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ABSTRACT 
A translation-invariant denoising method, based on the 

Minimum  Description Length (MDL)  criterion and  the 
Shift-Invariant Wavelet Packet  Decomposition (SIWPD) is 
presented. A collection of signal models is generated using 
an extended  library of orthonormal wavelet-packet bases, 
and  an additive cost function, approximately  representing 
the MDL principle, is derived. We show that  the minimum 
description length of the noisy observed data is achieved by 
utilizing the  SIWPD  and thresholding the resulting coeffi- 
cients. The signal estimator is combined with a modified 
Wigner distribution, yielding robust time-frequency repre- 
sentations,  characterized by high resolution and suppressed 
interference-terms. The proposed  method  is  compared  with 
alternative  approaches, and  its superiority is demonstrated. 

1. INTRODUCTION 
The use of wavelet bases for estimating noisy signals has 
been the object of considerable recent  research,  Traditional 
methods often  entail noise removal by low-pass filtering, 
thus blurring sharp signal features.  In  contrast, wavelet- 
based methods show good performance for a wide diver- 
sity of signals, including those  containing jumps, spikes and 
other nonsmooth  features [1, 21. The widely used transform- 
based  thresholding  method consists of three  steps: transfor- 
mation of the noisy data  into a time-scale domain, soft or 
hard thresholding to  the resulting coefficients, and trans- 
formation back into  the original space. This scheme ne- 
cessitates  determination of the  “best” basis and threshold 
value, leading to  the  best signal estimate.  It is constructive 
to employ the library of wavelet-packet bases as a collec- 
tion of competing models, and select the best model ac- 
cording to  the Minimum Description Length (MDL) crite- 
rion [2, 3,4].  However, denoising based on the conventional 
wavelet-packet decomposition (WPD) [5] may exhibit visual 
artifacts,  attributable  to  the lack of shift-invariance [SI. 

One  approach to  attaining shift-invariance is to aver- 
age the  translation dependence:  applying  a  range of shifts 
to  the noisy data, denoising the shifted versions with the 
wavelet transform,  then unshifting and averaging the de- 
noised data [6]. This procedure, termed Cycle-Spinning, 
generally yields better visual performance  on smooth  parts 
of the signal. However, transitory (high-frequency) fea- 
tures may be significantly attenuated [7]. Furthermore, 
the MDL principle and  related information-theoretic ar- 
guments  cannot be applied. Alternatively, one may opti- 
mize the time localization of the signal, so that  its features 
are well-aligned with the basis-functions, In the case of 
WPD, Pesquet et al. [8] suggested to  adapt  the shift of 
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the signal as follows: (i) To each node of the expansion 
tree assign an information-cost by averaging the Shannon 
entropy over all translations. (kk)  Determine the best ex- 
pansion tree using the conventional WPD algorithm of Coif- 
man  and Wickerhauser. (iii) Compare the entropy of the 
2“ orthonormal representations  resulting from Z K  different 
shift-options, where IC denotes the number of nodes in  the 
best  expansion tree,  and choose that representation  (shift- 
option) which minimizes the entropy. This procedure is sub- 
optimal  compared  with the  Shift-Invariant Wavelet Packet 
Decomposition (SIWPD) [9], since the expansion tree is de- 
termined by the averaged entropy. Additionally, the shift- 
options  in step (dii) are examined one by one, whereas the 
SIWPD  not only provides a recursive selection method  for 
the  optimal  shift,  but also offers an inherent trade-off be- 
tween the  computational complexity and  the information 
cost. 

In this  paper, we present  a  translation-invariant signal 
estimator, which is based on the  SIWPD  and  the MDL cri- 
terion. We show that  this  estimator, combined with the 
recently introduced modified Wigner distribution (MWD) 
[lo], yields robust time-frequency representations that  are 
characterized by high resolution, Le., high concentration 
and suppressed  interference-terms. An extended library of 
wavelet-packet bases [9] is employed for generating  a collec- 
tion of competing  models, and  the MDL principle is applied 
for approximating the description length of the observed 
noisy data. We show that minimum description length is 
attainable by optimizing the expansion-tree  associated  with 
the  SIWPD. The optimal signal estimate is subsequently 
obtained by thresholding the resulting coefficients. This es- 
timator is independent of the alignment of the observed sig- 
nal  with  respect to  the basis functions.  Furthermore, the 
intrinsic  advantages of the  SIWPD over the conventional 
WPD are  instrumental  in generating a relatively superior 
estimator. 

2. PROBLEM FORMULATION 
Let y ( t )  = . j ( t )  + t ( t )  represent the noisy observed data, 
where f ( t )  1s the unknown signal to  be  estimated,  and z ( t )  
is a white Gaussian noise with zero mean and a known 
power spectral density (PSD) cr2. Let {&( t )  : n E E+} 
denote  a wavelet packet family, generated by an orthonor- 
mal scaling function $0 [5] .  We assume that f ( t )  belongs 
to G { t ) o ( t  - k) : k E Z }  and is compactly supported. 
Accordingly, there exists a finite  integer N such that 



S p a n { @ o ( t  -IC) : 0 5 k < N } .  
To estimate f ( t ) ,  we use an extended  library of wavelet 

packet bases [SI, defined as the collection of all the orthonor- 
mal bases for Vo which are  subsets of 

{Bf,n,m : - L < l < O ,  O < n , r n < 2 - f j 1  (2) 

where Be,n,m E { t , l ~ t , ~ , ~ , r  : 0 5 k < A r Z e } ,  Each basis in 
this library is given by {Be,,,,, : (PI n, m)  E E},  where E 
is a set of indices that represent the terminal  nodes of a 
SIWPD tree [9]. By selecting an  appropriate E ,  the signal 
f can  be represented by a relatively small number IC < X 
of significant expansion coefficients. Thus, we consider a 
signal estimate of the form 

?I= 1 

where {4k : 15 k 5 N }  = {Be,, , ,  : ( f , n , m )  E E } ,  and 
{k , } l< ,src  are  the indices of the significant basis functions. 

The problem is to find the best E and { k n } l < n s ~  (best 
model) such that  the  estimate  (3) is optimal according to 
the MDL principle. 

3. THE MDL PRINCIPLE 
The MDL principle [I13 asserts  that given a data set and a 
collection of competing  models, the best model is the one 
that yields the minimal description length of the  data.  The 
description  length of the  data is counted for each model 
in the collection as the codelength  (in bits) of encoding 
the  data using that model, and  the codelength  needed to 
specify the model itself. The rationale is that a good model 
is judged by its ability to “explain” the  data. hence the 
shorter  the description length,  the  better  the model. 

The encoding, and hence the  computation of the code- 
length, is carried out  in  three steps: 1) Encoding the ob- 
served data assuming E and { k n } 1 5 n 5 ~ c  are given. 2) En- 
coding {lcn}lcn<~c assuming that E is given. 3) Encoding 
E. Accordingly, the  total description length of the  data is 
given by 

Step 1: I t  was established by Rissanen [Ill that  the  short- 
est  codelength  for  encoding a data  set { y l r } l c k ~ ~  using the 
probabilistic  model P ( { y k } l s k < ~  I p ) ,  where p is an un- 
known parameter vector, is asymptotlcally given by 

where jl is the maximum likelihood estimator of p ,  and q is 
the number Of free red p-=,meters A the vector ,A. 

Here, ~1 { f k . h l n < ~ ~  and b, = Yk, 3 (Y,&,) (1 L: 
n 5 X).  Consequently, 

1 
N 

N vi, + log2(2sa2) + -log, N .  (6) L1 = - K 
2 0 2  In 2 2 

n=K+l  

Step 2: The indices { l c , } ~ < ~ < ~ <  can  be specified by a bi- 
nary  string of length N containing  exactly IC 1s. Since 
there  are (E) such possible strings,  and K (1 5 I< 5 N )  

requires log, N bits  (the probability density function for K 
is unknown), we have 

By applying Stirling’s formula to  the factorials and ignoring 
constant  terms, we have L2 z Klog, N for N >> li. The 
optimal {kn}l<n<~{ are obtained by minimizing LI  + LZ. 
Clearly, 

N N IC 

~ m i n ( y ~ , 3 g 2 1 n N )  5 y:, +)(3g21nN) (8) 
n= 1 n = l i + l  n = l  

and equality holds for 

n=I 

Step 3: A SIWPD tree  can be specified by a 3-my string, 
which contains 2s for terminal nodes, and either Os or Is 
for internal nodes,  depending on their expansion mode [la]. 
There  are [El terminal  nodes and [El - 1 internal nodes, 
where IEl is the cardinality of E .  Since the  tree always ends 
with a terminal node,  the  last 2 in the  string can be dis- 
carded,  and  thus we need to encode a sequence containing 
lEl-  1 2s and [El - 1 symbols from (0, l}, The description 
length of such sequence is 

where the first term is required to specify the locations of 2s 
in the sequence, the second term to discriminate  between Os 
and Is, and  the  third  term  to encode the number of terminal 
terms. Applying Stirling’s formula to  the factorials and 
ignoring constant  terms, it follows that L ( E )  zz 31E/ for 
IEl >> 1. Hence, the  total codelength is given  by 

N 

n= 1 

4. SIGNAL ESTIMATION 
Let C(&) denote  the description  length of y repre- 

sented  on a basis B = {Bt,n,m : (t,  ra, m) E E } ,  and let 

be  the expansion coefficients of the observed data.  Then, 
Bt,n,my = { Ct ,n ,m,k(Y)  ( Y ,  $t ,n ,m,k)  : 1 5 k I 2 ‘ ~ )  

by Es. (12) 

& ( B Y )  = G(Br,n,my) (13) 

(e,n,m)€E 

where the description length associated  with a tree-node 
(L, n, rn) is given by 

2 l  N 

The  optimal basis for y is that B for which C ( B y )  is 
minimal. Since the codelength  in Eq. (13) is an additive 
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Figure 1. MDL-based  translation-invariant  denoising: (a) Synthetic  signal;  (b)  Noisy  measurement  with 
SNR= 7dB; (c) SIWPD of the  noisy  measurement  using  the  MDL  cri terion;  (d)  Signal  estimate,  SNR= 19dB. 

cost function, which directly results from the expressions 
and approximations derived in the previous section, apply- 
ing the  SIWPD to y yields the optimal basis. The signal 
estimate is subsequently obtained by hard-thresholding the 
coefficients by u r n .  Specifically, 

k EA 

A A = {kn}l<nCK is obtained by (9). 
The pr&sed estimator, combined with the modified 

Wigner distribution (MWD) [lo], yields robust time- 
frequency representations. Denote by W, the  auto WD 
of 4, and by We, ,,#,2 the cross WD of 41 and 4 2 .  Then, 
from [lo] and Eq. (14), the MWD estimate of y is given  by 

The set I? = {{IC, k’ )  : k ,  kf E A, 0 < d ( J k , & )  5 D} re- 
stricts  the cross terms to neighboring pairs of basis- 
functions, i .e . ,  basis-functions whose time-frequency dis- 
t,ance is smaller than a certain threshold D. This threshold 
is adjusted to balance the cross-term interference, the useful 
properties of the distribution, and the  computational com- 
plexity [13]. The distance measure in the time-frequency 
plane is deiined by 

where ( f k ,  D L )  is the position of the cell associated with &A; 
At ,  and Awk are, respectively, the widths (uncertpinties) 
in time and frequency. Similar notations apply to & . 

The proposed estimate is robust to noise and possesses 
the useful properties of the modified Wigner distribution, 
namely high energy concentration, well delineated compc- 
nents, low interference-terms, etc. [12]. 

5.  AN EXAMPLE 
A synthetic signal, created by a linear superposition of a 
few wavelet packets (12-tap coiflet filters), and a noisy  ver- 
sion with dgd-to-noire ratio SNR= 7dB arc depicted in 
Figs. l(a)-(b).  The optimal SIWPD of the noisy signal us- 
ing the MDL criterion is  shown in Fig. l(c).  The expansion 
coefficients are thresholded by a m  and transformed 

I Denoising  Method 1 SNR (dB) I 
I Saitn 131 I 1 1  I 

I 
Basis-Pursuit [14J 1 4.3 

Donoho-Johnstone [l] I 6.4 

I--- t-l -. - 

I Matchinc-Pursuit I 7.5 I 
I The Drouosed method I 19.1 I 

Table 1. Signal-to-noise ratios for the  signal  esti-  
mates  of the  synthet ic   s ignal   using  the  l ibrary of 
wavelet  packets  (12-tap  coiflet  filters) and various 
denoising  methods. 

back into  the signal domain. Compared to  the noisy  mea- 
surement, the signal estimate  (Fig. l(d)) is enhanced to 
SNR= 19dB. Table 1 compares the SNRs obtained by alter- 
native  methods. Their deficient performance results from 
the  restricted compression capability of the  WPD.  The pro- 
posed method uses the SIWPD, which optimizes the repre- 
sentation by incorporating  translations of wavelet-packets 
for signal components that  are not aligned with the basis 
elements. 

Fig. 2 shows the WD,  smoothed pseudo Wigner distribu- 
tion and MWD for the  synthetic signal. The results for the 
noisy  version are depicted in Fig. 3. Expectedly, the WD 
of the multicomponent signal is corrupted by interference 
terms, while the smoothed pseudo Wigner distributions are 
robust in the noisy environment. However, we can readily 
observe that  the energy concentration of the signal com- 
ponents is poor. In contrast,  the proposed estimate of the 
MWD retains its robustness and insensitivity to noise  while 
providing the desired time-frequency resolution. 

6.  RELATION TO O T H E R   W O R K  
In [2], several libraries of wavelet-packet bases are consid- 
ered. The ”best basis” in each is selected using WPD  and 
the Shannon entropy criterion. Subsequently, the MDL 
principle is applied for determining the optimum among the 
“best bases”, The proposed method  translates  the MDL 
criterion into an additive information cost function, thus 
rendering the best-basis search manageable. Furthermore, 
it uses the SIWPD, which  yields sparser representations and 
better estimates than  the WPD. 

In [3], WPD is applied to  the noisy data using an infor- 
mation cost 

M({yn}) = min (v: , 20’ logz N )  . (17) 
n 

The signal estimate is reconstructed from coefficients  whose 
magnitudes are larger than This method ig- 
nores the description length of the expansion tree (see 
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Figure 2. Contour   plots  for t h e  test signal: (a) Wigner   dis t r ibut ion;   (b)   Smoothed  pseudo Wigner distri- 
but ion;  ( c )  The  modif ied  Wigner   dis t r ibut ion [lo]. 
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Figure 3. Contour  plots for noisy test signal:  (a}  Wigner  distribution;  (b)  Smoothed  pseudo  Wigner 
distribution; (c) The proposed time-frequency  distribution  estimate.  

Eq. (12)), and expectedly the  estimator is sensitive to signal [5] R. R. Coifman and  M. V. Wickerhauser, “Entropy- 
translations. based algorithms for best basis selection”, IEEE Trans. 

In [l], the criterion for the optimal basis selection is mini- Inform. Theory, Vol. 38, No. 2, Mar. 1992, pp. 713-718. 
mum mean-squared error,  rather  than MDL. The best-basis [6] R,  R, coifman and D. L. Donoho, “Translation- 
minimizes invariant de-noising”, in: A. Antoniadis and G. Op- 

penheim,  ed., Wavelet and  Statistics, Springer-Verlag, 

[7] N. A. Whitmal, J .  C. Rutledge and J.  Cohen, 
where C = VU( 1 + d m ) ,  MAT is the number of dis- “Wavelet-based noise reduction”, Proc. ICASSP-95, 
tinct basis-functions contained in the library (for WPD,  Detroit, Michigan, 8-12 May 1995, pp. 3003-3006. 
h f ~  = Nbg,  N )  and v > 8. The signal is reconstructed on [,31 J,-c. P ~ ~ ~ ~ ~ ~ ,  H. ~ r i ~  and H, carfantan, ‘ L T ~ ~ ~ -  
the best-basis from coefficients whose magnitudes are larger 
than C .  The threshold C is larger than r m  by at least 

invariant orthonormal wavelet representations” , IEEE 
Trans. Sig. Proc., Vol. 44, Aug. 1996, pp. 1964-1996. 

a factor of SI,/%. Thus, criterion (18) imposes a larger [9] 1. Cohen, 3. Raz and D. Mal&, “Orthonormal  shift- 
penalty on nonzero coefficients, but none is associated with invariant wavelet packet decomposition and represen- 
the complexity of the expansion-tree (see Eq. (12)). tation”, Sig. Proc.. Vol. 57, Mar. 1997, pp. 251-270. 

“IYn)) = min (Y: 1 f )  > (18) 1995, pp. 125-150. 
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