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Abstract

This research addresses the representation of binary and grayscale images by means of Math-
ematical Morphology.

Mathematical Morphology is a relatively new non-linear theory for Image Processing,
based on Set Theory. It considers images as sets (instead of wvectors, as in the classical
Linear Image Processing), which permits geometry-oriented transformations of the images.
This approach seems very appropriate for dealing with objects in images, and it has gained
increasing attention in recent years. It was first developed for binary images, then extended
for grayscale images, and finally, generalized for sets in a generic mathematical space, called
Complete Lattices.

One of the main image representations in Mathematical Morphology is the Skeleton Rep-
resentation. Its original purpose was to provide a symmetry azis of planar shapes, for Pattern
Recognition and Shape Analysis applications, but it can also be considered as a shape de-
composition, useful for Image Compression, and Pattern Recognition.

In recent years, the Skeleton representation was generalized a number of times, to extend
the scope of its algebraic characteristics as much as possible. With these generalizations,
the Skeleton’s role as a symmetry axis lost its importance, while its ability to serve as an
efficient image decomposition tool was extended to discrete images, grayscale images, and
sets in Complete Lattices.

This work follows the above line, and further develops it. First, a new evolutionary
branch is added to the Skeleton’s development, by the introduction of a Multi-Structuring-
FElement Skeleton (MSES), which permits a Skeleton-type decomposition of images into
“multi-parameter” families of elements. Previously, Skeleton representations were based only
on “l-parameter” families of elements for image decomposition. In addition, a Generalized
Skeleton framework is proposed, unifying the new branch, as well as all the previous Skeleton
generalizations. It deals generically with sets in Lattices, and families of decomposition ele-
ments indexed by indices in a generic set I, which is totally or partially ordered. Extension
of the unified generalized framework to include grayscale images is also considered, and two
approaches are proposed and compared.

As particular cases of the proposed Generalized Skeleton Representation, one can obtain
new relevant representations, as well as well-known representations, like the Quadtree and
the Bit-Plane decompositions, which were not previously recognized as morphological ones.
Applications and properties of the Generalized Skeleton Representation are presented, and
illustrated by computer simulations.

Another Morphological representation, which is not part of the above generalized frame-
work, called Two-Sided Skeleton, is also proposed in this work. As opposed to the above



generalized framework, the Two-Sided Skeleton is a self-dual (almost) representation, since
inverting the gray levels of the pixels in the image almost does not affect it. Motivation and
applications are also presented.

The second main topic addressed in this research is the Redundancy in the Skeleton rep-
resentation. It is well known that the Skeleton representation contains redundant points,
which, if removed, do not affect the perfect reconstruction property of the Skeleton. Previ-
ously, all the redundant points were considered as belonging to a single group. In this work,
a study on the types of redundancy is performed, and redundancy categories are proposed.
Each redundant point is mathematically classified into one or more of the proposed categories.
Furthermore, a generic approach for obtaining Redundancy-Reduced Skeletons is developed.
By this approach, Reduced Skeletons which are free of redundant points from all but one of
the proposed categories can be obtained by means of morphological closed-form formule.

Still concerning the redundancy in the Skeleton, a second approach is proposed for remov-
ing most of the redundant points from that category which the first approach is not able to
deal with. This second approach is based on a generalization of the concept of “Convexity”,
which we call B-Convexity, proposed and developed in this thesis. B-Convexity is defined,
keeping an analogy with the original concept of Convexity, and is studied by means of several
theorems, forming a theory. This theory is applied to Redundancy Removal, as mentioned
above.

Another main topic addressed in this research is Skeleton-based Coding of binary and
grayscale images. In the last years this area has lost much of its interest, because unsatisfact-
ory results, when compared to other classical coders. However, as demonstrated here, much
of the poor coding performance by the previous coders is because they have neglected to take
in consideration several correlation characteristics of the Skeleton. In this work, new theoret-
ical properties of the Skeleton Representation, related to the above mentioned correlation, are
presented. Furthermore, a Skeleton-based coding algorithm for binary and grayscale images
is developed, which efficiently takes into consideration the above properties.

Computer simulations, also presented, show that, for binary images, the proposed coding
scheme substantially improves the results obtained by previous Skeleton-based Coders, and
performs better than classical coders. For facsilime images, it usually performs better than
the Group 3 standard, but, at this point, it is weaker than the most advanced standards:
Group 4 and JBIG.

For grayscale images, the proposed algorithm performs well for images containing large
flat areas and abrupt edges, like multi-layer maps and images obtained by a segmentation
process.

Finally, this work performs a comparison between Linear and Morphological Repres-
entations. The profound algebraic similarity, and the qualitative differences between the
approaches are presented and analyzed. Hybrid representations, which combine both ap-
proaches, and their applications in Coding, are also considered.
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Chapter 1

Introduction

1.1 Background and Motivation

Image Representation is a key component in many tasks in Computer Vision and Image
Processing. It consists generally of presenting an image in a form, different from the original
one, in which desired characteristics of the image are emphasized and more easily accessed.

For grayscale images, most of the known representation are based on linear methods:
Unitary Transforms (Fourier, Wavelets, etc.), Multi-resolution pyramids, Linear Prediction,
and so on. Fractal approaches has also been studied. For binary images, the classical methods
are not derived from a unifying theory, as opposed to the grayscale methods. The best-known
methods are: Contour representation, Quadtree Decomposition, Skeleton representation and
Run Lengths.

In this thesis, we consider morphological methods for both binary and grayscale image
representation. They are based on Mathematical Morphology, which is a relatively new, and
rapidly growing, nonlinear theory for Image Processing.

Mathematical Morphology [51, 52, 12, 10, 38] is part of Set Theory, and it has a strong
geometric orientation. Its theory was developed by Matheron and Serra, in the middle 60’s,
with the purpose of describing the structure of materials by image analysis of their sections.
Being originally developed for binary images, it was later (during the 70’s) generalized for
grayscale images as well [57].

For binary images, Mathematical Morphology provides a well founded theory for ana-
lysis and processing. Therefore, Binary Morphological Representations can be developed
and analyzed. For grayscale images, Mathematical Morphology yields a nonlinear method
for geometrical processing of images. Grayscale Morphological Representations are a gener-
alization of the binary representations, and they emphasize geometrical characteristics of the
image, which are not easily accessed in a linear representation.

The main morphological representation for binary images is the Skeleton [27, 29, 52]. The
Skeleton (defined in section 1.2 below) was originally proposed and developed independently
of Mathematical Morphology, and several works concerning it are still performed today with
no aid from the morphological theory (see [54]). On the other hand, it was proved that
the Skeleton can be calculated entirely by the basic operations of Mathematical Morphology
[27], which makes the Skeleton a morphological representation, suitable for analysis by mor-
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Figure 1.1: The “Grass-fire” model for obtaining the Skeleton.

phological tools. Moreover, following the generalization of the whole Morphological theory,
from binary to grayscale images, the Skeleton Representation could be generalized as well to
grayscale images [38].

The motivation of this work is to investigate the use of Morphological Skeletons for binary
and grayscale Image Representation, and their applications, with special interest in Coding.

1.2 The Skeleton

1.2.1 Definitions

Blum [2] introduced the notion of Skeleton by means of the following intuitive model: Suppose
a given shape to be a grass field, and suppose that at time ¢ = 0 its whole boundary is set
on fire. The fire then propagates inwards at a constant speed. The set of points at which
the fire extinguishes is the Skeleton of the shape. Fig. 1.1 illustrates the above “Grass-fire”
model.

Since its intuitive introduction, the Skeleton was defined mathematically in a number of
ways. The various definitions are different characterizations of the “Grass-fire” model, and
they provide (almost) equivalent results for continuous planar shapes. Two of the main
definitions of Skeleton are the following [51]:

Definition 1 Let a maximal disc inscribable in a given shape X C R? be a disc included in
X, and not contained in any other disc included in X .
The Skeleton of X is the set of centers of all its mazimal discs.

Definition 2 Let the distance function r(x) for a given shape X C R? be the map relating
to each point x inside X its distance to the boundary of X. Let d(x,y) be the Euclidean
metric in R2.

The Skeleton of X is the set of points {s € R?*} satisfying r(y) —r(s) < d(s,y), for all
y € R
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Figure 1.2: The definition of Skeleton in terms of maxzimal discs. (a) Maximal discs in a
shape, (b) the Skeleton as the centers of all the maximal discs.

Fig. 1.2 and Fig. 1.3 illustrate the above definitions, respectively.

1.2.2 Algebraic Versus Topological Points of View

According to Serra [53], the study of Morphological Skeleton was historically split into two
branches: algebraic and topological.

Topological Approach

The topological branch considers the Skeleton mainly as a shape descriptor. In this case, the
Skeleton is supposed to provide a simplified version of the original shape, and to summarize
important geometrical information about it. Therefore, the Skeleton’s shape and connectivity
(among other geometrical and topological properties) can be considered as relevant features
for Image Analysis and Pattern Recognition.

From the topological and geometrical points of view, the most important properties of
the Skeleton are:

1. It is thin, composed of lines and/or points.

2. It represents a symmetry axis (also called medial axis) of the original shape.



Skeleton

Figure 1.3: The definition of Skeleton in terms of distance function. The point a is not a
Skeleton point since r(b) — r(a) = d(a,b). On the other hand the points b, p, and ¢ are
Skeleton points. Notice that r(q) — r(p) < d(p, q) as well as r(p) — r(q) < 0 < d(p, q).

3. It usually preserves homotopy, that is, the number of connected components and the
number of “holes”.

4. The Skeleton points are disjoint, i.e., the same point in space cannot be the center of
more than one maximal disc.

5. There are efficient algorithms for calculating the Skeleton.

On the other hand, the Skeleton presents also some negative topological characteristics:

e Small perturbations on the boundary of the original shape X can produce large branches
in the Skeleton, and a very small hole in the shape can considerably alter the Skeleton.
In this sense, skeletonization is not a continuous operation.

e Connectivity preservation is not always assured.

Among the main issues addressed by researchers in the topological branch are:
1. How to produce more robust Skeletons, less influenced by small perturbations?
2. How to produce Skeletons where connectivity preservation is assured?

3. How to produce discrete Skeletons in grids, so that homotopy, axial symmetry and the
thin aspect are preserved?

Algebraic Approach

The algebraic branch relates to the Skeleton in a quite different way. From the algebraic point
of view, the Skeleton is the result of the decomposition of a given set into the superposition
of simpler elements, selected from a pre-defined family of elements (discs of increasing sizes).
The above decomposition provides an image representation which can be used in Coding



Figure 1.4: Partial Reconstruction of the Skeleton Representation. Simplification of the shape
is obtained by removing Skeleton points related to maximal discs with value smaller than a

threshold.

for data compression purposes. The algebraic approach also yields another tool for Pattern
Recognition.

The important Skeleton characteristics in the algebraic approach, as opposed to those in
1.2.2, are:

1. The original image is fully represented by the collection of Skeleton points, together
with the radius of the related maximal discs (or equivalently, the value of the distance
function at each Skeleton Point). The shape reconstruction is obtained by the union of
all the maximal discs. The above collection of Skeleton points and radii is called the
Skeleton Representation.

2. The Skeleton Representation provides simplified versions of the original shape when
Skeleton points with radius smaller than a threshold are discarded in the reconstruction
process (see Fig. 1.4).

3. The Skeleton provides a decomposition of the original shape into features (discs) of
different sizes, which can be seen as components in different “scales”. The smallest
maximal discs can often be considered as details, whereas the largest ones can often be
considered as the main structure. This provides a hierarchical or pyramidal interpret-
ation to the Skeleton Representation.

4. The Skeleton Decomposition can be calculated by means of an algebraic closed-form
formula (see section 2.2).

The main negative characteristics of the Skeleton, in this branch, are:

o [t usually contains redundant points, that is, many Skeleton Points can be discarded
and still the original shape can be fully reconstructed. (See Fig. 1.5).

e [t is not a self-dual representation (like the Chain-code or Quadtree, for instance), since
the Skeleton of X¢ (the complement of X) is totally different from the Skeleton of X*.

Some of the main issues addressed by researchers in the algebraic branch are:

1See [15] for background on self-dual operators.
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Figure 1.5: Skeleton Redundancy. Only the points @ and b are not redundant in this Skeleton
Representation.

1. How to reduce Skeleton’s redundancy?
2. How to decompose the shape into elements other than discs?
3. How to produce discrete Skeletons on grids, containing as few as possible points?

4. How to efficiently code the Skeleton Representation of shapes?

1.3 A Generic Approach to Skeleton-Based Coding

1.3.1 Coding as an Optimization Problem
Consider the following optimization problem, illustrated in Fig. 1.6:

Problem 1 Let {F.;} be a given family of “simple” shapes (e.g., squares of different sizes,
discs of different radii), with indices 1 belonging to a set I (e.g., [ ={0,1,2,...}).
For any given shape X, what is the smallest subset of {F;} which exactly covers X ¢

By solving Problem 1 (if there is a solution), one is usually calculating an efficient lossless
representation of X in terms of a set of indices 1(X) contained in I. Coding I(X) typically
leads to a compression of X. Decoding, on the other hand, can be performed by superposing
those elements of {F;} which are indicated in 1(X).

Unfortunately, a simple, closed-form solution for Problem 1, supposing an arbitrary family
{F;}, is not expected to exist. In this case, high-complexity optimization algorithms are

required.

Figure 1.6: Shape representation by the union of elements from a given family of shapes.
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1.3.2 The Algebraic Skeleton as a Sub-Optimal Solution

In this context, the Skeleton Decomposition, seen from the algebraic point of view, can be
considered as a “low-complexity”, sub-optimal solution to Problem 1, in the particular case
of {F.;} being equal to the family of all discs. The “low-complexity” is due to the existence of
a closed-form formula for the Skeleton calculation. And it is a sub-optimal solution because
it contains redundancy (see previous discussion, and chapter 6).

The algebraic approach serves as a framework to Skeleton-Based Coding of binary images.
In this framework, topological issues or negative characteristics concerning the Skeleton (like
lack of connectivity preservation, discontinuity of the operation, etc.) are of little importance
(or not at all important), as long as coding efficiency is not affected.

1.4 Previous Works in Coding

In recent years, the algebraic branch of the Skeleton development has brought the Skeleton
closer to be the optimal solution of Problem 1. This development can be observed in two
main fronts:

1. Generalizations of the Skeleton framework, so that families {F;} other than the family
of discs can be used [51, 29, 48, 50, 52, 53, 21]. This generalization development is
detailed in chapter 3.

2. Approaches to remove the redundant elements in the Skeleton representation, so that it
becomes an actual (locally) optimal solution to Problem 1 (for the specific families {F;}
mentioned in item 1 above), [29, 30, 20]. This development is described in chapter 6.

Although the structure of the Skeleton has been extensively studied, only a small number
of works address to coding schemes for the Skeleton. The only articles known to us, which
seriously propose a scheme to code the Skeleton Representation are [29, 3]. The schemes
proposed by them are described in general lines in chapter 8.

On the other hand, the above coding schemes are related to binary Skeletons only, i.e.,
Skeletons of binary images. Although grayscale Skeleton Representations are known for about
15 years [36, 38], we have not seen any work proposing and analyzing a coding scheme for
them. Skeleton-based coding of grayscale images has been performed by first decomposing
the image into binary images (bit-plane decomposition [48], or segmentation [39, 44]), and
then coding their binary Skeletons.

Other Morphological Approaches

Another morphological representation method, for binary images, is called Morphological
Shape Decomposition [37, 38, 41]. It consists of first calculating the discs (or other predefined
convex shapes) with the greatest size contained inside the shape, then taking the residue (set-
difference) between the original shape to the above greatest discs, and finally reiterating
the above procedure on the residue until the whole shape is decomposed. The resulting
decomposition elements are, therefore, disjoint.
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The Morphological Shape Decomposition shares with the Morphological Skeleton Rep-
resentation the attention of the researchers. The question of which of the representations is
preferable for coding are yet to be answered. In [40], a comparison between the two methods
is performed, but it does not present real coding results.

For grayscale images, the most popular image representation for coding is the Morpholo-
gical Pyramid[59, 58,11, 35]. The Morphological Pyramid decomposes a grayscale image into
different “resolution” levels, where “resolution” in this case is related to “size”, as opposed
to linear pyramids where “resolution” relates to “frequency” or “scale”. The Morphological
Pyramid can be obtained with the same algorithm as used for calculating the linear Lapla-
cian Pyramid [5]; the only difference is that the low pass filters in the latter are replaced by
morphological filters in the former.

1.5 Original Contributions and Organization of the
Thesis

The following are the main contributions of this thesis:
1. Concerning the Skeleton’s algebraic framework:

(a) A new branch is added to the evolutionary tree with the proposal of a Multi-
Structuring-Flement Skeleton (MSES).

(b) A Generalized Skeleton’s framework is proposed, unifying the new branch and the
previous general framework.

(¢) The Quadtree and the Bit-Plane decompositions are shown to be particular cases
of the proposed Generalized Skeleton Representation.

(d) New particular cases of the Generalized Skeleton representation of binary and
grayscale images are proposed, including multi-parameter generalizations of the
Quadtree and the Bit-Plane decompositions.

(e) An “almost self-dual” Skeleton representation (for which an image and its inverse?

are similarly represented) is developed.
2. Concerning the Skeleton’s redundancy:

(a) A classification of the redundant points in the Skeleton into categories is proposed.

(b) A generic approach for obtaining Redundancy-Reduced Skeletons is proposed, and
Morphological closed formulae for obtaining Skeletons with no redundant points
in most of the above categories are derived.

(c) The concept of B-Convexity, generalizing the concept of Convexity, is proposed
and its theory developed. B-Convexity is then applied to Skeleton redundancy
reduction.

2The inverse of a grayscale image f(z,y) is considered here to be the image g(x,y) = 255 — f(z,y).
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(d) Morphological closed-formule are developed for the calculation of the Essential
Points of the Skeleton [46, 48], which are those points in the Skeleton which cannot
be discarded if a perfect reconstruction is desired.

3. Concerning Skeleton-based Coding:

(a) New theoretical properties of the Skeleton, applicable to Coding, are proved. Ac-
cording to the first property, the radius of most of the Skeleton points can be
removed from a Discrete Skeleton Representation, and still the original image can
be completely recovered. The second property permits deterministic prediction of
information about the Skeleton points of radius r, from the information about the
Skeleton points with radius greater than r.

(b) A Skeleton-based coding scheme for binary and grayscale images, using the above
theoretical properties, is proposed and compared to other standard coders. The
use of the scheme in segmentation-based coding [26, 44] is also considered and
demonstrated.

The thesis is organized as follows:

Chapter 2 provides a theoretical background on Mathematical Morphology, and the Mor-
phological Skeleton. It also describes the generalizations of Morphology, from planar shapes,
through functions, up to elements in a mathematical generic framework called Lattice.

Chapters 3,4, and 5, as well as Appendix D, concern the Skeleton’s framework and its
generalization: Chapter 3 describes the evolution of the algebraic framework representation,
and our contributions to this evolution. Chapter 4 considers Grayscale Skeletons, as fur-
ther generalizations of the framework. Chapter 5 presents special particular cases of the
Generalized Skeleton Representation, and its applications. In Appendix D, the definition,
applications, and simulation results for the “almost self-dual” Skeleton, called Two-Sided
Skeleton, is presented.

Chapter 6, 7, and Appendix B, concern Skeleton’s redundancy reduction: Chapter 6
presents the classification of the skeleton points into categories, and one of two approaches for
redundancy reduction. Chapter 7 summarizes the B-Convexity Theory, and its application as
a second approach for redundancy reduction. The details of B-Convexity Theory is presented
in Appendix B.

Chapter 8 concerns Skeleton-based Coding of binary and grayscale images, and our con-
tributions to the field. Simulation results are also presented, and are compared to standard
approaches. In Appendix C, mathematical generalizations of the above results are described.

Chapter 9 compares linear methods with morphological methods for grayscale image rep-
resentation. Moreover, hybrid methods, combining the morphological with the linear ap-
proaches, are considered. In this context, the application of the proposed coding scheme
(presented in chapter 8) in segmentation-based coding of grayscale images is demonstrated.

Finally, chapter 10 provides conclusions and proposes future research lines. Detailed
proofs of some of the theorems presented in the work can be found in Appendix A.
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Chapter 2

Theoretical Background on
Mathematical Morphology

2.1 Binary Morphology

Mathematical Morphology is a nonlinear Image Processing theory, which was initially de-
veloped for binary images (see [51, 12, 38, 10]). In Morphology, a binary image is interpreted
as a set X in an Euclidean space F. The elements of X are the foreground points of the
image, whereas the background points form the set’s complement X¢. The Euclidean space,
E, is equal to either R?, if the image is continuous, or equal to Z9, if the image is discrete.
Usually the binary images are bi-dimensional, and therefore d = 2, but multi-dimensional
volumes can also be considered as images.

This original framework of Mathematical Morphology is called here Binary Morphology,
to distinguish it from its generalizations, which were developed later, and are described in
the sequel.

2.1.1 Basic Morphological Operations

In Binary Morphology, a binary image is processed by interacting with it via a pre-defined
“simple” shape B, also considered as a set, called structuring element. For instance, B can
be an open disc in R?. The basic morphological operations concern, usually, the interaction
between a given image X, and a structuring element B.

Translation

Before the basic morphological operations are presented, the concept of translation, which is
fundamental in binary morphology (and in general Morphology as well), must be properly

defined.
Let B be a set contained in F, and let  be a point in £. The translation of the set B
by the point x, denoted B,, is defined as follows:

B, 2 {b+z| be B (2.1)
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Figure 2.1: Translation of a set B by the point z. If we considered B “centered” at the
origin, then after the translation, B, is centered at .

If B is a disc, or a square, centered at the origin, then B, is centered at x. From this
point on, we denote the origin of K as the “center” of the set B, even if B has no geometrical
center, and even if the origin is not contained in B. Therefore, in the same way, B, is said
to be “centered” at x (see Fig. 2.1).

Dilation
The Dilation of the image X by the structuring element B, X & B, is defined by:

Xa B2 |J B, (2.2)

reX

In words, the Dilation is obtained by centering the structuring element at each point = in X,
and then taking the union.

If B is a connected shape, containing the origin, then the Dilation adds to the image X a
“layer” around it (see Fig. 2.2(a)). The width of the “layer”, and its shape, are determined
by the structuring element’s characteristics.

The most important properties of the Dilation operation are:

1. Dilation is distributive with the union, that is, for any sets A, B, and (' in the Euclidean

space I
(AUB)aC=(AaC)Uu(Ba(O). (2.3)

2. Dilation is an increasing operation:

ACB= (Aa(C)C (Ba(C), VA, B,C (2.4)

Moreover, Dilation is commutative and associative, i.e.:

A B={a+b|l ac A, be B}=Bg A (2.5)
(AeB)aC=Ag(BaC)

And, if the origin belongs to B, then Dilation is extensive:

X®B2X (2.7)
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Figure 2.2: The basic operations of Binary Morphology. (a) Dilation, (b) Erosion, (¢) Open-
ing, and (d) Closing.
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Erosion

The Erosion of X by B, denoted X & B, is defined in the following way:

XeB2 ()X, (2.8)

beB

Erosion is the dual operation to Dilation, because applying an Erosion to a set is the same
as applying a Dilation to its complement, in the following way:

Xe B =(X“g B) (2.9)

where B® is the symmetric of B, defined by B?® S {=b] be B}.

Erosion can be also characterized in the following way:
XeB={zeF| B, CX} (2.10)

This means that the Erosion of X by B is the set of points at which B can be “centered”,
and be totally contained in X.

If B is a connected set, containing the origin, then Erosion removes a “layer” from X
(see Fig. 2.2(b)). Again, the width and the form of the layer are determined by B.

The most important properties of the Erosion operation are:

1. 1t is distributive with the intersection, that is:

(ANB)oC = (A6 C)N(BOC),YA,B,C. (2.11)

2. It is an increasing operator, that is:

ACB= (A5C)C (B (C),VA,B.C. (2.12)

As opposed to Dilation, Erosion is neither commutative, nor associative. It satisfies
instead:

(AeB)eC=Ac(Ba() (2.13)

If B contains the origin, then Erosion is anti-extensive:

XoBCX (2.14)

Opening and Closing

Although being dual, Dilation and Erosion are not inverse operation of each other, that is,
generally:

(X©B)®B#X, (2.15)
(X®eB)eB#X. (2.16)

Actually, neither Dilation, nor Erosion, have an inverse. Both are operations which usually
remove part of the information in the image, which cannot be restored.
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On the other hand, the above compositions of Dilations and Erosions lead to two other
morphological basic operations, which are called opening and closing. The opening of X by

B, denoted X o B, and the closing of X by B, denoted X e B, are defined, respectively, by:
XoB2(XoB)a B, (2.17)
XeBE2(XaB)oB. (2.18)

Opening can be characterized also by the following relation:
XoB=|/{B,| ye E:B, C X} (2.19)

This means that the opening of X by B is the set of points in X which are contained in
some translation of B, totally included in X, (see Fig. 2.2). It usually removes details of
the foreground of the image, which do not fit inside the structuring element. This makes the
Opening a non-linear binary filter, which removes, from the foreground, features “smaller”
than a certain “size”, where “size” is determined by the structuring element.

The most important properties of Opening are:

1. It is idempotent, i.e.,

(XoB)oB=XoRB (2.20)
2. It is always anti-extensive, regardless to whether the origin is or is not contained in B.
3. It is increasing.
Closing is dual to Opening, in the same sense as Dilation is dual to Erosion, i.e.:
XeB =(X°0B)° (2.21)

Therefore, Closing can be seen as the set of points which are not contained in a translation
of B*, totally included in X°¢ (see Fig. 2.2(c)). It usually closes “holes” or thin background
features, which do not fit inside the symmetric of the structuring element. This makes the
Closing also a non-linear binary filter, which removes, from the background, features “smaller”
than a certain “size”, where “size” is determined by the structuring element.

The most important properties of Closing are:

1. 1t is idempotent.
2. It is always extensive, regardless to whether the origin is or is not contained in B.

3. It is increasing.
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Figure 2.3: Skeleton calculation by morphological operations. The Skeleton points are the
“vertices” of the regions X & rB, for r > 0.

2.2 Skeleton Computation Via Morphological Operations

2.2.1 Lantuéjoul’s Formula

In [27], Lantuéjoul proved that the Skeleton S(X) of a topologically open shape X in R?* can
be calculated by means of binary morphological operations, in the following way:

S(X) = US,,(X): U{X@rB— U [(X@rB)oArB]} (2.22)

r>0 r>0 Ar>0

where S,(X), for r > 0, is the set of maximal discs of radius r, and rB and ArB are,
respectively, the topologically open discs with radii v, and the topological closed disc with
radius Ar, centered at the origin.

In Lantuéjoul’s Formula (2.22), the set X & rB represents the portion of the “grass field”
not yet burned by the fire, at time ¢t = r, in the “Grass-fire” model for the Skeleton (see
section 1.2.1). By increasing r with positive values, one simulates the “fire propagation”.
The set Ua,sol(X ©7B)o ArB] represents the points at which the fire does not extinguish at
time t = r, and therefore, the difference between the above sets provide the Skeleton points
att =r.

Lantuéjoul’s Formula can be easier understood with the following simplification: Noting
that the union Ua,>o in (2.22) acts here actually as a lima,—0, one can write the (informal)
equation:

S(X)=XorB—[(X©rB)odrB] (2.23)

where drB denotes an open disc with infinitesimal radius dr. The opening by a disc with
infinitesimal radius excludes from a shape its boundary points with infinite curvature (the
“vertices”). Therefore, the Skeleton points, with radius r, of a shape X are the “vertices” of
its eroded version X & rB (see Fig. 2.3).

The sets {S,} are called the Skeleton Subsets, and the function ¢(s) relating to each
Skeleton point s the radius of the respective maximal disc is called Quench Function.
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2.2.2 Reconstruction and Representation

From the collection of Skeleton subsets {S,(X)},s0 one can perfectly reconstruct the original
shape X in the following way:
X=JSX)®rB (2.24)
r>0

In other words, the union of all the maximal discs (centered at the points in S, (X), for each
r > 0) equals the original image.

Equation (2.24) means that the collection of Skeleton subsets can be considered as a shape
representation.

The Skeleton Representation permits also partial reconstructions, yielding simplified ver-
sions of the original shape. This is obtained by:

XokB=JS.(X)®rB (2.25)

r>k

Note that X o kB is a smooth version of X, and that it was obtained by discarding the
Skeleton subsets with radii smaller and equal to k. Moreover, (2.24) is obtained from (2.25)
by setting k = 0.

2.3 Grayscale Morphology

In the late 70’s, a number of approaches were proposed to generalize the binary morphological
operations for grayscale images (considered as functions from E to R) [51, 57, 42].

The most primitive of these approaches, proposed by Serra in 1975, considered the
thresholded binary versions of the given image, for all possible threshold values, and the
application of binary morphology to each one of those binary images separately. Since the
binary morphological operations are increasing, the result of the operation on the thresholded
images can be piled back to form a function. This approach, described in [51, pages 429-434],
is not considered here.

The two other approaches were proposed by Sternberg [57], and we call them in this thesis
the umbra approach, and the sup-inf approach, respectively. The latter one can be seen also
as a morphological formalization of the approach independently developed by Rosenfeld [42].

2.3.1 The Umbra Approach
Let f be a function from E to R. The umbra of f, denoted U(f), is defined as:

Uf) 2 {(x,t) € Ex R| f(z) <t} (2.26)

If f is a surface, representing a 2-D image, then its umbra is the volume below the surface
(see Fig. 2.4).

The umbra is actually a binary shape in the Fuclidean space E x R. Therefore, it can
be operated upon by Binary Morphology, as described in section 2.1. The result of a binary
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Figure 2.4: The umbra of two functions, f and g.

morphological operation between umbrz is also an umbra, and this is transformed back into
a function by the following operator:

W) £Vt (e e U) (2:27)
where U is an umbra, and V denotes set-supremum. The above operator W returns a function,
which is the upper envelope of the umbra.

For example, the Dilation of a function f by a structuring element ¢ (which is also a
function) is given by:
[ & g=WIU(f) & Ug)] (2.25)
This is illustrated in Fig. 2.5.
Similarly, Erosion of functions is obtained by:

feg=WU(f)eUg) (2.29)

As in Binary Morphology, opening and closing are given by:
fog=(fSg) @y (2.30)
feg=([®g) Sy (2.31)

2.3.2 The Sup-Inf Approach

The Sup-Inf approach consists of a direct transposition of (2.28) and (2.29) into an algebraic
form.
Equations (2.28) and (2.29) can be written in the following form:

Lf @ gl(z) = Vyerlf(y) + g9(z — y)] (2.32)
[f ©gl(z) = Nyerlf(y) — 9y — )] (2.33)
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Figure 2.5: Grayscale Dilation by binary Dilation of umbra. The functions to be dilated are

those presented in Fig. 2.4.
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where A denote set-infimum. These equations permit the implementation of Grayscale Mor-
phology directly on functions, without the need to work in the higher-dimension umbra-
domain.

Usually, the structuring element ¢ relates to a shape of finite support (a square or a disc,
for instance). In this case, we set g(x) = —oo for the points = outside the support. Similar
consideration is taken for f, if it has a finite support.

If indeed, ¢g has a finite support, then only the points of f that are inside the translated
version of the window, g(z — y), y € E, are considered in the computation of the Dilation of
f by g at the point x. Therefore, the region of support of ¢ can be considered as a moving
“window”, inside which the operation is performed for each point x in space. A similar
conclusion can be achieved for the Frosion; but this time the symmetric of the region of
support of ¢ is the moving “window”.

Very often, the structuring element ¢ is a flat function, i.e., it has a constant null value
inside the region of support. In this case, (2.32) and (2.33) assume the following simplified
form:

[F @ 9l@) =V e §g(e —y)) FW) (2.34)
[F©9l2) = A S[gy — )] FW) (2.35)

where S[] returns the region of support.

Grayscale Morphology with flat structuring elements is very popular, not only due to its
simple implementation, but also because it usually preserves edge contrast.

Opening and Closing, as before, are obtained by the appropriate compositions of Dilation
and Erosion.

Fig. 2.6 show an example of applying the basic grayscale morphological operations on the
256 x 256-pixel image “Lena”. The structuring element used here is a flat 7 x 7-pixel square.

2.4 Morphology on Complete Lattices

In late 80’s, Serra generalized the whole framework of Mathematical Morphology, so that
the generalized framework includes both Binary and Grayscale Morphology, and other new
particular cases. This generalization is extensively described in [52]. The material in this
section is a summary of chapter 1 of [52].

Instead of being restricted to Euclidean spaces, or functions from Euclidean spaces to the
real axis, the generalized framework is based on generic mathematical spaces called Complete
Lattices.

2.4.1 Complete Lattices

A Lattice is, by definition, a set P, in which are defined a supremum operation (denoted
generically by V), and an infimum operation (denoted generically by A), satisfying for any
elements X, Y, Z € P:
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Figure 2.6: Example of Grayscale morphological operations. (a) Original image. (b) Dilation,
(¢) Erosion, (d) Closing, and (e) Opening.
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1. Commutativity:

XVvVY=YVX XAY=YAX. (2.36)
2. Associativity:
(XvY)VZ=XVvYVZ), (XAYIANZ=XAN(YNZ). (2.37)
3. The law of absorption:
XA(XVY)=X, XV(XAY)=X. (2.38)

Every Lattice has a relation of order (generically denoted by <), defined in the following
way:

X<Y&oXAY =X, X>YeXVY=2X. (2.39)

The Lattice P is called a Complete Lattice, if for any family of elements {X;};e; in P, [
being a finite or infinite set of indices, the supremum and the infimum are in P, i.e.:

In a Complete Lattice, there exist two elements, ) and U (called respectively the “null”
element and the “universe”), such that, for any X € P:

XAQ=0, XVvU=U (2.42)

Notice that there is no direct relation between the above defined “Lattice”, with the
notion of lattice, used in Signal Processing as a grid of points. Actually, as mentioned below,
a continuous space (e.g., R) can be a Lattice.

2.4.2 Examples of Complete Lattices
Complete Lattice of sets in an Euclidean space

Let P(-) denote the operator which returns the set of all subsets of a given set. For example:

P({a,b,c}) = {0,{a}, {0}, {c}, {a,0},{b, ¢}, {a, ¢}, {a, b, c}} (2.43)

Let us consider the set of all subsets of an Euclidean space E, i.e., P(F). This set is
a Complete Lattice if we choose its supremum and infimum operations to be, respectively,
the union and the intersection. The induced ordering in this case is the inclusion. In this
case, the null element and the universe are, respectively, the empty set (0)), and the Euclidean
space itself (E).

The above Complete Lattice is actually the basic framework of Binary Morphology.
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Figure 2.7: The supremum and infimum operations in the Lattice of functions.

Complete Lattice of Real Numbers

The set of real numbers, R, is a Lattice, with the common supremum and infimum operations
for real numbers. Here, the order relation is the usual order for real numbers. This Lattice,
however, is not a Complete Lattice.

If we attach to R the infinity and minus infinity, i.e. P 2 RU {00, —0}, and remain
with the same supremum and infimum as before, then we obtain a Complete Lattice, where
—o0 and oo are now, respectively, the null element and the universe.

Complete Lattice of Functions

The basic framework for Grayscale Morphology is obtained as follows. Let P be the set of all
functions from F to R, with the following supremum and infimum operations, respectively:

I

flz)Vglx), YVeeE, (2.44)
flz)Ng(x), YeeE, (2.45)

[fVgl(x)
[f A gl(x)

where the supremum and infimum operations in the right side of the equations are those of
the Lattice of real numbers (see Fig. 2.7). In this Lattice (which is not complete) the order
relation is a partial one, and it is characterized by:

I

f<g f(z) < gla),Vae B (2.46)

In order to turn the above Lattice into a Complete Lattice, the set of functions from F to
R U {oo, —oc} should be considered instead. The null element and the universe are now the
functions returning, respectively, —co and oo to every point x € F.

2.4.3 Dilations and Erosions in Complete Lattices

A Dilation is defined in a Complete Lattice to be any operator which commutes with the
supremum of the Lattice, and preserves its null element, i.e., the operator 4(-) is a Dilation

iff:

XL X €Pi €l 6(Vier Xi) = Vier 6(X)) (2.47)
5(0) =0 (2.48)
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Similarly, an operator ¢(-) in P is called an FErosion if it commutes with the infimum of
the Lattice, and preserves the universe, i.e.:

V{XZ},XZ eP,iel 5(/\i€IXi) = Nier €(XZ) (2.49)
()= U (2.50)

Both Dilation and Erosion are increasing operations in the Complete Lattice, that is:

o) (2.51)

(Y)

6(X) <
YX,Y € P, X§Y:>{ LX) <

For each Dilation ¢ in a Complete Lattice there is one and only one associated Erosion &,
satisfying:
VX, Y eP, 6(X)<Y & X <eY) (2.52)

Similarly, for each Erosion there is one and only one Dilation, such that (2.52) is satisfied.
The pairs (4, ) satisfying the above duality are called adjoint.
Given a Dilation 4, its adjoint FErosion is given, for all X € P, by:

=\V{Y eP|4(Y) < X} (2.53)
Conversely, the Dilation adjoint ¢ of a given Erosion ¢ can be calculated by:
= MY € P| e(Y) = X} (2.54)

Notice that the Dilations and Erosions defined in Binary Morphology and in Grayscale
Morphology are particular cases of the above defined Dilations and Erosions in Complete
Lattices.

Adjoint Erosions and Dilations satisfy the following property, for all X € P:

ded(X) = 0(X), ede(X)=¢e(X). (2.55)

2.4.4 Openings and Closings in Complete Lattices

An algebraic opening (or, simply, opening) v in a Complete Lattice is an operator satisfying
the following requirements:

1. It is idempotent, i.e., yy(X) = v(X), VX € P.

2. It is increasing, i.e., X <YV & (X)) <~(Y), VX, Y € P.

3. It is anti-extensive, i.e., v(X) < X, VX € P.

Similarly, an algebraic closing (or just closing) ¢ is an operator in P which satisfies:
1. It is idempotent, i.e., pp(X) = &(X), VX € P.

2. It is increasing, i.e., X <Y & ¢(X) < o(V), VX, Y € P.
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3. It is extensive, i.e., (X) > X, VX € P.

Important particular cases of openings and closings are, respectively, the operators s and

¢s, defined for X € P by:

2

A
75(X) = de(X), s(X) = ed(X), (2.56)
where (4,¢) is an adjoint pair. These operators are called, respectively, the morphological
opening and the morphological closing, associated with the Dilation ¢.
Given a Dilation ¢, the morphological opening and closing associated with it are given,

for all X € P, by:

(X)) = VS(Y)| Y € P.o(Y) < X} (2.57)
65(X) = VY € P| §(Y) < §(X)} (2.58)

When there is no ambiguity, the index § is removed from the notation of morphological
openings and closings. All the openings and closings considered in this thesis are morpho-
logical, and therefore, the index is omitted, i.e., v and ¢ denote morphological opening and
closing, respectively.

2.5 Boolean Lattices

As described in chapter 3, Skeletons are defined in a particular type of Complete Lattices,
called Boolean Lattices. Details about Boolean Lattices and their use in Mathematical Mor-
phology can be found in chapter 2 of [52]. This section provides a summary of that material.

2.5.1 Definitions of Boolean Lattices

Original Definition

A Complete Lattice P is called complemented, if, for each X € P, there is an element X¢ € P,
called the complement of X, such that:

XAXe=0, XVX°=U. (2.59)

If P is a complemented Complete Lattice, for which the complement of each element is
unique, it is called a Boolean Lattice.

In a Boolean Lattice, one can define the operation of set-difference (denoted —), in the
following way:

X-Y=XAY:, X,YEP (2.60)

The set-difference is fundamental for the Skeleton calculation.

The Lattice of subsets of an Euclidean space, P(F), as defined in section 2.4.2, is an
example of a Boolean Lattice. On the other hand, the Lattice of functions is not a Boolean
Lattice, since one cannot define the complement of a function in the sense of (2.59). This
leads to theoretical difficulties in defining a Grayscale Skeleton (see chapter 4).
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Usual Definition

Let us take a generic set £ (not necessarily an Euclidean space), and consider the set of its
subsets P(F), with the supremum and infimum operations being equal, respectively, to union
and intersection. The above is a Boolean Lattice, regardless to the nature and contents of
the set F.

It turns out that for every Boolean Lattice P, there exists a set E. for which the associated
Boolean Lattice P(F) (or part of it) is isomorphic to P.

For this reason, it is usual [52] to redefine a Boolean Lattice as being a set of the form
P(FE), for some set F, associated with the union and the intersection, as supremum and
infimum, respectively.

2.5.2 Structuring Functions and the Basic Operations

There are two “levels” in a Boolean Lattice P(FE):

1. The “level” of “points”, consisting of the elements of E. It is usual to denote “points”
by lower-case letters, like z, y, etc.

2. The “level” of “sets”, consisting of the elements of P(F), i.e., subsets of .. The “sets”
are denoted by capital letters, like X, Y, etc.

A structuring function §(x) in a Boolean Lattice P(FE) is defined as being any function
from “points” to “sets”, i.e., § : F — P(F). Although the generic notation for structuring
functions (J) is the same as the one used above for Dilations, it is rare to confuse between
them, since the latter one maps “sets” to “sets”, i.e.,d : P(E) — P(F). Structuring functions
are, in Morphology of Boolean Lattices, the analogous of structuring elements in Binary and
Grayscale Morphology.

The reason for using the same notation (which is introduced in [52]) for both operators, is
that there is a one-to-one relationship between structuring functions and Dilations in Boolean
Lattices. Every structuring function é(x) determines an unique Dilation §(X') in the following

way':
§(X) =l () (2.61)

reX

Conversely, every Dilation 6(.X) is related to an unique structuring function §(x) by:

(x) = b({x}) (2.62)

where {2} denote the set in P(F) containing only the point x.

Since every structuring function automatically defines an unique Dilation, and since every
Dilation uniquely determines an Erosion, a morphological opening and a morphological clos-
ing, it follows that the definition of a structuring function in a Boolean Lattice automatically
defines the four basic morphological operations.
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Chapter 3

(zeneralization of the Skeleton
Framework

According to the discussion in section 1.2.2, a generalization of the Skeleton framework
should be sought, based either on a topological or an algebraic approach. In the topological
approach, such a generalization should aspire to solve problems like robustness, connectivity
and precision as a shape descriptor; whereas, in the algebraic one, framework flexibility,
self-duality, and representation efficiency are the main issues.

The algebraic approach is the one adopted throughout this thesis, as justified in sec-
tion 1.3.2. Therefore, framework flexibility is extensively analyzed and generalized in this
chapter, a quasi self-duality is proposed in Appendix D, and representation efficiency is
studied in chapters 6 and 7.

3.1 Historical Background

Serra suggested in [53] that, in order to obtain an appropriate representation from the algeb-
raic point of view, the following requirements concerning a skeleton decomposition should be
satisfied:

1. FEwzistence and uniqueness of the Skeleton of a set, for a given family of decomposition
elements.

2. Perfect reconstruction of the original set from the Skeleton representation.
3. An explicit formula for computing the Skeleton.

The work of Lantuéjoul (see section 2.2) showed that the original Skeleton satisfies the above
requirements, where requirements 2 and 3 can be satisfied using morphological operations.
During the last few years, the algebraic framework of the Skeleton was extended several
times. The purpose was always to obtain decompositions according to richer families of
elements (other than just discs), not failing to satisfy the above algebraic requirements. In
this evolutionary development, the “Grass-fire” model and the definition in terms of distance
function (Definition 2 in page 6) were abandoned; the Generalized Morphological Skeleton,
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at every stage of its evolution, was defined only as the collection of “centers” and “radii” of
maximal “elements” (as in Definition 1, in page 6), with the notions of “center”, “radius”,
and “element” being extended.

In this section, the above evolution is described. Then, in the following sections, a new
evolutionary branch is added to it. And finally, a general framework is proposed, unifying all
the Generalized Skeletons in the evolution, and permitting us to obtain new representations,
as particular cases of it.

Throughout its theoretical development, the Morphological Skeleton Decomposition was
mainly related to sets in Euclidean spaces or Lattices; little was done concerning Skeletons
of functions. The historical development presented here is also related to sets. Most of
the generalizations can nevertheless be directly extended to functions; this is considered in
chapter 4.

The historical evolution presented here has its mathematical aspects summarized in
Tables 3.1 to 3.5. Tables 3.1, 3.4, 3.5 present the evolution of the conditions on the de-
composition family and on the original set to be decomposed, whereas Tables 3.2 and 3.3
show the evolution of the computation (Lantuéjoul’s) and reconstruction formula, respect-
ively. The historical evolution is presented in the sequel, with emphasis on its main ideas.

3.1.1 Discrete Skeleton

The original Skeleton decomposes a shape into maximal discs (see Fig. 3.1(a)). However, on
a rectangular grid one can not define an Euclidean disc. Therefore, skeletonization of discrete
shapes is a difficult task. It turns out to be an impossible task if one seeks to maintain all
the topological and algebraic properties presented by the continuous Skeleton.

A Skeleton on hexagonal grids, keeping the algebraic properties of the continuous Skeleton,
was proposed by Serra in [51, pp. 387]. It consists of a direct adaptation of the definition in
terms of maximal elements (Definition 1, page 6), where instead of maximal discs, the given
set is decomposed into maximal digital hexagons. The digital hexagons are symmetric around
their centers, and have sides (n 4 1) pixels, n = 0,1,.... Maragos and Schafer [29] adapted
this idea also for rectangular grids, where digital squares are used instead of hexagons. The
digital squares are of sizes (2n 4+ 1) x (2n + 1) pixels, n = 0,1,..., so that they also are
symmetric around their centers.

The decomposition family of elements, into which a given set X is to be decomposed, is
the above family of digital hexagons or squares. (See Fig. 3.1(b)). They are denoted by nB,
to keep the analogy with the family of discs in the continuous case, and they are all centered
at the origin.

The second column of Table 3.1 describe the conditions for the Discrete Skeleton, as
compared to those of the original Skeleton (column 1 of the same table). The first 3 lines
characterize the structure of the decomposition family. Lines 4 to 7 compare conditions on
the family and on the given set X, so that the computation and reconstruction formule can
be applied. Lines 8 and 9 relate to conditions added later to the historical evolution. The
computation and reconstruction formule for the Discrete Skeleton are shown, respectively,
in the second line of Tables 3.2 and 3.3, where a comparison to those of the original Skeleton
(line 1 in both tables) can be seen. Note that perfect reconstruction is obtained by k = 0.
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Figure 3.1: Decomposition family types for the first branch of evolutionary development of
the Skeleton. (a) increasing discs (Original Skeleton), (b) discrete disc-like shapes (Discrete
Skeleton), (c¢) family recursively generated by a fixed structuring element (Morphological
Skeleton), (d) by a size-varying structuring element (Modified Skeleton), and (e) by a size
and shape-varying structuring element (Generalized-Step Skeleton).
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Original Skeleton

Discrete Skeleton

Morphological Skeleton

Decomposition family in-

dexed by r € RT — {0}.

Decomposition family in-

dexed by n € N.

Decomposition family in-

dexed by n € N.

Decomposition family is the
set of discs off radii r.

Decomposition family is the
set of discrete squares (or
hexagons) of sizes n.

Family is recursively gener-
ated:

nB=B&®--- B
————
n times

where B is a structuring
element.

The single pixel is part of
the family - it is the discrete
square (hexagon) of “size
0”.

The “single-point” element
belongs to the family:

0B £ {(0,0)}

X is topologically open.

All the discs in the family
are topologically open.

B topologically open.

X is bounded.

X is bounded.

X is bounded.

All the discs are centered at
the origin.

All the squares (hexagons)
are centered at the origin.

B contains the origin.

B is “convex”.
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Skeleton type Lantuéjoul’s Formula
L | | |

1 | Original Skeleton S,=XerB—-(XerB)o(dr)B
where 7B is an open disc of radius r, and (dr)B is a closed
disc with an infinitesimally small radius.

2 | Discrete Skeleton S,=XenB-(X&nB)oB
where nB is a (2n+41) x (2n+ 1)-pixel square (hexagon with
side n — 1).

3 | Morphological Skeleton S,=XenB-(X&nB)oB
where B is the structuring element.

4 | Modified Skeleton S,=Xs2"1p— (X & 2”_1B) o2n~ 1B
forn>1,and So = X — X o B.

5 | Generalized-Step Skel. Sp=X S A(n) - [X S A(n)]o B(n)

6 | MSES Sz =X 0 A7) — U1 [X © A(7)] o By

7 | Skeleton on Lattices Sy =ex(X) = U.sgv-r(X)

8 | Gen. Skel on Lattices Sy =eax(X) = Upsa 1uga(X)
where A\, u € RT.

9 | PROPOSED Generaliz. Si = gi(X) = Ujsi .08 (X)
where ¢, 7 € I, generic.

Table 3.2: Historical evolution of Lantuéjoul’s Formula.

We notice that conditions 4 and 5, satisfied by the original Skeleton, are not needed for
the Discrete Skeleton, since every discrete set is both topologically open and closed. Actually,
condition 4, which is needed in the original Skeleton for perfect reconstruction, has its role
replaced here by condition 3.

3.1.2 Morphological Skeleton

Also in [29], Maragos and Schafer proposed the following further evolution step: Instead of
restricting the Skeleton decomposition to elements of a family of disc-like elements on grids,
let it be a decomposition into increasing versions of any convexr shape, like a rhombus, a
triangle, a line, etc. This includes also the previous decomposition into squares and hexagons.

Although basically meant to shapes on grids, the Morphological Skeleton can relate also
to a discrete family of continuous shapes. At this point we wish to differentiate between
a discrete family and discrete shapes. A discrete family of shapes is a family indexed by
a discrete index, like n € N. Discrete shapes, on the other hand, are shapes in a discrete
Euclidean space, like Z”. This can be a source of confusion, since a Discrete Skeleton can
be found in the literature relating to both cases. Here, we denote by discrete Skeleton the
Skeleton on discrete spaces, whereas by discrete-family Skeleton the Skeleton based on a
discrete family of (continuous or discrete) shapes. Therefore, the Morphological Skeleton
defined by Maragos and Schafer is of the latter type.

The theoretical characterization of the Morphological Skeleton, in terms of Mathematical
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‘ ‘ Skeleton type

Reconstruction Formula

1 | Original Skeleton

XosB=U,.,5 - ®rB
where B is an open disc of radius r, and sB is a closed disc
with radius s.

2 | Discrete Skeleton

X okB=U,~. 5,5 nB
where nB is a (2n+ 1) x (2n+ 1)-pixel square (hexagon with
side n — 1).

3 | Morphological Skeleton

X 0kB =U,5; 9 @ nB

where B is the structuring element.

4 | Modified Skeleton

Xo2M 1B =1, 5. ®2"'B
for k > 1,and X = (X o B) U Sp.

5 | Generalized-Step Skel.

X 0 A(F) = Upay 50 & A(0)

6 | MSES

7 | Skeleton on Lattices

& | Gen. Skel on Lattices

Yu(X) = Urs, 01(51)

9 | PROPOSED Generaliz.

Yo (X) = Uies 6:(5:)

where .J is an anti-umbra in 1.

Table 3.3: Historical evolution of the Formula for reconstruction from the Skeleton repres-

entation.
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Morphology, is as follows. Let B be a structuring element in an Euclidean space E (continuous
or discrete). We generate from B a discrete family of elements {nB}, each with “size” n, in
the following manner:
nB=B&---&B, n>1
———
n times (3.1)
0B = (0,0).
Where (0,0) is the origin.
The structuring element B is required to contain the origin (considered as the “center”
of B), to be topologically open, and to satisfy:

Be B =B. (3.2)

Condition (3.2) makes B “convex” in a general sense (see section 7.1 where the concept of
B-Convexity is introduced). In the continuous case, any convex shape satisfies (3.2). In the
discrete case, there is no strict definition of convexity, and (3.2) serves as an appropriate
generalized definition.

Because B is convex, the elements n B have roughly the same shape as B, and have sizes
roughly proportional to n times the size of B. If B is, for instance, a continuous square with
side a, then nB is a continuous square with side na. If B is a discrete square on a rectangular
grid with side equal to 3 pixels, then nB is a discrete square with side 2n + 1. The variable n
is often called the “radius” of the element, to keep an analogy to the classical family of discs.

The family {nB} can be generated recursively in the following way, as illustrated in
Fig. 3.1(c):

nB=(n—-1)B& B, n>1 (3.3)

If the conditions shown in column 3 of Table 3.1 are satisfied, then the collection of subsets
{5:(X)}n>0 obtained by the adapted Lantuéjoul’s Formula shown in line 3 of Table 3.2 is
indeed a Skeleton Decomposition. That is, an element with “radius” n and “centered” at a

point s, denoted n B, 2 {b+s| b€ nB}, is a marimal element in X iff s € 5,(X) [29].
It is also an error-free representation since the original image X can be reconstructed from
{S,(X)} by the reconstruction formula given in line 3 of Table 3.3, with k£ = 0.

From the topological point of view, the Morphological Skeleton has great disadvantages;
e.g., for B equal to a square, shape topology is not expected to be preserved, therefore non-
connected skeletons can be obtained for connected shapes, both in continuous and discrete
cases. But from the algebraic point of view, which is the one in which we are interested
in, the Morphological Skeleton represents an advance towards the solution of the general
optimization problem defined in section 1.3.1.

3.1.3 Modified Skeleton

The family of elements {nB},cx used in the discrete Morphological Skeleton decomposition
is generated by recursively dilating the structuring element B by itself. B serves here as a
generator, being constant at every step of the family generation.

Sapiro and Malah [48] showed that the family generator can have a variable size. The
Modified Morphological Skeleton proposed by them has its subsets {5,(X)} defined as in line
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4 of Table 3.2. It was proved [48] that the Modified Skeleton decomposes X into maximal
elements from the family {0B, B,2B,4B,8B,16B,...} (Fig. 3.1(d)). This family can be
generated, as before, by a series of dilations, but not with a constant generator. The sizes of
the generator, at the various steps, are the differences {1,1,2,4,8,...} between the sizes of
the elements of the family.

We can observe, by comparing the conditions for the Modified Skeleton with those for
the Morphological Skeleton (first column of Table 3.4 and last column of Table 3.1, respect-
ively), that the only significant difference is in the family generation. Moreover, the Modified
Skeleton also fully represents the original image X (See line 4 of Table 3.3). In the Coding
simulations presented in [48], the Modified Morphological Skeleton showed better results than

the previous Morphological Skeleton.

Modified Skeleton

Generalized-Step Skel.

PROPOSED MSES

1 | Decomposition family in- | Decomposition family in- | Decomposition family in-
dexed by n € N. dexed by n € V. dexed by 7 € N
2 | Family is exponentially gen- | A series {B(n)},>0 gener- | The multi-dimension family
erated: ates the family by:_ generation:
A(n) =2""1B, An+1)=An)® B(n), | A@)=nmB1 & - @ ngBy
for n > 1. for n > 0. where By, £ = 1,2,...,d,
are structuring elements.
3 | The “single-point” element | The “single-point” element | The “single-point” element
belongs to the family: belongs to the family: belongs to the family:
A(0) = {(0,0)} A(0) = {(0,0)} A(0) = {(0,0)}
4]- _ _
5 | B is topologically open. Each B(n) is topologically | Each By, £ =1,..., L, is to-
open. pologically open.
6 | X is bounded. X is bounded. X is bounded.
7 | B contains the origin. Each B(n) contains the | Each By, { =1,...,L, con-
origin. tains the origin.
8 | B is “convex”. Each B(n) is “convex”. Each By is “convex”, in the
following sense:
Bg = Bg [ ] Ai7
Viel.
A(il), C A(m)y =
9| - - <, v Fy,
n<m, x=uy.

Table 3.4: Historical evolution of the conditions on the Skeleton decomposition - part II.

3.1.4 Generalized-Step Skeleton

Goutsias and Schonfeld [50] showed that not only the size of the generator can vary at each

step of the family generation, but also the generator’s shape.
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Let {B(n)}.en be a series of structuring elements, all of them containing the origin and
satisfying (3.2). Let this series generate a family of elements { A(n)},en in the following way
(see Fig. 3.1(e)):

An+1)=An)& B(n), n=0,1,2,...
A(0) = (0,0).

Goutsias and Schonfeld showed that the maximal elements from the above family {A(n)},
inside a given shape X, have their positions (“centers”) given by the subsets {S5,} as shown
in line 5 of Table 3.2. Therefore, the collection {5, (X)},en is called in this case Generalized-
Step Morphological Skeleton.

The conditions for this Skeleton are shown in column 2 of Table 3.4. They show no

(3.4)

significant difference as compared to the previous Skeletons, apart of the family structure.
X is recovered from the above skeleton as shown in line 5 of Table 3.3.

Note that both the original Morphological Skeleton and the Modified Morphological Skel-
eton are particular cases of the Generalized-Step Morphological Skeleton. The first is obtained
by choosing B(n) constant and equal to B, whereas the second is obtained with the choice

B(n) = {B, B,2B,4B,...}.

3.1.5 Skeleton on Boolean Lattices

The Modified Morphological Skeleton and the Generalized-Step Morphological Skeleton can
be seen as a first evolutionary branch in the development of the algebraic Skeleton (Fig. 3.2,
center line).

A second branch (on the right hand side of Fig. 3.2), also evolved from the Morphological
Skeleton, was proposed by Serra [52, chapter 2] as part of the generalization of Mathematical
Morphology from Euclidean spaces into Lattices. This branch is reviewed here.

While the first branch makes possible Skeleton decompositions with any totally ordered
family of elements, generated through recursive Fuclidean dilations, the second branch, de-
scribed below, permits:

1. Decompositions of sets in any Boolean Lattice. !

2. Translation-variant decompositions. As opposed to the family generator in the first
branch (the structuring element B), which is translation-invariant (Fig. 3.3(a)), the
generator in the second branch can vary according to its position (structuring function

d(x). See Fig. 3.3(b)).

The above ideas are mathematically characterized in the following way (see [52, chapter
2]): Let {0x(2)}a>0 be a family of structuring functions in a Boolean Lattice P(E). Le., each
dr(x) maps “points” in F into “sets” in P(FE). Let X € P(FE) be the set to be decomposed.
If £ is a continuous set, such as R?, then X is a continuous set. Otherwise, if for instance
FE = Z% X is discrete.

In [52], the family index is supposed to be continuous, i.e., A is real. However, the
transposition to a discrete-index case, where X is integer, is straight-forward.

L Although many of the morphological tools proposed to Euclidean spaces (like the basic operators, filters,
etc.) were generalized for generic Lattices, the Skeleton requires Boolean Lattices as framework.
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Figure 3.3: (a) Family generation by a structuring element (translation-invariant structuring
function), (b) family generation by a translation-variant structuring function.

As any structuring function (see section 2.5.2), each element of the family {d\(z)} auto-
matically defines a dilation 6,(.X), an erosion €)(X), an opening v,(X), and a closing ¢, (X).

The family {d,(x)} is said to be valid for skeletonization if it satisfies the requirements
shown in column 1 of Table 3.5. These conditions are a generalization of those of the previous
Skeletons, each having the same line number at the respective tables. Condition 5 can be
disconsidered if the Boolean Lattice is discrete, since in this case this condition is naturally
satisfied (this is true for all the Skeletons in the historical evolution).

An “element” here denotes any set of the form d,(x), A > 0, € E, where X is denoted
the “radius” of the element, and x is denoted its “center”. An element §,(z) is a “maximal
element” in X if §y(z) € X, and for all 4 # A, and for all y € F, if dx(x) C ,(y), then
Suly) £ X.

The Skeleton of X is then defined as the collection of the “centers” of all the “maximal
elements”.

The Skeleton subsets {5\(X)}, each defined as the collection of skeleton points related to
a “maximal element” with “radius” equal to A, can be calculated [52] by the generalization
of Lantuéjoul’s Formula shown in line 7 of Table 3.2. The reconstruction formula assumes
here the form shown in line 7 of Table 3.3.
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Skeleton on Lattices

‘ Generalized Skel. Lattices ‘ PROPOSED Gen. Skeleton ‘

Decomposition family is in-

dexed by A € RT.

Decomposition family is in-

dexed by A € RT — {0}.

Decomposition family is in-
dexed by 7 € I, where [
is any totally or partially
ordered set.

The family has a semi-group
structure:

5A+u = 5A5u

Granulometry  generating
family:
A>p=
1O (V) =0 (Y),
VY € P(K)

Generalized granulometry
generating family:
Jjzi=
710 (V) = 6;(Y),
VY € P(E)

The “identity” belongs to
the family, i.e.,:

So() £ {a)

X is morphologically open
by the family, i.e.,:
X =Usom (X)

X is morphologically open
by the family, i.e.,:

For any chain {é,, (z1)} sat-
isfying (¢ > k = 6y,(2¢) D
O (2i)):

Ukso 6x, (k) = 0 (2)
for some z € F, and A > 0.

For any chain {6, (z1)} sat-
isfying (¢ > k = 0y,(2¢)
O, (2)) and (Vk, 0y, (zk)
X):

Ukzo 0x, (21) = dr(2) C
for some z € I/, and A >

(
For any chain {&;, ()}
isfying (¢ > k = 6;,(x
8, (xx)) and (Vk, &, (z
X):

Usso 0ix (2r) = di(z) € X
for some z € I/, and 7 € [.

X has a global ultimate
erosion:

A, | ex(X) =10,
YA > /\io'

The family is increasing:
A> = 0x(z) D6,(a),
Ve € F.

The family is increasing:
A> p=0x(z) D do,(a),
Ve € F.

“Generalized Convexity”:
Ve e E,V A, u>0

Sx(2) = £,004u()

an(x) Cou(y) =

A<p, T Fy,
A<p, x=y.

&i(x) C 0;(y) =
T #y,

T =Y.

i < g,
1< 7,
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3.1.6 Generalized Skeleton on Boolean Lattices

In [53] Serra unified the two evolutionary branches, described above, into a Generalized
Skeleton on Boolean Lattices (see Fig. 3.2). As seen above, the first branch is mainly char-
acterized by a “step”-variant space-invariant family generator, whereas the second branch is
mainly characterized by a “step”-invariant space-variant family generator. Thus, the main
advance in [53] is in permitting a “step” and space variant family generator for the Skeleton
decomposition.

The requirements on the family of structuring functions {d,(x) } x>0 for Serra’s Generalized
Skeleton, are presented in column 2 of Table 3.5. By comparing them to the conditions for
the original Skeleton on Lattices (column 1 of same table), one can see several significant
improvements:

e The structure of the family (condition 2) is much more flexible in the generalized Skel-
eton on Lattices. In particular, it permits “step”’-variant family generation, whereas
the original Skeleton on Lattices does not.

e Condition 8 is dropped! It turns out that this condition, which was historically included
in order to give a self-similarity characteristic to the decomposition family, is not
actually required.

e Condition 9 is added. It turns out that this condition was overlooked in the previous
Skeletons; without it, in some non-conventional cases, the result of Lantuéjoul’s Formula
can strictly contain the actual Skeleton (see [53]).

e Conditions 5 and 6 are joined together.
e Condition 3 is replaced by the more general condition 4.

One can also notice that in condition 1 the value 0 was excluded from the set of indices.
This is a minor difference, though, since Serra could have chosen to define the generalized
Skeleton on Lattice with A = 0 also. This was probably not done to keep an analogy with
the original Skeleton (Table 3.1, column 1).

Another major difference is seen in the generalized Lantuéjoul’s Formula (line 8 in
Table 3.2). Instead of using 7., € > 0, the new Skeleton uses the opening 47, y, which is

defined as the opening related to the structuring function dy, \j() 2 exd,(x). This is needed
for a “step”-variant family generation, since now the opening in Lantuéjoul’s Formula is a
function of the “step” A. The reconstruction formula (line 8 in Table 3.3), on the other hand,
remains identical to that of the previous Skeleton.

3.2 Multi-Structuring-Element Skeleton (MSES)

During the above historical development, the family of decomposition elements was always
indexed by a non-negative scalar parameter (A or r in the continuous case, n in the discrete
case).

42



0 1 2 3 0 1 2 3

¢ ¢
® @
0
o0

(a) (b)

Figure 3.4: Two-parameter families of elements. (a) Structuring elements are an horizontal
and a vertical unit lines, and (b) a unit square and a unit rthombus.

Here we add a new branch to the evolutionary tree described above (Fig. 3.2), by replacing
the scalar parameter by a wvector one The fact that no attempt was made previously to
perform this replacement can be explained, perhaps, by the interest in obtaining a meaningful
Skeleton from the topological and geometrical points of view. However, the Multi-Structuring-
Element Skeleton (MSES) proposed by us in [17], and presented below, cannot be considered
as a particular case in Serra’s framework (it demands a partial ordering of the indices of
the decomposition subsets), and, nevertheless, it satisfies the three algebraic requirements.
Moreover, it is a collection of centers of maximal elements, as it will be shown.

The main contribution of the MSES is in providing a decomposition of shapes into max-
imal elements from a multi-parameter family of elements, { A(77) } 7, where ii = (ny,...,nq4) €
N4, Given d structuring-elements, By, By, . .., By, they generate { A(77)} in the following way:

A(ﬁ) = n131 D n2B2 D... ndBd. (35)

For example, Fig. 3.4 shows two 2-parameter families of planar shapes; in Fig. 3.4(a), d = 2
and By is a vertical unit line, whereas By is an horizontal unit line. The family {A(nq,n2)}
is the set of all the discrete rectangles. Notice that the 1-parameter family of squares is
contained in the 2-parameter family just defined. In Fig. 3.4(b), d = 2 also, and By is a unit
square, whereas By is a unit rhombus.

A maximal element in a set X from the family { A(77)} is defined as an element A(7), with
“radius” 7 and “center” z, such that A(77), C X, and ¥m € N Vy € E, if A(R), C A(m),,
then A(m), € X.

We attach to N its strong order relation (<):

3

n<
) (3.6)

Ty §mg,€: 1,2,...,d.
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Figure 3.5: (a) A shape X and its Morphological Skeleton SK(X), related to a family of
squares. (b) Same shape X and its MSES, related to the family of rectangles shown in
Fig. 3.4(a).

and we define the Morphological Multi-Structuring-Element Skeleton, for the above family,
as the collections of subsets {5z}, 7 € N, given by the generalized Lantuéjoul’s Formula
presented in line 6 of Table 3.2.

Fig. 3.5 compares a standard Morphological Skeleton and a MSES of a simple shape. In
this case, the MSES contains only two points, because X is composed of only 2 rectangles.

If the conditions in column 3 of Table 3.4 are satisfied by the multi-parameter family, then
the MSES is the set of center points of the maximal elements in X from {A(77)} 2. The proof
of this assertion, together with the proof of the reconstruction formula (line 6 of Table 3.3),
is postponed to section 3.3.3. It is shown there that the MSES is a particular case of the
proposed generalized Skeleton, for which we prove the respective theorems.

3.2.1 Generalized-Step MSES

In [20], we presented a Generalized-Step MSES, which can be seen as a unification of the
ideas from the first and third evolutionary branches of the Skeleton development (respectively,
the center and the left branches in Fig. 3.2). The elements into which the Generalized-Step
MSES decomposes a set X are multi-parameter combinations of elements from one-parameter
sub-families, which are generated each in a generalized-step way (see example in Fig. 3.6).

In mathematical terms, the decomposition family {A(7)}, 7 2 (n1,n2,...,n4) € N is
generated in the following way:
where each sub-family As(n), ¢ =1,2,...,d, is generated from a pre-defined series of shapes

By(n), in the same way as in the Generalized-Step Skeleton (see equation (3.4)). The

ZNotice that the two-parameter family shown in Fig. 3.4(b) does not satisfy condition 9; therefore the MSES
of a shape based on this family is expected the contain a superset of the maximal elements. For practical
applications, this may not represent a problem, especially if one is interested in performing a reduction of
the MSES’s redundancy (Chapter 6), because this typically removes all the non-maximal elements from the
representation.
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Figure 3.6: A generalized-step two-parameter family of elements, suitable for Generalized-
Step MSES decomposition.

Generalized-Step MSES Subsets are given by the following version of Lantuéjoul’s Formula:
d

Sz =X A(R) — [J[X & A(7)] o Be(ne) (3.8)
=1

The reconstruction formula is identical to that of the original MSES.

3.3 Proposed General Framework

Our purpose in this section is to propose a generalized definition of the Skeleton, having as
particular cases both Serra’s general Skeleton on Lattices (unification of the center and right
branches in Fig. 3.2), and the Generalized-Step MSES (unification of the center and the left
branches), thus obtaining a unification of all the three evolutionary branches. More than a
theoretical unification of known decompositions, the proposed General Skeleton provides new
decompositions, presented in the sequel, as particular cases of it.

The generalization is obtained mainly by replacing the previous family indices (r € R,n €
N, A€ R, 7 € NY) by a generic index i, from any totally or partially ordered set of indices
I. The computation and reconstruction formulae and the family conditions are then adapted
to assure that the algebraic requirements are still satisfied.

3.3.1 Generalized Skeleton Definition

Let us consider a set £ and the Boolean Lattice defined by P(FE) (the set of subsets of E),
inclusion order, and union and intersection as the supremum and the infimum, respectively.
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Let I be a set of indices 1, totally or partially ordered by an order >. The set [ can be,
for instance, a d-dimensional space, so that the indices 7 are vectors.

We choose an arbitrary family of structuring functions from F into P(F), indexed by I,
{d;(2)}ier. This choice uniquely determines the families of dilations {é;(X)}, adjoint erosions
{€:(X)} and morphological openings {v;(X)}, where X € P(FE).

We define an element with “radius” 7 € I and “center” x¢ € E, d;(x0), as the image of
by the structuring-function 6;(x), and a mazimal element in a set X € P(FE) as an element
contained in X but not contained in any other element which is contained in X.

As usual, we define the Skeleton of a set X € P(F) as the collection of the centers of all the
maximal elements contained in it. It is unique for the chosen family of structuring-functions
and the given set X. The sets {5;(X)}:er, each containing the centers of the maximal elements
of “radius” 1, are called Skeleton Subsets.

The above definitions (and also the theorems in next section, and their proofs) are a
direct generalization of those of Serra’s Generalized Skeleton on Lattices (presented in [53],
and described above in the section 3.1.6).

3.3.2 Skeleton Computation and Set-Reconstruction Formulae

The following theorem provides an explicit formula for computing the skeleton subsets {5; }ier:

Theorem 1 If the family of structuring functions {6;(x)}ier satisfies the following two con-
ditions:

1. 1< ] = ’)/Z(S](l') = (S]‘(l'), Ve ek
(i.e., the family is granulometry-generating [51, 52, 53], in a generalized sense),

2. Foralli,j el andx,y € E:

st 26 = { (20 T

12, v=y
then, for any X C P(E), and for all v € I:

Si(X) = X) = U ygei(X) (3.9)

J>1el

where 7y s the morphological opening associated with the structuring function
§ £ el
ia)(7) = €idj(x).

The proof is given in Appendix A.

Perfect reconstruction can be obtained from the proposed generalized Skeleton Subsets,
if certain conditions are satisfied. In order to characterize these conditions, by means of a
theorem, we consider the following definitions:

o Let Lx be the set of all the elements contained in X, i.e., Ly 2 {6i(x)] 1 € I, €
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o A subset {0; (vy)}rex of Lx is called an increasing chain in Ly, if K is a totally
ordered set of indices, and if k < k" implies &;, (x1) C &, (zpr).

e We say that an increasing chain {d; (xx)} converges to an element &; (o), if

UkEK 52k(xk) = 5i0(x0)'

o Lx issaid to be inductive for inclusion [53], if every increasing chain in Ly converges
to a unique element in Ly.

o Let J be any subset of the set of indices I. We say that J is an anti-umbra in [ if the
conditions j € J and ¢ > 7 imply ¢ € J.

I

e For an anti-umbra J in [, we define the following opening: VX € P(E), v;(X)
Ujes 7i(X)

Theorem 2 Let {5;(X)}icr be the skeleton decomposition of X, according to the family of
structuring functions {0;(x)}ier. If Lx is inductive for inclusion, and J is an anti-umbra in
I, then

U 8:(5:(X)) = 7(X) (3.10)

1eJ

The perfect reconstruction is assured whenever X = ~v;(X). Equation (3.10) also provides
a partial reconstruction formula for the skeleton, in case that v;(X) # X. The proof of
theorem 2 is also given in Appendix A.

The conditions in the above theorems are summarized in column 3 of Table 3.5. By
comparing them with those of the Generalized Skeleton on Lattices (column 2 in same table),
and by comparing the computation and reconstruction formule (see Tables 3.2 and 3.3), one
can see that:

1. The proposed Generalized Skeleton is a direct adaptation of Serra’s Generalized Skel-
eton on Lattices, having the scalar index A replaced by a generic index ¢.

2. Condition 7 was dropped! This condition was historically required in order to obtain a
Skeleton with a quench function, i.e., for which every skeleton point is related to one and
only one maximal element. In other words, the Skeleton was previously required to have
its Subsets mutually disjoint. However, we regard this as an important requirement
from the topological point of view, but not from the algebraic one, since the algebraic
conditions can be met also without it.

3.3.3 Multi-Parameter Skeleton and the MSES

Choosing I to be a totally ordered set of indices, such as Ry or Z,, brings us to the
Serra’s Generalized Skeleton on Lattices, as defined in [53]. In this section, we consider more
specifically decompositions which are not based on totally ordered sets.

Let us consider the following particular case of the proposed Generalized Skeleton:

. . . . . C AL .
e [ is a set of d-dimensional vectors, i.e., every index 7 is in the form i = (iy,12,...,174).
More specifically, I = Rfll_ in the continuous case, and [ = Zfll_ in the discrete case.
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o The order of [ is chosen to be its strong order, i.e., for any two indices i) and i(® in
I,i > i@ iff () > i) for all n = 1,2,...,d.

e The conditions of theorems 1 and 2 hold.

We denote a such a Skeleton by Multi-Parameter Skeleton. 1f we denote as k, the d-
dimensional vector having its n-th component equal to 1 and all the others equal to 0, then
the continuous-case Multi-Parameter Skeleton subsets are given by:

d
SZ(X) = €Z(X) - U [ U ’Y[i,i—|—/\nkn]5i(X)] , 1€ Rfll_ (3.11)
n=1 [ Ap,>0
where A,, n = 1,...,d, are scalar variables. Notice that the union in (3.9), which is performed

over the vector variable j, is replaced in (3.11) by unions performed over scalar variables, n
and A, n=1,...,d.

The unions performed over A, in (3.11) express, actually, convergence towards a su-
premum, when A, — 0. In the discrete case, these unions converge to maxima, which are

reached when A, =1, n =1,...,d. Therefore, in the discrete case, (3.11) becomes:
d
Si(X) = e X) = U iirnaei(X), i€ 24 (3.12)
n=1

The MSES, defined in section 3.2, is actually a particular case of Multi-Parameter Skel-
eton, and this is shown in the remainder of this section. Let [ = Zfll_, and its order be the strong
partial order defined above. Let us select d convex structuring-elements B,,, n = 1,...,d,
and define for each ¢ in [I:

A2 B &... 3B, (3.13)

Moreover, let the family of structuring-functions (to be used in the decomposition) be in the
form:

di(e)=A; d{z}, 1€1 (3.14)
In this case, it holds:

Visirka)(X) = X 0 (Aigr, © Ai)
= Xo[(A, & A4) o A
= Xo(B,eA). (3.15)

When B, = B, e A;, Vi € [,Vn =1,...,d, (condition 8 of the MSES, see Table 3.4), then
the morphological openings v iyx,](X) are independent of 7, and equal to X o B,,.

If we replace the above data in (3.12), then the associated Skeleton Subsets S;(X) are
given by

d
Si(X)=XeA - J[XaA]o B, i€ 21 (3.16)
n=1

Equation (3.16) is identical to the MSES’s version of the Lantuéjoul’s Formula presented in
Table 3.2, when ¢ is replaced by 72, and n by /.
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Chapter 4

(Generalized Grayscale Skeletons

The proposed General Skeleton Representation presented in chapter 3, and therefore all its
particular cases, are binary, since they are defined in Boolean Lattices. This chapter considers
expanding the scope of the above Skeleton to functions, which leads to a Generalized Grayscale
Skeleton Representation.

4.1 Background on Grayscale Skeletons

Among the first schemes for calculating a grayscale Skeleton of grayscale images is the work
of Peleg and Rosenfeld [36]. In that work, the “min-max” approach for non-linear image
transformations, developed by Rosenfeld [42], is applied to obtain the grayscale Skeleton, and
different ways of representing it are considered. The purpose of the grayscale skeletonization
proposed in [36] is essentially to provide a fuzzy image analysis tool.

In [12, 38], the above skeletonization method is presented in terms of the Grayscale Mor-
phology operations (see section 2.3, on page 20). The resulting grayscale Skeleton is essen-
tially the same as in [36], but, in addition, reconstruction of the original function from the
Skeleton is considered.

As a direct generalization of the discrete-family morphological Skeleton (section 3.1.2, on
page 34), each grayscale skeleton “subset” S, (which is, in this case, a grayscale image) is

defined in [38] by:
S.Efeng—(feng)og (4.1)

where f is the original grayscale image, ¢ is a structuring element (also a grayscale image),
— denotes the usual difference between functions, and ng is given by:

ngEgogd- Dy (4.2)

» times

Fig. 4.1 presents an example of the first steps in a skeletonization process, and the asso-
ciated first “subsets” of the Grayscale Skeleton of the image “House”.

Although structurally identical, the calculation of the binary Morphological Skeleton (line
3 in Table 3.2, on page 34) and the calculation of the grayscale Skeleton (4.1) have between
them a major difference: The minus sign (—) in (4.1) denotes the usual difference operation
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Figure 4.1: Grayscale skeletonization. Left side, up-down: Original image f, and its erosions
feng, n=1,23, where g is a flat 3 x 3-squared structuring element. Right side, up-down:
The first three Grayscale Skeleton “subsets”, S,,, n = 0,1, 2.
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between functions, whereas in Table 3.2 it denotes set-difference. The former operation is
not a generalization of the latter; actually, following the discussion in section 2.5.1 (page 28),
there cannot be a direct generalization of the set-difference operation for functions.

As a consequence of the above, a direct generalization of the reconstruction formula
(Table 3.3) cannot be obtained, i.e.:

fomg# \/ S, @ng (4.3)

n>m

where V stands for the supremum in the Lattice of functions (see section 2.4.2, on page 26).
Instead, the following is used for perfect reconstruction:

f=...Sv2+(Sno1+SvBg) Byl dg... (4.4)

where N is the order of the highest non-null Skeleton “subset” .5,.

Another “imperfection” in the generalization of the Morphological Skeleton for functions
concerns the basic concepts of points and centers, elements, and maximal elements, used in
the Skeleton’s definition. These concepts cannot be properly defined for functions, and there-
fore the Grayscale Skeleton cannot be seen as the collection of centers of maximal elements
“inscribable in the image”.

4.1.1 Grayscale Skeletons as Pyramids

Although theoretically “imperfect”, in the sense discussed in the last section, the Grayscale
Skeleton does preserve most of the intuitive properties of the binary Skeleton, especially from
the algebraic point of view.

Notice that the images in Fig. 4.1 do not present a Grayscale Skeleton condensed in
a single image, like a fuzzy medial axis representation of the original image (which is the
way presented in [36]). Instead, the Skeleton “subsets”, or “parts”, are shown. This is
because, from the algebraic point of view, we are not interested in seeing a medial axis,
but rather in considering the decomposition obtained by the skeletonization. Similar to the
binary Skeleton, each Grayscale Skeleton “subset” 5, contains those grayscale features of the
original image with “size” (or “width) equal to n, where the concept of “size” is associated
with the structuring element g.

Therefore, the Grayscale Skeleton (and also the Binary Skeleton) is a hierarchical decom-
position, or in other words, a pyramid. Each “level” of the pyramid contains details of a
certain “size”. If we, in a generic way, associate the concept of resolution with size, meaning
that the bigger a feature is, the higher is its resolution, then the Skeleton Representation can
be seen as a multi-resolution pyramid.

In Chapter 9, a comparison between the Skeleton decomposition and the Laplacian Pyr-
amid [5] is presented.

4.2 Generalized Grayscale Skeletons

One finds the same difficulties in generalizing the Proposed Skeleton framework (chapter 3)
from a Boolean Lattice to the (non-boolean) Lattice of functions. We provide here two
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approaches for obtaining a partial generalization, which are adapted from the two approaches
presented in chapter 2, for generalizing Binary Morphology to Grayscale Morphology. The
first is by means of the concept of umbra, and the second is by mean of in f — sup operations.
The latter leads to an adaptation of the grayscale Skeletons presented in the last section,
whereas the former provides a Skeleton with less theoretical “imperfections”.

4.3 The umbra approach

Suppose we are interested in defining a Skeleton decomposition for elements in the Lattice
75f of the functions f : £ — R, where F is any set. The supremum and infimum of the
above Lattice are the usual ones for functions.

We consider, then, another Lattice P, this time Boolean, of all the subsets of ' x R, i.e.,

P2 P(E x R). Here the supremum and infimum are union and intersection respectively,
as in any Boolean Lattice in the form P(F), for some F. Each point in the above Boolean
Lattice is in the form (x,z), with © € F, z € R.
Let us define the umbra transformation U(-) from the Lattice of functions to the related
Boolean Lattice as: ~ ~
U: Pf — P
U(f)={(z,z) e EXR| z < f(a)}

Similarly, we define the envelope transformation W (-) from the Boolean Lattice to the Lattice
of functions as:

(4.5)

W:75—>75f

WW)I(t)=V{z €R]| (t,2) €Y} (4.6)

Notice that:
WU =f, UWI)]2Y (4.7)

Therefore, we say that the above Boolean Lattice contains the Lattice of functions.

In the above Boolean Lattice, a Skeleton decomposition of a set X is then defined with
respect to a family of structuring functions which are umbrae, i.e., each é; : £ x R — P
has to satisfy for all (z,2) € E x R: if (20, 20) € §i(x,2) = Vz1 < zo,(20,21) € di(x, 2).
Moreover, translation invariance in z is also required, i.e.: §;(x, z) = 6;(x,0),.

The Skeleton decomposition in the Lattice of functions of a function f = W(X) is then
defined by “projecting” the Skeleton decomposition defined in Chapter 3 in the Lattice of
functions by means of W (-). In other words,

1S)(4) & [W(8)](t), Vi€ I (4.8)

where {[S;](1)} are the Grayscale Skeleton Subsets, and {S;} are the related Skeleton Subsets
inP.

Is {[S:](t)} a Skeleton, i.e., does it consist of “centers” of “maximal elements”? The
answer is yes. Let us consider the family of functions {W[§;(x, 2)](¢)}ier in P;. It is the
“projection” of the family of structuring elements from the Boolean Lattice into the Lattice of
functions. Each function W[é;(x, 2)](t) is denoted an “element” with “radius” i and “center”
(x,z). Notice that, since §;(x,z) is translation invariant in z, W[d;(x,2)](t) is equal to
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Wé:(x,0)](t) + z, i.e., offset-invariant. We say that an element is a mazimal element under
a given function f if:

o W[Bi(e,2)](t) < f(1), ¥t € .
o Ay € F,w e R and j € [ such that:

Wldi(x, 2)](t) < Wo;(y, w)(t) < f(1), Vi € £
Each subset [S;](t) consists of the “center” of all the “maximal elements” with “radius” 7 under
the given function f = W(X), therefore the resulting decomposition is indeed a Skeleton.
A version of the reconstruction formula (the evolution of which is described in Table 3.3)
is also obtained for the above Skeleton of functions:

F(t) =\ WIS(S)I(1)- (4.9)

el

where §;(-) in (4.9) is the dilation associated with the structuring element d;(x, z). The proof is
simple: In the Boolean Lattice, it holds: X = [J;¢; 52(52) Therefore, W(X) = W{U;er 52(52)]
Equation (4.9) is then obtained since W (-) is actually a dilation between the two Lattices,
and since W(X) = f.

In summary, in order to decompose a function f(¢), its umbra is calculated and decom-
posed in the associated Boolean Lattice w.r.t. a family of structuring functions which are also
umbrze (and translation-invariant in z). The resulting Skeleton Subsets are then projected
back to the Lattice of functions.

4.4 The “sup-inf” Approach

In this approach, as opposed to the previous one, the calculation is performed entirely in the
Lattice of functions.

Let f € P;, and define the family of structuring functions {[g:(x)](t)},7 € I, 2 € E. We
suppose that the umbree of f and the family of elements satisfy the conditions required by
the Generalized Skeleton in the associated Boolean Lattice.

We derive for each structuring element [g;(x)](t), ¢ € I, the following operations in the
Lattices of functions:

e Dilation: N
&L = \/E{[gz'(w)](t) + f(x)}
e LErosion: N
0] =V{z e R| [g:(2)](t) + 2 < f(1),Vt € E}
e Opening:

SHUOEREIN0)
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o Closing:
A
CAVOIEE RG]
The Skeleton decomposition is then defined by its subsets {S7(¢)}, 7 € I:

SE() = LF )] — VAl L ()] (4.10)

j>i
where the minus sign relates to the usual minus operation between functions, and ’yﬂ» j][-] is

the opening associated to the structuring function [df; ;1()](¢) S {eg;(x)]}(1).

4.5 Comparison between the approaches

The morphological operations defined above for the Lattice of functions are actually the direct
transposition of the morphological operations in the associated Boolean Lattice. Therefore,
equation (4.10) can be written as:

SP(t) = [W(e(X))(1) — [W (U ’V[z’,j]&(X))] (1) (4.11)
J>i

where X = U(f), and the morphological operations are those of the associated Boolean

Lattice. On the other hand, notice that, by definition (equation (4.8)), the umbra approach

gives:

[5:](2) = [W (52'()() -U ’V[Z;J‘]&(X))] (1) (4.12)
j>i
A comparison between (4.11) and (4.12) shows that the only fundamental difference between
the approaches is in the nature of the subtraction operation.
Similarly, the umbra approach can be realized entirely in the Lattice of functions, by
means of a formula similar to (4.10). Actually, one can use the same equation (4.10), just

replacing the meaning of the subtraction operation by the following one:

Vi e B, f(1) = g(t) & { (J;(”v gg; N %; (4.13)

The above redefinition of the subtraction operation is the transposition into the Lattice of
functions of the set-difference operation in the Boolean Lattice, followed by W(-).

Fig. 4.2 compares the result of grayscale skeletonization by each of the two approaches, for
a simple 1-D discrete signal. For both Skeletons, a constant translation invariant generator
g is used. The generator (structuring element) ¢ is the flat function with region of support
{—1,0,1}. In the umbra approach (Fig. 4.2(b),(c),(d)), the Skeleton “points” (“impulse”
functions) have the same graylevels as the decomposition elements they represent. In the sup-
inf approach (Fig. 4.2(e),(f),(g)), the graylevels of the Skeleton “points” are the numerical
difference between the element they represent and their local background.
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Figure 4.2: A comparison between the two Grayscale skeletonization approaches. (a) An 1-D
discrete signal. (b), (c¢), and (d) The three “subsets” S,, n =0, 1,2, according to the umbra
approach. (e), (f), and (g) The three “subsets” according to the “sup-inf” approach.
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Both approaches are imperfect generalizations of the Skeleton decomposition into the
Lattice of functions. In the second approach (subtraction as the usual minus sign), the
concept of “maximal element” is not properly defined, and the usual reconstruction formula
is not valid. In the umbra approach, there is much redundancy in the resulting representation,
because the sum of the energy of the decomposition elements is much higher than that of the
original image, and of the Skeleton obtained by the sup-inf approach.
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Chapter 5

Applications and Particular Cases of the
Proposed Generalized Skeleton

5.1 Applications of the Proposed Generalized Skeleton

The applications of the one-parameter skeleton (I being a totally ordered 1-dimensional
space), are well known. In this section, we present some applications of skeletons based on
partially ordered sets, such as Multi-Parameter Skeletons.

From the topological and geometrical points of view, a Multi-Parameter Skeleton may
have little interest. First, it is far less connectivity-preserving than the conventional skeleton.
Also, it fails to exactly provide a Medial Axis of the shapes under study. And, finally, a
Multi-Parameter Skeleton usually can not be characterized by a quench function, because a
point @ € F may be the “center” of two (or more) different maximal elements. The latter is
consequence of [ being partially ordered.

On the other hand, from the algebraic point of view, a Multi-Parameter Skeleton can be
very useful. First, it can decompose an image into an assortment of shapes richer than the
one a conventional skeleton is able to provide. Moreover, if we consider the element indices
1 to be a degree of “importance”, or as a “category classifier”, as is often done regarding
the conventional skeleton, then a Multi-Parameter Skeleton can provide finer distributions
and classifications. In addition, there is greater diversity of possible partial reconstructions,
where their proximity to the original image are controlled by the choice of the anti-umbra J
in (3.10). Finally, each of the scalar parameters of the multi-dimensional index ¢ may have
a different physical interpretation, such as size, time duration, gray-level, etc., in contrast to
the conventional skeleton decomposition, where different physical characteristics of the image
can not be treated independently.

5.1.1 Shape Classification

Let us consider a MSES representation of a binary image composed by several objects. By
considering the relation between the projections ng, £ = 1,...,d, of the index 7 associated
to a MSES point, one can decide whether the related maximal element is similar to either of
the family generators By, or none of them.
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Figure 5.1: Shape Classification via an MSES: (a) An image composed of rectangular features.

(b) Features for which Cy > 75%. (c¢) Features for which Cy > 75%.
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Figure 5.2: (a) A binary image containing a partially occluded disc, (b) elements detected

by a conventional skeleton, (c) elements detected by a 5-parameter skeleton.

Let the concentration Cy of the generator B, for an MSES point with “radius” © =

(n1,...,nq) be defined as Cy = ng/(anzl nm). It can be seen as a measure of the similarity
of a maximal element to the structuring element B,.

For example, Fig. 5.1(a) shows an image X composed of several rectangular features. A
two-parameter MSES representation of X, with the rectangular family shown in Fig. 3.4(a),
was calculated. Fig. 5.1(b) shows the maximal elements corresponding to MSES points for
which Cy > 0.75. Those features are similar to By (vertical line). Fig. 3(c) shows maximal
elements corresponding to Minimal MSES points for which €5 > 0.75. Those features are
similar to By (horizontal line).

5.1.2 Pattern Recognition

Suppose we are interested in finding a pattern in a binary image, and that this pattern is not
corrupted with holes but may be partially occluded. E.g., the disc in Figure 5.2(a).

In order to detect the shape, let us consider a family of translation invariant structuring-
functions, with the structure shown in (3.14). If the pattern we are interested in is one of the
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shapes of the family {A4;}, then it should be easy to locate such a pattern using the associated
skeleton decomposition, since it provides the centers of maximal elements from that family
in the given image. In other words, we consider patterns to be located as maximal elements,
and define a proper family of shapes {A;} for decomposition. Thus, in order to detect the
disc in Fig. 5.2, we may calculate the skeleton w.r.t. a family of increasing discs.

However, for a conventional skeleton, the above idea does not work well. In Fig. 5.2(b)
we see that we may find, in the subsets 5, of the skeleton, maximal elements other than the
pattern we are looking for.

On the other hand, a MSES could give better results. For the example in Fig. 5.2, we
choose a 5-parameter skeleton, based on 5 structuring-elements: a unit disc (which we want
to detect), and 4 unit lines in four different directions. In this case, we are interested in the
subsets of the form S, ,00,0) only. As seen in Fig. 5.2(c), most of the “false alarms” obtained
by the conventional skeleton are now in different subsets than S, 0.0,0,0)-

5.1.3 Coding Using a Hybrid Skeleton

Let us compare a Multi-Parameter Skeleton, w.r.t. a partially ordered family of structuring-
functions F, to a conventional one-parameter skeleton w.r.t. a totally ordered sub-family F
contained in F. For example, if we consider the family of open rectangles shown in Fig. 3.4(a)
to be F, then F could be the family of open squares. Because of the partial ordering, the
number of skeleton points in the multi-parameter skeleton is expected to be larger than the
number of skeleton points in the one-parameter skeleton. But after removing redundant points
in both skeletons (see chapter 6), the situation is inverted; the multi-parameter skeleton is
expected to contain considerably fewer points than the one-parameter skeleton, which could
be of great advantage for Coding purposes.

However, since the number of subsets in the multi-parameter skeleton is usually much
bigger than the number of subsets in the one-parameter skeleton (about N¢ in comparison to
N), this turns out to be too costly in terms of coding efficiency. Moreover, its computational
burden, usually of order O(d), is very high if compared to O(1) of the one-parameter skeleton.

However, the General Skeleton Decomposition presented in section 3.3 does not restrict
us to either a one-parameter or a multi-parameter skeleton; combinations of them are also
possible. For example, instead of considering a decomposition w.r.t. the family of all the
rectangles, as presented in section 3.2, or w.r.t. the family of squares only, We can arbitrarily
select any sub-family of rectangles for the skeletonization. This combines, at some extent,
the advantages of both the multi-parameter and the one-parameter skeletons. We call such
decomposition a Hybrid Skeleton.

As opposed to a full multi-parameter decomposition, which in the general case is not
substantially advantageous when compared to the one-parameter skeleton, Hybrid Skeletons
showed promising results in preliminary simulations. For the facsimile image in Fig. 5.3, for
example, the standard Run-length+Huffman coder [29] gives a compression of 0.34 bits per
pixel for the MSES w.r.t. the hybrid Skeleton, compared to 0.42 bits per pixel for the original

Skeleton w.r.t. the family of squares.?.

'Both Skeletons had their redundancy removed, by the algorithm proposed in [29], previous to coding.
See chapter 6 for details.
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Figure 5.3: A facsimile image. Its Hybrid Skeleton decomposition is coded with higher com-
pression rate than its original Skeleton decomposition, for the Run-Length/Huffman coder.

5.1.4 Filtering by Partial Reconstruction

Discarding lower-order Skeleton Subsets in the reconstruction process produces simplified
(morphologically opened) versions of the original image, as seen in Table 3.3. Usually, a
Multi-Parameter Skeleton has a greater variety of options for filtering the original image by
partial reconstruction than a one-parameter Skeleton.

One can see that discarding Spo(X) alone from a two-parameter MSES produces the same
result as the union of the openings by the 2 structuring elements B; and By. This is a more
selective filtering than the opening by a single structuring element. Generally, for an MSES
with d structuring elements, the removal of the lowest MSES subset gives the union of the
openings by each of the d structuring elements, which was shown to have good noise cleaning
properties in [56].

Many other morphological filters can be obtained by removing different combinations of
lower-order subsets. Fig. 5.4 shows the result of removing the MSES subsets with ny +ny < 2,
in contrast to the result of removing the original Skeleton subsets with n < 1, when the MSES
is calculated with the family of discrete rectangles (Fig. 3.4(a)) and the original Skeleton with
the family of discrete squares.

5.1.5 Image Analysis

The Regular Skeleton is closely related to a morphological pattern spectrum [30]. The pattern
spectrum conveys geometrical information which can be further analyzed and processed. The
discrete morphological pattern spectrum is defined in [30] as:

PSP(X)=#[XonB—-Xo(n+1)B].

where #(-) denotes finite set cardinality.
The MSES, because of its multi-parameter structure, may be seen as closely related to a
multi-dimensional pattern spectrum, which contains the 1-dimensional pattern spectrum and
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Figure 5.4: Image Filtering by partial reconstruction: (a) Noisy image. (b) Filtered recon-
struction from the original Skeleton (n > 1). (c) Filtered reconstruction from the MSES
(n1 + %) Z 2)

conveys more and finer details for analysis. The same type of generalization used to generate
the 2-element MSES may be used to define a 2-dimensional pattern spectrum:
PSB17B2(X) = #{X 0 (n131 D TLQBQ)—

ni,n2

(Xo[(ni+1)Br ®neBs]) U (X o[niBy & (ne+ 1)Bs))}

5.2 Special Cases of the Generalized Skeleton Decom-
position

This section shows how the Quadtree Decomposition of binary images and the Bit-Plane
decomposition of Grayscale pictures can both be seen as particular cases of the Generalized
Skeleton Decomposition.

Apart from its theoretical relevance, in relating image representations thought previously
to be unrelated, this result makes it possible to obtain multi-parameter generalizations of
the Quadtree and the Bit-Plane decompositions, supported by the generalized framework of
Skeleton Decomposition. These generalizations are also presented in this section.

5.2.1 Quadtree Decomposition

Let us select the Boolean Lattice as the set P(N?) of all the subsets of N2, where N is the
set of natural numbers, and let the structuring-function § : N'? — P(N?) be (as depicted in
Figure 5.5(a)) defined by:

0(1,9) = {(20,25), (2 + 1,2y),

(20,25 +1),(2i + 1,25 + 1)}, (5.1)
(i,7) € N?

The dilation §(X) derived from the above structuring function is equivalent to an inter-
polation process; it first upsamples the input binary image X, and then fills the gaps between
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Figure 5.5: (a) The structuring-function for the Quadtree Decomposition. (b) Original binary
256 x 256-pixel image.

samples by dilating it (in the translation-invariant sense, i.e., performing &) by a 2 x 2-pixel
squared structuring element. Therefore, the adjoint erosion (X)) is equivalent to a decim-
ation process, where X is first eroded (in the translation-invariant sense - &) by the same
2 x 2 pixel structuring element as above, and then downsampled. The related opening v(X)
is the result of “decimation” followed by “interpolation”.

A constant generator family of structuring functions {d,(x)} is obtained by the n-fold
composition of §(x) with itself. Le.,

5u(z) = { ({‘;)i(“')’ "ot (5.2)

The decomposition of a binary image, using the Generalized Skeleton (3.9) with the
above family, is the Quadtree decomposition of the foreground of the image. For example,
Figure 5.5(b) shows a binary image, and Figure 5.6(a) shows its Skeleton subsets S,, n =
0,1,.... The black pixels are the Skeleton Points; each representing a maximal element. In
this case, maximal elements are squares of sizes 2" x 2" pixels. Figure 5.6(b) shows the
maximal elements for the above image.

By inverting each pixel of the image (interchanging foreground and background) and
applying the above decomposition again, one obtains the Quadtree decomposition of the
background. The corresponding maximal elements are shown in Figure 5.6(c). Full Quadtree
representation consists of both foreground and background decompositions.

5.2.2 Bit-Plane Decomposition

For a Bit-Plane decomposition, we select the Lattice of grayscale functions complemented
with oo, i.e., functions with values in the range {0,1,...,255} U {oo}.
We select the following dilation §(f) in the above Lattice (f being a function):

5(F(2)) :{ 2f (), (}S f(:]cl) <128 (5.3)

00, (x) > 128
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Figure 5.6: Quadtree decomposition as a Skeleton. (a) Skeleton Subsets S,, n = 0,1,...,
of the foreground decomposition, (b) Maximal Elements (foreground decomposition), (c)
Maximal Elements (background decomposition).
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Figure 5.7: Bit-Plane Decomposition as a grayscale Skeleton. (a) Original discrete function,
(b) decomposition into “Maximal Elements” (the rectangles); each “Maximal Element” rep-
resents a “1” in the appropriate Bit-Plane (rectangles of the same color correspond to same

Bit-Plane).

If we consider an 8-bit-plane image f (i.e., a function with values in the range {0,...,255}),
then the corresponding erosion is e(f) = | f/2], and the opening is v(f) = 2| f/2]. The sets
S, of the Grayscale Skeleton in this case, are the Bit Planes of f.

For example, Figure 5.7(a) shows an one-dimensional discrete function. Figure 5.7(b)
shows the result of the decomposition. Fach decomposition “rectangle” has a height 2™,
m =0,1,...,7 (note that rectangles with same m have same color), where each “rectangle”
represents a “1” (Skeleton Point) in the appropriate Bit-Plane m (Skeleton subset). Although
maximal elements can not be defined in this case (see section 4.1), the above “rectangles”
offer a suitable approximation.

5.2.3 Generalized Quadtree Decomposition

Let us define the following structuring functions:

51(i.) = (024, (1,25 + 1)} (5.4)
52(i.7) = (20, ). (20 + 1))} (5.5)

The above structuring functions are depicted in Figure 5.8.
We define a 2-parameter Quadtree decomposition, by using equation (3.9) with the fol-
lowing family:

difx) = (61)" (02)" () (5.6)

where i = (i1,12) € NZ.

The above Generalized Quadtree decomposes a binary image into rectangles rather than
squares (see Figure 5.9).

As opposed to the original Quadtree decomposition, where the decomposition squares are
disjoint, the decomposition rectangles of the Generalized Quadtree may overlap (see the light
grey areas in Figures 5.9(b) and 5.9(c)). On the other hand, as opposed to standard Skeleton
decompositions, where some Skeleton points are redundant and may be removed, there are
no redundant rectangles. The number of decomposition rectangles is usually much smaller
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Figure 5.8: Structuring functions for the proposed Generalized Quadtree Decomposition.

than the number of decomposition squares, as can be seen when comparing Figure 5.6(a)
with Figure 5.9(a). This has potential use in coding.

5.2.4 Bit-Plane—Quadtree Decomposition

Consider the dilation 6(X) which we used for performing the standard Quadtree Decom-
position in section 5.2.1. As mentioned in section 5.2.1, this §(X) is an “interpolation”,
obtained by upsampling the image, followed by a translation invariant dilation (&) with a
2 x 2-squared structuring element. Let us adapt the above “Quadtree” dilation §(X) (hence
also the erosion, opening and closing) so that it is applied to grayscale functions. We do this
simply by replacing the above binary translation invariant dilation (&) with a grayscale one,
with a 2 x 2-pixel flat structuring element.

A Bit-Plane—Quadtree Decomposition can be defined, by using Lantuéjoul’s generalized
equation (3.9) with the family {d;(x)}, ¢ = (i1,12), as defined in (5.6), where §; is selected
to be the “Bit-Plane dilation” (5.3), and &z is selected to be the above “Grayscale Quadtree
dilation” (“interpolation”).

This provides a decomposition of a grayscale image into squares of size 22 and graylevel
2t each, where 41,7, € N. The number of such squares is usually much smaller that the
number of “1”s in the Bit-Plane decomposition. This also could be of potential use in
coding.
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Figure 5.9: Proposed Generalized Quadtree decomposition. (a) Generalized Skeleton Subsets
Spms (nym) € N?, for the foreground decomposition, (¢) Maximal Elements (foreground
decomposition). The light grey areas represent overlapping of the decomposition rectangles,
(d) Maximal Elements (background decomposition).
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Chapter 6

(Generic Approach for Morphological
Reduction of Skeleton Redundancy

In this chapter we study morphological methods to reduce the amount of redundant points
in the Skeleton representation of images. The advantage of removing redundant points using
morphological operations only, lies in the computational efficiency of these operations, when
implemented on parallel machines.

6.1 Background

As pointed out in chapter 1, the Skeleton is a redundant representation, i.e., some of its
points may be discarded without affecting its error-free representation characteristic. From
the algebraic point of view, it is of interest to remove redundant Skeleton points, so that the
representation contains as few as possible points.

For this purpose, Maragos and Schafer defined in [29] a Minimal Skeleton as being any
set of points from the Skeleton which fully represents the original image and does not so if
any of its points is removed. A Minimal Skeleton always exists since in the worst case it is
the Skeleton itself. On the other hand, there can be more than one Minimal Skeleton for a
given image. Fig. 6.1(a) shows a binary picture and its Morphological Skeleton computed
with a 3x3 square structuring-element. Fig. 6.1(b)-(c) show two of the Minimal Skeletons of
Fig. 6.1(a).

Maragos and Schafer propose in [29] an algorithm for finding a Minimal Skeleton from
the Skeleton representation of a binary image. However, this algorithm is not fully morpho-
logical and therefore cannot be efficiently implemented on a parallel machine, in contrast to
the Morphological Skeleton itself which is amenable to a parallel implementation. A fully
morphological algorithm for finding Minimal Skeletons could take advantage of the parallel
properties of the morphological operations and perform the computation in a more efficient
way.

Sapiro and Malah defined in [46, 48] (see also [47]) an Essential Point of the Skeleton as
any Skeleton point that cannot be removed from the original Skeleton without affecting its
error-free property. The Essential Points are contained in any Minimal Skeleton, although
usually are not sufficient for exact reconstruction. The set of Essential Points is unique and

67



(a) (b) () (d)

Figure 6.1: (a) A shape and its Skeleton (computed with a 3x3 square), (b)-(c) two of its Minimal Skeletons,
(d) the Essential Points.

it is typically the major part of Minimal Skeletons (90% and more) [48]. Because of the above
properties, Sapiro and Malah suggested in [48] that the Essential Points of the Skeleton should
be found first, and then the remaining Minimal Skeleton points could be searched for in a
more efficient way. The Essential Points of the shape in Fig. 6.1(a) are shown in Fig. 6.1(d).
Notice that they are present in the two Minimal Skeletons shown in the figure.

Another important related topic is the “Reduced Skeleton” defined by Maragos in [30].
The Reduced Skeleton has fewer points than the regular Skeleton and it is also error-free.
It is not a Minimal Skeleton but it is obtained by morphological operations only. (The
mathematical definition is reviewed in section 6.4.1 below).

In this chapter, first a classification of the redundant points of a generic morphological
representation into categories is proposed in section 6.2, and its specific relation to the Skel-
eton is considered. Then, section 6.3 considers the Essential Points: Their mathematical
definition, a theorem stating that the Essential Points are the intersection of all the Min-
imal Skeletons, and the definition of a new type of Essential Points: Local Fssential Points.
Moreover, it is proposed an approach which takes into the account the above classification of
the redundant points, and leads to a Reduced Skeleton which has less points than Maragos’s
Reduced Skeleton and is also error-free. And finally, morphological formula for calculating
the Essential Points are also presented. The approach is suitable for any particular case of
the Generalized Skeleton Representation presented in chapter 3.

6.2 Redundancy Classification

The concepts discussed in this chapter are suitable for both binary and grayscale images.
However, we consider in this thesis only the binary case. The images can be sets in any
Boolean Lattice P(F); in particular they may be continuous sets in F' = R?, or discrete sets

in E=22%
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6.2.1 Types of Redundant Points

Let [ be any totally or partially ordered set of indices, and let us consider a collection of
subsets {71}, ¢ € I, which represents a given set X € P(FE) in the following way:

X =J&(1). (6.1)
el
where {6;(X)}, ¢ € I, is a given family of dilations in P(F).
A point ¢ belonging to the subset of index i, t € T;, represents the element §,(¢) C X.

If t € T; is redundant, then the element it represents (d;(¢)) is contained in a region
represented by some or all the other representation points, i.e.,

di(t) € (U 5J(Tj)) U1oi(Ti = {1})] (6.2)
J#
We propose to classify each of the redundant points into one or more of the following re-

dundancy categories:

Single-Element Redundancy: if there exists at least one element with index greater than
i that covers §,(1), i.e.:

d7 >, dyeT] | (Sz(t) C (S]‘(y). (63)
Higher-level Redundancy: if there exists a union of elements with index greater than ¢

that covers d;(t), i.e.:
8i(t) < U 6;(T5). (6.4)
i>i
Note that every “Single-Element” redundant point is also a “Higher-level” redundant
point.

Lower-level Redundancy: if there exists a union of elements with index smaller than
that covers d;(t), i.e.:

8i(t) < U 6;(T5). (6.5)

i<i
Higher /Lower-level Redundancy: if there exists a union of elements with indices
greater or smaller than 7 that covers §;(¢), i.e.:

swc U o 6 (6.6)

j<i OF j>i
Hence, every higher-level or lower-level redundant point is also a higher/lower-level
redundant point.

Interlevel Redundancy: if there exists a union of elements with indices different from ¢

that covers d;(t), i.e.:
8i(t) < U 6;(T5). (6.7)
J#

Hence, every higher/lower-level redundant point is also an interlevel redundant point.
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Intralevel Redundancy: if the redundant point is not Interlevel redundant, i.e.,

8i(t) L \J 6;(T5). (6.8)

J#

In this case, every set of elements (excluding d;(¢)) that covers §;(¢) contains at least
one element with index .

Total Ordering

An important particular case is obtained when [ is a totally ordered family of indices. In this
case, we associate this totally ordering to the ordering in which the elements are calculated,
i.e., we suppose that the lower-order elements are calculated before the higher-order elements,
sequentially. This gives a “temporal” meaning to the index .

Therefore, if I is totally ordered, we denote the Higher-level Redundancy also by Future-
level Redundancy, and the Lower-level Redundancy by Past-level Redundancy. In this case,
the Higher/Lower-level Redundancy and the Interlevel Redundancy are identical, and we use
the name of the latter.

6.2.2 The Morphological Skeleton and Its Redundancy

The Generalized Morphological Skeleton representation of a binary image X (see section 3.3),
being the set of points which are centers of maximal elements, does not contain redundant
points from the “Single-Element” category, i.e., it does not contain “Single-Element Redund-
ancy”. On the other hand, it may contain redundant points from all the other categories.

For demonstration, Fig. 6.2 shows a continuous binary image composed by the union of
2 disks, P and @), which are centered at the points p and ¢, respectively. The Skeleton of the
shape, computed with 6;(X) S xa 1B, where B is a disc with radius ¢ € [ 2 R+ (totally
ordered), is the segment [p, ¢]. In this case, all the skeleton points are redundant, except for
p and g. The point « in Fig. 6.2(a) is a “Future-level” redundant point, because the element
it represents (the dotted disk) is contained in the union of 2 bigger maximal disks (P and
Q). The point b in Fig. 6.2(b) is “Interlevel” redundant, because it represents a disk (the
dotted one) which in this example is contained in the union of a bigger maximal disk (@) and
a smaller maximal disk (P). The point ¢ in Fig. 6.2(c) is “Intralevel” redundant, because the
dotted disk, which it represents, is contained in the union of a larger maximal disk (@) and
a maximal disk with the same size (P), and it is not contained in any union of only larger
and smaller maximal disks.

Similarly,  Multi-Parameter Skeletons can contain  Higher-level, Lower-level,
Higher/Lower-level, Interlevel and Intralevel Redundancy.

6.3 Essential Points

An FEssential point of a Skeleton Representation is defined to be a point of the Skeleton
which, if it is removed from the original Skeleton, makes the exact reconstruction impossible
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Figure 6.2: Types of redundant points in the Skeleton. (a) A binary image composed by
two disks (P and @), and its Skeleton (the segment [p, g]). The point @ is a “Future-level”
redundant point, (b) the point b is a “Interlevel” redundant point, and (c) the point ¢ is a
“Intralevel” redundant point.

[46, 48]. More specifically, a point ¢ belonging to the Skeleton subset S; is a Essential Point
of order 1 iff':

(U 51‘(5]‘)) Udi(S —{t}) # X (6.9)
J#

As an example, Fig. 6.3(a) shows a binary image, Fig 6.3(b) shows its Morphological
Skeleton (computed with a 3x3 square as structuring-element), Fig. 6.3(c) shows a Minimal
Skeleton and Fig. 6.3(d) shows its Essential Points (which is a subset of the Minimal Skeleton).

Theorem 3 The Essential Points of a discrete Skeleton are the intersection of all its Min-
imal Skeletons.

Proof Since, obviously, the Essential Points are a subset of any Minimal Skeleton, it is
sufficient to prove that there does not exist a point p, belonging to all the Minimal Skeletons,
which is not an Essential Point.

Suppose, by contradiction, that there is such a point p. Since it is not an Fssential
Point, the Skeleton representation without it is still error-free. If we go on removing other
Skeleton points, at some point we will obtain a Minimal Skeleton, since the original Skeleton
is discrete and therefore it has a finite number of points. The obtained Minimal Skeleton
does not contain the point p, and therefore p does not belong to the intersections of all the
Minimal Skeletons. O

!The definition presented here is a generalization of that in [48].
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Figure 6.3: (a) The binary picture “Tools”, (b) its Skeleton computed with a 3x3 square, (c) a Minimal
Skeleton subset of (b), (d) the Essential Points of (b).

Global and Local Essential Points

The Essential Points, as defined above, is the set of points necessary (and not sufficient) for
perfect reconstruction of the image X, by means of the reconstruction formula (3.10) with
J = I. Here we define Local Essential Points as the points necessary (and not sufficient) for
the partial reconstruction v;(.X), obtained by removing all Skeleton points with radius which
are not greater or equal to 1, Vi € [:

Definition 3 A point t € X is a Local Essential Point of order i of the Skeleton of X, iff
for the anti-umbra®> J ={j € I| j > i}:

(U 5j(5j)) U (&[S — {t}]) # %(X) (6.10)

jeJ

In order to avoid confusion, we denote, from this point on, by Global Fssential Points the
Essential Points previously defined. The set of Local Essential Points contains (or is equal
to) the set of Global Essential Points.

2Gee definition in Theorem 2.
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In the particular case of the original Morphological Skeleton, for which, I = N, i = n,
and §;(X) = X @& nB, for some structuring element B, the definitions of Local and Global
Essential Points are written in the following way:

Corollary 1 A point t € X is a Local FEssential Point of order n of the Skeleton of X,
based on the structuring-element B, iff

(U Sm@mB) U([S, — {}]@nB) # X onB (6.11)

m>n

Corollary 2 A point t € X is a Global Essential Point of order n of the Skeleton of X,
based on the structuring-element B, iff

( U Sn & mB) U([S, —{tH®nB)# X (6.12)

m#£En

where S, is the Skeleton subset of order m.

In section 6.4.2 below, efficient formule for calculating the Global Essential Points of a
Generalized Skeleton are presented. In section 7.4 below, efficient formule for calculating the
Local and the Global Essential Points for the original Morphological Skeleton are presented.

6.4 Redundancy Reduction

The approach presented in this section is developed for the Generalized Skeleton Represent-
ation presented in chapter 3, and therefore for any of its particular cases.

6.4.1 Reduced Skeletons

In [29] and [48], the approach used to remove redundant points from the Skeleton was first
to calculate the Skeleton and then to apply a reduction algorithm to remove the redundant
points.

However, we note that the skeletonization itself is a partial reduction process, as we demon-
strate below. If the Skeleton subsets S; would have been defined as S; = ¢;(X), Vn, (where
£;(X) is the adjoint erosion of §;( X)) then the exact reconstruction property (6.1), for T; = 5;,
would still be satisfied, but this “Skeleton” would contain too many points. In fact, if

do(X) 2 X, then Sy itself would then be equal to X. Instead, the sets UU;s; v 16(X) of
redundant points are removed from ¢;(X) for all ¢ in the definition of the Generalized Skel-
eton (3.9), (page 46), so that a compact representation is obtained. However, as mentioned
before, only the “Single-Flement Redundancy” is removed this way.

We propose to remove as many redundant points as possible during the skeletonization
process, which is fully morphological, so that a more efficient error-free decomposition than
the ordinary Skeleton is obtained by morphological operations only.
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The proposed approach is based on the following relation:

representation redundant
RS; = (points of order) — (points of) (6.13)
? order 1

where { RS;} are the Reduced Skeleton subsets.
The representation points are the centers of elements with index 7, therefore the above
relation can be written as follows:

representation redundant
RS; = ¢; (region of order) — & (region of) (6.14)
? order ¢

The “representation region of order ¢” is actually the opening +,(X). By replacing the
field “redundant region of order ¢” in (6.14) by appropriate sets, one can obtain different

Reduced Skeletons.

Higher-Level Redundancy-Free Skeletons

A Skeleton with no “Higher-level Redundancy” is obtained if we choose “redundant region”
to be the union of all the mazimal elements with index greater than ¢, which we denote F;.

A simple formula for obtaining F; before the calculation of the elements with index greater
than ¢ is obtained by setting J = {5 € I| 7 > ¢} in (3.10), (page 47):

F 2 U 6(S)) = (X) = U 3(X). (6.15)

7>t F>i

The subsets RSZO) of the resulting Reduced Skeleton with no “Higher-level” redundancy are
therefore given by:

J>1

RS 2 e[ X)] — = [U ’YJ(X)]
= a(X) - |U 5j€j(X)]

= &(X)—s U5¢5[¢,j]€[¢,j]€i(X)]

Li>i

= &(X)— ¢ [U ’Y[i,j]&'(X)] (6.16)

J>i
where ¢;(-) is the closing related to the index 4, and &y ;1(+), i j1(+), and 4y ;1(+) are respectively

the dilation, erosion and opening associated with the structuring function df; j(x) 2 g:0;(x).
From (6.16), one concludes that RS(") is the generalization of the Reduced Skeleton pro-
posed by Maragos in [30] (see also [50]):

RS, =XenB-[(X&nB)oBlenB. (6.17)
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Figure 6.4: (a) The same binary image as shown in Fig.2, and its Reduced Skeleton RS™),
(b) its Reduced Skeleton RS®), (c) its only Minimal Skeleton.

In [30], I = N, the index n is used instead of 7, and §,(X) S xXa nB, where nB is
the n-fold dilation of a structuring element B by itself (as in the Morphological Skeleton,
see section 3.1.2). Notice also that (6.16) is identical to the calculation formula for the
Generalized Skeleton (3.9) with the addition of the closing ¢;(+).

Fig. 6.4(a) shows the result of the calculation of RS™ associated with the Skeleton of the
binary image shown in Fig. 6.2. It contains the point p and the segment [, g], where ¢ is the
same “Intralevel” redundant point shown in Fig. 6.2(c). The points from the segment (p, ¢),
which are “Future-level” redundant in the Skeleton, are not present in RS,

Higher /Lower-Level Redundancy-Free Skeletons

If we include in “redundant region” of equation (6.14) the union of all the representation
elements with order smaller than i as well, we obtain an error-free Reduced Skeleton, which
we denote as RS?, with no Higher/Lower-level redundancy.

The union of the representation elements with order smaller than ¢, which we denote as
P;, is defined by:

P2 | 8;(RSY). (6.18)
j<i

Notice that P; depend only on the sets RS; with indices strictly smaller than i.

The subsets of RS?) are given by:

RSZ'(Q) é €Z(X) — &(PZ' U FZ) (619)

Fig. 6.4(b) shows the result of the calculation of RS® for the same binary image as
before. It contains only the points p, ¢ and ¢. The points from the segment (¢, q), which
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are “Interlevel” redundant in the Skeleton, are not present in RS®). The point ¢, which is
“Intralevel” redundant, is still present.
If I = N (totally ordered and discrete), than P; can be computed recursively in the
following way:
{ P=P_ Ud_1(RS?)), i>1 (6.20)
Py =0. '

This permits an efficient calculation of P; and, thus, of RS®).

Interlevel Reduction for Multi-Parameter Skeletons

When [ is totally ordered, the interlevel redundancy and the Higher/Lower-level redundancy
are identical, as stressed above, and therefore calculating a Higher/Lower-level Redundancy-
Free Skeleton provides also an Interlevel Redundancy-Free Skeleton.

In the case of Multi-Parameter Skeletons (like the MSES), an Interlevel Redundancy-Free
Skeleton can be obtained in the following way. Let us disregard the strong partial ordering
of N'¢, used for the Skeleton calculation, and instead let us consider its lexicographic order:

(n1,...ong) < (Mma,...,mq)

)
ny < mi or

(6.21)

(ny = my and ny < my) or

(ny =mq and -+ and ng_y; = my_y and ng < my)

Notice that this is a total ordering.
In this case, the union of all the maximal elements with index greater than i, F;, is given

by:

Fi = U [V(nl—l—k ..... 0,0)(X) U 7(711 ..... nd_l—l—/\,O)(X) U---u 7(711 ..... ng—1,nqa+A) (X)} (622)
A>0

The union of the elements with index smaller than i, P;, is still obtained by (6.18), but using
the lexicographic order this time.

With the above redefinitions of F; and F;, an Interlevel Redundancy-Free Skeleton for the
Multi-Parameter Skeletons is obtained by the same relation (6.19) as above. Notice that the
recursive calculation of P;, (6.20), is valid for the Multi-Parameter Skeleton, if we interpret
1 — 1 as the previous value of 1 in the lexicographic order.

Intralevel Reduction

To obtain a Minimal Skeleton, the intralevel redundancy should also be removed. Unfortu-
nately, it seems not possible to define a “redundant region” that would remove this kind of
redundancy without affecting the property of exact reconstruction of the Reduced Skeletons.
In the example of Fig. 6.4, the Minimal Skeleton (which is unique in this example) is shown
in Fig. 6.4(c).
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Example

Fig. 6.5 shows the result of calculating the Reduced Skeletons defined above, for a “real” bin-
ary picture, the 256 x256 “Coffee-Grains”. Its Generalized-Step Skeleton (see section 3.1.4),
Fig. 6.5(a), was calculated using the shapes shown in Fig. 6.6 as the first 6 elements of { B(n)},
so that {A(n)} is approzimately a family of increasing disks, and the Skeleton is as thin as
possible. The other elements of {B(n)} were derived from them cyclically by the formula:
B(n) = B(n mod 6). This Skeleton contains 1360 representation points. Fig. 6.5(b) shows
the Reduced Skeleton RS™, containing 1145 points (15.8% less than the original Skeleton),
and Fig. 6.5(c) shows the Reduced Skeleton RS®?), containing 972 points (28.5% less than the
original Skeleton). For comparison, Fig. 6.5(d) shows a Minimal Skeleton, obtained with the
non-morphological algorithm presented in [29]. It contains 877 points (35.5% less than the
original Skeleton). According to the above numbers, the Reduced Skeleton RS was able to
remove in this example 80% of the redundant points, using morphological operations only.

Minimal MSES

For a particular but important choice of the families of shapes for the MSES with 2
structuring-elements, RS®? yields a representation with no redundant points, i.e., a Min-
imal MSES. The families of shapes which provide this result are in the form A(nq,n2) =
ny By & ny By, where By and B; are elements containing exactly 2 points, which we call dis-
crete elementary directional structuring-elements. The shapes in Fig. 6.6 are examples of
discrete elementary directional structuring-elements.

It is well known [29] that the ordinary Skeleton, computed with any directional
structuring-element, contains no redundancy. As an extension to this property, the Reduced
MSES RS® . computed with any pair of structuring-elements from Fig. 6.6 (or any other
pair of elementary directional elements), contains no intralevel redundancy.

Since RS has no interlevel redundancy, the conclusion is that it contains no redundant
points at all. It is therefore a Minimal MSES.

In contrast to 1-parameter families of directional shapes, in which there is little interest
as kernels, the families of shapes generated by pairs of elementary directional structuring-
elements are important ones. E.g., in the case of the horizontal and the vertical elementary
structuring-elements (the first two elements shown in Fig. 6.6), the family A(n,m) obtained
is composed of all discrete rectangles (see Fig. 3.4(b)).

We compared the Minimal MSES representation, obtained by the proposed approach,
of the binary image “Coffee-Grains” (Fig. 6.5) calculated with the horizontal and vertical
elementary structuring-elements mentioned above, with a Minimal Skeleton representation
of the same image calculated with a 3 x 3 square as structuring-element. Note that the
2-parameter family of rectangles, used for the MSES calculation, contains the 1-parameter
family of squares, used for the Skeleton calculation. In this case, the number of points in
the Minimal MSES is expected to be much smaller than the number of points in the Minimal
Skeleton. Indeed, in the above simulation the Minimal MSES obtained contains 708 points,
whereas the Minimal Skeleton contains 990 points (a difference of 28.5%). The Minimal
Skeleton calculation was performed using the non-morphological algorithm presented in [29].
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Figure 6.5: Reduced Skeletons. (a) Binary image and its Skeleton, (b) its Reduced Skeleton
RSW . (¢) its Reduced Skeleton RS and (d) a Minimal Skeleton.
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Figure 6.6: Series of shapes {B(n)} used in the calculations of the Skeletons in Fig.3 (The
symbol “+” represents the origin).

6.4.2 Extraction of Essential Points

The same approach that yields the Reduced Skeletons of the last section, also permits us
to obtain the Global Essential Points of the Skeleton using morphological operations only.
The calculation is performed at each step of the skeletonization process, so that the Essential
Points of order ¢ are obtained before the calculation of the Skeleton subsets of orders greater
than 7. Since we do not consider Local Essential Points here, throughout this section the
expression “Essential Points” denotes the Global Essential Points.

To extract the Essential Points, equation (6.13) is written in the following way:

Non-Essential
EP; = 5; — | Points of order

4

(6.23)

where E P; is the set of Essential Points of order ¢, and “Non-Essential Points of order 7 are
those Skeleton points of order ¢ which are not Essential Points.
Equation (6.23) may also be written as follows:

EP =5; — €Z(p2 U ;U RZ) (6.24)

The union ]5Z U U R; (]52 and R; are defined below) refers to the region represented by all
the Non-Essential Points of order ¢, i.e., a subregion from the representation region of order
1, which is represented more than once.

As before, P, and F; are related, respectively, to elements with indices “smaller” and
“bigger” than ¢. F; is the same as computed in (6.15) or (6.22), respectively to the cases
where I is totally ordered or I = N. P is computed recursively as was done for P; in (6.20),
“accumulating” the regions covered by Skeleton points of order smaller than i:

{ Pi=P_, U di—1(Si—1), 1>1

5§ (6.25)
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The sets {R;} are those regions which are covered more than once by elements of size 1
only. An exact expression for computing R; is:

Ri= () 16:(5: = {s})] (6.26)

SES;

The proof is presented in Appendix A.

Formula (6.26) is an efficient way to calculate R; only for large values of i, because in
that case S; contains only few points. For small values of 7, though, there are many points
in the corresponding Skeleton subsets, in which case this formula looses its efficiency.

When §;(+) is translation invariant, i.e., 6;(Y) = Y & B(i), VY € P(F), for some structur-
ing element B(i), then (6.26) is equivalent to (see Appendix A for proof):

Ri= (] [S @ (B() - {b})] (6.27)

bEB(i)

For small values of i, equation (6.27) is preferable to (6.26) because B(¢) in this case usually
contains a small number of points.

Once R;, F; and P, are found, the Essential Points of order n can be obtained by (6.24).
Since the above sets can be obtained with morphological operations only, as shown in (6.15)
or (6.22), (6.18), and (6.26) or (6.27), and since (6.24) is also morphological, the conclusion
is that the extraction of Essential Points can be implemented by a morphological machine.
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Chapter 7

Morphological Reduction of Skeleton
Redundancy Based on The B-Convexity
Theory

In this chapter we propose a redundancy reduction approach, based on a generalization of
the concept of Convexity.

Many properties and relations concerning Convex Sets have been extensively studied and
analyzed, and a number of generalizations of Convexity were proposed before (see [60] for
example), in order to extend some of these properties and relations to sets which are not
strictly convex.

In Appendix B, we present a generalization of the concept of Convex Sets, developed in
this work, based on the Morphological Closing operation, and study some of its properties.
We also define Extreme Points of such Generalized Convex Sets, which generalize the notion
of Extreme Points of Convex Sets. In this section we summarize the main results.

We then apply the above notions to Skeleton redundancy removal, and present an al-
gorithm for obtaining an Error-Free Skeleton representation with reduced amount of Intra-
level Redundancy, using morphological operations only, as well as morphological formula for
calculating Local and Global Essential Points.

Finally, it is given a qualitative comparison between the redundancy approach proposed
in Chapter 6 and the one proposed in the chapter.

All the results in the remainder of this chapter relate to the original Morphological Skeleton
Representation, i.e., a Skeleton for which the decomposition family is in the form {nB},
n € N, where B is a structuring element. See section 3.1.2.

7.1 Convex Sets and Proposed Generalization

The material in this section (7.1) and in 7.2 is a summary of the B-Convexity theory, de-
veloped and presented in Appendix B, which the reader should address for further details,
and proofs of the theorems.

There are several acceptable definitions for Convex-Hull and Convex Sets. They are all
equivalent, up to topological differences concerning the points on the boundary of the shapes.
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We can also define first the Convex-Hull and then use this definition for defining Convex Sets,
or we can do the opposite.

The definitions of the Convex-Hull and Convex sets we choose to work with are the
following;:

e Convex-Hull: CH(X) is the Convex-Hull of a set X iff it is the intersection of all the
half-planes that contain X.

e Convex set: A set X is Convex iff it is identical to its Convex-Hull, i.e., X = CH(X).

The generalization we propose is obtained by replacing the half-plane used in the above
definition of the Convex-Hull by a generic set (B%)°, which is the complement of the symmetric
of any structuring-element B. We denote the generalized Convex sets as B-Convex sets and
the generalized Convex-Hull as B-Convex-Hull because of the dependence on the structuring-
element B:

e B-Convex-Hull: CHB(X) is the B-Convex-Hull of X iff it is the intersection of all
the translations of (B*)° that contain X.

o B-Convex set: A set X is B-Convex iff it is identical to its B-Convex-Hull .i.e.,
X = CHB(X).

Actually, the B-Convex-Hull, as defined above, is not a new operation; it is known in
Mathematical Morphology as the Morphological Closing. In other words:

CHP(X)=XeB. (7.1)

If we choose B to be a disc, and make its radius go to infinity, then the above Closing
converges to the conventional Convex-Hull (as pointed out in [51, p. 100]), meaning that the
conventional Convex-Hull is indeed a particular case of the generalized Convex-Hull.

Table 7.1 shows that some of the basic properties of the Convex-Hull and of Convex sets
are naturally extended to the B-Convex-Hull operation and to B-Convex sets.

7.2 Extreme and Internal Points

7.2.1 Definition and Calculation

Like the Convex-Hull and Convex Sets, there are many ways to define Fztreme Points of a
Convex Set. Table 7.2 shows one of the classical definitions of Extreme Points for conventional
Convex sets, and presents its generalization for B-Convex sets. We denote the set of Extreme
Points of a given Convex Set Y by £(Y) and the set of Extreme Points of a given B-Convex
Set X by £B(X).

The following Morphological closed-form formule provide two ways of calculating the set
of Extreme Points of a given B-Convex Set X:

X)) =X-|N(X~-{z})®B|OB* (7.2)

rzeX

82



Property  (in  traditional

Convexity)

Known

Property of the Proposed Generaliza-
tion (B-Convexity)

C H(-) is idempotent.

C HP(-) is idempotent.

CH(X) is the “smallest” convex set
that contains X.

CHB(X) is the “smallest” B-Convex

set that contains X.

X is convex iff any two points x and
y belonging to X are connected by
a segment contained in X. in other
words: X is convex iff V{z,y} C X,
CH({z,y}) € X.

If X is B-Convex, then V{z,y} C X,
CHP({z,y}) C X.

The intersection of convex sets is a con-
vex set.

The intersection of B-Convex sets is a
B-Convex set.

X is convex iff every point outside X
can be separated from X by a half-
plane, i.e., * € X = 3 a half-plane
that contains  and does not intersect

X is B-Convex iff every point outside
X can be separated from X by a trans-
lation of B*, ie.,x ¢ X = 3z € R?

such that (B*). contains # and does not

X.

intersect X.

Table 7.1: Properties of Convex-Hull and Convex sets.

Extreme Points

Convex sets ‘ B-Convex sets

A point t is an Extreme Point of a
B-Convex set X iff the set (X — {t})

is also B-Convex.

A point t is an Extreme Point of a
Convex set X iff the set (X — {t}) is

also convex.

Table 7.2: Extreme Points

8 (X)=X - [ﬂ Xao(B-{b})| oB* (7.3)

beB

If we consider the computational efficiency of the above equations, when implemented on
a computer, then (7.2) is preferable over (7.3) if X contains fewer elements than B, and (7.3)
is preferable over (7.2) otherwise.

We also define Internal Points of B-Convex sets. They are all the points in the set that
are not Extreme. Denoting the set of Internal Points of a B-Convex set X, by ZP(X), we
may write ZP(X) = X — £8(X). And, since E8(X) C X, it is also true that

EP(X) =X —IP(X). (7.4)

Note, therefore that:
) = [Nt es|en (7.5
= [m X @ (B - {b})] o B (7.6)
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7.2.2 Reconstruction from Extreme Points

If a conventional Convex set Y is bounded, then it can be reconstructed back from its Extreme
Points by performing the Convex-Hull operation, i.e., CH(E(Y")) = Y. The set of Extreme
Points can be seen as a compact representation of a Convex set.

For a B-Convex Set X, a necessary condition for perfect reconstruction from its set of
Extreme Points £8(X) is: [X — EB(X)] © B = (). This suggests that X should be “smaller”
(in a certain way) than B. Notice that the erosion of any bounded shape by a half-plane is
always empty.

The above considerations motivate the definition of a Reconstruction Window for a given
structuring-element B, inside which every B-Convex Set can be reconstructed from its Ex-
treme Points. A B-Convex Set W is called a Reconstruction Window for B iftf VX B-Convex,
CHBEB(XNW)]=XnW.

For example, if B is a rectangle, then B itself is a Reconstruction Window for B. If B
is a discrete rectangle of integer sides n and m, then any discrete rectangle of sides ¢ and j,
such that 0 <¢ < (n+1)and 0 < j < (m+ 1), is a Reconstruction Window for B.

7.3 Reduced Skeleton

In the sequel we present an algorithm for morphologically obtaining a redundancy-reduced
skeleton, based on the B-Convexity theory discussed above. The algorithm is presented
below, together with an example. Figure 7.1 shows the steps of the algorithm for the example.

1. Let X be a given binary image. Choose a structuring-element B, and a family of
Reconstruction Windows {W B} for all the dilations nB of B. (In the example, X is
the digital binary shape shown in Fig. 7.1(a) (described by the black dots), B is a3 x 3
square, and WB) are (2n + 2) x (2n 4 2) squares). Set n = 0.

2. Calculate the skeleton subset S, = XenB—(Xe&nB)oB, and the set 7, 2 XonB.
If 7, is empty then stop. (In the example, for n = 1, Sy is shown in Fig. 7.1(b) and 7,
is seen in Fig. 7.1(c)).

3. Obtain a partition of 7, into blocks Yp” such that: Yp” is the contents of Z,, inside
the Reconstruction Window W(*B) centered at p, i.e., Y = (WB N Z,, and the
blocks cover the whole set Z,, i.e., U, Y" = Z,. (In the example, the blocks Y were
obtained by translating the Reconstruction Window horizontally and vertically by steps
of p = 2n + 1 pixels, so that there is a 1-pixel-wise overlap between the blocks. The
overlap by one pixel contributes to the redundancy reduction. Fig. 7.1(c) shows the
first block Ypl in grey, and the thin solid lines indicate the position of the other blocks.)

4. Calculate the Extreme Points of every block Y, according to nB, E”B(Yp”). Note
that Y* is a (nB)-Convex set, since it is the intersection of two (nB)-Convex sets.
(Fig. 7.1(d) shows the result of this operation in the example).
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Figure 7.1: Proposed algorithm. (a) A discrete binary shape (black dots: foreground, white
dots: background), (b) Sy, (¢) Z;, and the partition blocks, (d) Extreme Points of the blocks,

(e) Sy, and (f) resulting reduced skeleton (black points) compared to the original skeleton

(black and grey points).
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Figure 7.2: (a) A binary image and its skeleton, using a 3 x 3 squared structuring-element,
(b) a reduced skeleton obtained by the proposed algorithm.

5. Define C), 2 U, E”B(Yp”) to be the set of the resulting Extreme Points of all the blocks,

and intersect it with the skeleton subset 5, obtaining gn =, N5S,. This equivalent
to:

S, =C,—(X&nB)oB (7.7)
(Fig. 7.1(e) shows S)).

6. Increment n, and go to 2.

The collection of sets {S5,} is the Redundancy-Reduced Skeleton. For a comparison between

{S,} and the original skeleton {S,}, in the scope of the above example, Fig. 7.1(f) shows the

reduced skeleton composed of black dots, and the original skeleton, composed by both the

black and grey dots. The grey dots are redundant points removed by the above algorithm.
Exactly as for the conventional Skeleton, the following relation holds:

U S, @nB=XokB (7.8)

n>k

which guarantees partial (k > 0) and perfect (k = 0) reconstruction of the original image.

7.3.1 Simulation

Figure 7.2(a) shows a binary image (Most-significant bit-plane of 256 x 256-pixel “House”),
and its morphological skeleton, calculated with a 3 x 3 squared structuring-element. The
skeleton contains 3173 points.
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Fig. 7.2(b) shows the result of applying the above algorithm to the same binary image.
The structuring-element and the Reconstruction Windows are the same as in the example of
Fig. 7.1. The resulting skeleton fully represents the original binary image, and contains 1533
points, i.e., only 48% of the points in the original skeleton.

For comparison, a Minimal Skeleton of the above image, using the non-morphological
algorithm given in [29], was calculated. It contains 1362 points, i.e., 43% of the points
in the original skeleton, and 89% of the number of points in the proposed reduced skeleton.
According the above numbers, the proposed skeleton was able to remove 91% of the redundant
points in the original skeleton.

7.3.2 Proof of the validity of the method

We prove here that (7.8) holds. We do it using induction.
Let us assume that (7.8) holds for £+ 1 and prove that, in that case, it holds also for k.

Upsk Sn @ nB =
(Sk ® kB) U [Unzk+1 S, @ nB} =
(S ®kB)U[X o (k+1)B] =
[S,U(X & kB)o Bl & kB =
C, D kB = (7.9)
[U. EP(YF)] @ kB =
U.["P(YF) & kB] =
U.Y*®kB=(XOkB)® kB
X okB (7.10)

Now it remains to prove that (7.8) holds for & = N, the highest order of the Skeleton.
Indeed, Sy = Cl, and going back to the above proof, starting at (7.9), we get the proof for
k= N.

7.4 Extraction of Essential Points

B-Convexity can be used also for calculating the Essential Points in a Skeleton Representa-
tion. This is demonstrated in this section.

7.4.1 Essential Points of Ribbons

Let’s start with a particular case: the Essential Points of simple shapes called ribbons. Rib-
bons are considered in [37, 38] and here we give an extended definition.

Definition 4 A ribbon is a shape for which its Skeleton, calculated with a given structuring-
element B, has all its points concentrated in one single subset.
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Figure 7.3: A constant-width image (generalized ribbon), based on a squared structuring-
element, its Skeleton, and the Extreme Points of the Skeleton (which coincide to its Essential
Points).

More precisely, if the Skeleton representation of a ribbon, using B as the structuring-element,
is the collection of subsets {5, }, then there is a number & for which Sy # 0, and S, = 0 for
every m # k.

Proposition 1 The Global Essential Points and the Local Essential Points of the Skeleton
of a ribbon are the same and they coincide with the Extreme Points of Sy (in the case of a
ribbon, Sy is a (kB)-Convex set). Le., the set of Essential Points of a ribbon, E(ribbon)} is
given by:

E(I’ibbon) — ng(Sk) (7‘11)

Proof First, let’s prove that Sy is (kB)-Convexr. Sy = X 6 kB — (X 6 kB)o B. Bul
since every Skeleton subset of order higher than k is empty, (X ©kB)o B =0 and therefore
Sy =X S kB. And since X 5 kB = (X 6kB)e kB, Sy is (kB)-Convez.

Now, let’s consider the definitions of Essential Points. First, note that since, in the case
of a ribbon, U,z Sm @ mB = U, S @ mB =0, and X o kB = X, the definitions (6.12)
and (6.11) are identical. For a ribbon shape, (6.12) is simplified, and we can say that a point
t is an Essential Point of a ribbon shape iff:

[Sy — {1} @ kB # X (7.12)

On the other hand, t is an Fxtreme Point iff [S, —{t}] & kB # Sy & kB. Since, in the case
of a ribbon, S, & kB = X, the sufficient and necessary condition to t to be extreme is (7.12).
O
Fig. 7.3 shows a ribbon and its Skeleton, using a square as the structuring-element. The
enhanced points are the Essential Points of the Skeleton, which are also its Extreme Points.
Does this direct relation between Extreme Points and Essential Points hold for a generic
image X7 The answer is no, but we show below that there is a strong relation between them,
even though not so direct as above.
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Figure 7.4: Local Essential Points of a given shape. The black points and the white circles
are the Extreme Points of X ©n B, for n = 1. The black points are the Local Essential Points
of order n = 1.

7.4.2 Local Essential Points of Any Image

Now, let’s leave the particular case of ribbons, and consider any image. The next proposition
indicates how the Local Essential Points of the Skeleton of any image can be obtained using
B-Convexity.

Proposition 2 The Local Essential Points of order n, LE,(X), of the Skeleton represent-

ation of a given image X is given by:

LE,(X)=&(XenB)NS, (7.13)

Proof Note that:

(Unsn S @ mB)U ([S, — {t}] & nB) =
[(Unsn Sm @ (m—n)B)U[S, —{t}]]®nB =
(X ©nB) = {}]®nB (7.14)

Therefore, definition 1 can be rewritten in the following way: t € S, is a Local FEssential
Point of order n iff
[(XenB)—{t}]enB ## X SnB (7.15)

Which means that t is an Fxtreme Point of X ©nB. By calculating the set of Frtreme Points
of X&nB and keeping only those ones that belong to S,,, we obtain the Local Fssential Points
of the Skeleton. O
Fig. 7.4 shows a shape X, the set X&nB (for n = 1, and its Extreme Points (the black points
and the white circles). The black points belong to S, and therefore are the Local Essential
Points of order n.

7.4.3 Global Essential Points of Any Image

A greater amount of computation time is required for obtaining the Global Essential Points,
if compared to that required for the Local Essential Points. The next proposition gives a
morphological formula for the calculation:

89



SE. (B)

Figure 7.5: Global Essential Points of a given shape. The black points and the white circles
are the Extreme Points of X © nB, for n = 1. The black points are the Global Essential
Points of order n = 1. The marked region is P,

Proposition 3 The set of Global Essential Points of order n, GE,(X), of the Skeleton

representation of a given image X is given by:

GEL(X) =S, — (P, U[I"*(X &nB)&nB]) & nB (7.16)
where .
P2 | Sn.emB (7.17)
m<n

and I"P is the set of Internal Points w.r.t. the structuring element nB (see section 7.2).

The proof is shown in Appendix A. Fig. 7.5 shows a shape X, the set X & nB (for
n = 1), and its Extreme Points (the black points and white circles). The black points are the
Global Essential Points of order n = 1. Note that one of the Local Essential Points (shown
in Fig. 7.4) is not Global Essential, because of the effect of the set P,, represented in the
figure by the marked region.

7.5 Comparison Between the Two Approaches

In this section we compare the two approaches developed above for calculating Reduced
Skeletons and extracting Essential Points.

7.5.1 Reduced Skeletons

Let us consider first the Reduced Skeleton obtained by means of the B-Convexity. Most of
the Future-Level and Intralevel redundant points are removed using the related algorithm.
This is because the sets (X & nB), for each value of n, contain all the information about the
present level and the future levels. By removing Internal Points of the blocks of (X & nB),
we are actually removing most of the redundant points of these two categories. However,
some of the Future-Level and Intralevel redundant points are not removed due to the artificial
configuration of the window-blocks [W("#)].: some of the Extreme Points of the blocks are
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not removed, but are redundant points. Moreover, the general Interlevel redundancy, is not
removed.

We can combine the above Reduced Skeleton with the Reduced Skeletons RS™ and
RS® obtained by the first approach. This combination is rather simple and leads to a
Reduced Skeleton with no Interlevel redundancy at all (characteristic of the RS(2)) and
without most of the Intralevel redundancy (characteristic of the Reduced Skeleton obtained
by B-Convexity). A Minimal Skeleton, however, is still not obtained.

The combination, as said above, is simple; it is obtained by substituting the step 5 of the
algorithm (section 7.3) by the following:

S, =C,N RS (7.18)

where { RS} are the subsets of the Reduced Skeleton with no Interlevel Redundancy presen-
ted in Chapter 6. Perfect reconstruction is still assured, but equation (7.8) (partial recon-
struction) no longer holds for k > 0 (just like it doesn’t for RS(2)).

7.5.2 Essential Points Extraction

Let us compare now equation (7.16) for obtaining Global Essential Points of the Skeleton,
with the formula (6.24) presented in 6.4.2 for obtaining (Global) Essential Points. For the
case of the one-parameter, translation-invariant, and discrete-family Morphological Skeleton
we are considering here, (6.24) assumes the form:

GE,=S,—(P,UR,UF,)cnB (7.19)
where
F,2 | S,@&mB=Xo(n+1)B (7.20)
m>n
R, = (N (S. —{t}) & nB] (7.21)
tESK

and P, is identical to the one defined in (7.17) above.

By comparing equations (7.16) and (7.19), we see that the only difference is that union
R, U F, from (7.19) was replaced by I”B(X onB)@&nB in (7.16).

As stressed before, F), is the “Redundant Region” covered by elements bigger than nB
and R, is the “Redundant Region” covered by more than one element with the same size
as nB. Therefore, the conclusion is that the union of these two regions can be obtained by
dilating the Internal Points of X & nB by nB.

Furthermore, by looking at equation (7.21) and at formula (7.5), we note that R, is
actually the dilation of the Internal Points of S, by nB, i.e.:

R, =T1"5(S,) ®nB (7.22)
Therefore, another way of obtaining G'F,, using the B-Convexity is:
GE, =S, — (P,U[IT"®(S,) ®nBJUF,)cnB (7.23)
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Chapter 8

Skeleton Representation Coding

As discussed in section 1.3, the Skeleton decomposition of images is suitable for Compression
[29]. However, the compression rates reported until now by lossless-coding of the Skeleton
were only comparable to (and sometimes even worse than) other simpler methods (such as
Chain Coding, Quadtree Decomposition and Run-length/Huffman Coding) applied directly
to the original image. This made many researchers skeptical about Skeleton-based Coding.

In this chapter, we present a number of theorems concerning properties of the Skeleton
Representation. These properties are not used by conventional Skeleton-coders, and this is
reflected in their unsatisfactory performance. By taking these properties into account, one
can either considerably improve the previous schemes, or design new efficient ones.

An example of such a scheme is also presented. Computer simulations indicate that,
typically, the proposed coding scheme substantially improves the coding rates obtained by
the best previous schemes for Skeleton coding, and is more efficient than coding the original
binary image by Chain Code, Ziv-Lempel, Quadtree and Run-length /Huffman methods.

The theorems and the coding scheme presented in this chapter relate only to Generalized-
Step Skeletons (see section 3.1.4, on page 37; column 2 of Table 3.4). Appendix C presents
a partial generalization of the theorems, for the proposed Generalized Skeletons (column 3 of
Table 3.5), and their proofs. An adaptation of the results and the coding scheme for grayscale
functions is presented in Appendix C, section C.2.

8.1 Previous Coding Schemes

In recent years, several authors have proposed simplifications and generalizations of the
Morphological Skeleton decomposition, in order to try to increase the compression ratio
[50, 19, 20, 48]. Nevertheless, the improvement was generally small, and in many cases
accompanied by a large increase in computation time.

On the other hand, little was proposed concerning the improvement of the coding scheme
itself! [29, 3]

For binary images, There are variations of two main Skeleton coding schemes in the
literature:

1. Chain Coding of the Skeleton lines [3].
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2. Run-length Coding of the Skeleton Subsets [29].

The motivation for the first of the above schemes is that, in the continuous case, the
Skeleton lines of connected shapes are almost always connected. Therefore, to take advantage
of this, it is proposed in [3] to code the skeleton lines by an extended Chain Code, with symbols
indicating at each point if the related radius increases, decreases or is unchanged, in addition
to the direction of the next point, and with a header for each line indicating the position and
the radius of its first point. However, in the discrete case, as opposed to the continuous case,
the skeleton lines may have many gaps, and this considerably reduces the efficiency of the
Chain Coding.

The second method considers each Skeleton Subset as a very sparse binary image, and
therefore suitable for very low bit-rate coding. In [29], each Skeleton Subset has its run-lengths
coded by a Huffman code or an FElias (ternary) code. The Skeleton Subsets S, are coded
in decreasing order of n, providing a progressive transmission scheme, since according to the
reconstruction formula (Table 3.3), if the decoding is halted at a certain point, a simplified
version of the original image is obtained. However this coding method is inefficient because
coding each skeleton subset independently does not take into account the strong correlation
existing between them (which is a consequence of the above mentioned partial connectivity
of the skeleton lines).

A redundancy-reduction algorithm is usually performed in order to remove most or all the
redundant points in the skeleton (see chapter 6). This improves considerably the efficiency of
the second scheme, but the correlation is still not taken into account. Moreover, the removal
of redundant points breaks even more the continuity of digital skeleton lines, and this reduces
by a great deal the performance of the first scheme. On the other hand, some authors propose
to artificially connect the broken lines of the digital skeleton using dummy skeleton points,
so that the first scheme is improved, but this increases the amount of redundant points in
the skeleton. A trade-off between connectivity and redundancy removal is therefore created
and the preferred approach is not clear.

For grayscale images, no Skeleton-based coding scheme was found by us in the literature.

8.2 Basic Definitions and Notation

In this section, we review some basic morphological concepts, which are fundamental for the
understanding of the sequel.

8.2.1 Generalized-Step Skeleton

As mentioned above, the theorems in this chapter are related to a Generalized-Step Skeleton
Representation of a given image X. Recall from chapter 3 that this is a discrete-family
Skeleton, which means that the family of elements used in the Skeleton decomposition is
indexed by natural numbers (0,1,...). On the other hand, notice that X and the shapes in
the above decomposition family are not restricted to be discrete. They can be discrete (sets
in Z?), continuous (sets in R*) or grayscale images (functions over Z? or R?).
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For simplification, we adopt from this point on the following notation:

X, 2 X o An) (8.1)

Yor1 £ Xop1 @ B(n) = [X © A(n)] 0 B(n) (3.2)

where {A(n)} and {B(n)} are, respectively, the decomposition family and the generator
family, as defined in section 3.1.4 (page 37).

With the above notation, we can write the related Lantuéjoul’s Formula (line 5 in

Table 3.2) in the following way:
S = X, — Yot (8.3)

Moreover, in this chapter, we denote the Euclidean space where the decomposition is
defined (R? in the continuous case, or Z% in the discrete case) by F.

8.2.2 Descendance and Connectivity

The definitions of Descendance and Connectivity presented here are adapted from [52, pages

77 and 78].

Definition 5 (Direct Descendance) Let B be a structuring element in P(E). A point
y € F is a direct descendant of a point xg € F, under the given structuring element, iff:

y€{xo}® B (8.4)

Definition 6 (Descendance) A point y € E is a descendant of a point xg € E, under the
given structuring element, iff there is a chain of points, each being a direct descendant of a
previous one, starting with xo and ending with y.

Definition 7 (Connectivity) Two points xq and y are connected (under a pre-defined
structuring element B) iff each one is a direct descendant of the other, under B, i.e.:

zo €E{yt B B andy e{zo} & B (8.5)

Intuitively, B defines a netghborhood for which Descendance and Connectivity are considered.
A point directly descends from another if the former belongs to the neighborhood of the latter.
Similarly for connectivity. If, moreover, B is symmetric (i.e., b € B = —b € B), then y is
a direct descendant of xg iff xg is a direct descendant of y. Therefore, in this case, Direct
Descendance and Connectivity are equivalent.

8.2.3 Reconstruction Operator

Reconstruction is a very useful morphological operator, which finds several applications, such
as extraction of connected components and filtering.

Definition 8 (Reconstruction) Let A, D be two sets in a Boolean Lattice, such that D C
A, and B be a pre-defined structuring element. The Reconstruction of A from D under B,
Rec{A, D} is given by the following recursive formula:

Rec{A,D}p = {(D&B)NAl@&BINA... (8.6)
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I =Rec{A,D}

(a) (b)

Figure 8.1: The Reconstruction operator. (a) Two sets A and D, such that D C A. (b) The
result of Reconstruction of A from D, under an infinitesimal circular structuring element B.

The Reconstruction operator returns those points in A which descend from D, under B and
restricted to A. When B is a symmetric structuring element, the Reconstruction of A from
D is the collection of connected components of A which contain points of D (see Fig. 8.1).
Notice that the notion of connected component depends on the structuring element B chosen
in the Connectivity definition. If it is too “big”, then relatively distant points can eventually
be considered connected. Therefore, B is usually selected to be as small as possible (an
8-pixel or 4-pixel neighborhood, in the discrete case, or a infinitesimally small disc in the
continuous case).

It is important not to confuse the above operation of Reconstruction with the reconstruc-
tion of the original image X from its Skeleton Representation, considered in the previous
chapters.

8.2.4 Ultimate Erosions

In [51], the Ultimate Erosions are defined in terms of a decreasing family of erosions {X &
nB}, where n is a natural number. For each n, the Ultimate Erosions of order n, denoted

U,, of a given set X € P(FE), is defined by:

U, 2 X onB—Rec{X &nB,[X ©nB]oBl, (8.7)

In words, the Ultimate Erosions of order n are the points of X & nB which do not descend,
under B, from the opening of X & nB by B.

Intuitively, the Ultimate Erosions, at each erosion step, mark the “convex regions” of X
which are going to disappear after a further erosion. Fig. 8.2 shows an example, with B being
a disc. Notice that, although the original set X is composed of two connected components,
the Ultimate Erosions consist of three connected components, because one of the components
of X is a union of two “convex regions”.

Here, we adapt the definition of Ultimate Erosions for generalized-step families as well:

Definition 9 We define the Ultimate Erosions U, as:
Un £ X, — Rec{ X0, Yusi o) (8.8)
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(a) (b) (c)

Figure 8.3: (a) A binary image (indicated by the thick line), and its Skeleton points, (b) the
Ultimate Erosions (the darker points). (c) The only point in the Skeleton which needs to
have its radius coded, according to Corollary 4

where X, and Y, 11 are as defined in (8.1) and (8.2), respectively, and:

B(n —1), n>1

Any structuring element B, n =0

C(n) = { (8.9)

When defined by Definition 9, the Ultimate Erosions are contained in the Generalized-
step Skeleton of X, when it is calculated by Lantuéjoul’s Formula (8.3), with the same family
{A(n)}. This is because the result of the Reconstruction operation in (8.8) contains the set
Y, 11, which is subtracted from X,, in Lantuéjoul’s Formula.

In practice, the Ultimate FErosions are those Skeleton points with maximal “radius” within
each “convex region” of the original shape. They are usually a small percentage of the
Skeleton. For example, consider the image in Fig. 8.3(a), and its Skeleton, calculated with
a constant generator B(n) = B, equal to a 3 X 3-squared structuring element. Fig. 8.3(b)
shows its Ultimate Erosions, which belong in this case to U, only. Fig. 8.4(a), shows another
example, where the Skeleton is calculated in the same way as in the first example.

96



-, -

(a) (b)

Figure 8.4: (a) Skeleton and Ultimate Erosions of a portion of the image “Coffee Grains”.
The Ultimate Erosions are the black Skeleton points. (b) A subset of the Ultimate Erosions
(the four black points). Their radius, in addition to the position of all the Skeleton points,
are sufficient for perfect reconstruction.

8.3 New Skeleton Properties

Our main theoretical results concerning Coding are presented in this section. They are related
only to discrete-family Generalized-step Skeleton Representations. See Appendix C for a
generalization of part of the results, for the Generalized Skeleton Representation proposed in
chapter 3.

The theoretical results are new Skeleton properties, divided into two categories: Quench-
Function Sampling, and Deterministic Prediction.

8.3.1 Quench-Function Sampling

According to Chapter 3, the position and the “radius” of each Skeleton point is needed for
perfect reconstruction of the original set X. In this section, we show that, for a discrete-
family Generalized-step Skeleton, one can discard the “radius” of most of the Skeleton points
from the representation, and still a perfect reconstruction is possible.

The following lemma helps us formulate the above assertion in the form of a theorem.

Lemma 1 Let {5, },en be the Skeleton subsets of a Generalized-step Skeleton, satisfying

the conditions in Table 3.4. Let S 2 Un>o0 Sn-
The following holds:
Rec{S, Yn-l-l}c(n) ul, =X, (8.10)

The above result is used in the proof of the next theorem, and leads to the corollaries presented
below. The proof of Lemma 1 is given in Appendix A.

97



The following theorem is the main result in this section.

Theorem 4 Let {5, }en be the Skeleton subsets of a Generalized-step Skeleton, satisfying

the conditions in Table 3.4, for a given image X, and S 2 Unso Sn- Let Ultimate Erosions
be defined as in (8.8).
X is perfectly represented by the sets {U,}en and S.

In other words, the radius of the Skeleton points which are Ultimate Erosions, together with
the position of all the Skeleton points, are sufficient for perfectly representing the original set
X.

Proof We use induction in the following way:

1. If N s the mazimal radius in the Skeleton, then Xy = Uy.

2. Once Xpyq1 is known, each set X,,, N >n >0, can be calculated (see below), and
3. the original image X is equal to X.

In order to obtain the second part of the above induction, suppose that X, 11 is available.
Therefore Y,11 is also available. From the hypothesis, the Skeleton S and the Ultimate
Erosions {U,} are provided. Then X, is obtained from the above by Lemma 1. a

The above proof is constructive; it provides a reconstruction algorithm for the original
image from the resulting “sampled” Skeleton. It consists of calculating at each step n, which
varies from N down to 0, the set X, according to (8.10). This can be implemented in the
following way (illustrated by Fig. 8.5):

1. An intermediate image, which we call Z, is created and initially set to the highest
Ultimate Erosions, i.e., Z = Uy.

2. n+ N —1. (We assume n > 1, otherwise, we trivially obtain X = Uy).
3. Z <« Z & B(n). At this point 7 is equal to Y,4;.

4. The points of S that descend from Z, under ), in addition to U,, are equal to S,
(this is a consequence of Lemma 1). If C, is symmetric, then the above means that
S, are those connected components of S which “touch” 7, in addition to the Ultimate

Erosions U, (see Fig. 8.5).
5. Z < ZUS,. At this point Z is equal to X,,.
6. If n =0, then stop, and X = Z. Otherwise, n < n — 1.

7. Go to step 3.

The above algorithm is also the heart of the coding scheme proposed in section 8.4.
The following corollaries are direct consequences of (8.10).

Corollary 3 Ifs is a Skeleton point with radius n, then all the Skeleton points which descend
from it, under C(n), have also radius n.
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(a) (b)

Figure 8.5: Reconstruction algorithm from a Skeleton with sampled Quench Function. The
Skeleton is the same as in Fig. 8.3. N = 2, and Uy is indicated by the dark gray pixels in (a).
(a) Step n=1 of the algorithm, (b) Step n=0 of the algorithm. In (a) and (b), Z is indicated
by the thick line, and the points in S, are those connected components of S (the light gray
pixels), touching Z (in this case, U,, n = 0,1, are empty).

Corollary 4 Suppose that C(n) is symmetric, i.e., ¢ € C(n) = —c € C(n).

In this case, if s is a Skeleton point with radius n, then all the Skeleton points in the
connected component to which it belongs (with connectivity being under C(n)) have also
radius n.

According to Corollary 4, if the decomposition elements are symmetric, then not all the
Ultimate-Erosion points need to have their radius stored! For every connected component in
the set of ultimate erosions, one needs to store only the radius of one point. Note that the
set of ultimate erosions is usually a very small subset of the Skeleton points, and, due to the
above consideration, only a small percentage of them need to have their radius stored. This
provides a sampling scheme of the Quench Function'. (See Fig. 8.4(b)). Similar results can
be deduced for non-symmetric decomposition elements, by means of Corollary 3.

Corollary 5 A Skeleton point s has radius n if and only if s belongs to U,, or s € Y, 11 but
s descends from Y11, under C(n).

The above corollaries are used in the Coding scheme proposed in section 8.4.

8.3.2 Deterministic Prediction

The second theorem on which the proposed scheme is based is presented below. It permits
deterministic prediction of information about S, from the knowledge about the previously
coded points.

Suppose a Coding procedure where, at a certain step, the Skeleton Subset of order n, 5,
is to be coded, and that Y,,;1 is known to be available both to the coder and the decoder. Since

!Quench Function is defined in Chapter 2 as the function relating to each Skeleton point the radius of the
related maximal element.
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S, = X, — Y11, it follows that there are no points of 5, inside the region Y, ;. Therefore
the coder does not need to code the status (whether belonging, or not, to S,,) of the pixels
inside Y41, and the decoder does not need to “look for” Skeleton points in that region at
that moment. Particular versions of this result was used in the coding schemes proposed in
[29].

It turns out that there is also a region outside Y, that can be predicted not to contain
Skeleton points from S5,. This region can be characterized by the following theorem:

Theorem 5 Let p € E. If the following holds:

[(Yogr U{p}) @ A(n)] o B(n) 5 {p} (8.11)

then p cannot belong to S,,.

Proof The proofis by contradiction. Suppose that p is in S, and let us define the following

operalor:

p(Z) 2 [Z & A(n)] o B(n). (8.12)
By definition of Y1, p(X) = Yoq1. Also the set Y, 11 @& A(n) gives Y41 when operated upon
by p(-).

Therefore, since p(-) is an increasing operation (it is composed of basic morphological
operations, which are increasing), then any set Zy, such that [Y,41 & A(n)] € Zy C X,
satisfies p(Zo) = Yoq1. In particular, Zo = (Y41 U {p}) & A(n), p € Sy, satisfies it.

However, according to (8.11), p(Zo) D {p}, and, therefore, p € Y11, which contradicts
that p € S,,. O

Theorem 5 provides a test for each point in E: If it passes it, i.e. (8.11) holds, then
its status as a Skeleton point need not to be coded because it is known to both coder and
decoder to be negative. On the other hand, if the test fails ((8.11) does not hold), nothing
can be said about the point’s status, and it must be coded.

The above test is however practically inviable, because it is extremely computation-
demanding. Luckily, a simplified, much faster test is possible in many cases by the following
corollary:

Corollary 6 Let F' be a structuring element, not containing the origin (which we denote o),
and satisfying:
[(F7U {o}) @ A(n)] 0 B(n) D {o} (8.13)

and let p € E.
If {p} ® F C Y,11, then p cannot belong to S,,.

In other words, one can pre-select a template F', excluding the origin, and usually con-
taining few points, such that it satisfies (8.13). Since it is independent of the input image X,
the above selection is done “off-line”, and only once for a given decomposition family {A(n)}.
During an “on-line” Coding algorithm, the “prediction test” is performed, for each point p,
by placing F' “on” p, and examining the status of the points indicated by the template.

The points found in the above test are only a subset of the “predictable points” found in
the test of Theorem 8.11. In order to find all the predictable points, a family {F;} of all the
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(i+k1,) Y+l

Figure 8.6: A point (7, j) predicted not to belong to S,, according to Corollary 7.

templates satisfying (8.13) should be defined, and the test in Corollary 6 must be repeated
for each F;. This could also be very computation-demanding. Often, however, a small subset
of {F;} is enough for finding most of the desired points. As an example, let £ = Z2  and
consider a Skeleton decomposition of X, where B is a 3 x 3-pizel squared structuring element.
In this case, Corollary 6 above can assume the following specific format:

Corollary 7 Let (i,j) € Z?, and consider a Morphological Skeleton with a 3 x 3-pivel
squared structuring element. If any of the triplets

@+ k,7), (4,7 + ko), (04 ks, j + ks) b,
{(l — k1, )7(l J— 2)7(l — ks, ) — 3)}7
@+ k1,7) (6,7 — k2), (14 ks, j — ks) },
{0 = k1,0), (5 + K2), (0 — ks, + ks,

for any integers ky, ky and ks in the interval [2,2n + 1], is contained in Y, 41, then the point
(1,7) does not belong to S,,.

The above triplets represent a subset of the family { F;} related to the given squared struc-
turing function. Fig. 8.6 shows an example of a point (7, j) which is predicted not to belong
to S, in this specific case. Fig. 8.7 shows another example; in this case, n = 0, and Y14 is
indicated by the thick line. The dark points are those which can be predicted not to belong
to Sp, according to Corollary 7.

8.4 Proposed Coding Scheme

In this section we propose an efficient coding scheme of the Skeleton Representation of binary
images.

In comparison to the two previous schemes described in section 8.1, it is an hybrid
method, since it takes into account the Skeleton connectivity, as the first scheme, and is
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Figure 8.7: An example of deterministic prediction. The thick line indicate Y,,+;. The dark

points cannot be Skeleton points in Sy, according to Corollary 7.

suitable to progressive transmission, as the second one. Moreover, it is based on the new
theoretical properties of the Skeleton Representation, presented in last section, which are
not considered in the previous schemes. As a consequence of all of the above, the proposed
scheme typically provides better compression of binary images than the previous schemes
(see section 8.6 below).

The proposed Coding scheme is restricted to discrete-family Generalized-step binary Skel-
etons, defined on Z? (discrete binary images). An adaptation of this scheme for discrete-
family Generalized-Step Grayscale Skeletons is presented in Appendix C, section C.1.

8.4.1 The Algorithm

After the Skeleton Representation is calculated, the coding is performed in the same way as
the decoding, i.e., by reconstructing the original image. Let N be the maximum radius.

Initially, for each of the Ultimate Erosions U,, 0 < n < N, a set U, is formed, in such
a way that if a point s belongs to U,, then it does not descend from any other point in U,,
under C'(n). If C'(n) is symmetric, the above means that [/, contains only one point of each
connected component of Uy, under C'(n). The points in the above sets U, have their position
and radius coded.

At this point, the main loop starts. At each step n, which varies from its maximum value,
N, down to 0, a scanning procedure is performed on the external boundary of Y, 1, and of
U,. External boundary of a set A is considered here to be the points outside A, which are
direct descendants of points in A, under C'(n).

Only the external boundary have to be searched for points in 5, since the Skeleton points
in 5, are necessarily linked either to Y11, if it is not an Ultimate Erosion point, or to U,,
otherwise. Some points in the above scan can be predicted not to belong to S, by the test
in Theorem 5; these points are skipped. The Skeleton points found in the above scan must
belong to S, (according to the reconstruction algorithm related to Theorem 4), and their
position are coded by an arithmetic coder [16]. When a skeleton point is found, its boundary
is searched for other connected skeleton points in a recursive way, before the main scanning
procedure goes on.
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This procedure is detailed in the following algorithm:

1. Calculate the Skeleton Subsets S,, 0 < n < N. Form the sets Un as specified above.
2.n+— N—1. Yy « 0.

3. Z+— (Y, U Un).

4. p « (an external boundary point of 7). If there are no more external boundary points
to scan, go to step 9.

5. Check (by means of Theorem 5) if p can belong to 5, or not. If it cannot, go to step 4.

6. Send to the Arithmetic Coder a “0” if p is not a skeleton point or a “1” otherwise. Use
an adaptive probability model.?

7. If a “1” was sent, Z < (Z U{p}). Otherwise, go to step 4.

8. Recursively, scan the direct descendants of p for other connected Skeleton points. Code
non-predictable points with “0” or “1” accordingly, but use a different adaptive prob-
ability model than the one in step 6. After the whole connected component is scanned
and coded, go to step 4.

9. It n =0, then STOP.

10. n <« (n—1). Y11 < Z & B(n). Go to step 3.

8.5 Coding after Redundancy Reduction

The theoretical results and the algorithm presented above are related to Skeletons with all the
centers of maximal elements, i.e., for which no redundant point is removed. Before present-
ing simulation results (sections 8.6 and 8.7) for the above coding scheme, let us consider
adaptations of the algorithm for Redundancy Reduced Skeletons, or Minimal Skeletons.

8.5.1 Coding of Reduced Skeletons

Let us consider a Redundancy-Reduced Generalized-Step Skeleton, obtained by the general
approach presented in chapter 6. In this case, equation (6.14), on page 74, is written in the

following form:
redundant

RS, = X, — (region of) S A(n) (8.14)

order n

ZA probability model in an arithmetic coder is the collection of the probabilities of appearance of each of
the symbols to be coded. An adaptive model is an empiric probability model, for which all the probabilities
are initially set to 1/M, where M is the number of symbols, and, during the coding process, updated to
(m; +1)/M, where m; is the number of appearances of the symbol i.
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Let us redefine Ultimate Erosions in the following way:

redundant
U, =X, — Rec {Xn7 (region of) S, A(n)} (8.15)
order n C(n)
With this redefinition, Theorem 4 (page 98) is valid also for the above Reduced Skeleton,
whatever is set as “redundant region of order n”. The proof is very similar to that of
Theorem 4.

Moreover, since the resulting Reduced Skeleton is a subset of the original Skeleton, The-
orem 5 too remains valid.

Therefore, the proposed coding scheme can be directly adapted for Reduced Skeletons,
such as the versions of RS™ and RS® for Generalized-Step Skeletons.

8.5.2 Coding of Minimal Skeletons

Let us consider now a Minimal Generalized-Step Skeleton. In this case, as before, Theorem 5
remains valid, and an adaptation of the definition of Ultimate Erosions makes Theorem 4
stay valid as well.

The difference, now, is that the adapted Ultimate Frosions is such that it can be calculated
only after the whole Minimal Skeleton {M S, } is computed. Moreover it has to be calculated
in decreasing order of n. The redefinition in this case is:

Up=MS — Rec{MS U Zy, Zo,} o) (8.16)

where:
MS 2 Uyso MS, (8.17)
Zy 2 Upon MS,, (8.18)

With the above considerations, the coding scheme is suitable also for Minimal Generalized-
Step Skeletons.

8.5.3 Which is Preferable?

Does the proposed coding scheme perform better with the original Generalized-Step Skeleton,
a Redundancy-Reduced version of it, or one of its Minimal Skeletons?

The answer is not totally clear because of the following trade-off between redundancy
and connectivity. The less redundancy, the fewer points have to be coded, but part of the
connectivity is lost and the number of Ultimate Erosions grows. The more connected is the
Skeleton, fewer Ultimate Erosions are expected to be found, but all the redundancy has to
be coded.

On the other hand, the connectivity is mainly related to Intralevel redundancy. Therefore,
an Interlevel-Free Skeleton (RS(?) seems to be the most suitable type of Skeleton, among
the above indicated ones, for the proposed coding scheme, because it removes as much as
possible redundant points, but keeping the Intralevel redundancy, and therefore preserving
connectivity.
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(a) (b)

Figure 8.8: A Redundancy Reduction scheme for a Skeleton calculated with a 3 x 3-squared
structuring element. (a) Original Skeleton, (b) Reduced Skeleton.

8.5.4 Coding with the Squared Structuring Element

The simulation results, presented in the next sections, relate to a Skeleton calculated with a
3 X 3-square structuring element, as constant generator. This structuring element was chosen,
so that Corollary 7 can be used.

For the above structuring element, most of the redundancy is Intralevel. Therefore, al-
though a RS kind of Skeleton seems to be the most appropriate for the proposed coding
scheme, it was not used in the simulations presented below, since RS is expected to be
very close to the original Skeleton, on one hand, and its computation time is expected to be
much longer, on the other hand.

A particular Redundancy scheme, suitable only for the Skeleton with the 3 x 3 square
structuring element, was used instead. It removes a large part of the Intralevel redundant
points, without affecting the connectivity. The redundancy scheme consists of sequentially
discarding points of the Skeleton (with radius greater than 0), for which at least 3 out of the
4 closest neighbors are also Skeleton points. Fig. 8.8 demonstrate the result of applying the
scheme in a simple image. Note that the representation remains error-free.

8.6 Simulation Results (Binary Images)

The simulations of the proposed scheme, presented here, relate to the a Skeleton with constant
generator B(n) = B, equal to the 3 x 3 squared structuring element centered at the origin.
Moreover, B(0) = B.

Two sets of simulation tests are presented.

The first one compares, in terms of lossless compression efficiency, the proposed algorithm
with some simple, well-known coding schemes for binary images. The test image is the
256 x 256-pixel “Tools” (Fig. 5.5(b), on page 62), and the results, in bits-per-pixel, are
presented in Table 8.1. According to it, the proposed Skeleton coder provides the best
compression.

The second set of simulation tests examines the efficiency of the proposed Skeleton coder
in coding scanned documents (fax), and compares it to existing standard coders [1, 14]. The
previous Skeleton-Based scheme proposed in [3] (denoted ds Skeleton) is also compared. The
eight CCITT facsimile standard test 2376 x 1728-pixel images, of documents scanned at 200
dpi, are lossless coded by the proposed algorithm. Table 8.2 compares the size of the obtained
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Coder Bit-rate
Ziv-Lempel
(“Compress” in Unix) 0.171
Run-length + Huffman | 0.152
Quad-tree 0.131
Chain-Code 0.091
Skeleton (proposed) | 0.071

Table 8.1: Lossless compression rates, in bpp, of the proposed Skeleton coder and other known
schemes, for the image “Tools”.

CCITT ds Proposed Progressive

Images | G3D1 | Skeleton | G3D2 | Skeleton G4 JBIG
#1 37423 28261 | 25967 20405 18103 16771
#2 34367 19058 | 19656 12681 10803 8933
#3 65034 | 49018 | 40797 37535 28706 23710
#4 108075 | 102848 | 81815 82194 69275 58656
#5 68317 52476 | 44157 40259 32222 28086
#6 51171 30658 | 28245 24615 16651 13455
#7 106420 | 112301 | 81465 83398 69282 60770
#3 62806 35965 | 33025 24815 19114 15227

Table 8.2: File sizes of compressed facsimile standard CCITT documents, obtained by the proposed
Skeleton algorithm, compared to previous Skeleton-Based coder and existing standards.
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Lena
8 bpp | 5 bpp | 3 bpp | Mosaic | Map
Ziv-Lempel (“Compress”) | 4.74 | 2.12 | 1.35 1.02 | 2.39

Error-free JPEG 7.06 | 2.67 | 1.04 - 1.61
Binary Skeleton - - 1.21 - 1.51
Grayscale Skeleton 7.55 | 2.37 | 0.72 | 0.52 | 1.42

Table 8.3: Simulation results for the proposed Grayscale Skeleton-based coding scheme.

coded files with the results given in [1] and [3]. Comparison of our results to the ds Skeleton
shows a substantial improvement in Skeleton-based Coding. At this point, it is still weaker
than the most advanced Standards (G4 and JBIG), but it is comparable to the 2-dimensional
Group 3 Standard (G3D2, with k& = 4), being usually more efficient than it (with exception
of the “hardest” images, #4 and #7).

Since the scanning in the algorithm is performed on the boundaries of the expanding
set Z only, the coder and the decoder procedures are fast. On a Digital DECStation 5000,
programmed in Standard C, coding of the 256 x 256-pixel image “tools” takes about 4 seconds,
and its decoding about 2 seconds.

8.7 Simulation Results (Grayscale Images)

The same algorithm presented above for Skeleton-based coding of binary images can be
adapted for coding Grayscale Skeletons. Such a generalization is described in Appendix C,
section C.2. In this section, we present simulation results for the Grayscale coding scheme.

The Skeleton used in the simulations was with a constant and flat 3 x 3-pixel squared
family generator (structuring element). Only error-free coding was investigated. This is
because the influence of quantization on the theoretical results (Theorems 4 and 5) are still
to be studied.

The results are summarized in Table 8.3. As the results in the first column indicate for the
512 x 512-pixel, 8 bit-per-pixel image “Lena” (Fig. 8.9(a)), the proposed Grayscale scheme
does not provide good compression for natural images. By natural images, we mean images
with large areas of slow variation in the gray levels. The reason for the incompatibility is:
Images with slow gray-level variation require a great number of flat decomposition elements
for a perfect representation, as demonstrated in Fig. 8.10(a).

On the other hand, images containing large flat areas, and abrupt gray-level variations,
can be more efficiently represented by flat Skeleton elements, as one can see in Fig. 8.10(b).
This assumption is confirmed by the remaining results in Table 8.3. Column 2 presents
the results for the 5 bit-per-pixel “Lena” seen in Fig. 8.9(b), obtained by discarding the 3
least-significant bit-planes of “Lena”. We can see that the proposed Skeleton, in this case,
provides results similar to those of the “compress” algorithm, and the error-free JPEG. The
advantage of the Grayscale Skeleton over the other methods for flat images is stressed in
the third column of the table, where the results for “Lena” with only its 3 most-significant
bit-planes (Fig. 8.9(c)) is presented. Note also the advantage of the Grayscale Skeleton-based
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Figure 8.9: Grayscale images, used for the simulations. (a) 8 bit-per-pixel, 512 x 512 “Lena”,
(b) 5 bit-per-pixel “Lena”, (c) 3 bit-per-pixel “Lena”, and (d) “Mosaic” of “Lena”, obtained
by means of a segmentation procedure.

f
f ﬁ
B space Space
(a) (b)

Figure 8.10: The efficiency of the Grayscale Skeleton Representation. (a) Slow gray-level

varying functions are not well represented, whereas (b) flat and abrupt varying functions are
more efficiently represented.

108



Figure 8.11: A 5-layer 128 x 128 multi-layer map.

method over the Binary Skeleton-based method, applied to each of the 8 layers separately.

A 3-bit-per-pixel version of natural images are not typically of interest; on the other hand
some important applications do relate to flat images. This is the case of Segmentation-based
Coding, described and considered in chapter 9, for which the result of a segmentation process
can be summarized in the form of a “Mosaic” image (see Fig. 8.9(d)). The gray level of a
pixel in the presented “Mosaic” image is equal to the average of gray levels in the segment
to which it belongs. According to column 4 in Table 8.3, such an image is more efficiently
coded by the proposed scheme than by the other investigated methods. As seen in chapter 9,
this can be used as part of a Segmentation-based coding scheme of natural images.

Another suitable kind of images for Grayscale Skeleton-based coding is that of multi-
layer maps. The layers are arranged in the form of a grayscale image, and then coded by the
method. The results for the 5-layer 128 x 128-pixel map, presented in Fig. 8.11, is shown in
the last column of Table 8.3, and the advantage of the proposed scheme can be observed.
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Chapter 9

Linear Versus Morphological Methods in
Image Representation

In this chapter, a comparison is performed between the Morphological methods for image
representation, considered throughout this thesis, and the Linear methods, which are the
most common and well-known ones in Image Processing and Representation. Furthermore,
hybrid methods, combining both approaches, are considered.

Section 9.1 below reviews the many algebraic similarities between the two methods; more
particularly, between the Linear mathematical framework (Linear Spaces) and the Morpho-
logical mathematical framework (Complete Lattices), between Convolution and Dilation and
Erosion, and between some Linear representations (Wavelets and Laplacian Pyramids) and
the Skeleton representation.

Section 9.2, on the other hand, stresses the basic differences between the methods, from
the Image Processing point of view. It turns out that Linear methods better represent smooth
regions in a natural grayscale image, whereas Morphological methods better represent edges.

Section 9.3 considers hybrid methods, which combine the two methods in order to better
represent both smooth regions and edges. The rapidly growing field of Segmentation-based
coding is considered as a particular case of this approach. The potential contribution of the
Grayscale Skeleton-based coding algorithm presented in chapter 8 to this area is demon-
strated by a computer simulation.

9.1 Algebraic Similarities

9.1.1 Framework comparison

Linear Image Processing is based on Linear Spaces. These are sets, to which a sum operation
is attached. This sum operation induces a certain structure for the space, characterized by a
scaling operation called multiplication by a scalar. The most important operators in a Linear
Space L (let us denote them generically by ) are those which:

1. Commute with the sum operation, i.e., (3 ;) = Y ¥(x;), V{x;} C L.
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2. Preserve the scaling structure of the elements in the space, i.e., v = a -y = ¥(z) =
a-(y), z,y € L, a € C (set of complex numbers).

Such an operator is called a linear operator.

As described in chapter 2, Mathematical Morphology is based on Complete Lattices.
These are sets, to which two operations are attached: supremum and infimum. These oper-
ations induce in the space a certain structure, characterized by the order relation (<). The
most important operators in a Complete Lattice P are those which:

1. Commute either with the supremum operation, i.e., ¥»(VX;) = V¢ (X;), or with the
infimum operation, i.e., ¥(AX;) = Ap(X)), V{X;} CP.

2. Preserve the ordering structure of the elements in the space, i.e., X <Y = ¢(X) <
P(Y), X,Y € P. Or, in other words, ¢ is increasing.

Among such operators, the ones which commute with the supremum are called dilations, and
those which commute with the infimum are called erosions.

This analogy between the two frameworks, pointed out by Serra in the preface of [52],
makes several notions and structures be common for both approaches.

For instance, the most useful operator in Linear Image Processing is convolution. It is
the only one in a Linear space, which is both linear and translation invariant. (A translation
invariant operator satisfies: ¢[T'(z)] = T[¢(x)], where T'(-) is a translation). In the Linear
Space of 2-D functions from Z? to R, the convolution has the form:

[f*gl(x) = > [f(y) - gz —y)] (9-1)

yeZ?

In Binary and Grayscale Morphology, the most useful operators are the Minkowski sum and
subtraction, & and &, respectively. The Minkowski sum is the only operator which is both a
Dilation and translation invariant, whereas the Minkowski subtraction is the only translation
invariant Frosion. As pointed out in chapter 2, for Grayscale Morphology, these operators
assume the following form, in the discrete case:

[f @ gl(x) ="\ [f(y) + 9(z — y)] (9-2)

yeZ?

fed) = A [fly) —gly— )] (9.3)

yeZ?

Note the resemblance between the structure of the convolution and the above operators.

In [31, 32], Maragos transposes many of the concepts known in Linear Image Processing
to Mathematical Morphology of functions. The notion of a Dilation System was defined, as
an analogy to Linear Systems, as an operator D satisfying:

D {v[ci ; m(v)]} —\/{e + Do)} (9.4)

K3

K3

The impulse signal for Grayscale Morphology is defined there in the following way:
A |0, v =020,
TR Bt 95
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In classical linear processing, Translation-Invariant Linear Systems are totally characterized
by their impulse response. This is also the case for Translation-Invariant Dilation Systems.
Maragos showed [32] that any Translation-Invariant Dilation System is of the form:

Da)y=xdyg (9.6)

where ¢ is the impulse response D(p). As the reader can notice, this is the same Minkowski
sum as considered above, where g is the structuring element. Therefore, a structuring element
is the analogous in Morphology for the impulse response in Linear Systems.

A similar transposition can be performed for Erosions Systems, since erosion is dual to
dilation.

Also in [31, 32], Maragos proposed an analogy in Morphology for the frequency response
of signals. It turns out that, just like harmonic signals are the eigenvectors for Linear
Translation-Invariant Systems, hyperplanes are the eigenvectors for Dilation and Frosion
Translation-Invariant Systems. Since harmonic signals are characterized by constant fre-
quency, and hyperplanes are characterized by constant slope, one concludes that slope in
Morphological systems is the analogous of frequency in Linear systems. An A-transform,
which is the analogous of the Fourier transform, was defined in [31], but this can be applied
consistently only to conver functions.

Parallel and independently to Maragos, Dorst and Boomgaard [8, 9] proposed the same
analogy of frequency response by slope response, which they, called Slope Transform. Their
transform “contains” the A-transform proposed by Maragos, in the sense that the former can
be applied for any function and is invertible.

9.1.2 Generic Image Representations
Representation Models

Linear Image Representation is based on the following model:
fla) =2 ai wi(x) (9.7)
€]

where {¢;(2)} is a family of pre-defined functions, and {a;} (called representation coefficients)
is a representation of f(x) according to that family.

If the family {¢i(x)} is real and orthonormal, and supposing that there exists a set of
coefficients {a,} that satisfies (9.7), then the representation coefficients can be calculated by

=Y fla)-pia) (9.8)

rER?

the scalar product:

If the functions ¢;(x) are harmonic functions each in a spatial frequency, then {a;} is the
frequency response of f(x).

The above is well-known in Linear Image Processing, and has the following analogy in
Mathematical Morphology. The most common model for morphological image representation
is the following:

flx) = Vlai + gi(2)] (9.9)

el
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If the functions ¢;(x) have disjoint regions of support (which is the analogous of saying
that the family is orthogonal), and if there exists {a;} for which (9.9) is satisfied, then the
representation “coefficients” are given by:

ai= /\ [f(z) = pi(x)] (9.10)

rER?

If the functions ¢;(x) are hyperplanes each with a different spatial slope, then {a;} is the
slope response of f(x).

Projections and Partial Representations

Equation (9.7) can be seen as characterizing a map from the space of indices [ to the image
space R?. This map is a linear operator because it preserves linear superposition. In addition,
(9.8) characterizes another linear map, this time from R? to I. If there exists a unique {a;}
satisfying (9.7) for each function f(x), then this second map is the inverse of the first.

Similarly, equation (9.9) characterizes a dilation from I to R*, since it preserves super-
position by supremum. Equation (9.10) is actually the adjoint erosion from R? to I, of the
above dilation.

Let us consider now the case where there does not exist a collection of coefficients {a;}
which satisfy the linear representation (9.7) for some f(x). Still, a set of coefficients {a;}
can be calculated by the inverse mapping (9.8). The question which is asked is: What is
the relation between the function f(:z;), obtained by the direct mapping characterized by
(9.7), and the original function f(x)? It is well known in Functional Analysis, that f(:z;) is
the projection of f(x) on the subspace generated by {¢;(x)}. This process of projection in
idempotent, and the resulting projected element is the element in the subspace which is the
closest to f(x).

Analogous conclusions can be drawn for the Morphological Representation. Since (9.9)
and (9.10) characterize, respectively, a dilation and an erosion, which we denote by $ and g,
we can rewrite those equations in the form:

§(a) (9.11)

f a
a=£E(f) (9.12)

QN
—

where f denote the original function f(x), and a the set of coefficients {a;}. Usually, though,
the above system cannot be satisfied for all f, and the first equation should be written:

f=d(a) (9.13)
By substituting (9.12) in (9.13), we get:
f=bep) =4 (9.14)

where 4 is the morphological opening associated with By (see section 2.4.4).
Like any opening, 4 is idempotent. The function f is an element of the subspace of
functions which can be represented by means of {¢;}, therefore this subspace is “generated”

113



by that family. Furthermore, f(:z;) < f(z), Yo € R?, since 4, like every opening, is anti-
extensive. And finally, f(z) is the “biggest” function (that with the highest values for each
x) in the above subspace, which is “smaller” than f(x) (again this is a property of every
opening). The conclusion is that f(:z;) is the projection of f(x) in the space of functions
morphologically represented by {¢;(x)}, such that it is the “closest” one to f(x) (the error
flz) — f(:z;), which is always positive, is the smallest, for all z).

Therefore, a provides in this case the “best” partial representation of f in terms of {¢;(x)}.

If, on the other hand, the family {¢;(x)} in not disjoint, then generally the representation
obtained by (9.10) is redundant, and a subset of this representation is to be calculated (see,
for example, the discussion and general approach in chapter 6).

9.1.3 Wayvelets and Skeleton Representations

Let us consider here a Wavelets Representation and a Grayscale Skeleton Representation as
particular cases of the above Linear (9.7) and Morphological (9.9) Image Representations,
respectively.

A simple Grayscale Skeleton {5, () e, generated with a constant structuring element
g(x), and calculated using the umbra approach (see section 4.3), represents the original image
f(z) in the following manner:

fla) ="V [Sa@ngl(x) =\ 'V [Suly) + ng(z — y)] (9.15)

neN neN yeR?

where ng(x) is the function obtained by the n-fold grayscale translation-invariant dilation of
g(x) by itself.

Now, if we assume [ to be R* x N so that each index 7 is in the form (y,n), where y is a
point in the 2-D space, and n is a non-negative integer, then by comparing (9.9) with (9.15)
we conclude that, in the case of the Grayscale Skeleton:

Py (@) = ng(z —y) (9.16)

and that 9,(y) are the representation “coefficients”.

Therefore, a grayscale image is represented, in terms of a Grayscale Skeleton, by the
superposition of dilated and translated versions of a single function, g(x). A Wavelet Rep-
resentation, on the other hand, can be described in the very same way as the superposition
of dilated and translated versions of a “Mother Wavelet”. The basic differences rely on the
nature of the superposition, which is linear for Wavelets, and morphological for the Skeleton,
and the nature of the “dilation”, which is actually a scaling for Wavelets, and a morphological
dilation for the Skeleton.

9.1.4 Laplacian Pyramids and The Skeleton Representation

Although intuitively similar, the Wavelet and the Skeleton representations differ in many
of their algebraic properties. For instance, the Wavelet representation is not translation
invariant, whereas the Skeleton representation is. On the other hand, in the discrete case, the

114



number of representation coefficients in the Wavelet representation is identical to the number
of pixels in the original image, whereas for the Skeleton representation it is much larger.

A Linear representation which is closer to the Skeleton, in terms of the above properties,
is the Laplacian Pyramid. In section 4.1.1, the Skeleton has already been considered as a
pyramid. Here we stress this, by comparing the way in which it is calculated to that of the
Laplacian Pyramid.

Let us consider here the same discrete-family, constant generator, grayscale Skeleton, as
that of the last section. The calculation of the Skeleton “subsets” S, (y) in this case is given
by the following version of Lantuéjoul’s Formula:

S, =fong—(fong)og (9.17)

A simple algebraic manipulation on (9.17) leads to:
So=fong—[fon+l)gdg (9.18)

Equation (9.18), together with the fact that f & ng = [f & (n — 1)g] © g, permit us to
implement the Skeleton decomposition according to the algorithm described in Fig. 9.1(a).
The reconstruction can be implemented as shown in Fig. 9.1(b).

Let us consider now the decomposition diagram (Fig. 9.1(a)), a little more closely. Notice
that, if one replaces the “erosion” operations by a “decimation” (linear low-pass filtering
followed by a down-sampling), and the “dilation” operation by “interpolation” (up-sampling
followed by a linear low-pass filtering), then the resulting algorithm is that of the Laplacian
Pyramid. Therefore, the Skeleton decomposition can be seen as a Laplacian-like pyramid,
with the erosion acting as a decimation, and the dilation acting as an interpolation.

The similar structures of both representations lead to the above mentioned similar algeb-
raic properties.

9.2 Differences Between the Approaches

We have seen that on one hand, there is a great similarity between the algebraic structures of
Linear and Morphological Image Representations; yet, on the other hand, the two approaches
lead to qualitatively very different results.

For demonstration, consider the two series of filtering operations presented in Fig. 9.2. The
left column of Fig. 9.2(a) consists of a linear low-pass pyramid. Each image was obtained
by averaging the pixel values of the original image (at the top), with a moving squared
window with increasing sizes. The right column represents a band-pass pyramid, obtained
by subtracting each pair of images of the low-pass pyramid. The left column of Fig. 9.2(b)
consists of a morphological “low-pass” pyramid, obtained by performing a grayscale opening
with squared structuring elements of increasing sizes. The sizes of the structuring elements
are identical to the sizes of the windows used in the linear filtering operations. The right
column represents the respective “band-pass” pyramid.

Notice that the edges of the image are smoothed and blurred as we move down along the
Linear low-pass pyramid. Consequently, all the edges of the image appear in all the levels
of the band-pass pyramid. In other words, the “energy” of each edge is spread out across
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Figure 9.1: Calculation and reconstruction of the Skeleton decomposition. (a) Calculation
diagram, where “erosion” denotes (-) & g, and “dilation” denotes (-) & g, (b) reconstruction
diagram.
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(a)

Figure 9.2: Linear and Morphological Filtering. (a) Left column: Linear low-pass pyramid.
Right column: Linear band-pass pyramid. (b) Left column: Morphological “low-pass” pyr-

amid”. Right column: Morphological “band-pass” pyramid.
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the band-pass pyramid, and the conclusion is that representations based on multi-level linear
filtering do not efficiently represent edges.

On the other hand, no smoothing or blurring is noticed in the low-pass morphological
pyramid. The morphological filtering operations remove bright features of the original image,
without affecting the edge contrast. The bright features that are removed, are retained in
the band-pass morphological pyramid levels, according to their size (or width). Therefore,
each edge does not have its “energy” spread out, but, on the contrary, it is concentrated in
a specific band-pass pyramid level. The conclusion is that morphological representations are
usually more suitable for representing edges.

The opposite conclusion is obtained for the smooth regions in an image, as already ex-
plained in section 8.7 (see Fig. 8.10 on page 108). That is, the morphological representations
do not efficiently represent slow-varying regions of the image, whereas it is well known that the
linear representations usually do. Similarly to the linear representation in relation to edges,
the morphological representation usually makes the “energy” of a smooth region to be spread
out across its representation levels, whereas the linear representation keeps is concentrated
in a certain representation level.

9.3 Hybrid Methods

As discussed in the last section, the morphological and the linear representations are com-
plementary, because the former efficiently represents edges and does not efficiently represent
smooth regions, whereas the latter efficiently represents smooth regions and does not effi-
ciently represent edges.

In this section, we consider hybrid methods, combining both approaches in order to obtain
an efficient representation of both edges and smooth regions in images.

Combined Framework

The ideal hybrid representation would be one, which is based on a combined mathematical
framework, containing as particular cases both linear spaces and complete Lattices. Such
framework would make possible the construction of a combined image model, and its study.

However, this combined framework is now just an ideal. It looks like that such a unific-
ation is not possible at all. Therefore, other approaches, based at a less extent on a global
mathematical framework are the ones in which we have to base ourselves.

Morphological Representation of a Linear Decomposition

A first alternative is to perform a linear decomposition of an image and, then, to represent
the resulting representation by morphological methods.
The aim of such an approach is to try to gather back, by means of the morphological
representation, the energy of the edges, which was spread out by the linear representation.
The method know as “Zero-tree coding of Wavelet Decompositions” [55] (which lately
has found much interest, in the Wavelet-based coding field) could be seen as a representative
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Figure 9.3: The relation between the coefficients in a Wavelet Decomposition, as considered
by the zero-tree coding method. This relation can be considered as a structuring function in
a Boolean Lattice.

of this approach, although the zero-tree coding is not recognized by the image processing
community as a morphological method.

The zero-tree coding method takes into consideration that the edge energy is spread out
in a Wavelet representation in an ordered manner. Since the original image is recursively
down-sampled at a 2 by 2 ratio, each representation coefficient in a lower Wavelet subband
is spatially related to 4 other coefficients in the immediately higher Wavelet subband (see
Fig. 9.3). This relation structure can be carried out recursively, so that each point in a low
subband can be seen as the root of a quad-tree. Since the energy spread in the Wavelet
decomposition follows this same tree structure, then any coefficient having an absolute value
below a given threshold is likely to be the root of a zero-tree, in which all the nodes are also
coefficients with absolute value below the same threshold.

In summary, in the zero-tree method, one searches, for each threshold value (which as-
sumes the values, 2", m = 7,6,...,0), the zero-tree roots and codes them efficiently.

If we consider the Wavelet representation as a function over a Boolean Lattice, and the
relation, depicted in Fig. 9.3, as a structuring function in that Boolean Lattice, then the
zero-tree representation can be seen as a morphological representation, closely related to
the Skeleton. Notice the similarity between the above structuring function and that of the
Quadtree Decomposition, presented in section 5.2.1. Furthermore, by applying thresholds of
the form 2™, one is actually performing a bit-plane decomposition of the absolute value of the
Wavelet Representation, and, as seen in chapter 5, this can also be considered as a Skeleton
decomposition.

Therefore, in our opinion, the zero-tree coding can be considered as a morphological
representation, and its study and generalization (which are outside the scope of this thesis)
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Figure 9.4: A simple Skeleton decomposition of a 1-D discrete signal, and the arrangement
of its points into a connected graph.

can be performed by means of morphological methods.

Linear Representation of a Morphological Decomposition

Another alternative is the dual approach; first to perform the morphological decomposition
and, then, to calculate its linear representation. The aim with this approach could be to try to
gather back the “energy” of the smooth regions, which was spread out by the morphological
representation.

For binary images (even though they do not contain “smooth regions”), the method of
linear approximation of the Skeleton lines by parametrized arcs or splines (see [3]), could be
considered as a representative of this approach.

For grayscale images, a similar method could be tried. First, a connectivity criterion
should be defined, and connected Skeleton points under this criterion should be arranged
in a graph (see Fig. 9.4). Then, a numerical function (or functions), describing this graph,
should be defined. For example: Let (x(t),y(t), 2(¢)) describe the differences in coordinates,
and gray level, between a Skeleton point ¢ and its successor ¢t 4+ 1. If a Skeleton point has
more than one successor, then all of them (but one) can be disconnected from the graph
and considered as roots of new graphs. The functions (in the above example x(t), y(t), and
z(t)) would, then, be represented by linear methods. The implementation and analysis of the
above proposed method is outside the scope of this thesis.

9.3.1 Segmentation-Based Representation

Probably the most popular hybrid scheme, in the last few years, is the segmentation-based
representation and coding [43, 44]. This is part of the “Second Generation Image Coding
Techniques”, proposed by Kunt, I[konomopoulos, and Kocher [26], who suggest to separate
features of different nature in the image into different classes, and code them separately.

In segmentation-based coding, a segmentation of the original image into disjoint regions
is first performed. Then the contents of each region (called the texture of the region) are
coded individually, and the boundaries of the segments are coded separately. The most usual
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linear method for coding the “texture” is polynomial approximation. The boundary of the
segments are usually coded by chain code [13] or by the binary Skeleton [4].

Here we propose a segmentation-based coding scheme, using the Grayscale Skeleton-
coding scheme proposed in chapter 8. The segmentation procedure is a version of the mor-
phological segmentation algorithm, called “Watershed algorithm” [34, 61], which is recently
of increasing interest [6, 33, 44, 13, 4].

After a segmentation is performed, a “Mosaic Image” is created, in the same way as
described in section 8.7: each of its pixels is set to the average of the gray values inside the
segment to which it belongs. A Mosaic image for “Lena”, shown in Fig. 8.9(d), is presented
here again in Fig. 9.5(b) (The original “Lena” is seen in Fig. 9.5(a)). This Mosaic image, as
mentioned in section 8.7, is suitable for efficient coding by the proposed Grayscale Skeleton-
based coding scheme.

On the other hand, the difference between the original image and the Mosaic image is
coded by a linear method. Since the high contrasted edges of the original image are retained
in the Mosaic image, this difference image is expected to contain mainly the slow-varying
features of the smooth regions. For “Lena”, the difference image is shown in Fig. 9.5(c).

The result of a very simplified implementation of the above idea is shown here. The
difference image was lossy coded by JPEG, with a high “q-factor”, at 0.28 bits per pixel.
The use of a high g-factor in this case is possible since mainly low frequency features are
assumed to be found in the image. The high frequencies are allowed to be distorted, since they
usually belong to the interface between the segments, which are retained in the Mosaic image.
The Mosaic image, on the other hand, can be errorless coded at 0.52 bits per pixel, as seen
in section 8.7. The overall coding rate is therefore 0.8 bits per pixel, and the reconstructed
image (with PSNR of 30.4dB) is seen in Fig. 9.5(d).

The above scheme is just a preliminary experiment, pointing out a possible approach.
Much is still to be done. First, 2-D JPEG is certainly not the appropriate linear scheme for
linearly coding the difference image. The texture inside each segment should be coded indi-
vidually, avoiding the high frequencies due to the discontinuities at the interface of segments.
Furthermore, the segmentation scheme should be improved and adapted to coding purposes
(see [43, 44]). And, finally, a lossy coding of the Mosaic image should be considered, instead
of a lossless one.
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Figure 9.5: Segmentation-based coding scheme, based on the Grayscale Skeleton. (a) Original
Image “Lena”, (b) Mosaic image, (¢) difference image, (d) Reconstructed image.
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Chapter 10

Conclusions and Future Research

10.1 Conclusions

In this work the Morphological Skeleton Representation of images, and some of its applications
(especially for Image Coding), are studied. The results and conclusions can be divided into
three main groups:

Generalization of the Algebraic Framework: The Skeleton is not only a symmetry axis
of planar shapes, consisting of a collection of connected lines. In its most generalized
sense, it is also an algebraic hierarchical decomposition, and a pyramidal geometrical
representation of several types of images (binary, grayscale, sequences of images, etc.).

The algebraic framework of the Skeleton was generalized several times in recent years,
aiming to extend the scope of the Skeleton representation as much as possible. This
work first adds a new evolutionary branch to the above development. Its basic contri-
bution is in showing that an image can be decomposed into multi-parameter families
of elements, using a generalization of the classical and efficient Lantuéjoul’s Formula.
Then it proposes a Generalized Skeleton framework, which unifies all the previous gen-
eralizations, including the Generalized Skeleton on Lattices proposed by Serra [53], and
the Generalized MSES introduced by us. The above framework also permits the defini-
tion of new representations as particular cases, like the Hybrid Skeleton. The extension
of such framework for grayscale images is also analyzed.

In addition, applications and special cases are presented and discussed. It is shown
that the generalized Skeleton framework contains, as particular cases, image repres-
entations previously known, but not recognized as Skeletons, such as the Quadtree
and the Bit-Plane decompositions. Moreover, multi-parameter generalizations of these
decompositions are presented (specifically, a multi-parameter Quadtree decomposition
for binary images, and a Quadtree/Bit-Plane decomposition for grayscale images).

Another Morphological Representation, called the Two-Sided Skeleton, is also proposed
here. It does not belong to the Generalized Skeleton framework, but it seems to us
that is has a great potential for Coding and Pattern Recognition. Its advantage is in
yielding a Skeleton-like, self-dual (almost), morphological representation for binary and
grayscale images.
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Morphological Reduction of Skeleton Redundancy: An algorithm for obtaining Min-
imal Skeletons had been previously proposed [29]. However, this algorithm cannot be
described in terms of morphological operations only, and therefore it is not amenable
for a fully parallel implementation. In this work, we consider redundancy reduction
by means of morphological operations only, which can be efficiently implemented on
parallel machines.

Previously, all the redundant points in a Skeleton representation were considered as
part of a single group. In this work, we first define redundancy categories, and then
classify each Skeleton point according to these categories. Points in different categories
usually have different characteristics; for instance, Intralevel redundant points are often
responsible for connectivity preservation, whereas Interlevel redundant points are those
which usually compose the undesired long Skeleton branches, which are formed when
the boundary of the shape is perturbated. Therefore, removing Interlevel redundancy,
while keeping the Intralevel one, often leads to a more robust Skeleton, without affecting
its connectivity.

A generic approach for obtaining Redundancy-Reduced Skeletons is also proposed and
studied. It leads to closed-form morphological formule for removing redundant points
from most of the proposed categories. The Intralevel redundant points can not be
removed by this method.

A second approach for redundancy removal is proposed, which usually removes most
of the Intralevel redundancy, by means of a morphological algorithm. The approach
is based on a new generalization of the concept of “Convexity”, called B-Convexity,
also developed and studied in this work. A shape is called B-Convex when it is invari-
ant under a morphological closing using a structuring element B. We show that the
morphological closing can be seen as a generalization of the traditional Convexr-Hull
operation, and that many of properties of the latter are shared by the former.

Moreover, we show that the Fssential Points of the Skeleton (which are proved here to
be the intersection of all the Minimal Skeletons) can be obtained by means of closed-
form morphological formulz. These formula are obtained from the above approaches
for redundancy reduction.

Coding of the Skeleton Representation: In the last years, many researchers lost their
interest in Skeleton-based coding of binary images, because simpler coding schemes, like
Chain-Coding of the original binary image, showed similar (or even better) compres-
sion results. Furthermore, no coding scheme using a Grayscale-Skeleton is proposed at
all (as far as we know). On the other hand, the Skeleton coding schemes, used in the
above simulations for binary images, have not taken into consideration the strong cor-
relation existing between Skeleton subsets. Actually, this correlation was not properly
characterized, and it was not clear how to efficiently use it.

In this work, new theoretically-based properties, characterizing the above correlation,
are found, and a coding scheme, taking them into consideration, is proposed, for both
binary and grayscale images. The proposed coding scheme showed, in simulations,
substantial improvement in the Skeleton-based compression efficiency, as compared to
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previous Skeleton-based coding schemes, and better results than those presented by the
classical coding methods, including Chain-Coding.

The proposed coding-scheme is found to have similar performance as the Group 3
standard coder for facsimile, but is less efficient than the Group 4 and JBIG standard
algorithms. It seems to us that much can still be done regarding Skeleton-based coding,
so that it is not clear yet if it can or cannot achieve (or even improve) the performance
of the above mentioned recent standards.

10.2 Future Research

Non-linear models are usually hard to handle, from a mathematical point of view. This often
makes their analysis difficult, and does not permit their study, as profoundly as the study of
linear models.

Mathematical Morphology, although being a non-linear theory, is based on a solid algebraic
structure, and this gives us several mathematical tools for analysis, which permit its study
as profoundly as linear theories do.

The above reality, together with the fact that Mathematical Morphology is relatively new,
indicates that there is still much to be discovered in that field, not only in applications, but
in theory as well. The more one reveals Mathematical Morphology’s “secrets”, the more he
finds that there is still a lot to be revealed.

In the sequel, possible directions for future research are suggested, as a continuation of
this work.

10.2.1 Hybrid Representations

In section 9.3, some hybrid approaches, combining morphological with linear methods for
image representation, were considered. Further analysis and possible generalization of those
approaches are suggested.

The zero-tree coding of Wavelets decomposition, considered here as a “linear-followed-
by-a-morphological” approach, could have the zero-tree part of the scheme formulated in
terms of Mathematical Morphology. Its morphological analysis should be then performed.
An adaptation of the zero-tree coding could be tried, in order to make it a particular case
of the Generalized Skeleton Representation. Such a representation is expected to be a “bi-
parameter” one, since it should incorporate both the bit-plane decomposition and an adapted
tree decomposition in one structure. This should be possible, since each of them can be
considered as a particular case of a “one-parameter” Skeleton. Such adaptation could give
better results in Coding.

The “morphological-followed-by-a-linear” approach proposed in section 9.3 should be
formally defined, and analyzed. First, the connectivity criterion should be determined. Then,
an appropriate set of functions, describing the connectivity graph, should be sought and ana-
lyzed. The effect of lossy linear coding of these functions on the reconstructed image should
also be studied, and simulations of coding should be performed.
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Probably the most promising among the hybrid methods is the Segmentation-based one.
As mentioned at the end of chapter 9, much has to be done yet in this area. First, an adapt-
ation of the proposed grayscale Skeleton-based coding algorithm (chapter 8) from lossless to
lossy should be performed, and theoretically analyzed. Furthermore, coding-oriented (pos-
sibly multi-resolution) segmentation of images should be implemented. Moreover, linear
coding schemes which code the contents of each segment separately should be investigated.
These are just some of the topics which have to be studied in this area.

10.2.2 Sub-Family Optimal Determination

A more theoretical, and of much interest, research direction is the determination of a sub-
family of elements, from a given family, for optimal skeletonization, according to some cri-
terion. More specifically, given a family of elements (for example, the family of rectangles
with sides n and m, both non-negative integers), what is the specific sub-family, for which
a Skeleton representation would give the best coding results, or would most efficiently per-
mit image analysis? This problem can be seen as the transposition, to Morphology, of the
“Best-Basis Selection” [7] and/or the “Matching Pursuit” [28] problems for Wavelet Repres-
entations.

Suppose we consider the “bi-parameter” family of rectangles, mentioned above. The
skeletonization of any binary set X by this family provides a lossless representation of X.
If we take any sub-family of rectangles, containing the rectangle of sides 0 and 0 (a single
point), then the skeletonization by this sub-family is also error-free.

If we search, for instance, for the 10 rectangles, which best represent X (in terms of area
covering), then we would be trying to solve a “Matching Pursuit” problem.

A “Best-Basis Selection” kind of algorithm would be as follows: for each index (n,m),
during the skeletonization process, decide among proceeding to the index (n + 1,m), the
index (n,m + 1), or to both. This procedure selects a connected subset of the set of indices,
determining a sub-optimal sub-family of rectangles. The question to be answered: “Under
which conditions is this sub-family the optimal one?”

10.2.3 Generalization and Analysis of the Two-Sided Skeleton

The Two-Sided Skeleton, presented in Appendix D, opens up a new direction in Morphological
Representation of Images. Its properties, its redundancy, and its efficiency should be further
studied.

First of all, its generalization, in the same sense as performed for the original Skeleton
in chapter 3, should be developed, and the scope and the conditions under which it is a
perfect representation should be determined. Its redundancy should also be studied. And,
finally, theoretical properties similar to those presented in chapter 8 should be sought. Upon
discovery, an algorithm similar to the one proposed here for Skeleton-based Coding could be
developed and tested.
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Appendix A

Proofs

A.1 Theorems in Chapter 3

Proof of Theorem 1, page 46 - A mazimal element from a family {6;(z),i € I,x € K}
inside a set X is an element 6;(x) contained in X, such that, for any j # 1 and y € E, if
0;(y) € X, then é§;(x) € ;(y). But since condition 2 of the theorem makes it impossible for
8;(y) to contain §;(x) if j # i (unless i = j and x = y), we need to check only for 3 > i. The
skeleton subset S;(X) is the set of points x, such that é;(x) is maximal in X.

The following is always true:

§i(2) C X &z € ei(X) (A1)

di(x) L 6;(y) & v & eidj(y) = i (y) (A.2)
It is always true also that §;(y) € X implies £;6;(y) C e;(X), but the equivalence is usually
not assured. However, since the family of structuring-functions is granulometry-generating

(condition 1 of the theorem), for j > i the equivalence is obtained, which can be written in
the following way:

6i(y) € X & o 5(y) Cai(X) & y € e el X) (A.3)

Therefore, according to (A.1), (A.2) and (A.3), v € Si(X) iff v € ei(X) and = & v je:(X),
Yy > 1. This leads to (3.9). O
Proof of Theorem 2, page 47 - The left side of (3.10) can be written in the following

way:
Jasixn=U U él=) (A.4)
ied ieJ zeSi(X)
which means that it is equal to the union of all the maximal elements contained in X, with
“radius” in J. Therefore, we need to proof that x € ~v;(X) iff x belongs to some maximal
element with “radius” in J.
If @ € X belongs to a maximal element 6;(y), 7 € J, then @ € v;(X) C v5(X), which
proves one way.
If © € v5(X) then there is j € J such that x € é;(y) € Lx (for some j € E), which is
not necessarily a maximal element. But, since Lx is inductive for inclusion (condition of
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the theorem), every increasing chain in Lx converges to a unique element, and therefore, by

Zorn’s Lemma, 6;(y) (and hence x too) is contained in a maximal element. The radius of

this mazimal element is obviously greater or equal to j and belongs to I. Thus, since J is an

anti-umbra in I (condition of the theorem), the radius of the maximal element containing x

belongs to J, which proves the way back. a
The above proofs are an extension of those in [53].

A.2 Relations in Chapter 6

Proof of relation (6.26), page 80 -

o The region represented by Skeleton points of order 1 is:

8:(.55) (A.5)

o The region represented by all the Skeleton points of order i, except a Skeleton point
s €5; is:
5:(5: — {s}) (4.6)

o The region represented only by the point s is the difference of the above sets:

0i(57) — 0i(Si — {s}) (A7)
o The union of the above sets, for all the Skeleton points s € S; is:

U [8:(5:) = 6:(Ss — {s}] 2 V. (A.8)

SES;

It gives the union of those regions which are each represented by only one point of order
i.

e 5,(5;) =Y is the region represented by more than one point of order 1, i.e.,

5:(5;)—Y =R, (A.9)
o Y may also be written as:
SES;

o relation (6.26) is then obtained considering the last two items, and the fact that Y is
contained in §(5;).
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O
Proof of relation (6.27), page 80 - [t is enough to prove that for any sets A and B:

NA-{a}) @B =[] As(B-{b}) (A.11)

acA beB

First, let us denote the left hand of the above equation as H, and then write the dilation
explicitly in the following way:

H=U U fa+ (A12)

acEAbEB acA,a#a

Then, after some logical and set manipulations, we notice that a point z = a+ b belongs
to H iff there s another pair of points a and b in A and B respectively, such that a + b=z
In other words:

H={:=a+b=a+be A®B| a#ab+b} (A.13)

Since equation (A.13) is symmetric, i.e., the roles of A,a,a and B,b,b are respectively
interchangeable, then we can interchange the above sets and elements also in the original
expression, which provides (A.11). O

A.3 Proposition in Chapter 7

Proof of the Proposition 3, page 90 - Like we did in the proof of Proposition 2 (page
89), we can rewrite the definition of Global Fssential Points in terms of X & nB: t € .5, is
a Global Essential Point iff:

{P,U[(XEnB)—{t}]®nB}onB# X &nB (A.14)

On the other hand, the left side of equation (A.14) can assume only two values: X SnB
or X onB —{t}, for any t € X & nB. This is because, for anyt € X O nB,

1.
{P,U[(XonB)—{t}]®nB}onB D
(P,onB)U[(X &nB)—{t}]enB =
[(XenB)—{t}]enB D
(X &nB)—{t} (A.15)
2.

{P,U[(XE&nB)—{t})]®&nBYonB C
{P,U(XSnB)®nB}onB =
{P,UXonB}&nB =
(U S ®@mB)&nB =
X&nB (A.16)
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Therefore, t € S, C X ©nB is Global Fssential iff
{P,U[(XonB)—{t}]®nB}onB=(XonB) - {t} (A.17)
We note that there are 4 types of points in X o nB:

1. The points that satisfy (A.17) and belong to S, - which are the Global Essential Points,
GE,.(X).

2. The points that do not satisfy (A.17) and belong to S, - which are called the Global
Redundant Points.

3. The points that satisfy (A.17) and do not belong to S, - which we denote Y.
4. The points that do not satisfy (A.17) and do not belong to S,.
The points that do not satisfy (A.17) satisfy:
{P,U[(X&nB)—{t}]®nB}&nB=XcSnB (A.18)
If we intersect the left side of equation (A.17) for everyt in X & nB, we obtain:

MNiexensiPo U(X ©nB) = {t}]@nB} onB = (X 6nB) — [GE,(X)UY,]

U
{PoUNexcns{l(X ©nB) = {1} & nB}} o nB =
=(XenB)-[GE,(X)UY,] (A.19)
And since
N {(XenB)-{t]@&nB}=T""(X &nB)&nB (A.20)
teXonB
we get: N
{P,UTP(X &nB)@nB}enB = (X &nB) - [GE,(X)UY,] (A.21)
By set-subtracting both sides of (A.21) from S, we obtain the proof. O

A.4 Lemma in Chapter 8

Proof of Lemma 1, page 97 - Let us define:

R, 2 Rece{SUY,i1,Yop1}owm (A.22)
= RGC{S U Sn U Yn_|_1, Yn—l—l}c’(n) (A23)
= RGC{S UX,, Yn—l—l}C(n)' (A.24)
We note that:
RGC{S UX,, Yn—l—l}C(n) D) (A.25)
D Ree{ X, Yiqitowm) = (A.26)
=X, —-U,. (A.27)
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Therefore:

R, UU, 2 X,. (A.28)
On the other hand:
RGC{S UX,, Yn—l—l}C(n) - (A29)
C RGC{S UX,, Xn}c(n), (A?)O)
And we shall show that:
RGC{S U Xn,Xn}c(n) = X,, (Agl)
which gives, together with (A.30):
R, C X,. (A.32)

Let us prove (A.31).
Forn =0, (A.31) holds trivially, since Xo = X (the original images), and S C X.
Suppose, therefore, n > 0. It holds:

Xn @ Cn = Xn @ Bn—l
A.
{ [Xn @ Bn—l] N Sn—l = @ ( 33)
Which leads to:
(X, @ C(n)]NS,—1 = 0. (A.34)
Stmilarly,
(X, @ Cn))NS, =0, Ym<n. (A.35)
Therefore, since S,, C X,, for all m > n, we get:
(X, & Cn)]N[X, US| =X,. (A.36)
The conclusion is the validity of equation (A.31).
Now, from (A.28) and (A.32), we get R, UU, = X,,, which proves the Lemma. O
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Appendix B

B-Convexity Theory

B.1 Convex Sets and Some of its Properties.

One way to define a Convex Set in R? is the following:

Definition 10 Let X C R%. X is Convex iff il is identical to its Convex-Hull, i.e., X =
CH(X).

The above definition demands another definition, for the operation Convex-Hull, which
should be not based on the concept of Convexity. Such a definition is:

Definition 11 The Convex-Hull of a set X, CH(X), is the intersection of all the half-planes
that contain X.

The two main properties of the Convex-Hull operation are:

1. C'H(-) is idempotent.

2. For any set X, C H(X) if the "smallest” convex set that contains X.
Some of the basic topological properties of the Convex Sets are:

1. X is convex iff any two points = and y belonging to X are connected by a segment
contained in X. We may also formulate this property in the following equivalent way:
X is convex iff for any to points  and y belonging to X, the Convex-Hull of {z,y} is
contained in X.

2. The intersection of convex sets is a convex set.

3. X is convex iff every point outside X can be separated from X by a half-plane, i.e.,
r ¢ X = exists a half-plane that contains  and does not intersect with X.
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B.2 B-Convex Sets and its Properties.

The proposed generalization of Convexity is obtained by replacing the Convex-Hull operation
in Definition 10 by a generalized Convex-Hull operation, called B-Convez-Hull. The definition
of the B-Convex-Hull, in its turn, is similar to the definition of the conventional Convex-Hull
(Definition 11), having only the half-planes of Definition 11 replaced by an arbitrary shape
B.

Definition 12 The B-Conver-Hull of a set X, C HP(X), is the intersection of all the trans-
lations of (B?®)® that contain X.

In the above definition, B¢ is the complement of B, i.e., B = {b € R?| b ¢ B}, and B® is
the symmetric of B, i.e., B* ={—b| b€ B}.

Actually, the B-Convex-Hull, as defined above, is not a new operation; it is known in
Mathematical Morphology as the Morphological Closing. In other words:

Proposition 4

CHP(X)=XeB (B.1)
where o denotes binary morphological Closing.

Proof

CHP(X) = N [(B*)].
{=| (B*).2X}

= N [(B*)°]
{z| {=@B:Cx<}
= ) B

zeX°6Bs

- [ U ).

zeX°6Bs

C

[(X°& B*) & B
= (X0 B
= XeB (B.2)

We denote the generalized Convex sets as B-Convexity and define them as follows:

Definition 13 A set X is B-Convex iff X = X o B.

B.2.1 Properties of the B-Convex-Hull
The B-Convex-Hull has the following two basic properties:

1. It is idempotent.
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2. CHB(X) is the “smallest” B-Convex set that contains X.
Note the analogy with the properties of Convex-Hull described above. Proof

1. Idempotency is a property of the morphological Closing, hence it is also of the B-
Convex-Hull.

2. (a) CHP(X) contains X, since this is a property of the morphological Closing.

(b) CHB(X) is a B-
Convex set, since, according to the idempotency, C HP|CHP(X)] = CHP(X).

(¢c) Let Y be a B-Convex set, containing X, such that X C'Y C CHP(X). Since
Closing ts an increasing operation, i.e., A C B = Ae( C Be (), for all A,
B and C, we obtain X ¢ BC Y eB C CHP(X)eB=(XeB)eB=XeDB,
and therefore, CHP(X) CY C CHP(X), which means that CHP(X) and Y are

tdentical.

From 2a, 2b and 2¢, we get the proof.

B.2.2 Properties of the B-Convex Sets
The topological properties of B-Convex sets, analogous to those of the Convex sets, are:

1. If X is B-Convex then for any pair of points « and y in X, {z,y} e B is contained in
X.

2. The intersection of B-Convex sets is a B-Convex set.

3. X is B-Convex iff every point outside X can be separated from X by a translation of
B*,i.e.,x & X = exists 2 € R? such that (B*). contains  and does not intersect with
X.

Proof

1. It follows from the increasing property of the Closing operation:

{z,y} CX =>{zr,y}e BC XeB=X (B.3)

2. Let {X;} be a set of B-Convex sets. Each X; can be written as follows:
Xi= (B (B.4)

2€Z;

for some Z;. Therefore,
NXi= ) (B (B.5)
: zelJ; Z:

and hence, it is also a B-Convex set.
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= U (B°) (B.6)

Therefore,
X = UJ (B?). (B.7)

This means that, © ¢ X if and only if © belongs to some translation of B® such that
this translation does not intersect with X .

B.3 Extreme Points

The Extreme Points of Convex Sets are points with many special properties. Among them,
there is the ability to fully represent the original set, if it is bounded. In this work we also
extend the definition of Extreme Points, for B-Convex sets as well.

B.3.1 Extreme Points of Convex Sets

One way of defining Extreme Points of Convex sets is:

Definition 14 A point t is an Extreme Point of a Convex set X iff the set (X —{t}) is also

conver.

The ability of the Extreme Points to fully represent the original shape is expressed in the
following proposition:

Proposition 5 Let £(X) be the set of the Extreme Points of a convexr set X. If X is
bounded, then CH(E(X)) = X.

B.3.2 Extreme and Internal Points of B-Convex sets

We now present our generalization of the above concepts, defining Extreme Points of B-
Convex set in the following way:

Definition 15 A point t is an Frtreme Point of a B-Convex set X, iff the set (X —{t}) is
also B-Convez.
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In this work, £8(X) will denote the set of Extreme Points of a B-Convex set X.
We also define Internal Points of B-Convex sets. They are all the points in the set that

are not Extreme. Denoting the set of Internal Points of a B-Convex set X, by ZP(X), we
may write ZP(X) = X — £B(X). And, since EF(X) C X, it is also true that

EP(X) =X —IP(X). (B.8)

The following equation provides a morphological formula for calculating the set of Internal
Points of a given B-Convex set:

T5(X) = ([X — {e}]e B (B.9)

reX

Proof According to the increasing property of the Closing,
(X —{2}]CX=[X—{z}]e BC XeB=X, (B.10)

which means that [X —{x}]e B is never bigger than X . But it is never smaller than [X —{z}],
either. Therefore, it can be equal only to either one of these two possibilities. According to
the definition, [ X — {x}] @ B =[X — {z}] iff « is an Extreme Point of X. Hence, we obtain
that if (and only if) « is an Internal Point, then [X —{z}] e B = X.

Therefore,

NIX—{c}JeB = Xﬂ{ N [X—{x}]-B}

z€X zeEB(X)

= (] X—{a}]

zeEB(X)
= X - U x
zeEB(X)

= X -&8(X)=1°(X) (B.11)

O

The set of Extreme Points is obtained using (B.8) and (B.9).

For a perfect reconstruction from the Extreme Points, the set B must be “big enough” in
comparison to the set X. This situation is analogous to the requirement of X being bounded,
in the last section, since in this case any half-plane (which is not bounded) is “big enough”
in comparison to X. A necessary condition for the perfect reconstruction is stated in the
following proposition:

Proposition 6 [f CHP[EB(X)] = X (perfect reconstruction from the Extreme Points),
then B @IB(X) =0.

Proof For all A, B and C, the following hold: (A— B)®&C C (A® C)—(Ba (), and
(A—B)sC=(AsC)—(B&C). Together we get: (A— B)e(C C (Ae(C)—(Bo(). Since
EP(X) = X — IP(X), we have:

E8(X)eBC X -TIP(X)oB (B.12)
By hypothesis, the left member of equation (B.12) is equal to X. Therefore, IT?(X) o B must
be empty and this happens iff IP(X) & B is also empty. O
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B.3.3 Properties of the Extreme and the Internal Points
Proposition 7 If X is a B-Convez set, then IB(X) is also a B-Convex set.

Proof In the proof of the formula (B.9), we showed that
X = () [X - {e] (B.13)

z€EB(X)

where each set [ X —{x}] is a B-Convex set, since x is an Fxtreme Point. Since intersection
of B-Convex sets is also a B-Convex set, IP(X) is B-Convex. O

Proposition 8 A point p is an Frtreme Point of a B-Convex set X, iff there exists z such
that
(B°).NX =A{p}. (B.14)

Proof The point p is extreme iff [X — {p}] is B-Convex (definition of Fxtreme Point).
(X — {p}] is B-Convex iff every point outside X can be separated from X by a translation of
B* (proposition 3). Therefore, p can be separated from [X — {p}], i.e., there exists z such
that p € (B®), and (B*). N [X — {p}] = 0. This equivalent to (B.14). All the other points
(other than p) can also be separated from [ X —{p}] because, since X itself is B-Convez, they
all can be separated from X. a
The next property agrees with one’s intuition that the Extreme Points are located at the
boundary of the shape. Before we state it, let us define Isolated Point and Boundary:

Definition 16 A point x € X is an Isolated Point of X, according to a shape By containing
the origin, iff {z} & Bo) N X = {«}.

The shape By is called neighborhood.

Definition 17 The boundary of a shape X, according to a neighborhood By, is the set 970X
defined by 0P°X = X — X & By.

Now we can state the property:

Proposition 9 If B® has no Isolated Points according to the neighborhood By, then the
Extreme Points of any B-Convex set X belong to the boundary of X, according to By, i.e.,
EB(X) CoPX.

Proof Let p be an Extreme Point of X. Then, according to proposition 8, there exvists a
point z for which relation (B.14) holds.
Let’s now assume that p belongs to X © By. In that case, obviously,

(p} @& By C X. (B.15)

Intersecting both sides of (B.15) with (B?)., using (B.14), and taking into consideration that
p belongs to both By and (B?),, we obtain:

({r} @ Bo) N (B*). = {p} (B.16)
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Which means that p is an Isolated Point of (B*).. But since B® has no Isolated Points, none
of its translations has, either, and we have a contradiction. Therefore, p cannot belong to
X 6 By.

The conclusion is that, if p is an Fxtreme Point, than it does not belong to X © By.
In other words, EB(X) C (X © By)¢. But since EB(X) C X, we obtain that EB(X) C
X — X6 By. 0

Proposition 10 A B-Convex set X can be perfectly reconstructed from its Frtreme Points
by the formula C HP[EB(X)] = X if and only if no Internal Point of X can be separated from
EB(X) by a translation of B*, i.c., Vr € IP(X), Vz such that r € (B?®),, (B*).NEB(X) # 0.

Proof

CHB[EB(X)] =X <
[EB(X)]eB=X &
EP(X)) e B=Xa&B (B.17)

Therefore every translation of B that hits X (or any of its subsets, like IP(X)) hits also
EB(X). m
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Appendix C

(Generalizations of the Coding Theorems

C.1 Coding Theorems Adapted to a Generalized Skel-
eton Representation

This part of the appendix transposes the theoretical results, which are presented in chapter 8
for the Generalized-Step Skeleton, to a form suitable for the Generalized Skeletons proposed
in chapter 3.

Not all the theorems in chapter 8 can be directly adapted. For instance, the version of
Theorem 4 presented here (Theorem 6) requires the set of indices I to be totally ordered,
among other requirements.

C.1.1 Basic Definitions and Notation

Let X € P(F) and the family of structuring functions {d;(x) };er (I being any partial ordered
set) satisfy the conditions required for a Generalized Skeleton decomposition (column 3 in

Table 3.5).
We adopt here the following notation:

A
Y; = Ujsi e X) (C.2)
Therefore,
Si=X: -, (C.3)

Definition 18 (Descendance) Let §(x) be a structuring function in a Boolean Lattice
P(E). A pointy € E is a direct descendant of a point xg € E, under the give structuring
function, iff:

y € §(xo) (C.A4)

Definition 19 (Connectivity) Two points o and y are connected (under a pre-defined
structuring function 6(x)) iff each one is a direct descendant of the other, under 6(x), i.e.:

x9 € 8(y) and y € §(xq) (C.5)
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Definition 20 (Reconstruction) Let A, D be two sets in a Boolean Lalttice, such that D C
A, and §(x) be a pre-defined structuring function. The Reconstruction of A from D using
d(x), Rec{ A, D}s is given by the following recursive formula:

Rec{A,D}Ys 2 {8[8(8(D)NA)N AN A... (C.6)

Definition 21 (Ultimate Erosions) [fi € [ is not a first point, i.e., 5 € | j < 1, then
the Ultimate Erosion of order ¢, denoted as U;, of the given set X, is defined by:

j<i
where d;(x) = gid;(x), Vi,jel,j<i,VYeeF.
If v € I is a first point, then U; s defined by:

Ui 2 X; — Ree {X;,Yi} 50 (C.8)

where {80 (x)} is any pre-defined set of structuring functions.

C.1.2 Skeleton Properties
Quench Function Sampling

Lemma 2 Let [ be a discrete set; {S;} be the Skeleton subsets of a Skeleton satisfying the
conditions in Table 3.5; and let X; and Y; be as defined in (C.1) and (C.2), respectively.
Then, it holds:

U S

j1<i

ﬂ Rec{Yi U

<t

7Yi} UU; = X; (C.9)
815,41

Proof The proof is a generalization of that of Lemma 1.
Let us define:

U S

i<

R, £ ﬂRw{KU
i<

,YZ} (C.10)
85,41

= ﬂRec{YiUSiU [U S
J<i

i<

,m} (C.11)

01,61

= ﬂ Rec{XZ'U [U S 7YZ»} (0_12)
35,1]

j<i jI<i

We note that:

Nj<: Rec {Xi U {U]‘/Si 5]‘/} 71/2}5[ ‘] 2 (C.13)
Nj<i Ree{Xi,Yi}s | = (C.14)
=X, - U (C.15)
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Therefore:

R, UU; O X;. (C.16)

On the other hand:
Nj<i Fec {Xi U {Uj’gi Sj’} 73/2'}5“71‘] - (C.17)
C Nj<i fec {Xi U [Uj’gi 5]‘/} ,Xz}éw : (C.18)

And we shall show that:

ﬂ RGC{XZ' U [U S]‘/] ,XZ} == XZ (019)

7<i J'<a 8.4
which gives, together with (C.18):
R; C X;. (C.20)
Let us prove (C.19).
It holds:
) dpa(Xi) NS =0 (C.21)
j<i
Therefore, for all j < i:
(S[]'J'](Xi) N U S]‘/ U XZ] = X; (0.22)
J'<i
The conclusion is the validity of equation (C.19).
Now, from (C.16) and (C.20), we get R; UU; = X;, which proves the Lemma. O

Theorem 6 Consider Ultimate FErosions as defined in Definition 21, and the Skeleton as
defined in Lemma 2. Moreover, we require that the decomposition family {6;(x)} be increas-
ing, i.e., 1 < j = d;(x) Cd;(x),Ye € E (condition 7 for the Generalized Skeleton on Lattices,
see column 2 of Table 3.5, on page 41).

If I is totally ordered and discrete, and the above conditions are satisfied, then the radius
of the Skeleton points which are Ultimate FErosions, together with the position of all the
Skeleton points, are sufficient for perfectly representing the original set X .

Proof Since I is totally ordered and discrete, it is isomorphic to N, and therefore we will
consider I = N, with no lost of generality.

We use induction in the following way: (i) If N is the maximal radius in the Skeleton,
then Xy = Uy. (ii) Once X;41 is known, each set X;, N > i > 0, can be calculated (see
below), and (iii) the original image X is equal to Xy.

In order to obtain the second part of the above induction, suppose that X;11 ts available.

Therefore Y; is also available, and since I = N, it holds:

Vi = Yiinei(X) = 0p iy (Xiga) (C.23)
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From the hypothesis, the Skeleton S 2 Uier Si and the Ultimate Erosions {U,} are provided.
Since the Skeleton points with radius greater than v are available at this point, and since the
Skeleton subsets are disjoint (decomposition family is increasing), the set of Skeleton points
with radius smaller or equal to i, Uj<; Sy, is also available. Then X; is obtained from the
above by Lemma 2. O
The following corollaries are direct consequences of (C.9).

Corollary 8 For a Skeleton as defined in Theorem 6, if s is a Skeleton point with index
i, then all the Skeleton points which descend from it, (under é;_y 4(x), if i > 0, or 5O (),
otherwise), have also index i.

Corollary 9 Suppose that §;(x) is symmetric, i.e., Va,y € £, y € §;(2) & = € §;(x).

In this case, for a Skeleton as defined in Theorem 6, if s is a Skeleton point with index 1,
then all the Skeleton points in the connected component to which it belongs (with connectivity
being under dp_y 4(x), if i > 0, or §O (), otherwise) have also index 1.

Corollary 10 For a Skeleton as defined in Theorem 6, a Skeleton point s has index ¢ if and
only if s € Y; and s descends either from U; or Y.

Deterministic Prediction

As opposed to the results in the previous section, the results in this section relate to any
Generalized Skeleton representation, i.e., I is not restricted either to be totally ordered, or
to be discrete.

Theorem 7 Let p € E. If the following holds:
U loaYi u{p}h)]  {p} (C.24)
j>i

then p cannot belong to S;.

Proof The proof is by contradiction. Suppose that p is in S;, and let us define the following
operalor:
A
p(2) = Ui Z). (C.25)
j>i

By definition of Y, p(X) =Y;. Also the set 6;(Y;) gives Y; when operated upon by p(-).

Therefore, since p(-) is increasing, any set Zy, such that 6;(Y;) C Zoy C X, salisfies
p(Zo) =Y. In particular, Zy = 6;(Y; U{p}), p € S;, satisfies it.

However, according to (C.24) p(Zy) D {p}, and, therefore, p € Y;, which contradicts that
pE SZ |

Corollary 11 Let dp(x) be a structuring function satisfying, for all v € E:
1. 2 & dp(x),

2.
Ut [6il{z} U dr(2)]] D {«} (C.26)
j>i
and let p € E.
If 6p(p) CY;, then p cannot belong to S;.
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C.2 Coding Algorithm Adapted to a Grayscale Skeleton
Representation

In this part of the Appendix, we briefly propose a generalization for grayscale functions of
the coding algorithm presented in Chapter 8 for binary images.

For the generalization, the umbra approach (Section 4.3, on page 52) is used. In this
case, a Generalized-Step Grayscale Skeleton decomposition is considered as a Generalized-
Step Skeleton on the Boolean Lattice P(£ x R), and all the definitions and propositions of
Chapter 8 are valid.

The following is an outline of the algorithm for coding a grayscale image. It is based on
the generalization in the umbra domain of the binary algorithm presented in Chapter 8, and
it is transposed to the function domain (see section 4.5). The given image is denoted by f.
We suppose here that the structuring element g is symmetric and flat. The function 7 is an
intermediate image, initially null, which is equal to f at the end of the process.

1. Calculate the Skeleton Subsets S,, 0 < n < N. Form the functions U, by taking one
pixel from each local maximum of the Ultimate Erosions U,,.

2.n+ N—1; Yy « 0.
3. Z<—(an(7n).

4. p + (a non-null point from the set Z & g — 7). If there are no more points to scan, go
to step 9.

5. Check (by means of the generalization of Theorem 5) if S, (p) can be different of 0 (i.e.,
if p “belongs” to S,) or not. If it cannot, go to step 4.

6. Send to the Arithmetic Coder a “07, if p is “belongs” to S,, or a “1”7, otherwise.
Furthermore, if p belongs to 5,,, send also to the Arithmetic Coder the difference between
its gray value and the maximum gray value of Z in the neighborhood (defined by the
region of support of ¢) of it. Use an adaptive probability model.

7. If a “1” was sent, Z < (Z V S,(p)). Otherwise, go to step 4.

8. Recursively, scan the direct descendants of p for other connected Skeleton points. Code
non-predictable points with “0” or “1” accordingly, but use a different adaptive prob-
ability model than the one in step 6. The Skeleton points must have the difference
between its gray value and the maximum of Z in its neighborhood (defined by the
region of support of ¢) coded as well. After the whole connected component is scanned
and coded, go to step 4.

9. If n = 0, STOP.

10. n <+ (n—1); Y11 < Z & B(n); Go to step 3.
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Appendix D.

TWO-SIDED SKELETON
- A Representation Composed of Both
Positive and Negative Morphological Elements

Reference [19]

ABSTRACT

This work presents a novel morphological representa-
tion structure - the Two-Sided Morphological Skeleton.
It represents a shape not only by the centers of “positive
elements” (foreground features), as the ordinary Mor-
phological Skeleton does, but also by the centers of “neg-
ative elements” (background features, such as holes).
Le., it represents an image by elements from both sides
of the Pattern Spectrum.

The Two-Sitded Morphological Skeleton can be a very
efficient tool in arcas such as Multi- Resolution Rep-
resentation, Shape Analysis and Pattern Recognition,
since negative elements are as much tmportant to im-
age comprehension as positive elements. It has also a
potential in Coding, because it is a compact error-free
representation of the original image.

In this work, the Two-Sided Morphological Skeleton
18 defined and studied for both binary and grayscale im-
ages.

[. INTRODUCTION

The Morphological Skeleton has been successfully ap-
plied in many Image Processing application areas for ef-
ficient shape representation, and as a feature extractor
and classifier (according to size). However, it does not
take directly into account background features such as
“holes” and “negative shapes”, making it less efficient
in such cases. A simple example is shown in Fig. 1:
Fig. 1(a) is a binary picture, where the bigger white
circle is a “positive shape” and the smaller black circle
is a “negative shape”; its ordinary Morphological Skel-
eton, calculated with a disk as structuring-element, is
a circle between the two circular edges as shown in
Fig. 1(b). There is a need for more efficient represent-
ations that consider both positive and negative disks,
which would represent the same image with just two
points (the center of each circle), as shown in Fig. 1(c),
by the black and white dots.

The basic morphological operators which are able
to extract both positive and negative features from
given shapes are the Opening-Closing and the Closing-
Opening filters. Several representation structures have
been proposed based on these operators, e.g., [1-3].

(a) (b) (©)

Fig. 1: (a) A binary image, (b) its Morphological Skeleton,
(c) a more natural representation of the image.

Toet’s “band-pass” pyramid [1], for instance, is an
error-free representation where the Closing-Opening fil-
ter replaces the LPF in linear pyramids, prior to the
decimation process, and either a Closing or a Dilation
filter replaces the LPF needed in the interpolation pro-
cess. This pyramid does produce a two-sided error-
free representation, in which both positive and negative
features are selected and classified according to resolu-
tion. On the other hand, Toet’s pyramid levels contain
not only genuine image features, extracted according
to size by the Closing-Opening filter, but also spuri-
ous features, originated from by down-sampling pro-
cess [2]. This is because subsampling a morphologic-
ally filtered image is not an invertible process [4, 5].
The genuine features and the spurious ones are indis-
tinguishable, as demonstrated in Fig. 2. Fig. 2(a) shows
a grayscale image and Fig. 2(b) shows its genuine mor-
phological features, obtained at each step by the dif-
ference of the images in the input and output of the
Closing-Opening decimation filter. Fig.2(c) shows the
related Toet’s “band-pass” pyramid, which contains the
features from Fig. 2(b) plus spurious features. The
pyramid in Fig. 2(b) is not error-free, and the non-
morphological spurious features of Toet’s pyramid com-
pensate its lossy nature. Throughout this paper, all
the “band-pass” pyramidal levels are represented with
a shift of 128 in their graylevels, so that negative fea-
tures can also be shown. The structuring-function used
is a 2x2 flat square.

To avoid the generation of spurious features, Zhou
and Venetsanopoulos suggested in [2] a different pyr-
amidal representation based on Alternating Sequential
Filters (ASF), with no down-sampling. ASF’s were in-
troduced by Sternberg [6], and analyzed by Serra [7,
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Fig. 2: (a) A 128x128 grayscale image, (b) genuine mor-
phological features, extracted by the Opening-Closing filter
at each step, (c) Toet’s pyramid, with spurious features ori-
ginated by the down-sampling process.

chapter 10]. An ASF is obtained by the composition
of Opening-Closing (or Closing-Opening) filters, each
one using an element bigger than the one in the previ-
ous stage. ASF’s have been used extensively in image
filtering.
In [2, 3], the ASF-based “low-pass” pyramid {f,}
was generated in the following way:
fn=(fncion-g)en-g, n>1

fo=f (1)

where f = f(z,y) is the original image, g = g(z,y) is a
pre-defined structuring-function, &, &, o and e denote,
respectively, grayscale dilation, grayscale erosion, gray-
scale opening and grayscale closing, and n - g stands for
g(z,y) dilated n — 1 times by itself.

The related “band-pass” pyramid, called Feature-
Width Morphological Pyramid [2], was defined as the

difference between each level f, and the next level f,.41.

Fig. 3 shows the first four levels of the Feature-Width
Pyramid.

It is indeed an error-free representation of the image,
which takes into account both positive and negative ele-
ments, and does not have the disadvantage caused by
down-sampling, as in Toet’s pyramid. On the other
hand, the extracted features (both positive and negat-
ive) in level n of this “band-pass” pyramid have width
equals to n, as seen in Fig. 3. Which means that for
an efficient representation, as needed in coding, and
for precision in determining the position of the fea-
tures, as needed in pattern recognition, thinning must
be performed. The thinning, which is obtained through
erosion, is not invertible, thus producing spurious fea-
tures like the down-sampling in Toet’s pyramid.

The Two-Sided Morphological Skeleton presented in
this paper is an invertible process, providing a thinned
alternative to Zhou and Venetsanopoulos’s pyramid. It
is an error-free representation, with no spurious fea-
tures, formed by the centers of both the positive and
the negative elements extracted at each level of the ASF-
based pyramid defined in (1).

II. TWO-SIDED SKELETON

In this paper we consider only discrete pictures, i.e.,
setsin Z2 (binary discrete pictures) or functions over Z?
(grayscale discrete pictures). The definition and prop-
erties of the Two-Sided Skeleton can be extended to
continuous pictures (sets or functions over R2)7 but this
extension is not in the scope of this paper.

A. Binary Pictures
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Fig. 3: (a)-(d) The first four levels of the Feature-Width
Morphological Pyramid of the image shown in Fig. 2(a).



In the binary case, the ASF-based “low-pass” pyr-
amid is defined as follows:

Xn=(Xn-10nB)enB, n>1 2)
Xo=X

where, X is the original shape, B is the structuring-
element, o and e are respectively the binary opening
and the binary closing operations.

As opposed to the thinned version of the Feature-
Width Pyramid, in which the levels are obtained by
first taking the difference between consecutive
pass” pyramid levels, and then performing thinning; the
Two-Sided Skeleton performs first the thinning of each
“low-pass” pyramid level and then takes the difference.
The formal definition is as follows.

The Two-Sided Skeleton of a set X C Z? with a
given structuring-element B C Z2? is two collections
of sets {S} 122y and {S;, }2o,, where S is called the
Positive Skeleton Subset of order n and S, is called the
Negative Skeleton Subset of order n. For every natural
n, S} and S;; are given by:

“low-

Sy 2 (Xny1 & nB) — (X, & nB) (3)
St 2 (X, 6nB) — (Xnp1 ©nB) (4)

where {X,,} is the “low-pass” pyramid defined in (2).
In (3) and (4), ¢ denotes binary dilation, & denotes
binary erosion, and the minus-sign denotes here the set-
difference operation. Note that the thinning of negative
features is obtained by dilation, whereas the thinning
of positive features is obtained by erosion.

The Positive Skeleton Subsets {S;'} correspond to
the positive side of the Pattern Spectrum; they contain
the centers of positive features that represent the ori-
ginal image, where by feature we mean a dilated and
translated version of the structuring-element. The Neg-
ative Skeleton Subsets {S;; } correspond to the negative
side of the Pattern Spectrum; they contain the centers
of negative features.

Let us define the Positive Skeleton of a shape as the
union of all its positive skeleton subsets, and the Neg-
ative Skeleton as the the union of all its negative skel-
eton subsets. Figures 4(c) and 4(d) show the Positive
and the Negative Skeletons, respectively, of the shape
in Fig. 4(a). If we compare them with the ordinary
Morphological Skeleton, shown in Fig.4(b), we notice
that they represent the shape in a more meaningful and
efficient way.

The Two-Sided Skeleton subsets fully represent the
original image X. As shown in the Appendix, every
level n of the pyramid defined in (1) can be recovered
from the lower-resolution level n + 1 by “adding” the
information in the positive and the negative skeleton
subsets of order n in the following way:

Xn ={[Xns1
— (S, ®nB%)]onB
U(St @nB)} enB (5)
where B?

denotes the set symmetric to B:

(©) (d)

Fig. 4: The Two-Sided Skeleton versus the ordinary Skel-
eton. (a) A binary Image, (b) its ordinary Morphological
Skeleton with a 3x3 square as structuring-element, (c) its
positive and (d) its negative Two-Sided Skeleton subsets with
the same structuring-element.

B2 {-b| b€ B}. Fig. 5 shows the block diagrama
of the reconstruction process (5).

Since, for a bounded X, there exists a natural N such
that ¥n > N, X, = 0, all the information is retained
in the sets {SF 1! and {S; }''. By applying (5)
successively from n = N — 1 down to 0, the original
image X = Xj is reconstructed.

A partial reconstruction can be obtained by applying
(5) from n = N —1 down to a given number k > 0. The
image obtained by this process is the pyramid level Xy,
which is a smoothed version of the original image.

B. Grayscale Pictures

A Two-Sided Skeleton may also be defined for a func-
tion f(z,y), with a given structuring-function g(z,y).
The Positive and Negative Skeleton Function of order
n, s} (2, y) and s;, (z, y), respectively, are defined as fol-
lows:

if positive

sz é{ (frtr1@8n-9) —(fnBn-g),
"7 o, otherwise
(6)

O o oy M oy

dnB

St S

Fig. 5: Block diagram of the recursive reconstruction pro-
cess. (“\" denotes set-difference).
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if positive
otherwise

(")
where {fn.} is the “low-pass” ASF-based pyramid
defined in (1). In (6) and (7), @, © denote, respect-
ively, grayscale dilation, and grayscale erosion. Note
that all the Positive and Negative Skeleton Functions
have non-negative values.

Fig. 6(a) shows a grayscale picture f(z,y) of size
128 %128 pixels (the same one as shown in Fig. 2(a)),
Fig. 6(b)-(e) its skeleton functions for n =0,...,3, and
Fig. 6(f) the 4™ level of the pyramid defined in (1).
The image functions in Fig. 6(b)-(e) were obtained by
the formula s} (x,y) — sy (»,y) + 128, for n = 0,...,3
respectively, so that the darker lines belong to the negat-
ive subsets and the brighter lines belong to the positive
subsets. Note that all the lines are thin, even for higher

S+g{ (fa©n-g) = (fap1 ©n - g),
n ()7

values of n. The structuring-function used is flat with
the shape of a 2x2 square.

As in the binary case, the reconstruction process is
performed iteratively from pyramidal level n + 1 to the
higher-resolution level n with the “addition” of the in-
formation of the positive and negative skeleton func-
tions:

n={{lfrt1®n-yg
—s5,]62n-g
—|—si}@n~g}on~g (8)

If f(=z,y) is spatially-bounded, i.e., if there exists a pos-
itive real M such that f(z,y) = 0 for #*+y* > M, then
there exists a natural N such that f, =0, ¥n > N. This
means that all the information is retained in the Skel-
eton Functions of orders less or equal to N — 1, and
that an error-free reconstruction from those functions
can be obtained.

Partial reconstructions can be obtained as well, by
stopping the reconstruction process at any level k& > 0.

[TI. APPLICATIONS

Some of the application areas, in which the Two-
Sided Skeleton can be applied, are examined bellow.

A. Multi- Resolution Analysis

The positive and negative skeleton subsets (in the
case of binary images) or functions (in the case of gray-
scale images) constitute an error-free “band-pass” pyr-
amid, when the related “low-pass” pyramid is the ASF-
based pyramid defined in (1) or (2). In this context, the
concepts “band-pass” and “low-pass” relate not to fre-
quencies, but to size. But like frequency “band-pass”
pyramids, the Two-Sided Skeleton contains at its lower
levels (i.e., its subsets - or functions - of lower orders)
the finest details of the image, and at its higher levels
the largest components of the image.

The information contained at some level n of this
“band-pass” pyramid may be viewed as related to those
features that belong to resolution level n, but not to the

(©)

Fig. 6: The Two-Sided Skeleton of grayscale images. (a)
The same grayscale image as in Fig. 2(a), (b)-(e) composi-
tion of its Positive and Negative Skeleton Functions of order
0 to 3, respectively, (d) the fourth level of the ASF-based
pyramid.

lower resolution level n + 1. In this sense, a multi-
resolution analysis (and/or processing) can be per-
formed based on the Two-Sided Skeleton subsets (or
functions).

As pointed out in section [, the T'wo-Sided Skeleton
is preferable to the “band-pass” pyramid presented in
[1] (Fig. 2(b)) and the to thinned version of the Feature-
Width Pyramid presented in [2, 3], because its implicit
thinning process is error-free. This prevents the pyr-
amidal levels to contain spurious features, and therefore
provides a more consistent representation.

B. Robust Representation

Although it is not a robust representation, the ordin-
ary Skeleton has some degree of insensitivity to positive
noise, which i1s noise that contaminates only the back-
ground of a binary image, or that only increments the
values of a grayscale image. However, negative noise,
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which contaminates the foreground of a binary image or
decrements the values of a grayscale image, often alters
completely the ordinary Skeleton of an image. Fig. 7(a)-
(d) illustrate the behavior of the ordinary Skeleton of a
binary image in presence of negative noise: Fig. 7(a)
is the original binary image and Fig. 7(b) is the same
image with 1% negative binary noise. Fig. 7(c) and
Fig. 7(d) are the ordinary Skeleton of the images in
Fig. 7(a) and Fig. 7(b), respectively. Note how the
shape of the skeleton changes.

The Two-Sided Skeleton has the same degree of in-
sensitivity to both positive and negative noise. Since in
many applications the corrupting noise has both posit-
ive and negative components, the Two-Sided Skeleton
should be preferred for working under noisy conditions.
Fig. 7(e-f) demonstrate the behavior of the Two-Sided
Skeleton in the presence of noise. Fig. 7(e) and Fig. 7(f)
are the T'wo-Sided Skeleton of Fig. 7(a) and Fig. 7(b),
respectively, where the black points refer to the negat-
ive skeleton and the white points to the positive skel-
eton. The structuring-element used in the simulation
was Rhombus (the origin and its 4-pixel neighborhood).

C. Compresston and Progressive Transmition

The Two-Sided Skeleton subsets (or functions)
provide a compact representation of the original image,
which permits also efficient Coding of the image.

In the grayscale case, compression may be achieved
by techniques similar to these applied to other “band-
pass” pyramids. Some of those techniques are:

o Allowing a different quantization error at each
resolution level. The higher the resolution level,
the greater the permitted quantization error. The
highest resolution level(s) may sometimes be
totally discarded. (The highest resolution levels
are related to the lowest function orders).

Applying different coding methods at different
groups of resolution levels.

For instance, the Two-Sided Skeleton can replace the
thinned version of the Feature-Width Pyramid in the
coding method proposed in [2] and [3]. This is expec-
ted to improve the quality of the reconstructed image
because there is no loss of information in the Two-Sided
Skeleton implicit thinning process. After the Two-Sided
Skeleton is obtained, the coding is done as in [2] of [3]:
the highest resolution levels are decomposed by a direc-
tional morphological filter bank into directional images,
which are scanned in the respective direction and have
their run-lengths coded. The remaining coarse image is
coded by a vector quantization scheme.

The interest in using a morphological pyramid, such
as the T'wo-Sided Skeleton for image coding, is that it
represents image edges in a more efficient way than
linear pyramids. Since the ordinary Skeleton repres-
ent explicitly the edges of positive elements only, it is
less suitable than two-sided representations for efficient
coding.
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Fig. 7: The behavior of the ordinary and the Two-Sided
Skeletons under noisy conditions: (a) A grayscale image, (b)
The same image, but with 1% binary negative noise, (c) the
ordinary Skeleton of (a), (d) the ordinary Skeleton of (b), (e)
the Two-Sided Skeleton of (a), (f) the Two-Sided Skeleton
of (b).

In the binary case, the Two-Sided Skeleton usually
achieves compression rates similar to those of the or-
dinary Morphological Skeleton, even though there are



two Skeleton subsets at each step n, instead of only
one as in the ordinary Skeleton. This is because there
are usually less representation points in the Two-Sided
Skeleton than in the ordinary Skeleton, as was demon-
strated in Fig. 4.

In either case, the Two-Sided Skeleton is also suitable
for Progressive Transmition (from the highest subset
orders to the lowest ones), since the reconstruction is
performed on a level-by-level basis and since each level
“adds” more details.

D. Image Decomposition

Every Two-Sided-Skeleton point is accompanied by
two parameters: size (the order of the skeleton subset or
function) and side of the Pattern Spectrum (whether it
belongs to a positive or to a negative subset or func-
tion). By selecting appropriate Two-Sided-Skeleton
points, one can obtain decompositions of the original
image, according to those parameters.

E. Pattern Recognition

Each Two-Sided Skeleton point is the center of
a dilated version of the structuring-element. If the
structuring-element is convex, the dilated versions are
also scaled versions of it. Thus, it is possible to search
for a certain convex shape in a given image by ana-
lyzing the Two-Sided Skeleton of that image, when the
structuring-element used in the calculation is the con-
vex shape to be found. Such method, using the ordinary
Skeleton, is expected to detect positive elements only.

IV. CONCLUSIONS

A new morphological representation structure, the
Two-Sided Skeleton, has been defined, both for bin-
ary and grayscale images, and its applications were dis-
cussed. It was shown that the new structure is able to
represent image details in a more meaningful way than
the ordinary Morphological Skeleton, since it considers
both the positive and the negative features of the im-
age. The Two-Sided Skeleton characteristics as a multi-
resolution pyramid, and its advantages over two other
similar morphological multi-resolution representations,
were also pointed out.

APPENDIX

Proof of the reconstruction relation in equation (5).
First we notice that for all n:

Xn+1 [ ] (n =+ I)B = Xn+1
Xn+1 oenB = Xn+1

(A.1)
(A.2)
Relation (A.1) is a direct consequence of the definition
for {X,} in (2), and (A.2) is obtained from (A.1).

Using (A.2), and since A6 B—C@®B° = (A-C)6B,
VA, B,C, we get:

Xng1 = (Sp @ nB’) =

= [(Xnt1 ®nB)onB]— (S, @nB)

= [(Xny1@nB)—S;]enB (A.3)

Also S, = (Xnt1 @ nB) — (X, ® nB) (by definition),
and A— (A — B)=AnN B, VA, B. Therefore:

[(Xn+1 @TLB — S;] @TLB =
[(Xny1 ®nB)N (X, dnB)&nB

= [(Xn41enB)N (X, enB)] (A.4)
From (A.1), (A.2), (A.3) and (A.4), we obtain:
Xn+1 —(S;@HBS):Xn+1 an (A5)

Performing opening and “adding” now the information
in ST, it follows:

[(Xnt1 N Xn)onBlU (ST @nB) =
= [(Xn41NX,)OnBUSH@&nB
= [(Xn41©nB)N(XnSnB)USH @& nB

Using S} = (Xn &nB) — (Xnt1 ©nB) (by definition)
and noting that (AN B) U (A — B) = A, VA, B, we

obtain:

[(Xnt1©nB)N(XnonB)USH @nB =
= [(Xnp16nB)N(X,6nB)U
U(X,6e&nB)—(Xnt1©nB)]&nB

= (XenB)dnB=X,o0nB (A.6)

Finally we use the fact that the opening-closing opera-
tion is idempotent, and that X, = X,,_; onB enhB, to
state that:

(XnonB)enB =X, (A7)

The reconstruction relation in (5) is then obtained from

(A.5), (A.6) and (A.7).
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