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Abstract - Vector-Quantization (VQ) is an effective and widely- 
used method for low-blt-rate communlcatbn of speech and Image 
slgnals. A common assumption In the analysis of VQ systems Is 
that the compressed digid information is tmnsmitted through a 
perfect  channel. Under thls  assumption,  quantizing distortion is 
the only  factor  affecting  output  signal fldellty.  However, In 
physkal channels, errors may be p ~ t ,  degrading overall system 
performance. In  order to reduce  performance  degradation, 
previous  authors  suggested to optimally redesign the VQ for 
ndsy  channels ("noisy" VQ). The "nolsy" VQ results In smaller 
dlltortlon  as  compared to the  original ("noiseless") VQ for  the 
spciflc  channel It was designed for.  The  mala  drawback of thls 
approach Is the need to deslgn and store, both In the  transmltler 
and the rocelver, several codebooks for different Bit-Error-Rates 
(BER). In this paper, we sbow that a simple gain  adaptatlon, 
which depends on the  channel BER, also Improves  system 
performance, while  using the  original ("nolseles") VQ deslgn. 
The Improvement In same cases, as shown by numerical examples, 
is e h e  to what can be achieved by the optimal approach. 

1. INTRODUCTION 
Vector-Quantization (a Scalar-Quunrizurion as a particular 

case) is a  method  for  mapping  signals into digital  sequences. 
In most  Signal  Processing  applications tbe source emirs  signal 
samples  over an infiiite alphabet.  These  samples  should be 
sent to the destiMtion with the  highest  fidelity  possible.  The 
VQ encodes the source output into  a  digital  sequence that is 
transmitted  through  the channel. The decoder's goal  is  to 
reconstruct source samples from this  digital  sequence.  Since 
analog sources cannot be represented  perfectly by digital 
information, some Quantization Distortion must be tolerated. 
T& structure of a VQ-based  transmission system is shown  in 
Fig. 1. ?he scale  factor a is  introduced bere for  later  reference. 

In  every channel transmission the  VQ encodes a K- 
dimensional vector of  source samples - ~ ( n )  into  a  channel 

f i n )  

symbol f in )  = W{x(n)} . A channel  symbol y is taken from a 
finite  channel  alphabet  which,  without loss of generality, is 
represented by  the indices i = 0,1, ..., N - 1. We  assume  a 
memoryless  channel,  tberefore its output j(n) is a  random 
mapping of its input, characterized by the probability 
q i  = Pr{j(n) = jly(n) = i } .  

Finally,  the  decoder  converts  the  channel  symbol into an 
output reconstruction vector j (n )  = +{j(n)}, which is 
hopefully "close" to the input vector. The set of all 
reconstruction  vectors  (or codevectors) is the  VQ codebook 

We defme a distortion measure d(5 2) between the input 
vector  and  the reconstruction  vector.  Throughout, we shall 
use  the  Squared-Error distortion measure: 
(1) d($ i )= Ib - iJ2  

The Knowledge  of source statistics p(2) or a representative 
training sequence is assumed. For simplicity we  assume  that 
xhasazeromean.Theperformanceoftbesystemismeasured 
in terms of the average distortion: D = 4 .  

In  most  VQ applications  the  channel is assumed to be 
noiseless [ 11431, so that  no errors occur in transmission.  This 
assumption  is  based upon using  a  channel  encoder-decoder 
pair which cmects channel  errors. 

Upon knowledge  of  the source statistics,  Lloyd's algorithm 
[2] may be used to design  a  VQ. The  design of a VQ is based 
in practice  on a training  sequence.  In  this case no  knowledge 
of the source  statistics is assumed.  The  design  of a VQ can be 
done  using the LBG algorithm 131.  Both  methods are iterarive 
and  alternatingly  apply  the Nearest-Neighbor condition and 
the Centroid condition. We shall refer to the VQ, designed 
for a perfect  channel as the  "noiseless"  VQ. 

3s itn, 

~ ~ p f - l - + ~ ~ . u + p / + G l  encoder  decoder 

Fig.  1-  Vector  Quantization  system 
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a. CHANNEL ERRORS 
In the discussion so far we  have assumed that the channel 

is  noiseless. In some  applications channelcoding is not utilized 
because of complexity or bit-rate  requirements. In such cases 
the  perfect  channel  assumption may not be justified,  and if a 
channel-error occurs, a wrong  codevector  is  selected [4]-[9]. 

In the  presence  of  channel errors, and given the transmitted 
symbol,  the  received  symbol is a random variable.  Previous 
works  (e.g., [4,6]) suggest  to  redesign  the VQ by modifying 
the  distortion  measure to take  all  possible  output  vectors  into 
consideration. This  modification results in a Weighted  Nearest- 
Neighbor  condition  and  a Weighted Centroid condition. These 
conditions are specific to every  channel  scenario.  Hence,'a 
"noisy" VQ should  apply a different partition and a  different 
codebodr for each possible  channel  Bit-Error-Rate (BER). 
The main drawbacks of h i s  approach are the  large  memory 
consumption and tbe extensive design effort The system needs 
u> store  a codebook library, both at the  transmitter  and  the 
teceiver. 

In this paper we suggest a different approach  for  the 
adaptation of  the VQ design  to  combat  channel-errors.  The 
main idea is to scale the "noiseless" VQ codevectors by a 
factor 0 e a l l .  Scaling the VQ codevectors by a is 
equivalent  to  applying  two  gain  multipliers  in  the  signal  path, 
as shown in  Fig. 1. The  purpose of the  scaling  is  to  make  the 
distance between any pair of codevectors  smaller.  Hence, 
channel e r rm will cause smaller  distortions. On the other 
band, the VQ is no longer optimal for the given  source,  and 
the Quantizationdistortion  increases.  It  is  especially  clear  that 
tbe  overload  error gets larger as the  scaling  factor U used is 
smaller,  This  trade-off  results in the  existence of  an  optimal 
value of Q which  minimizes  the  overall  average  distortion. 
We shall refer  to  this  metbod as " a-scaled" VQ. 

The first step in  designing an I' a -scaled" VQ is to design 
a  "noiseless" VQ as usual.  Next,  the  overall  distortion, as a 
function of a is: 

whereS,(a)= x:y --x = i  i s the i -amt ionregion .  

For different  channel  BERs, ofa) can be optimized off-line 
over a. For  example,  due  to  the optimality of  the  "noiseless" 
VQ, for the perfect  channel we  should  get aOp = 1. 

The  value  of  the  optimal a becomes s m a l l e r  as the  channel 
BER increases. For a + 0 all codevectors tend to zero  and 
Nu) approaches  the signa variance: 

I ( 3  I 

(3) D(a+O)=Jb-~12P(x)dx 
n 

where R is the entire signal space. On the  other  band  for 
a>l,tbedistancebehveeneverypairofcodevectorsincreases, 
resulting  in l a r g e r  overall distortion. 

In Practice,  the  transmitter  and  the  receiver  need to keep 
only a  single oodebook and a Look-Up-Table of optimal scale- 
factors. 

In  the  following  we  prove that for a  wide class of  scalar 
source  PDFs  and scalar quantizers, D(a) has a global 
minimum. The source PDF is assumed IO have  the  following 
propehes: 
i. Symmetric and Unimodal, i.e., p ( x ) =  p( -x )  and 

ii. Log-Concave,  Le., a2/dx2 [ logp(x)]  0. 
Tbese properties hold for tbe Uniform, Laplacian, and Gaussian 
sources [ 101. 

For the scalar quantizer, we use  a change of variables 
x = az to get: 
(4) D(a) = E{+, i)} = 

Ax)  dy) for I4 2 I$ 

N-l N-1 

= a ' C C q j i l ( z - ~ ( j ) ) 2 P ( a z ) . d z  
i=O j = O  s: 

where S; = { z  : ~ ( z )  = i} is the i - th panition  interval. 

(5 )  U (a )  = 
The  detivative of @a) is: 

=aZ~C.4jij(z-~j))2.[3~~)+~'(~)].~z 
N-1 H-I 

i=O j l ,  s; 
Since u2 is strictly positive for 0 c a s 1, D'(u) = 0 if 
(6) 3 p ( a r )  + a z p ' ( a z )  = 0 

or 

3 + ~ - = 0  a ,  P ' W  
P(&) 

Next, we  show that for  positive  values of z, (6) has  only 
one solution. Using the  symmetric  property of the  PDF it is 
possible to state similar arguments  for  negative  values of t , 

Using the log-concave  property we state that 
p'(az)/p(az) is a decreasing function of a .  'Ihe unimodality 
assures ~ ' ( u z )  LO be negative.  Therefore, a.p'(az)/p(az) is 
a negative  monotonically decreasing function  of a,  since both 
a and p' (az) /p(az)  has an increasing absolute value. QED. 

It should be mentioned that the logancave property is  a 
sufficient  condition  for  obtaining  a  single  minimum. In specific 
examples,  which wbere tested  numerically,  a  single minimum 
was also  obtained  for  non-log-concave PDFs, such as the 
Gamma source. 

Iu. NUMERICAL EXAMPLES 
In order to calculate  the optimal scaling  factor  for a specific 

system one should calculate D(a) and perform a one- 
dimensional optimum search. This may be done by standard 
Non-Linear  programming  techniques. 

For example  we anaiyzed a 4-bit Max-Lloyd scalar quantiw 
[lo] designed  for the Laplacian sow. Tbe  digital  information 
is transmitted  over  the  Binary  Symmetric  Channel  (BSC). In 

42 



Fig. 2 the overall distortion is plotted as a  function  of  the 
scaling fador a, for  different  values of the BER q. The  overall 
distortion is nonnalized to  the  distortion  in  the case of a 
perfect channel  (quantization  distortion  only). 

It can be seen from Fig. 2 that  a  considerable  improvement 
is obtained by the scaling  metbod.  For  example,  in the w e  of 
1% BER ( q  = a  3-dB  gain  is  attained by  using  the 
optimal a - 0.56 to improve the "noiseless"  quantizer (a = 1) 
perfomawe. Moreover, tbe distortion graph is quite flat about 
the minitnum. This property allows the system  to use  the 
same scale  factor  for a wide ranges  of  BE&,  without  reducing 
much the improvement  in performance. 

It is interesting  to  compare  the  performance  improvement 
of the " a-scaled" quantizer with the perfonnance improvement 
of an optimal redesign [4,6]. In Fig. 4, the " a-scaled" quantizer 
is compared with m optimal redesign as well as with "noiseless" 
quantizer. As in Fig. 2, distortion is normalized to the 
quantization distaion of a  "noiseless"  quantizer  under perfect 
channel  conditions. 

Fig. 4 demonsbates that m this case tbe " a-scaled" quanwr 
approach achieves most of tbe gain possible  by a full quantizer 
redesign. 
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a Fig. 4 - An "a-scaled" 4 bit scalar quantizer,compared  with 
t.3 0.4 0.5 0.8 0.7 0.8 0.9 an  optimal  redesign 

Fig. 2 - The  overall  distortion  of an " a-scaled" (Normalized distortion, LapMan source, BSC) 
4 bit scalar quantizer, Laplacian source, BSC 

Next,  we examine the generalized Gaussian  parametric 
In Fig. 3 we plotted the value of the optimal a as a function family  of distributions [ 111. A parameter f controls tbe shape 

of the  channel BER. of the distribution. A small r results in a  concentrated PDF, 
am . . . . . . . . .  I . I I , * . .  while larger  values of r yield flatter distributions. In Fig. 5 

the gain in performance of an 'I a-scaled" quantizer  relative 
I I , I , . , , .  to the "noiseless"  quantizer ( a  = 1) is compared for several 
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1 o* 1 o'y 
Fig. 3 - The optimal value of the scale  factor of an " a scaled" 

as a function of BER, 
4 bit Scalar Quantizer, Laplacian  source, BSC 
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Fig. 5 - Performance Gain  of an " a-scaled" 
Tbe optimal scale factor values,  from  Fig. 3 may be stored in 4 bit Scalar Quantizer as a function of BER 
a  Look-Up-Table, at the  receiver  and  the transmitter. (Generalized Gaussian source with parameter f, BSC) 
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We can see that the  scaling  of a  quantizer  is  more  efficient 
in combating  channel errors for  concentrated  distributions. 
T k  w o n  for this is that  scaling by 0 e r c 1 reduces the 
qupntization  levels  thus  increasing  the  overload  quantization 
emr, particularly for wide  distributions.  Therefore, m o w  
distributions are better  suited  for the  proposed  adaptation 
mathod. 

The last example  presented in Fig. 6 and  Fig. 7 is  based 
upon  an 8 bit, 1 bit/sample VQ. The VQ  was  designed for a 
Markov G a u s s i a n  source with correlation  coefficient p = 0.9. 
The performance  gain as a  function of  the BER, due to  the 
use of a  scale  factor,  is shown Fig. 6, while  the  optimal  scale 
factor, a*, is drawn in  Fig. 7. 

2 I * I , , ,  . I ~ : : : : : : I  i : : : : : : : I  

Fig. 6 - Performance Gain of an " a -scaled" 
8 bit,  1biVsample Vector Quantizer as a  function  of BER 

(Gaussian source,  BSC) 

The  application of tbe scaling  factor derived from  Fig. 7 is 
done in the  same way as for  a scalar quantizer.  It  should be 
mentioned that the value  of uOp, is  applicable only for the 
specific  quantizer  it was designed  for.  Other VQs consmcted 
for  the same  source  will  have other codevectors. Even  for  the 
same  codevectors different index-assignmen& [61 may  be 
chosen  resulting  in  possibly  different  scale  factor  values. 

IV. CONCLUSIONS 
In this paper we  suggested a  simple  adaptation method of 

Scalar and Vector Quantizers  to  combat  channel error effect. 
We  showed that  a  simple scale factor reduces the overall 
system distortion. We present numerical examples which 
demonstrate  the  performance  gain over the corresponding 
"noiseless"  quantizers.  For  example,  in  the case of a 4-bit 
Max-Lloyd scalar quantizer, designed for the Laplacian source, 
binary  symmetric  channel (BSC) with 1% error rate, the 
proposed "a-scaled" quantizer  presents  a  3-dB  performance 
gain over  the "noiseless" quantizer. The  optimal  redesign 
approach  presents  a  3.5-dB  gain,  while  demanding  a  much 
higher memory  budget  and  an extensive design procedure. 
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Fig. 7 - Optimal scaling factor of an " a -scaled" 
8 bit,  lbit/sample Vector Quantizer as a  function of BER 

(Gaussian source, BSC) 
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