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ABSTRACT 

Utilizing the  Shift-Invariant Wavelet Packet Decompo- 
sition (SIWPD), various useful properties relevant to 
time-frequency analysis, including high energy concentra- 
tion and suppressed interference terms, can  be achieved 3i- 
multaneously in the Wigner domain. A prescribed signal is 
expanded on its best basis and transformed into the Wigner 
domain. Subsequently, the interference terms  are elimi- 
nated by adaptively thresholding the cross Wigner distri- 
bution of interactive basis functions, according to their am- 
plitudes and  distance in an idealized time-frequency plane. 
The properties of the resultant modified Wigner di8tribUtiOn 
(MWD)  are  investigated, and  its performance in eliminating 
interference terms, while still retaining high energy resolu- 
tion, is compared with that of other existing approaches. 
We demonstrate the effectiveness of the proposed MWD to 
resolving multicomponent signals. Each component is de- 
termined as a partial sum of basis-functions over a certain 
equivalence class in the time-frequency ‘plane. 

1. INTRODUCTION 

The Wigner distribution (WD) is of special theoretical im- 
portance in time-frequency analysis, because it possesses a 
number of desirable properties, including maximum auto- 
component concentration in the time-frequency plane [l]. 
However, practical  applications of the WD are rather lim- 
ited by the presence of interference terms. The appearance 
of such terms renders the WD of multicomponent signals 
extremely difficult to  interpret.  The reduced-interference 
distributions [a]  were developed to  attenuate interference 
terms by employing some kind of smoothing kernel or win- 
dowing. Unfortunately, this reduces the energy concentra- 
tion of the analyzed signal and dramatically affects the  ap- 
pearance  and quality of the resulting representation. 

A different approach uses the Gabor expansion to decom- 
pose the WD [3]. Interference terms are identified as cross 
WD of distinct basis functions. A major drawback is the 
dependence of the performance on the specific  choice of the 
Gabor window, An appropriate window selection depends 
on the  data  and may vary for different components of the 
same signal [3]. Furthermore, t,he cross-terms of basis func- 
tions that  are “close” in the time-frequency plane  are not 
always interpretable as interference terms,  but  rather may 
have a significant effect on the time-frequency resolution. 
Qian and Chen [4] proposed to decompose the WD into a 
series of Gabor expansions, where the order of the expan- 
sion is defined by the maximum degree of oscillation. They 
showed that such harmonic terms contribute minimally to 
the useful properties,  but are directly responsible for the  ap- 
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pearance of interference terms. In this case, the manipula- 
tion of cross-terms is equivalent to including cross-terms of 
Gabor  functions whose Manhattan distance is smaller than 
a certain threshold. However, the order of the expansion has 
to be determined  adaptively and generally depends on the 
local distribution of the signal. In [ 5 ] ,  the signal is decom- 
posed into frequency bands,  and  the Wigner distributions 
of all the subbands are superimposed. This attenuates in- 
terferences between subbands,  but still suffers interferences 
within the subbands.  Therefore  it would be suitable for 
signals possessing a single component in each of the sub- 
bands. Moreover, the exclusion of beneficial cross-terms, 
which join neighboring basis-functions, invariably degrades 
the energy concentration and may artificially split a given 
signal component into several frequency-bands. 

Recently, we have introduced adaptive decompositions of 
the WD using extended Libraries  of orthonormal bases [SI. 
We showed that  the interference terms in the Wigner do- 
main can be reduced by adaptively thresholding the cross 
WD of pairs of basis functions. The distinction between 
undesirable interference-terms and beneficial cross terms, 
which enhance the time-frequency representation, involves 
an adaptive expansion of the analyzed signal and corre- 
spondingly an adaptive  distance measure. A prescribed sig- 
nal is expanded on its best basis and transformed into the 
Wigner domain. Subsequently, the interference terms  are 
eliminated by thresholding the cross WD of interactive ba- 
sis functions, according to their  amplitudes  and distance in 
the time-frequency plane. The distance measure weighs the 
Euclidean distance  with the time and frequency uncertain- 
ties of the basis-functions, and thus dispenses with the need 
for local adjustments of the associated distance-threshold, 

In this  paper,  the properties of the modified Ws’gner dds- 
tribvtion (MWD) are investigated, and  its performance in 
eliminating interference terms, while still retaining high en- 
ergy resolution, is compared with that of other existing ap- 
proaches. It is shown that  the proposed MWD is directly 
applicable to resolving multicomponent signals. Each com- 
ponent is determined as a partial sum of basis-functions 
over an equivalence class in the time-frequency plane. 

2. MODIFIED WIGNER  DISTRIBUTION 

Let g( t )  = E, c x q x ( t )  be the shifl-invariant wavelet packet 
decomposition (SIWPD) of the signal g [7]. Then,  the MWD 
for g is defined by 



The summations  in (1) are  restricted to basis-functions 
whose coefficients are above a  prescribed cutoff, and  to pairs 
which are sufficiently “close” in time-frequency plane. Let L 
and D denote respectively thresholds of relative  amplitude 
and time-frequency distance. Then  the  sets A and r are 
given by 

The distance d between a pair of basis-functions is defined 
bv 

where ( f ~ ,  ax) is the time-frequency position of FA; Atx and 
Awx denote the corresponding time and frequency uncer- 
tainties. Similar notations apply to qx!. 

The SIWPD employs basis-functions of the form 

4 L . n , m . k ( t )  = 2 p ’ 2 $ J n  [ 2 7 t  - 2%) - IC] (7) 

where {&,(t) : n E Z+} are wavelet packets [8], t? is the 
resolution-level index (0 5 P 5 L) ,  m is the shift index 
(0 5 rn < ZL-‘), k is the position index (0 5 IC < 2‘) and 
L denotes the finest resolution level. Each basis-function is 
symbolically associated with a rectangular tile in the time- 
frequency plane which is positioned about 

where c h  and C, are respectively the energy centers of the 
low-pass and high-pass quadrature filters [7], R(n) is an in- 
teger obtained by bit reversal of n in a L - bits binary 
representation, and GC-’ is the inverse Gray code permu- 
tation.  The width and height of the tile are given by 

The SIWPD [7] is preferable to  the  standard wavelet packet 
decomposition (WPD) [8] due to  its enhanced  properties. 
Namely, shift-invariance, lower information cost and im- 
proved time-frequency resolution. For example, the signal 
~ ( t ) ,  which is depicted  in Fig. 1, comprises a short pulse, 
a tone and a component with nonlinear frequency mod- 
ulation. Its optimal expansions obtained by the Match- 
ing Pursuit [9], Basis Pursuit [lo] and  WPD  are illustrated 
in Fig. 2. While these  algorithms use the conventional li- 
brary of wavelet packets and fail to represent the signal 
efficiently, the  SIWPD (Fig. 2(d)) concentrates the signal 
into a small number of coefficients. Furthermore,  its com- 
putational complexity is significantly lower than those as- 
sociated with the Matching Pursuit  and  the Basis Pursuit. 

Fig. 3 illustrates the MWD for g( t ) ,  using various 
distance-thresholds. When D = 0, there  are no interference 
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Figure 1. Test signal .s(t) consisting of a short  pulse, 
a tone   and  a nonlinear chirp. 

terms,  but  the energy concentration of individual compo- 
nents is insufficient. Ll  = 2 leads to improved energy con- 
centration,  yet, no significant interference terms are present. 
As D gets  larger, the interference between components be- 
comes visible and  the MWD converges to  the conventional 
WD. An acceptable compromise is usually found between 
D = 1.5 and D = 2.5 [11]. 

To illustrate the performance of the  MWD, we refer t o  
the mesh plots for the signal s ( t ) ,  which are depicted in 
Fig. 4. Compared  with the Smoothed pseudo Wigner dis- 
tribution,  the Choi-Williams distribution, the cone-kernel 
distribution and  the reduced interference distribution, the 
SIWPD-based MWD obtains  high resolution and concen- 
tration in time-frequency, and is superior  in eliminating in- 
terference: terms associat’ed with the WD. 

3. G E N E R A L   P R O P E R T I E S  
Realness:  The MWD is always real, even if the signal or 
the basis functions are complex. This property is a direct 
consequence of the realness of the Wigner distribution. 

Shift-Invariance: Shifting a signal by T = 2-L ( k ,  L E 
Z), where L is finest resolution level of the best-basis de- 
composition, entails an identical shift of the MWD, i . e . ,  if 
g(t) = g(t  - T )  then T j ( t , w )  = T,(t - T , w ) .  

Symmetry  in  Frequency: Real signals have symmetrical 
spectra. For symmetric spectra,  the Wigner distribution is 
symmetric in the frequency domain, W,(t, - w )  = W,(t, LJ),  
W,,,,(t, -w) = W s , g ( t ,  w ) .  Thus, for real signals and real 
baas-functions, the MWD retains  the same symmetries, 
L e . ,  T,(t: -u) = Ts(t ,  w ) .  

Symmetry  in Time: For symmetrical signals, the Wigner 
distribution is symmetric  in the time  domain, Wg(-tlu) = 
Wg(t ,w) ,  Wg,q(-t,w) = WS2, ( t ,w) .  However, the MWD 
is not necessanly symmetric, since the  SIWPD is generally 
asymmetric.  Still, confining ourselves to symmetric basis- 

basis-functions) and restricting the  SIWPD  to bases satis- 
fying { ~ x ( t ) } ~  = { p ~ ( - t ) } ~ ,  the expansion becomes sym- 
metric, rather  than  shft-invariant. In that case, the MWD 
is symmetric in time, i.e., T,(-t,w) = T,(t,w). 
Total  Energy: Integrating the general form of the MWD 
with  respect to time and frequency shows that  the  total 
energy is bounded by the energy of the signal: 

functions (entailing either biorthogonal or complex-valued 
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Figure 2. Time-frequency  tilings  for  the  signal s ( t )  obtained by  various  best-basis  methods:  (a)  Matching 
Pursuit ;   (b)  Basis  Pursuit ;   (c)  Wavelet   Packet  Decomposition;  (d)  Shift-Invariant  Wavelet   Packet  Decom- 
position. 
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Figure 3. The  modifled  Wigner  distribution for the   s ignal  s ( t ) ,  combined   wi th   the  SlWPD and  various 
distance-thresholds:  (a) D = 0; (b)  D = 2; (c) D = 3; (d) D = 5. An  acceptable  compromise  between  energy 
concentration  and  suppression of interference  components  is   usually  found for 1.5 5 D 5 2.5. 

The difference between the  total energy and the energy of 
the signal essentially stems from the smallest expansion co- 
efficients. In fact, if  we set the amplitude  threshold ( E )  to 
zero, the set of indices A runs over all the basis-functions, 
and  thus  the  total energy equals the energy of the signal. 

Positivity:  The interpretation of the conventional WD a s  
a pointwise time-frequency energy density is generally re- 
stricted by the uncertainty principle and by the fact that  the 
WD may locally assume negative values. However, the non- 
negativity and interference terms  are closely related,  and in 
many cases the suppression of interference terms accompa- 
nies reduction of negative values in  magnitude [I]. Thus, 
reduction of the interference terms associated with the WD, 
entails comparable attenuation of its negative values. 

4. INVERSION  AND  UNIQUENESS 
One of the advantages of the MWD is its capability to re- 
solve multicomponent signals into disjoint time-frequency 
regions. 

Definition 1 
Let X = A U {X I {X, XI} E r for some A' E A} be the in- 
dices set of the significant basis functione,  Le., the basis 
functions which contribute t o  the MWD. A pair of indices 
k,C E X are said to be equivalent, denoted by k - e, if 
k E e or alternatively there exists  a  finite  series 
such  that { X t , X , + l }  E r for k = 1 , 2 , ,  . .  , N - 1 and 
{k, XI), {e,  ANI E r. 

Clearly, N is an equivalence relation on X, since it is 
reflexive ( k  - k for all k X) symmetric (IC - implies 
e - k) and transitive (k - e and e N m imply k N m). The 
equivalence relation means that  the corresponding basis- 
functions are linked in the time-frequency plane by a series 

of consecutive adjacent basis-functions. Denote by 

the equivalence class for k E X. Then, for any k, t' E X 
either AL = Ap or A k  n At = 0. Hence, {A& I k E x) 
forms a partition of X, and each equivalence class can be 
related to a single component of the signal. The number 
of components comprising the signal is determined by the 
number of distinct equivalence classes in X .  

Lemma 1 Let { p k ) k e ~  be the best basis for g(t),  and le t  
Wk,( 3 W,,,,, be the cross Wigner distribution of pairs of 
basis-functions. Then the set { W ~ , ~ } ~ , P E N  is  an  orthonor- 
mal basis for L z ( l R z ) ,  and the expansion  coeficients for the 
M W D  are given by 

CLc;, if IC = P E A or  { k , e }  E r ,  

(12) 

C k , l  = (Tg, Wk,!) 
0, otherwise , 

where 

The proof is detailed in [ll]. The components of a pre- 
scribed signal can  be recovered from the MWD to within an 
arbitrary constant  phase factor in each signal component, 
and to within errors generated by neglecting small basis 
constituents (small auto-terms, small cross-terms, as well 
as interference terms  that correspond to distant basis func- 
tions). Let k E A, and let AI. be its equivalence class. Then 
for any e E A k  there exists a finite series {Xi};"=l such that 
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Figure  4. Mesh plots for the signal s ( t ) :  (a)   The  modif ied  Wigner   dis t r ibut ion  combined  with the SIWPD 
and  distance-threshold D = 2; (b)   Wigner  distribution; ( c )  Smoothed pseudo  Wigner  distribution; (d) Choi- 
Wil l iams  dis t r ibut ion;  ( e )  Cone-kernel  distribution; (f) Reduced  interference  distribution. 

{X i ,  x,+1} E r for i = 1 , .  . . , N - 1 and {k, xl}, {e, x,} E r. 
By Eq.  (12) we have 

which shows that ce has a recursive relation to C k ,  and Ck can 
be recovered from the MWD up to a  phase factor. Accord- 
ingly, each component of the signal can also be recovered up 
to  an  arbitrary constant  phase factor by gk = xeEA, cppr. 
The  constant phase  factor  in each component of the signal 
clearly drops out when we calculate the MWD (as it does 
for the  WD). Therefore, it cannot be recovered. Summa- 
tion of distinct signal components generally yields a differ- 
ent signal that  has  the  same MWD. In some applications, 
such as  pattern recognition, it is actually desirable that sig- 
nals consisting of the same components will be identified, 
irrespective of their relative phase. The MWD provides an 
efficient technique for doing so. 

5. CONCLUSION 
Herein we investigate  adaptive decompositions leading to 
a newly defmed modified Wigner space. We have shown 
the validity of various useful properties relevant to time- 
frequency analysis. Interference terms between distinct 
components  can be efficiently eliminated, as long as  the lo- 
calization properties of basis elements aptly resemble that of 
the signal. The MWD is shown to  be effective for resolving 
multicomponent signals. The signal components are  deter- 
mined as partial sums of basis-functions over equivalence 
classes defined in  the time-frequency plane. 

The proposed methodology is extendable to  other distri- 
butions (e.g., Cohen’s class) and  other “best-basis” decom- 
positions. However, the properties of the resulting modified 
forms  depend on the distribution,  library of bases and best- 
basis search algorithm which are specifically employed. 
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