the same image with just two
points �the center of each circle	� as shown in Fig� ��c	�
by the black and white dots�

The basic morphological operators which are able
to extract both positive and negative features from
given shapes are the Opening�Closing and the Closing�
Opening �lters� Several representation structures have
been proposed based on these operators� e�g�� ������

�a	 �b	 �c	

Fig� �� �a� A binary image� �b� its Morphological Skeleton�
�c� a more natural representation of the image�

Toet�s �band�pass� pyramid ���� for instance� is an
error�free representation where the Closing�Opening �l�
ter replaces the LPF in linear pyramids� prior to the
decimation process� and either a Closing or a Dilation
�lter replaces the LPF needed in the interpolation pro�
cess� This pyramid does produce a two�sided error�
free representation� in which both positive and negative
features are selected and classi�ed according to resolu�
tion� On the other hand� Toet�s pyramid levels contain
not only genuine image features� extracted according
to size by the Closing�Opening �lter� but also spuri�
ous features� originated from by down�sampling pro�
cess ���� This is because subsampling a morphologic�
ally �ltered image is not an invertible process ��� ���
The genuine features and the spurious ones are indis�
tinguishable� as demonstrated in Fig� �� Fig� ��a	 shows
a grayscale image and Fig� ��b	 shows its genuine mor�
phological features� obtained at each step by the dif�
ference of the images in the input and output of the
Closing�Opening decimation �lter� Fig���c	 shows the
related Toet�s �band�pass� pyramid� which contains the
features from Fig� ��b	 plus spurious features� The
pyramid in Fig� ��b	 is not error�free� and the non�
morphological spurious features of Toet�s pyramid com�
pensate its lossy nature� Throughout this paper� all
the �band�pass� pyramidal levels are represented with
a shift of ��� in their graylevels� so that negative fea�
tures can also be shown� The structuring�function used
is a ��� �at square�

To avoid the generation of spurious features� Zhou
and Venetsanopoulos suggested in ��� a di�erent pyr�
amidal representation based on Alternating Sequential
Filters �ASF	� with no down�sampling� ASF�s were in�
troduced by Sternberg ���� and analyzed by Serra ���

���



�a	

�b	

�c	

Fig� �� �a� A ������� grayscale image� �b� genuine mor�
phological features� extracted by the Opening�Closing 	lter
at each step� �c� Toet
s pyramid� with spurious features ori�
ginated by the down�sampling process�

chapter ���� An ASF is obtained by the composition
of Opening�Closing �or Closing�Opening	 �lters� each
one using an element bigger than the one in the previ�
ous stage� ASF�s have been used extensively in image
�ltering�
In ��� ��� the ASF�based �low�pass� pyramid ffng

was generated in the following way�

fn � �fn�� � n � g	 � n � g� n � �
f� � f

��	

where f � f�x� y	 is the original image� g � g�x� y	 is a
pre�de�ned structuring�function� �� �� � and � denote�
respectively� grayscale dilation� grayscale erosion� gray�
scale opening and grayscale closing� and n � g stands for
g�x� y	 dilated n	 � times by itself�
The related �band�pass� pyramid� called Feature�

Width Morphological Pyramid ���� was de�ned as the
di�erence between each level fn and the next level fn���

Fig� � shows the �rst four levels of the Feature�Width
Pyramid�
It is indeed an error�free representation of the image�

which takes into account both positive and negative ele�
ments� and does not have the disadvantage caused by
down�sampling� as in Toet�s pyramid� On the other
hand� the extracted features �both positive and negat�
ive	 in level n of this �band�pass� pyramid have width
equals to n� as seen in Fig� �� Which means that for
an e
cient representation� as needed in coding� and
for precision in determining the position of the fea�
tures� as needed in pattern recognition� thinning must
be performed� The thinning� which is obtained through
erosion� is not invertible� thus producing spurious fea�
tures like the down�sampling in Toet�s pyramid�
The Two�Sided Morphological Skeleton presented in

this paper is an invertible process� providing a thinned
alternative to Zhou and Venetsanopoulos�s pyramid� It
is an error�free representation� with no spurious fea�
tures� formed by the centers of both the positive and
the negative elements extracted at each level of the ASF�
based pyramid de�ned in ��	�

II� TWO�SIDED SKELETON

In this paper we consider only discrete pictures� i�e��
sets in Z� �binary discrete pictures	 or functions over Z�

�grayscale discrete pictures	� The de�nition and prop�
erties of the Two�Sided Skeleton can be extended to
continuous pictures �sets or functions over R�	� but this
extension is not in the scope of this paper�

A� Binary Pictures

�a	 �b	

�c	 �d	

Fig� �� �a���d� The 	rst four levels of the Feature�Width
Morphological Pyramid of the image shown in Fig� ��a��

���



In the binary case� the ASF�based �low�pass� pyr�
amid is de�ned as follows�

Xn � �Xn�� � nB	 � nB� n � �
X� � X

��	

where� X is the original shape� B is the structuring�
element� � and � are respectively the binary opening
and the binary closing operations�
As opposed to the thinned version of the Feature�

Width Pyramid� in which the levels are obtained by
�rst taking the di�erence between consecutive �low�
pass� pyramid levels� and then performing thinning
 the
Two�Sided Skeleton performs �rst the thinning of each
�low�pass� pyramid level and then takes the di�erence�
The formal de�nition is as follows�
The Two�Sided Skeleton of a set X 
 Z� with a

given structuring�element B 
 Z� is two collections
of sets fS�n g

�

n�� and fS�n g
�

n��� where S
�
n is called the

Positive Skeleton Subset of order n and S�n is called the
Negative Skeleton Subset of order n� For every natural
n� S�n and S�n are given by�

S�n
�

� �Xn�� � nB		 �Xn � nB	 ��	

S�n
�

� �Xn � nB		 �Xn�� � nB	 ��	

where fXng is the �low�pass� pyramid de�ned in ��	�
In ��	 and ��	� � denotes binary dilation� � denotes
binary erosion� and the minus�sign denotes here the set�
di	erence operation� Note that the thinning of negative
features is obtained by dilation� whereas the thinning
of positive features is obtained by erosion�
The Positive Skeleton Subsets fS�n g correspond to

the positive side of the Pattern Spectrum
 they contain
the centers of positive features that represent the ori�
ginal image� where by feature we mean a dilated and
translated version of the structuring�element� The Neg�
ative Skeleton Subsets fS�n g correspond to the negative
side of the Pattern Spectrum
 they contain the centers
of negative features�
Let us de�ne the Positive Skeleton of a shape as the

union of all its positive skeleton subsets� and the Neg�
ative Skeleton as the the union of all its negative skel�
eton subsets� Figures ��c	 and ��d	 show the Positive
and the Negative Skeletons� respectively� of the shape
in Fig� ��a	� If we compare them with the ordinary
Morphological Skeleton� shown in Fig���b	� we notice
that they represent the shape in a more meaningful and
e
cient way�
The Two�Sided Skeleton subsets fully represent the

original image X� As shown in the Appendix� every
level n of the pyramid de�ned in ��	 can be recovered
from the lower�resolution level n � � by �adding� the
information in the positive and the negative skeleton
subsets of order n in the following way�

Xn � f�Xn��

	 �S�n � nB
s	� � nB

� �S�n � nB	g � nB ��	

where Bs denotes the set symmetric to B�

�a	 �b	

�c	 �d	

Fig� �� The Two�Sided Skeleton versus the ordinary Skel�
eton� �a� A binary Image� �b� its ordinary Morphological
Skeleton with a �x� square as structuring�element� �c� its
positive and �d� its negative Two�Sided Skeleton subsets with
the same structuring�element�

Bs �� f	b j b � Bg� Fig� � shows the block diagrama
of the reconstruction process ��	�

Since� for a bounded X� there exists a natural N such
that 
n � N� Xn � �� all the information is retained
in the sets fS�n g

N��

n�� and fS�n g
N��

n�� � By applying ��	
successively from n � N 	 � down to �� the original
image X � X� is reconstructed�

A partial reconstruction can be obtained by applying
��	 from n � N	� down to a given number k � �� The
image obtained by this process is the pyramid level Xk�
which is a smoothed version of the original image�

B� Grayscale Pictures

A Two�Sided Skeleton may also be de�ned for a func�
tion f�x� y	� with a given structuring�function g�x� y	�
The Positive and Negative Skeleton Function of order
n� s�n �x� y	 and s

�

n �x� y	� respectively� are de�ned as fol�
lows�

s
�

n

�

�

�
�fn�� � n � g	 	 �fn � n � g	� if positive
�� otherwise

��	

Xn
� �nB � ��

��
� �nB � ��

��
� Xn��� n

�

�nBs

�

S�n

�

�nB

�

S�n

�

�

Fig� �� Block diagram of the recursive reconstruction pro�
cess� �
n� denotes set�di�erence��
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s
�
n

�

�

�
�fn � n � g		 �fn�� � n � g	� if positive
�� otherwise

��	
where ffng is the �low�pass� ASF�based pyramid
de�ned in ��	� In ��	 and ��	� �� � denote� respect�
ively� grayscale dilation� and grayscale erosion� Note
that all the Positive and Negative Skeleton Functions
have non�negative values�
Fig� ��a	 shows a grayscale picture f�x� y	 of size

������� pixels �the same one as shown in Fig� ��a		�
Fig� ��b	��e	 its skeleton functions for n � �� � � � � �� and
Fig� ��f	 the �th level of the pyramid de�ned in ��	�
The image functions in Fig� ��b	��e	 were obtained by
the formula s�n �x� y		 s�n �x�y	 � ���� for n � �� � � � � �
respectively� so that the darker lines belong to the negat�
ive subsets and the brighter lines belong to the positive
subsets� Note that all the lines are thin� even for higher
values of n� The structuring�function used is �at with
the shape of a �x� square�
As in the binary case� the reconstruction process is

performed iteratively from pyramidal level n�� to the
higher�resolution level n with the �addition� of the in�
formation of the positive and negative skeleton func�
tions�

fn � ff�fn�� � n � g

	 s
�

n �� �n � g

� s
�
n g � n � gg � n � g ��	

If f�x� y	 is spatially�bounded� i�e�� if there exists a pos�
itive real M such that f�x�y	 � � for x��y� � M � then
there exists a natural N such that fn � �� 
n � N � This
means that all the information is retained in the Skel�
eton Functions of orders less or equal to N 	 �� and
that an error�free reconstruction from those functions
can be obtained�
Partial reconstructions can be obtained as well� by

stopping the reconstruction process at any level k � ��

III� APPLICATIONS

Some of the application areas� in which the Two�
Sided Skeleton can be applied� are examined bellow�

A� Multi�Resolution Analysis
The positive and negative skeleton subsets �in the

case of binary images	 or functions �in the case of gray�
scale images	 constitute an error�free �band�pass� pyr�
amid� when the related �low�pass� pyramid is the ASF�
based pyramid de�ned in ��	 or ��	� In this context� the
concepts �band�pass� and �low�pass� relate not to fre�
quencies� but to size� But like frequency �band�pass�
pyramids� the Two�Sided Skeleton contains at its lower
levels �i�e�� its subsets � or functions � of lower orders	
the �nest details of the image� and at its higher levels
the largest components of the image�
The information contained at some level n of this

�band�pass� pyramid may be viewed as related to those
features that belong to resolution level n� but not to the

�a	 �b	

�c	 �d	

�e	 �f	

Fig� 	� The Two�Sided Skeleton of grayscale images� �a�
The same grayscale image as in Fig� ��a�� �b���e� composi�
tion of its Positive and Negative Skeleton Functions of order
� to �� respectively� �d� the fourth level of the ASF�based
pyramid�

lower resolution level n � �� In this sense� a multi�
resolution analysis �and�or processing	 can be per�
formed based on the Two�Sided Skeleton subsets �or
functions	�

As pointed out in section I� the Two�Sided Skeleton
is preferable to the �band�pass� pyramid presented in
��� �Fig� ��b		 and the to thinned version of the Feature�
Width Pyramid presented in ��� ��� because its implicit
thinning process is error�free� This prevents the pyr�
amidal levels to contain spurious features� and therefore
provides a more consistent representation�

B� Robust Representation

Although it is not a robust representation� the ordin�
ary Skeleton has some degree of insensitivity to positive
noise� which is noise that contaminates only the back�
ground of a binary image� or that only increments the
values of a grayscale image� However� negative noise�
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which contaminates the foreground of a binary image or
decrements the values of a grayscale image� often alters
completely the ordinary Skeleton of an image� Fig� ��a	�
�d	 illustrate the behavior of the ordinary Skeleton of a
binary image in presence of negative noise� Fig� ��a	
is the original binary image and Fig� ��b	 is the same
image with �� negative binary noise� Fig� ��c	 and
Fig� ��d	 are the ordinary Skeleton of the images in
Fig� ��a	 and Fig� ��b	� respectively� Note how the
shape of the skeleton changes�
The Two�Sided Skeleton has the same degree of in�

sensitivity to both positive and negative noise� Since in
many applications the corrupting noise has both posit�
ive and negative components� the Two�Sided Skeleton
should be preferred for working under noisy conditions�
Fig� ��e�f	 demonstrate the behavior of the Two�Sided
Skeleton in the presence of noise� Fig� ��e	 and Fig� ��f	
are the Two�Sided Skeleton of Fig� ��a	 and Fig� ��b	�
respectively� where the black points refer to the negat�
ive skeleton and the white points to the positive skel�
eton� The structuring�element used in the simulation
was Rhombus �the origin and its ��pixel neighborhood	�

C� Compression and Progressive Transmition
The Two�Sided Skeleton subsets �or functions	

provide a compact representation of the original image�
which permits also e
cient Coding of the image�
In the grayscale case� compression may be achieved

by techniques similar to these applied to other �band�
pass� pyramids� Some of those techniques are�

� Allowing a di�erent quantization error at each
resolution level� The higher the resolution level�
the greater the permitted quantization error� The
highest resolution level�s	 may sometimes be
totally discarded� �The highest resolution levels
are related to the lowest function orders	�

� Applying di�erent coding methods at di�erent
groups of resolution levels�

For instance� the Two�Sided Skeleton can replace the
thinned version of the Feature�Width Pyramid in the
coding method proposed in ��� and ���� This is expec�
ted to improve the quality of the reconstructed image
because there is no loss of information in the Two�Sided
Skeleton implicit thinning process� After the Two�Sided
Skeleton is obtained� the coding is done as in ��� of ����
the highest resolution levels are decomposed by a direc�
tional morphological �lter bank into directional images�
which are scanned in the respective direction and have
their run�lengths coded� The remaining coarse image is
coded by a vector quantization scheme�

The interest in using a morphological pyramid� such
as the Two�Sided Skeleton for image coding� is that it
represents image edges in a more e
cient way than
linear pyramids� Since the ordinary Skeleton repres�
ent explicitly the edges of positive elements only� it is
less suitable than two�sided representations for e
cient
coding�

�a	

�b	

�c	

�d	

�e	

�f	

Fig� 
� The behavior of the ordinary and the Two�Sided
Skeletons under noisy conditions� �a� A grayscale image� �b�
The same image� but with �� binary negative noise� �c� the
ordinary Skeleton of �a�� �d� the ordinary Skeleton of �b�� �e�
the Two�Sided Skeleton of �a�� �f� the Two�Sided Skeleton
of �b��

In the binary case� the Two�Sided Skeleton usually
achieves compression rates similar to those of the or�
dinary Morphological Skeleton� even though there are

���



two Skeleton subsets at each step n� instead of only
one as in the ordinary Skeleton� This is because there
are usually less representation points in the Two�Sided
Skeleton than in the ordinary Skeleton� as was demon�
strated in Fig� ��
In either case� the Two�Sided Skeleton is also suitable

for Progressive Transmition �from the highest subset
orders to the lowest ones	� since the reconstruction is
performed on a level�by�level basis and since each level
�adds� more details�

D� Image Decomposition
Every Two�Sided�Skeleton point is accompanied by

two parameters� size �the order of the skeleton subset or
function	 and side of the Pattern Spectrum �whether it
belongs to a positive or to a negative subset or func�
tion	� By selecting appropriate Two�Sided�Skeleton
points� one can obtain decompositions of the original
image� according to those parameters�

E� Pattern Recognition
Each Two�Sided Skeleton point is the center of

a dilated version of the structuring�element� If the
structuring�element is convex� the dilated versions are
also scaled versions of it� Thus� it is possible to search
for a certain convex shape in a given image by ana�
lyzing the Two�Sided Skeleton of that image� when the
structuring�element used in the calculation is the con�
vex shape to be found� Such method� using the ordinary
Skeleton� is expected to detect positive elements only�

IV� CONCLUSIONS

A new morphological representation structure� the
Two�Sided Skeleton� has been de�ned� both for bin�
ary and grayscale images� and its applications were dis�
cussed� It was shown that the new structure is able to
represent image details in a more meaningful way than
the ordinary Morphological Skeleton� since it considers
both the positive and the negative features of the im�
age� The Two�Sided Skeleton characteristics as a multi�
resolution pyramid� and its advantages over two other
similar morphological multi�resolution representations�
were also pointed out�

APPENDIX

Proof of the reconstruction relation in equation �
��
First we notice that for all n�

Xn�� � �n� �	B � Xn�� �A��	

Xn�� � nB � Xn�� �A��	

Relation �A��	 is a direct consequence of the de�nition
for fXng in ��	� and �A��	 is obtained from �A��	�
Using �A��	� and since A�B	C�Bs � �A	C	�B�


A�B�C� we get�

Xn�� 	 �S�n � nB
s	 �

� ��Xn�� � nB	� nB�	 �S�n � nB
s	

� ��Xn�� � nB		 S
�

n �� nB �A��	

Also S�n � �Xn�� � nB		 �Xn � nB	 �by de�nition	�
and A	 �A	B	 � A �B� 
A�B� Therefore�

��Xn�� � nB 	 S
�

n �� nB �

� ��Xn�� � nB	 � �Xn � nB	�� nB

� ��Xn�� � nB	 � �Xn � nB	� �A��	

From �A��	� �A��	� �A��	 and �A��	� we obtain�

Xn�� 	 �S�n � nB
s	 � Xn�� �Xn �A��	

Performing opening and �adding� now the information
in S�n � it follows�

��Xn�� �Xn	 � nB� � �S�n � nB	 �

� ��Xn�� �Xn	� nB � S�n �� nB

� ��Xn�� � nB	 � �Xn � nB	 � S�n �� nB

Using S�n � �Xn � nB		 �Xn�� � nB	 �by de�nition	
and noting that �A � B	 � �A 	 B	 � A� 
A�B� we
obtain�

��Xn�� � nB	 � �Xn � nB	 � S�n �� nB �

� ��Xn�� � nB	 � �Xn � nB	 �

� �Xn � nB		 �Xn�� � nB	�� nB

� �X � nB	� nB � Xn � nB �A��	

Finally we use the fact that the opening�closing opera�
tion is idempotent� and that Xn � Xn�� � nB � nB� to
state that�

�Xn � nB	 � nB � Xn �A��	

The reconstruction relation in ��	 is then obtained from
�A��	� �A��	 and �A��	�
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