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ABSTRACT

A general formulation of shift-invariant “best-basis” ex-
pansions is presented. Specifically, we construct an ex-
tended library of smooth local trigonometric bases, and in-
troduce a suitable “best-basis” search algorithm. We prove
that the resultant decomposition is shift-invariant, orthonor-
mal and characterized by a reduced information cost. The
shift-invariance is derived from an adaptive relative shift
of expansions in distinct resolution levels. We show that at
any resolution level £ it suffices to examine and select one of
two relative shift options — a zero shift or a 27¢7! shift. A
variable folding operator, whose polarity is locally adapted
to the parity properties of the signal, extra enhances the
representation.

1. INTRODUCTION

Bases whose elements are well localized in time and fre-
quency are useful for signal analysis and compression. Coif-
man and Meyer [1] have introduced a library of orthonormal
local trigonometric bases having a binary tree structure,
where the “best basis” is efficiently searched for a prescribed
signal, relative to a specified information cost function [2].
The “best basis” coefficients provide a compact signature of
the original signal, implying signal compression and identi-
fication applications [3, 4]. A major drawback is the lack
of shift-invariance. Both, the local trigonometric decom-
position (LTD) of Coifman and Wickerhauser [2] as well
as the time-varying wavelet packet decomposition proposed
by Herley et al. [5], are sensitive to the initial phase of the
signal. Shift-invariant multiresolution representations that
exist are either non-orthogonal, non-unique [6] or entail high
oversampling rates [7, 8].

Recently we have developed an orthonormal shift in-
variant wavelet packet decomposition [9]. In this work,
similar principles are applied to smooth local trigonometric
bases. We introduce a best-basis search algorithm, namely
shift-invariant adapted-polarity local trigonometric decom-
position (STAP-LTD), that leads to an orthonormal shift-
invariant representation.

The shift-invariance so acquired stems from a relative
shift between expansions in distinct resolution levels. It is
proved that at any resolution level £ it suffices to examine
and select one of two relative shift options — a zero shift
or a 2% shift. The resultant best-basis decomposition is

not only shift-invariant, but also characterized by a lower
information cost when compared to the LTD. Tts quality
is further enhanced by applying an adaptive-polarity fold-
ing operator which splits the prescribed signal and “folds”
adaptively overlapping parts back into the segments. The
polarity of the folding operation is locally adapted to the
signal at the finest resolution level, and a recursive sequence
is carried out towards the coarsest resolution level merging
segments where beneficial. Each segment of the signal is
then represented by a trigonometric basis which possesses
the same parity properties at the end-points.

In the next section, the shift-invariance of SIAP-LTD
is demonstrated, and its quality (information cost) is com-
pared with and verified to be superior to that of LTD.

2. SHIFT-INVARIANT DECOMPOSITIONS

For simplicity, we shall restrict ourselves to L2[0, 1], the set
of square integrable functions on the circle [0, 1].

Definition 1 f,g € L2[0,1] are said to be identical to within
a resolution J time-shift (J > 0) if there exists ¢ € Z, 0 <
q <27, such that g(t) = f(t — 277 q) for all t €[0,1].

Let B denote a library of orthonormal bases in L»[0, 1],
M an additive information cost functional and M(Byg) the
information cost of representing ¢ € L2[0,1] on a basis B €
B. The best basis for g, relative to a library of bases B and
an information cost functional M, is that B € B for which

M(Byg) is minimal.

Definition 2 Bases B1,Bas € B are said to be identical
to within a resolution J time-shift (J > 0) if there exists
¢ € Z,0< q< 27, such that ¥(t — 277q) € By for any
¢J(t) € Bi.

Definition 3 A best-basis decomposition is said to be shift-
invariant up to a resolution level J(J > 0) if for any f, g €
L>[0,1] which are identical to within a resolution J time-
shift their respective best bases, By and By, are identical to
within the same time-shift.

Notice that for uniformly sampled discrete functions
of length N = 27 there is an equivalence between an
invariance to discrete translation and shift-invariance up
to a resolution level J. To demonstrate the shift-invariant

properties of STAP-L'TD, compared to LTD which lacks this



feature, we refer to the expansions of the signals ¢(¢) (Fig. 1)
and g(t —5-277). These signals contain 27 = 128 samples.
For definiteness, we choose entropy as the cost function.
Figs. 2 and 3 depict the “best-basis” expansions under the
LTD and the STAP-LTD algorithms, respectively. A com-
parison of Fig. 2a and Fig. 2b readily reveals the sensitivity
of LTD to temporal shifts while the “best-basis” STAP-LTD
representation is indeed shift-invariant and characterized by
a lower entropy (Fig. 3).

3. SMOOTH LOCAL TRIGONOMETRIC
BASES

In this section we construct a library of orthonormal bases
of L>[0,1] which consist of sines or cosines multiplied by
smooth compactly supported functions.

Let r € C*(IR) be a rising cutoff function [10], i.e

lr(®))° + |r(=t))]> =1 forall t € R
T(t)_{ 0,ift<—1

1,ift>1. 1)
Then T(%)T(%) is a window function supported on
[ar—¢, Br+¢€]. Alocal trigonometric function subordinate to
the interval I = [a7, 81) 2 [2_£n+2_Jm, Z_Z(n—}-l)—f-Z_Jm)
can be defined by

; t—ar, fBr—t X
ok (1) = r(——)r(=——)OT}" (1) (2)
where
ce (1) = 25 Rk + HPSJ) cos[x2"

Ak + EE2E0 ) (¢ — a7) = po3]

is a trigonometric function whose parities at the end points
ar and f; are specified by po and pi, respectively (even-
even for po = 0 and p1 = 1, even-odd for 0-0, odd-even for

1-1 and odd-odd for 1-0), and

Mn={1“5’f:“

1, J#0.

are weight factors needed to insure orthonormality. We call
£ the resolution-level index (0 < ¢ < L < J), n position
index (0 < n» < 2%, m shift index (0 < m < 277%),
k frequency index (k € Z4) and po,p1 € {0,1} polarity
indices. Since we consider functions defined on the circle
[0, 1], the basis functions are of the form

'mmk)—xmu§j¢m%kt+@ (3)

g=-—1

where Y7 is an indicator function for the interval I, i.e.,
the function that is 1 in I and 0 elsewhere. The role of
€ > 01in (2) is to allow overlap of windows, and thus control
the smoothness of the window function. € must be small
enough (e < Z_L_l) so that every pair of adjacent intervals
are compatible [11], i.e., distinct overlapping intervals are
disjoint. In order to implement a fast search for the best
basis, we organize the library in a tree structure, where each

node, indexed by the triplet (£, n, m), represents a subspace
with different time-frequency localization characteristics:

PO P1 L0;P1 A

e,ﬂ,m {¢e ﬁ,m,k t ke Z+} (4)
POP1 __ £0,P1

4n,m ClOSL2[0,1]< 4n,m (5

To simplify notation in Lemma 1, the triplet (£, n,m) is
replaced by its corresponding interval 7. We can expand a
parent-node into children-nodes as follows:

Lemma 1 If I' and I" are adjacent compatible intervals,
then VIF;D7PI @ VIF;II7P2 Vp07p2

ot
This implies that we can switch from a basis on the interval
I'UTI" to bases on I' and I".

The inner product of a function g with a basis function
is efficiently computed by introducing a folding operator,

r(£22)g() + (=1)°r(24)g(2a — 1),
fo<t<a+te

Fla,p)g(t) = ¢ 7(27)g(t) — (=1)"7(*5*)g(2a — 1),
fo—e<t<a

g(t), otherwise

(6)

and observing that
2o k(1) = F* (a1, po) F* (1, p1)x1C7y" (1) (7)

(vor o g) = (x1C8%"  F(ar,po)F(Br,p1)g)  (8)

where F* is the adjoint of F. F*, the unfolding operator,
is also the inverse of F' owing to unitarity. F(«,p) has
an odd-even (p = 0) or even-odd (p = 1) polarity around
t = o. That is, if g is smooth, then x(_o a1 F'(,0)g is a
function that is smooth when extended odd to the right and
Xla,00) F'(@,0)g is a function that is smooth when extended
even to the left. Expression (8) for the coefficients has great
importance, since it implies that ¢ can be preprocessed by
folding and then represented by a trigonometric basis which
reflects the parity properties at the end-points (DCT-II for
even-even, DCT-IV for even-odd, DST-II for odd-odd and
DST-1V for odd-even parity; all having fast implementation
algorithms [12]).

Proposition 1 Let E = {(£,n,m)} denote a collection of
indices 0 < £ <L, 0<n <2 and 0 <m < 277¢ satisfying
(i) The segments {Itnm : (€,n,m) € E} are a disjoint
cover of [a,a + 1), for some 0 < a < 1.
(it) Nodes (£,n1,m1), (¢,n2,m2) € E at the same reso-
lution level have identical shift index, my = ms.

Then for any 0 < P < 22L,
{BP(QI),p(ﬁz) .

Lnm

(£,n,m) € E}

forms an orthonormal basis of L2[0,1], where p(ar) and
p(B1) are the polarities at the end-points a1 and (1, respec-
tively, given by p(oz) =p[2%(a — a)], and {p(i)} are defined

by P=S"20 " ()2 p(27) £ p(0).

The set of all (E, P) specified above generates a library
of bases of L»[0,1]. Condition (ii) is supplementary and fur-
ther restricts the number of bases belonging to the library.
It facilitates a reduction in the computational complexity
of the best-basis algorithm while retaining shift-invariance.



4. THE BEST BASIS SELECTION

The shift-invariance and the adapted-polarity stem from
independent degrees of freedom which are incorporated into
the best-basis search algorithm. These are a relative shift
between expansions in distinct resolution levels and a vari-
able folding operator whose polarity is locally-adapted at
the finest resolution level. The adaptive folding has nothing
to do with shift-invariance, but with a reduction of the
information cost.

Denote by A79° the best basis for ¢ restricted to the
subspace V/°2'7r. Accordingly, Ag{ ., for some 0 < m <
27 and p € {0,1} constitutes the best basis for g. These
parameters, namely m and p, are determined recursively
together with Ag”g’m. Let mo = m and Py = po(0) = p.
Suppose that at the resolution level £ we have found my,
P, and AR () g o)) o < n < 2¢ where {pe(2)}

£n,my

£ .
are defined by P, = Z?:El pe(i)2%; pg(2£ + i) 2 pe(i).
Then we will choose m¢—1, P;—1 and Afi_lfézl’f:l(nﬁ) for
0 < n < 2°7! to minimize the information cost. First, we

heed the disjoint union

Il—l,n,m = I£,2n+a,mc U I£,2n+l+o¢,mc (9)

where! o = m div ZJ_K, m. = mmod 277% and recall
Ionm 2 27 4+ 277m, 27 (n 4+ 1) + 277/ m). Therefore, it

follows from Lemma 1 that

Bro:F1 if Mg <M
AP0:PL _ £—1,n,m? B = A (10)
{=l,n,m — AP0:P2 AP2:P1 1
£2n+a,me & £2n+14+a,me? else
where M 4 = M(Af’%’ﬁia’mc g) + M(A5,2275-1|-1+a,mc g) is the
information cost of the children, Mp = M(B}*, g¢) the

information cost of the parent, and ps = ps(2n + 1+ «a) is
the right polarity of the left child and left polarity of the
right child. Now, to acquire shift-invariance it is sufficient
to consider two optional values of my—1: m, and me4277%,
The respective information costs of ¢ when expanded at the
resolution level £ — 1 are

2f=1_1
Moy = Y MAPE ) (11)
n=0
2f=1_
2n+41),p,(2n43
M=) M) (12)
n=0

So we decide on that value of m¢—1 which yields a cheaper
representation, i.e.,

e i MY < MU, |
me-1 = { me+277% else. (13)

The polarity at the resolution level £ — 1 is plainly ob-
tained by keeping those bits which correspond to end-points
of the same level intervals, namely, for 0 < n < 2¢~!

_J pe(2m), if My < MY,
pe-1(n) = { pe(2n +1), else (14)

2 div y denotes the integer part of the ratio x/y, and
r mod y represents its remainder.

and pe—1(2°7" 4 n) = pe—1(n).
The recursive procedure is carried out down to a speci-
fied level £ = L (L < J), where we impose

AP0, BPO.PL (15)

L,n,m L,n,m

and pick a combination of shift and polarity by

2l
(mz,Pr)=Arg  min  {Y MBI gy
o<m<2/~L
05P<22L

(16)
In practice, pursuing a global minimum of the informa-
tion cost at the finest resolution level, as advised in (16), is

worthless, because a sequential consideration of 92" polarity
values is inoperable. Instead, one should be satisfied with a
locally adapted polarity. Fix the shift index m and denote
the local information cost by

Cmn(p)= min {M(BF,g) + M(BTY, ,,9)}

po,p1€{0,1}

p € {0,1}, 0 < n < 2L. Then the shift and polarity are
given by

2l 1
. . Tm(n),Tm(n+1)
me= Argogmnélgnl—L{ Z—o 'M(BL,n,m 9)} (A7)
pr(n) = Tmy(n), 0<nm <28 (18)

where

Tm(n) = { 0, if Crmn(0) < Crmyn (1)

1, else.

Notice that an ill-adapted polarity-bit is likely to be ex-
punged at coarser resolution levels by merging intervals
around it.

Proposition 2 The best basis expansion stemming from
the previously described recursive algorithm is shift-invariant
up to a resolution level J.

The computational complexity of executing STAP-LTD
is O(N(L+277%*")1og, N), where N denotes the length of
the signal. This complexity is comparable to that of LTD
[2] (O(N Llog, N)) with the benefits of shift-invariance and

a higher quality (lower “information cost”) “best-basis”.

5. CONCLUSION

The attainment of shift-invariance in “best-basis” expan-
sions necessitates an extended library of bases that includes
all shifted versions of bases within the library. Such a
library of smooth local trigonometric bases was formed,
and an appropriate fast “best-basis” search algorithm was
introduced. The gained properties of the generated best-
basis representation, namely its shift-invariance, compact-
ness and orthonormality, can be used advantageously in
areas such as signal analysis, identification and compression
applications.
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Figure 1: The signal g(t) (27 samples).
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Figure 2: A LTD “best basis” expansions of: (a) g¢(t),
Entropy=2.57. (b) g(t — 5 -27"), Entropy=2.39.
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Figure 3: A STAP-LTD “best basis” expansions of: (a) g(t),
Entropy=1.44. (b) g(t —5-27"), Entropy=1.44.



