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ABSTRACT

In this work we present a subband coding system for
compressing high-quality audio signals. Two alternative
subband decomposition schemes are considered: One
consists of time-varying analysis and synthesis filterbanks
that adapt their structure to the time-varying properties of
the input signal; the other is based on decomposition of
each block of samples separately. Both schemes are based
on the wavelet packets theory and the best-basis selection
algorithm introduced in [1]. The coder and decoder used
in the system are based on the zero-tree algorithm [2,3]
which was originally developed for coding still images
and is adapted here for coding andio signals.

The performance of the proposed system is shown to
be superior to the MPEG-Audio layer I standard (4],
achieving an improvement of up to 10.6dB in segmental
SNR at output bit rate of 64kbit/sec and up to 6.5dB at
output bit rate of 128kbit/sec, for a variety of music
signals. However, it turns out that most of the
improvement is due to the zero-tree coding algorithm.

I. SUBBAND DECOMPOSITION

Introduction

In recent years, the most popular methods for coding
high-quality audio signals are based on variants of
subband coders. These methods differ in the way in which
the frequency scale is partitioned into bands and in the
way the information in each band is quantized and coded.
One way of decomposing the signal into frequency bands
is by using a uniform bandwidth filterbank (as used in the
MPEG-Audio layer I standard). More recent, wavelets
theory led to the use of equal-Q bands, for which the
bandwidth of a band increases linearly with its center
frequency. A third method that emerged from that theory
is the use of a wavelet-packet decomposition which allows
a larger variety of filterbank structures, including the
above mentioned decompositions.
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Best-Basis Wavelet Packets

When using these filterbanks for the compression of
signals, it was observed that some of the structures lead to
better quality reconstructed signals than others. Therefore,
we attempted to find the filterbank structure that will give
the best results. This is done adaptively in the proposed
coder by using the best-basis selection algorithm [1].

The algorithm is used to select the best basis (for a
given criterion) among a library of orthonormal bases
generated by the wavelet packets library. The wavelet
packet decomposition of a signal is a multiresolution
decomposition and its coefficients can be organized as a
full binary tree allowing a fast search algorithm that
contains comparisons only between adjacent levels in the
tree. The search for the best basis is done with the aim to
minimize a cost function. An appropriate selection of a
cost function will cause the selected basis to indeed give
the best results for a given application. In [1] an additive
cost function is used because it enables a faster search for
the best basis while in [5] it is suggested to use non-
additive cost functions while using the same searching
algorithm to give a near best basis selection. The cost
function used in [1] for a sequence {x;} is the entropy,
defined as:
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We examined several cost functions including the
entropy and some of those mentioned in [5]. The one that

gave the best results was the ‘log, > cost function defined
as M({x;})= Y [log, x,], having the meaning of
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counting the number of bits needed to represent each
coefficient as an integer.

Adaptive Time-Frequency Space Decomposition

The nonstationary nature of audio signals causes the
best-basis to change with time and as a result the desired



filterbank structure should also vary in time. That implies
that in order to achieve good compression it is better to
divide the input signal into short ‘stationary’ segments
and to find for each segment the best basis. Each segment
is then coded and the wavelet packet tree (or filterbank
structure) is also sent as side information. Using small
segments improves the matching between the selected
best-basis and the signal but, since the coding of a wavelet
packet tree may demand a large number of bits, only a
small amount of the available bits will remain for coding
the coefficients. Large segments will cause the amount of
side information to be comparatively negligible but the
best-basis will fail to match the signal. Therefore, the
selection of the segment size must take these two
considerations into account.

Post Filtering

When dealing with the input signal in a ‘prolonged’
manner (we denote this as a “prolonged decomposition”)
we encounter a problem when an adaptive structure
filterbank is used. The problem is the result of treating the
analysis filterbank in a different way than the synthesis
filterbank. This is because that in order to select the best
basis we have first to calculate all the coefficients at all
levels - that means we always calculate the coefficients
using a full binary tree filterbank. In the synthesis part, on
the other hand, we use a partial tree according to the tree
that was selected by the best basis selection algorithm.
When a pair of branches is generated, the filters in the
new branches do not have the correct initial state inputs
needed to produce valid output values, and therefore they
produce errors for a certain period after the switching
between different structures. In order to solve this
problem we can look at it in a different way: the use of a
different filterbank structure for each segment is
equivalent to using a full tree filterbank with time-varying
filters. This is because we can build a full-tree filterbank
by completing the missing branches in the tree with filters
that have a transfer function of a pure delay (this is done
both in the analysis and synthesis filterbanks). As a result
we get that the adaptive structure filterbank is equivalent
to a fixed structure filterbank with time-varying filters. A
problem arises, however, from the switching between
different sets of filters from time to time. The switching
causes undesired transients in the output signal. The
transients occur because, during the transition interval, the
analysis/synthesis stages do not have the perfect
reconstruction property (when using wavelets) or the
near-perfect reconstruction property (when using linear-
phase QMF filters), which is a very important
characteristic of the system.

To obtain perfect (or near-perfect) reconstruction
filterbanks, even during the transition periods, one must
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Fig. 1: An example for the operation of a post filter at the
output of a time-varying QMF stage

eliminate these undesired transients. Several techniques
which achieve this goal were reported [6,7,8]. In the
proposed system it is done by using a post-filtering
technique suggested in [9] and extending it for the
multistage binary-tree filterbanks used in our system. The
post-filter is a time-varying filter that affects the output
signal during the transient periods only. A simple example
for the operation of a post filter is shown in Fig. 1. A
triangular wave signal is inserted into an analysis and
synthesis stage whose analysis and synthesis filters are
switched at a certain moment from pure delays to another
perfect-reconstruction set (as happens when a branch is
generated). As a result a transient occurs at the output of
the stage until it returns to its steady state. The post filter
removes the switching effects from the output signal to
form a perfect reconstruction time-varying analysis/
synthesis stage. The design of the post-filter is based on
the fact that the stage has the perfect reconstruction
property so that we can describe the desired output
samples during the transition period using the input
samples. The post filter time-varying impulse response
depends on the two sets of filters and on the switching
point (odd or even sample).

The theory of a single stage post-filtering can be
extended to multiple-stage post-filtering very easily
because of the perfect reconstruction property of each
stage. Assume a filterbank whose structure is of a two-
level binary tree. If we apply a post filter to the inner level
stages (two post-filters are needed) then the inner level
behaves as a pure delay of N-1 samples (N is the length of
cach of the filters), as seen by the outer level. Therefore
the delay can be moved to the synthesis filters of the outer
level (near the synthesis filters) thus generating an
equivalent single stage filterbank with a set of filters
having N +2(N-1)=3N -2 taps; 2(N —1) of them are
zeros. From this point on, the design of the outer level
post-filter is just the same as for the inner one. As a result,
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Fig. 2: Symmetric expansion: (a) Full-sample; (b) Half-sample.

by using a post-filter at the output of each level, multiple-
stage adaptive filterbanks are designed without having any
reconstruction error (in the absence of quantization) or
having only minor errors when using near-perfect
reconstruction QMF stages.

Segmental Decomposition

As already mentioned, another way to decompose the
input signal is to partition it into segments and apply the
analysis/synthesis filterbanks on each segment separately.
If we find a way to reconstruct each segment perfectly
then we can reconstruct the whole signal; this time
without having any transients and therefore eliminating
the use of post filters. Since each segment is treated
independently, a different filterbank structure can be used
for coding each segment and the selection of the structure
that suits the segment is done by using the best basis
selection algorithm as explained earlier.

In order to split a finite length signal into high and low
frequency bands (as in a QMF stage) and then to
reconstruct it perfectly, there is a need for information
about the signal outside the relevant interval. Since we
treat each segment independently there is a need to
expand the signal, either periodically (cyclic expansion)
or by mirroring (symmetric expansion). The advantage of
using the symmetric expansion is that the generated signal
to be decomposed is continuous thus -eliminating
undesired edge effects in the low frequency band. There
are several types of symmetric expansions. The one we
chose is the ‘half-sample’ symmetric expansion (see Fig.
2) since it assures that the signals at the high and low
frequency bands are symmetric. This allows the use of
segmental decomposition when dealing with binary-tree
filterbanks. The segmental decomposition causes some
inefficiency in coding the signal because edge effects are
present in the high frequency band and therefore many
bits may be needed for coding the coefficients at the
segment boundaries. This implies that, for coding
independent segments, longer segments will have less
energy leakage; thus leading to a better reconstructed
signal under the same bit rate restriction. That can be seen
in Fig. 3 - the selected best-basis for a low-frequency
(10Hz) sine wave in two cases: (a) A short segment (1024
samples); (b) A long segment (4096 samples). Note that
for the long segment the best-basis gives the expected tree
while for the short segment some energy leaks to higher
frequency bands .
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Fig. 3: The selected best-basis for a low frequency sine wave:
(a) For a short segment (1024 samples); (b) For a long
segment (4096 samples).

II. THE ZERO-TREE CODER

As mentioned earlier, the zero-tree algorithm was
found useful in subband coding of still images [2,3]. The
basic assumption is that most of the signal’s energy is
concentrated in the lower frequency bands. Under the
above assumption there is a high probability that if the
energy in some frequency band is lower than a certain
threshold, the energies of the higher bands will remain
below that threshold as well. In that case a ‘zero-tree' code
is sent for the entire set of bands thus saving bits.

The performance of the algorithm depends strongly on
the existence of the above assumed signal characteristics.
These characteristics hold also for audio signals since
indeed most of the energy is usually concentrated in the
lower frequencies. Another reason why we can adapt this
assumption for audio signals is the fact that the human
hearing system in much more sensitive at low frequencies
than at high frequencies.

In the zero-tree algorithm the coefficients values are
not transmitted in a pre-defined order but both the encoder
and decoder share the same index ordering algorithm
based on the magnitude of the coefficients. Assuming the
coefficients are ordered according to their magnitude (or
that their ordering is known to both encoder and decoder)
then the transmission is done according to the bit-
significance order, that means that the bit that will lower
the reconstruction error the most will be sent first while
the least significant bits will be sent last (that means that
the signal is reconstructed progressively).

In the zero-tree algorithm the ordering of the
transmission of coefficient values is not done by sending
the indices of the coefficients, but by sending coefficient
significance information. Below we explain the notion of
significance:

A coefficient ¢, is called a significant coefficient with
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respect to a given k if it satisfies |c,|> 2 ; otherwise it is
called an insignificant coefficient.

A subset S, is defined to be a significant subset with
respect to a given £ if it contains at least one significant
coefficient with respect to the given k; otherwise it is
defined as an insignificant subset.

For the ordering process we have to split the set of
coefficients into subsets and check for the significance of
each subset. If a subset is found to be insignificant then all
of its members are insignificant coefficients; if a subset is
significant the decoder needs more information in order to
find the significant coefficients in S,,. For that purpose
the encoder and decoder share splitting rules of a
significant subset into smaller subsets. After splitting,
each new subset must be examined for significance. The
process is repeated until a magnitude check is applied to
all significant subsets that include only one member. Then
k is decremented and the comparison process is repeated
until £=0. Since the splitting rules are known to the
decoder there is no need to send the indices of the
transmitted coefficients.

For efficient compression the significant-subset
splitting rules should satisfy the following: a subset that is
expected to be insignificant should have as many
coefficients as possible while a subset that is expected to
be significant should have the lowest possible number of
coefficients (preferably only one - the significant
coefficient). That is the reason for the use of subband
coding with the zero-tree algorithm since the lower bands
are expected to have’ significant coefficients while the
higher bands are expected to be insignificant.

Another property of the signals in the subbands is
“self-similarity”, which implies that a phenomenon
occurring at a certain time will affect the signals in many
subbands (that means that every coefficient at a given
level can be related to a set of coefficients at the previous
finer level at that time). Therefore the coefficients, that
may come from each of the levels, should correspond to
the same time interval. Fig. 4 shows two examples of
possible ordering trees. Each rectangle represents one
coefficient and the arrows indicate the way that the
coefficients are arranged in the ordering tree. In the case
of a uniform filterbank (upper figure) all the bands
represent the same resolution level, therefore the number
of coefficients in each band is the same. The resulting
ordering tree is that each coefficient in a certain band
points to a coefficient in the next upper frequency band.
In the wavelet-like filterbank (lower figure), on the other
hand, the time resolution of bands gets finer as the center
frequency of the band goes higher, therefore the number
of coefficients is doubled as we go from one band to a
higher band. As a result, the ordering tree in the case of
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Fig. 4: Two examples for possible ordering trees: (a) Equal
bandwidth filterbank; (b) Wavelet-like filterbank.

wavelet-like filterbanks is a full binary tree. In both cases
the coefficients in the lowest frequency band are the roots
of the tree while the coefficients in the highest band are
the leaves of the tree, according to the assumptions that
most of the energy is concentrated in the low bands.

When describing the zero-tree algorithm it was
mentioned that instead of sending the indices of the
coefficients, the results of coefficient significance tests are
sent. In our system we used the same method as in [3] and
defined four states describing the significance of a node
and its sub-tree. In order to further save bits, only state
changes are transmitted. Since the probabilities of these
state changes are not equal we further compress the signal
by using an arithmetic coder for the side information {10].

1II. RESULTS

As discussed above, the proposed system consists of
an adaptive analysis/synthesis filterbank and a zero-tree
coder (including an arithmetic coder). Two types of
analysis/synthesis filterbanks were considered: The one
that handles the input signal in a prolonged manner, and
the second that handles the signal as a collection of
independent segments. First we examined the
performance of the proposed system, using a fixed tree-
structured (QMF-based) 32-band umiform filterbank, as
compared to the standard MPEG Audio layer I coder
which uses a different 32-band uniform filterbank. The



tests were performed on four audio signals, each of them
sampled at 44.1kHz and lasts 20-25sec. Two output bit
rates were selected: 64kbit/sec and 128kbit/sec. The
signals named ‘mozart’ and ‘vivaldi’ contain harmonic
music; ‘vega’ contains a female vocal song while ‘wir’ is
a piece of rock music. The obtained results showed better
objective (improvement by up to 9.4dB in segmental
SNR) and subjective (by informal listening) performance
of the zero-tree based coder. Since the standard coder uses
a psychoacoustic model it is not designed to be optimal in
the sense of minimum mean squared-error. Therefore,
another test of the standard coder was performed, this
time without the psychoacoustic model block. The
resulting SNR values did not go any higher for
128kbit/sec while for 64kbit/sec the resuits were 0.32-
2.07dB higher than before but still much lower than the
system with the zero-tree coder. The subjective
performance (by informal listening) of the uniform
filterbank system with the zero-tree coder was in all cases
at least the same as that of the standard coder. The results
of the objective tests are listed in Table 1 (rows ‘MPEG’
and ‘uniform’) for both output rates.

Table 1 - Different examined coders vs. the standard coder
(segmental SNR in dB for rates of 128kbit/sec and 64kbit/sec)

coding bit | mozart | vivaldi | vega wir
scheme | rate
MPEG 128 | 35.70 | 35.10 | 25.79 | 35.51

‘uniform’ 128 | 40.19 | 4048 | 30.33 | 39.88
‘prolonged’ | 128 | 41.35 | 41.65 | 31.33 | 41.05
‘segmental’ | 128 | 41.16 | 41.59 | 31.33 | 41.03
MPEG 64 19.67 | 19.61 16.03 | 23.53
‘uniform’ 64 | 2858 | 29.05 | 21.55 | 30.40
‘prolonged’ | 64 | 29.67 | 30.21 | 22.22 | 31.14
‘segmental’ | 64 | 29.67 | 30.18 | 22.20 | 31.19

The next step was to test the objective performance of
the system with the adaptive filterbanks (both schemes)
using several cost functions. The results obtained when
using the zero-tree coding algorithm, including the
arithmetic coding block, with the ‘prolonged’ and the
‘segmental’ types of decompositions, and using the
‘log,” cost function, are also listed in Table 1. The
system using the ‘prolonged’ decomposition approach
provided slightly better results, on average, but it requires
many more computations and a larger memory storage in
the decoder because of the post filtering. The results
obtained using the ‘entropy’ cost function were about
0.3dB Jower than those with ‘log, ’ on average, while the
other cost functions, taken from [5], gave much worse
results - about 5dB lower.

Using the zero-tree coding block in the standard coder

gave better results (up to 1.2dB) than when using it in our
‘uniform’ system, showing that the zero-tree coder is
responsible to most of the improvement. This result also
shows that our filterbank needs more careful design to
reach the maximum potential of the system.

IV. CONCLUSION

Two schemes of adaptive filterbanks subband coding
systems were introduced. Both were shown to be superior
to the MPEG-Audio layer I standard. The coding of a
signal using a ‘prolonged’ decomposition was shown to
give somewhat better results than coding independent
segments of the signal separately, but with much higher
complexity and storage requirements.

Using the zero-tree coder as the encoding block in the
MPEG-Audio layer I improved the performance of the
standard coder.

It appears that in order to further improve the
performance of the proposed system, there is a need for a
better design of the filters in the analysis/synthesis
filterbanks.
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