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1. Introduction

Wavelet bases are widely used for estimating signals embedded in noise. The wavelet shrinkage method [3] transforms the
noisy data into the wavelet-domain, applies soft or hard thresholding to the resulting coefficients, and subsequently trans-
forms the modified wavelet-domain coefficients back into the original space. Saito [6] proposed to use an information-
theoretic criterion, the Minimum Description Length (MDL), for noise removal. It has been observed [2, 3, 6] that
denoising with the conventional wavelet transform (WT) and wavelet packet decomposition (WPD) may exhibit artifacts,
such as pseudo-Gibbs phenomena in the neighborhood of discontinuities. These artifacts were related to the lack of
shifi-invariance of the applied transforms, and their reduction was achieved by averaging over several translations. This
averaging procedure was termed in [3] Cyele-Spinning. Cohen, et al. {2] presented an extension of WPD into shift-
invariant WPD (STWPD). Moreover, they formulated the MDL criterion as an additive information cost function [1] and
presented an adaptive translation-invariant denoising algorithm.

The main purpose of this work was to improve the performance of existing wavelet-based denoising algorithms when
applied to speech signals, and to study the consequences of SIWPD on the resulting artifacts.

2. Denoising in the wavelet domain

Suppose we have noisy data y = {1}V 51 (N = 27), where y; = f; +e;, i = 0,.., N — 1, f = {fi}}' 5 is an unknown
real-valued signal that we would like to recover, and e = {e; ;l;‘ is a stationary additive white Gaussian noise (AWGN)

with zero mean and a presumably known power spectral density o%. The vector w = {5} of wavelet expansion
coefficients of the noisy data y is defined by w = Wy, where £ is the resolution level index, n is the oscillation index, -
% is the time-domain position index and W is the finite orthonormal wavelet transform matrix. The orthonormality of
W yields the following reconstruction formula: y = WTw. Under the undetlying noise model, noise contaminates
all wavelet coefficients equally. Since e is assumed to represent WGN, its orthogonal transform, z = We = {z¢, 1},
is also WGON, wepn gt = fenk + Zemk, where ©@ = W = {8, 1} is the vector representing the unknown wavelet
transform coefficients of the noiseless data f. Denoising in the wavelet domain is based on the principle of selective
wavelet reconstruction: Given w we need to determine a subset [ of indexes (£, n, k) of wavelet coefficients in w that
will be kept and possibly modified, usually by applying appropriate gain values ge,,, k. Estimation of © is then obtained

by B = {gemi - Wenk e kyer» and the denoised signal is obtained by f=w7o.!

3. Speech denoising algorithm development

Assuming that the speech and noise signals are independent, we conclude that E||w|i2 v = E|i©||2 y + Ell2if v =

@13y + Neo?, where “"H%Nf SN} #2, and E denotes the expectation operator.
Among all linear estimators © = G(w, o) - w, the Wiener Gain Estimator is optimal in the mean squared error sense:

[

Cul®9) = 15+ B

1

Since in practice ||©|[2 , is unknown G, (©, o) is an ideal gain; it is replaced in (1) by its estimate n(|[w|iZ ., E|l21i3 » ),
yielding G..(w, a), where 7 is a general operator that is used for estimating |{©|% . Soft thresholding [3] can be used
to define . Given y, the variance o? characterizing the AWGN must be estimated first. We based the selection of the
various components of the denoising algorithm on simulation results. The algerithm performance was evaluated both
subjectively, by listening, and objectively by the often used measures: SNR, Segmental SNR (SEGSNR) and Log-Spectral
Distance (LSD) [1]. The noisy signals were created by adding WGN at 10 dB SNR.

In our simulations, we used WPD 10 decompose the noisy signals, and applied various thresholding methods, as well
as the Wiener estimator, for speech denoising. SureShrink [3] and Wiener estimators were found to be clearly better than
other examined alternatives [1]. However, it was found that the SureShrink estimator generates spike-like artifacts due to
the thresholding operation it uses. These artifacts are common to both soft and hard thresholding processes. Moreover,
speech enhanced by thresholding-based algorithms sounds muffled, because most high frequency speech coefficients are
zeroed out [1]. In addition we observed that full subband WPD-based denoising leads to somewhat better results compared
to adaptive WPD, constructed with an additive information cost function [4]. Full subband decomposition is attractive as
it represents an efficient non-adaptive tree structure.

Additional tests have shown that the use of SIWPD typically does not improve the enhancement results. The improve-
ment obtained by the Cycle Spinning denoising approach probably stems from signal averaging over different time-shifts
which smoothes the signal. It suppresses the Gibbs-like artifacts but also blurs sharp signal transitions.
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3.1. Mother-wavelet: phase linearity and design

An important aspect of a wavelet-based algorithm is the selection of the underlying mother wavelet. From our simulations
we concluded that symmetry of the mother-wavelet is of secondary importance. We particularly examined the importance
of frequency localization and have done so by defining a generalized Meyer mother-wavelet that is given by a modified
Quadrature Mitror Filter (QMF) m(w):

15 |(u‘| S%(l_r)i
cos [§ - V(——l—-'“"_““_r)
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IT=7) € lw| < F+7),
0, ol = 51+ 7,

)

m(w) =

where v(z) is an auxifiary function (z € [0,1]), and 7 is the rell-off parameter [1]. The choice of » = 1/3 corresponds
to the standard Meyer mother-wavelet [1]. A comparison of the enhancement results obtained with the Meyer mother-
wavelet vs. other common mother-wavelets has shown a clear advantage of the first due to its improved frequency
localization. This property corresponds to a wider time-support of the basis functions and thus helps to suppress time-
localized artifacts. Moreover, when using either the Wiener gain estimator or SureShrink thresholding, using the zbove
Meyer mother-wavelet with a small roll-off, the quality of the enhanced speech improves, resulting also in better SNR and
LSD values. However, threshold methods, including SureShrink were not judged to provide an enhanced speech quality
that is as good as the quality obtained by the Wiener gain estimator.

3.2, Decision-directed a priori SNR estimation

Obviously, when speech is corrupted by stationary colored noise, the noise variance has to be estimated for each decom-
position band. Such an estimation is facilitated by the decision-directed (D-D) a priori SNR estimation [5] . In order to
utilize it we have to segment the speech signal into frames. Segmentation of the speech signal results in better tracking of
temporal transitions and also decreases the processing time-delay. The Wiener gain function (eqn. (1)), can be rewritten
as follows:

Hef.n(j)”g,d
E”Z!.n(j)llg,d

where j is the index of the analysis frame (j = 1,2,...M), ©,,,.(j) and 2., (7} are the clean speech and the noise process
wavelet coefficients in the band indexed by the pair (£, ), &2, () is the @ priori SNR of the wavelet coefficients in that
band, and d is the number of the coefficients in the band (d = 2(*+)), Again, by substituting in eqn. (3) an estimate
for €¢.,(5), which we denote by £e.n(j), we obtain the practical gain function G p(Wen (4}, 260 (7). So, we can use -
now genx = Gy forall k € (0;d —1]. As in the Ephraim-Malah Log-Spectral Amplitude (LSA) algorithm {5], the
estimation of the a priori SNR is performed via the D-D approach [13:

18em (i — DIiE 4
Bllzen(d — l)Hg,d

G} Oenlidzen(i)) = =520 ¢, () =

Len(f)+ 1 @

Eonli) =a +(1- o) max(ven(s) = 1,0), §=2,3,..M, )

112
where 7¢.,,{j) = __"—glvlv'-:z:((?)lllli: is the a posteriori SNR and a is a smoothing parameter. The initial cendition for computing
(@) is £2.,(1) = a+ (1 — @) max(ve.(1) — 1,0).

The best results, in terms of SNR and the quality of the enhanced speech, were obtained by using a Hann window
(frame size is 256 samples, with 50% overlap), full subband decomposition (FSD), L = log, N = J (the lowest allowed
decomposition level, where N is the length of the analysis frame), a generalized Meyer mother-wavelet (64 taps, 10%
roll-off), and o = 0.9, Utilization of the D-D @ priori SNR estimation generally requires tracking the a priori SNR at the
terminal tree nodes. Thus for a fixed (non-adaptive) tree structure (such as FSD) the task is simplified since the indices of
terminal nodes remain invariant from frame to frame. In contrast, tracking the a priori SNR when terminal node indices
change from frame to frame, as would be the case with an adaptive WPD, is a more complex task.

Local Trigonometric Decompositions (LTD) are joint time-frequency representations that perform an adaptive time-
axis segmentation. We have found that the conclusions stated above, with regard to WPD-based speech denoising, hold
also for LTD-based denoising of speech (cf. [1]).

4. Ideal denoising

When using the Wiener estimator, the D-D a priori SNR estimation can be applied to any of the discussed decompositions,
as well as to other spectral transforms like the DFT and DCT, to effectively smooth frame to frame gain fluctuations. These
fluctuation are caused by fluctuations in the estimated squared spectral amplitude of the noise process. In all examined
cases, the D-D approach improved the quality of enhanced speech and resulted in higher SNR values. Obviously, if we
could use the exact values (unknown, in practice) of the squared spectral components (] Zx|? for a DFT) of the noise
process in each frame, instead of estimated expected values (E|Zy|?, in the case of a DFT), we would expect better
performance of the denoising algorithms. We refer to a denoising process based on the exact values of the squared spectral
amplitudes of the neise signal as “ideal denoising ", Results of a comparison between WPD-based ideal denoising and a
DFT-based one have shown that the WPD-based ideal dencising attains a consistently higher SNR [1] (see below). The
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reasons could be:

1) While performing denoising with N samples per time frame, we obtain N complex-valued spectral (DFT) coefficients.
WPD (or any real-valued orthogonal transform) yields NV independent real-valued coefficients. Consequently, DFT-based
denoising has at its disposal only half (~ N/2) the number of amplitude coefficients.

2) While performing DFT-based denoising, if |¥}|* > |Z1.|* we do not modify the phase of the noisy signal, taking it as the
optimal estimate of the clean speech phase [5). Whenever |Yi|? < |Zi|? we estimate that the speech component in the k-
th bin is zero (amplitude and phase). On the other hand, when the ideal denoising is based on a real-valued transform, one
can achieve an exact phase reconstruction of the clean speech signal (expressed via the sign of the real-valued transform
coefficients) [1]. This is an intrinsic advantage of using real-valued transforms for denoising, as compared to DFI-based
denoising.

A fair comparison is achieved by zero padding the signal frames in DFT-based ideal denoising (i.¢., using DFTqx),
thus improving its frequency resolution, and subsequently stightly improving the global SNR of enhanced speech. Sim-
vlation results show that WPD-based ideal dencising outperforms DF T,y -based ideal dcnmsmg by 0.69 + 1.12 [dB] in
global SNR, in the particular simulations [1].

5. Comparative performance analysis

Results of simulations under practical conditions have indicated that the DFT-based Wiener estimator attained the best val-
ues of global SNR, segmental SNR and LSD [1]. The notable differences is the level and type of the residual background
noise. All of the algorithms, LSA being the exception, introduce a colored background neise that was found to be disturb-
ing to the listener. The DFT-based Wiener estimator is characterized by the lowest level of residual noise, and is better
then the proposed wavelet-based algorithm, The LSA estimator is characterized by a higher level of background noise,
than DFT and WPD-based Wiener estimators, but, advantageously, the background noise is almost white. It’s important to
note that the Wiener estimator, by definition, minimizes the mean squared error (MSE) in estimating an unknown signal f,
while the LSA estimator minimizes the MSE in estimating the log-spectral amplitude of the unknown signal. Hence, it’s
expected that the DFT-based Wiener estimator achieves higher SNR than the LSA estimator. Thus, the comparisons done
in this work show that despite the advantages of WPD-based algorithms under ideal denoising conditions, in practice the
DFT-based denoising algorithms obtain better results. We suggest that the reasons for that are;

1) Using estimated expected values of the squared spectral amplitudes of the noise, we can't expect to exactly reconstruct
the clean speech phase.

2) As shown in [1], if the additive noise is WGN, then, with the exception of the DC companent, the variance of its
squared spectral amplitudes, resulting from a real-valued orthogonal transform, is twice the variance of those obtained
via the DFT. This leads to higher frame to frame gain fluctuations, thus reducing the resulting global and segmental SNR
values. The gain fluctuations also result in colored residual background noise.

6. Conclusion

We have developed and examined speech denoising algorithms based on WPD and LTD. We have shown that artifacts
introduced by wavelet-based denoising algorithms {2, 3, 6], when applied to speech enhancement, can be suppressed by
sharply defining the spectral support of the mother-wavelet. The improved frequency localization of the basis functions
correspondingly improves the speech denoising performance. It also has been shown that shift-invariance achieved by
SIWPD does not contribute to artifacts suppression and does not guarantee an improved denoising performance.

Denoising based on presumed knowledge of the squared spectral amplitude of the noise is referred to as ideal denois-
ing. We obtained in this case that WPD-based denoising performs better than DFT-based one. In practice, state of the
art DFT-based speech dencising algorithms perform somewhat better than the proposed wavelet-based speech dencising
algorithm, for which we offered some possible explanations.

In spite of this result, wavelet-based speech enhancement can be advantageous in certain ¢ircumstances. For example,
WPD-based denoising can be easily incorporated into 2 WPD-based speech coding system. Alse, LTD can be used as a
time-segmentation tool. Thus, the LTD-based denoising algorithm can be conveniently incorporated in speech analysis
systems that require adaptive time-segmentation. Moreover, the LTD-based speech denoising algorithm can be used in
conjunction with the Shift-Invariant Adaptive Polarity Local Trigonometric Decomposition (STAP-LTD) [1]. Its shift-
invariance property is potentially important for recognition applications.
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