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Abstract

The problem of enhancing speech degraded by uncorrelated additive noise, when the noisy
speech alone is available, has received much attention, since it is useful to enhance speech
signals prior to coding and identification processes. Wavelet bases are widely used in
various applications, such as estimating signals embedded in noise and coding. Wavelet-
based methods show good performance for a wide diversity of signals. However, it has
been observed that denoising with the conventional wavelet transform and Wavelet Packet
Decomposition (WPD) may exhibit visual artifacts, such as pseudo-Gibbs phenomena in
the neighborhood of discontinuities. These artifacts were attributed to the lack of shift-
invariance.

The main purpose of the thesis was to modify and improve existing denoising algo-
rithms and to study the consequences of shift-invariance on speech enhancement and the
resulting artifacts. First, we implemented the state of the art speech denoising algorithms
and wavelet-based denoising algorithms. These algorithms served as benchmarks. We
then developed the speech denoising algorithms, based on WPD and Local Trigonomet-
ric Decomposition (LTD), which utilize the decision directed approach to a priori SNR
estimation.

We have shown that artifacts, introduced by wavelet-based denoising algorithms [14,

16, 10, 33, 5], applied to speech enhancement, can be particularly suppressed by increasing



temporal support of the basis functions. Moreover, improvement in frequency localization
of the basis functions improves the speech denoising performance. It also has been shown
that shift-invariance achieved by Shift-Invariant Wavelet Packet Decomposition (SIWPD)
does not contribute to artifacts suppression and does not guarantee an improved denoising

performance.

Denoising based on the presumption of prior knowledge of the squared spectral ampli-
tude of the noise is referred to as ¢deal denoising. Quite expectedly, simulations confirm
that such ideal denoising attains higher SNR than the practical one. We have proven
that ideal speech denoising, based on some real-valued transform, achieve an exact phase
reconstruction of the clean speech signal (expressed via the sign of the real-valued trans-
form coefficients). This is an intrinsic advantage of real-valued transforms compared to
DFT-based denoising. The results show that the exact phase reconstruction associated
with real-valued transforms leads to global SNR improvement by 0.69 <+ 1.12 [dB] while

comparing WPD-based vs. DFT-based ideal denoising.

We have compared the proposed speech denoising algorithms to the state of the art
speech denoising algorithms [18, 19]. Simulation results indicate that, for each of the
tested speech signals, the DFT-based Wiener estimator attains the highest global SNR,
segmental SNR and LSD. The quality of the enhanced speech is similar for all the algo-
rithms. The notable difference is the level and type of a residual background noise. All
of the algorithms, Ephraim-Malah being the exception, introduce a colored background
noise, that was found to be disturbing the listener. The DFT-based Wiener estimator is
characterized by the lowest level of the residual noise, and is superior to the proposed al-
gorithms. The Ephraim-Malah algorithm is characterized by a higher level of background

noise then DFT and WPD-based Wiener estimator, but, advantageously, the background



noise is almost white.

Despite the advantages of WPD and LTD-based algorithms under ideal denoising
conditions, in practice (i.e., with an estimated noise variance) the DFT-based denoising
algorithms are found to be better. The reasons are:

1) Given the noisy observations, we can’t know the exact values of the noise squared
spectral components. Hence, using only the estimated averages of the noise squared
spectral components we can’t exactly reconstruct the clean speech phase.

2) It is shown in Appendix I, that if the additive noise is white and Gaussian, the variance
of its squared spectral components, obtained by real-valued transform, is twice (except
for the DC coefficient) the variance of the noise squared spectral components, obtained
by the DFT. This leads to higher deviations of noise squared spectral amplitude from its
estimated value, and subsequently to higher frame to frame gains fluctuations (segment
to segment gains fluctuations for LTD-based denoising) thus reducing the resulting global
and segmental SNR. The frame to frame gains fluctuations cause the residual background
noise to be colored.

Despite the fact that the speech denoising algorithms proposed herein do not possess
clear advantage over the DFT-based algorithms, they may have merit in a wider sense.
For example, WPD-based denoising can be easily incorporated into a WPD-based speech
coding system. Also, LTD can be used as a time-segmentation tool. Thus, the LTD-based
denoising algorithm can be conveniently implemented in speech analysis systems, which

require adaptive time-segmentation.
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Chapter 1 : Introduction

1.1 Motivation

The problem of enhancing speech degraded by uncorrelated additive noise, when the
noisy speech alone is available, has received much attention. This is due to a variety of
potential applications speech enhancement possesses. Furthermore, technologies enabling
the implementation of such intricate algorithms are now available. The main purpose
of denoising techniques is to improve the quality and comprehension of speech. It’s also
useful to enhance the speech prior to the implementation of techniques such as coding and
recognition. Unfortunately, while existing speech denoising algorithms appear to improve
the quality of speech, they typically do not improve its comprehension.

Wavelet bases are widely used for estimating signals embedded in noise. While tradi-
tional methods often remove noise by low-pass filtering, thus blurring the sharp features in
the signal, wavelet-based methods show good performance for a wide diversity of signals.
The wavelet shrinkage method, developed by Donoho and Johnstone [17], uses a fixed
transform of the noisy data into the wavelet-domain, applies soft or hard thresholding to
the resulting coefficients, and subsequently transforms the modified wavelet-domain coef-
ficients back into the original space. It was recognized that the success of such a denoising

scheme is determined by the extent to which the transform compresses the unknown signal

10



into few significant coefficients [15]. Given a library of bases and a noisy measurement,
researchers proposed several different approaches to select a “best” basis and a threshold

value, leading to the best signal estimate [13].

Saito [33] proposed to use an information-theoretic criterion, called the Minimum
Description Length (MDL) principle [30], for noise removal. He claimed that the MDL
criterion gives the best compromise between the estimation fidelity (noise suppression)

and the efficiency of representation (signal compression).

It has been observed [10, 1, 33] that denoising with the conventional wavelet transform
and wavelet packet decomposition (WPD) may exhibit visual artifacts, such as pseudo-
Gibbs phenomena in the neighborhood of discontinuities. These artifacts were related
to the lack of shift-invariance, and proposed to reduce them by averaging over different
translations: Applying a range of shifts to the noisy data, denoising the shifted versions
with the wavelet transform, then unshifting and averaging the denoised data. This pro-
cedure, termed Cycle-Spinning [10], generally yields better visual performance on smooth

parts of the signal.

Cohen, Raz and Malah [5] presented an extension of WPD into a Shift-Invariant WPD
(SIWPD). Moreover, they reformulated the MDL principle as an additive information cost

function [8] and presented an adaptive translation-invariant denoising algorithm.

The main purpose of this work is to modify and improve existing denoising algorithms
and to study the consequences of shift-invariance on speech enhancement and the resulting

artifacts.

11



1.2 Overview of the Thesis

The organization of this thesis is as follows. In the next chapter we review the state of
the art speech denoising algorithms and the so-called “decision directed” approach to a
priori SNR estimation, that was introduced by Ephraim and Malah in [18]. In Chapter 3
we review the basics of joint time frequency representations: Wavelet packet analysis and
best-basis expansion, the extension of wavelet packet bases for obtaining shift-invariance,
and local trigonometric bases. In Chapter 4 we review different wavelet-based denoising
algorithms, including the so-called “translation-invariant” denoising algorithm of Coifman
and Donoho, and the Cohen-Raz-Malah shift-invariant denoising algorithm, based on
shift-invariant WPD.

The main contribution of this thesis begins in Chapter 5, where we present several
speech denoising algorithms, based on WPD, Cosine Packet Decomposition and WPD
applied to DCT-I coefficients. We utilize the decision directed a priori SNR estima-
tion for each of the mentioned joint time-frequency representations. Importance of shift-
invariance, time support and frequency localization are discussed. In Chapter 6 we in-
troduce a comparative performance analysis of different speech denoising algorithms, and
present some interesting conclusions corresponding a comparison of DF'T-based and real-
valued transform-based denoising. Required proofs are given in the Appendices.

Finally, in Chapter 7 we conclude with a summary and discussion on future research

directions.
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Chapter 2 : State of the Art of

Speech Denoising Algorithms

2.1 Speech Characteristics and Modeling

Speech is a sound signal which conveys information in human communication. Linguistic
information in speech involves voiced speech, unvoiced speech or plosive sounds. Moreover,
there are some parts of the speech that are neither pure voiced nor pure unvoiced, but
a mixture of the two. These are transition regions, where there is a change either from
voiced to unvoiced or vice versa.

Voiced speech segments are characterized by relatively high energy content, but more
importantly they contain periodicity which is called the pitch of voiced speech. The
unvoiced part of speech, on the other hand, looks more like random colored noise with
no periodicity. Unvoiced sounds are generated by forming a constriction at some point
in the vocal tract and forcing air through the constriction at a high enough velocity to
produce turbulence. Plosive sounds result from making a complete closure, building up
pressure behind the closure, and abruptly releasing it.

A short time segment of a speech signal can be regarded as a portion of a station-

ary stochastic process (or an impulse response of a digital filter), therefore generally a

13



speech signal is said to be quasi-stationary, i.e., it can be divided into (almost) stationary
segments. Typically segments are up to 30 ms long.

It appears that an autoregressive (AR) model (or so-called all-pole model) is particularly
suitable for modelling a speech signal. The motivation stems from a simplified picture of
the vocal tract as a lossless tube built of adjoining cylinders of different diameters [35].
An all-pole digital filter, excited by a pulse train, is a basic model for speech production.
All-pole modeling of a speech signal refers to extracting the filter coefficients and source
power from the given speech signal. The order p of the model can be estimated too

(typically p = 10 =+ 16) [35].

2.2 Overview of Spectral Domain Denoising

Algorithms

2.2.1 Spectral Subtraction

Suppose we have noisy data y = {y; ij\;_ol, where

yi:fﬁ—ei, iZO,...,N—l, (21)

f = {f;}Y5! is an unknown real-valued signal which we would like to recover, and
e = {e;}N,! is additive noise. Figure 2.1 shows the basic procedure for spectral do-
main noise removal. The time-domain signal is first broken up into a series of overlapping
(usually 25% or 50% overlapping) frames. Each frame is multiplied by a smooth win-
dow function (such as Hanning or Hamming window) in order to reduce spectral artifacts

caused by the discontinuities at the edges of the frame. Then, each windowed segment is

transformed into the spectral domain and processed individually: the spectral coefficients
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are multiplied by an appropriate gain. The modified spectral components are then trans-
formed back into the time domain, and the frames are assembled to get the enhanced

signal.  Transformation into spectral domain can be performed using any orthogonal

Transform to
Spectral Domain

Noise
e a» Windowing » y>Y Spectrum
Estimation
Y
nhance -~ - 2
Enhanced Overlap f e F

Speech Add F = G(Y ,Z) Y <«

Process Spectral
Components

Inverse Transform

Figure 2.1: Basic Spectral Domain Denoising Procedure.

or biorthogonal transform such as Discrete Fourier Transform (DFT), Discrete Cosine
Transform (DCT), Wavelet Transform (WT), Wavelet Packet Decomposition(WPD) and
SO on.

All frequency domain algorithms need to estimate the noise spectrum prior to denois-
ing. If one synthesizes a noisy speech signal in order to verify performance of a given
denoising algorithm, it’s useful to estimate the spectrum from the known noise signal.
However, generally the noise spectrum can be estimated from speech-free intervals which
are most adjacent in time to the analysis frame. If the noise is known to be station-
ary, it suffices to estimate its variance and its spectral components once, from an initial
speech-free interval averaging the spectrum over speech-free segments. In [23], the noise
spectrum estimation is based on spectral minimum tracking. Additional information about

the estimation of noise spectrum can be found in [2], [24].
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For nonstationary noise, some kind of noise spectrum tracking, which can potentially
improve performance of a denoising algorithm, is needed. Temporal minima tracking
was proposed by Doblinger in [12]. A more advanced algorithm, based on Voice Activity
Detector (VAD), was presented by Malah, Cox and Accardi in [21].

In Fig. 2.1 G(Y,Z) is a gain function. The generalized spectral subtraction gain

function [41] is given by

o171\ 72 >, 1M
_ o 2 2] 1
(1 o [m] ) ) [Yu < B

(5

where Y, is the k-th noisy speech spectral component, Z, is the estimated k-th noise

Gy =G(Ye, Zy) = (2.2)

Zy

Y1\ 72
A ) , otherwise,

spectral component, Gy is the k-th spectral component’s gain, « is the oversubtraction
factor (o > 1, leads to the reduction of residual noise but also to increased speech distor-
tion), B is spectral flooring factor (0 < < 1, allows to leave certain level of background
noise), y; and 2 are exponent parameters (determine the sharpness of the transition from
Gy =1 (the spectral component is not modified) to the Gy = 0 (the spectral component
is suppressed)).

A number of classical gain functions can be derived from (2.2) by appropriate choice
of o, B, 71 and ~, parameters:

1) Amplitude spectral subtraction or magnitude subtraction [41]:

~ 1- @> ) ‘/Z\_k| < ]-7
0, otherwise.
It corresponds toa =1, =0, 11 =1 = 1.
2) Power spectral subtraction [41]:
( Z2\? AP
~ 11— 2) ’ . 7 < 1)

0, otherwise.
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It corresponds to a =1, f=0, 7, =2, 75 = 1/2.

3) Wiener estimator [41]:

A (1 -
G = G(Y, Z)) = |

0, otherwise,

(2.5)

It corresponds toa =1, =0, 11 =2, 75 = 1.

The above spectral subtraction gain functions can also be thought of as thresholding
algorithms: If the spectral amplitude at a given frequency bin equals or is below the
expected noise content for that bin, then it is assumed that the original signal had no
significant contribution in that bin and it is set to zero. However, if the spectral content is
above the expected noise content for a given bin, then in each of the above gain functions,
the bin content is scaled according to some function of the estimated noise power and

measured signal spectrum.

2.2.2 Ephraim-Malah Denoising Algorithm

This algorithm capitalizes on the major importance of the short-time spectral amplitude
(STSA) of the speech signal to its perception [18]. It is well known that a distortion
measure which is based on the mean squared error of the log-spectra is more suitable for
speech processing. Thus the proposed algorithm for enhancing is the STSA estimator
which minimizes the mean squared error of the log-spectra [19].

The estimation problem of the STSA is formulated as that of estimating the amplitude
of each Fourier expansion coefficient of the speech signal f = {f(¢),0 < ¢ < T}, given the
noisy process y = {y(t),0 <t < T}.

Let the F, = Age?® Z, and Y}, = Rie/’*, denote the k-th Fourier expansion coeffi-

cients of the speech signal, the noise process and the noisy observations in the analysis
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interval [0, 7], respectively. Following the above formulation, we are looking for an esti-

mator Ag, which minimizes the distortion measure:

E{(log Ay, — log A)?}. (2.6)
This estimator [19]
-~ fk 1/00 et
Ay = [ =—dt}R 2.7
ETT1g TP\ 2 k 2.7)

is briefly derived in Appendix III.1. Here, & is the so-called a priori signal to noise ratio

(SNR):
& = tg:;, (2.8)
vk is the so-called a posteriori SNR:
= (2.9)
and vy is defined by
0= T (2:10)

where \,(k) = E{|Z;|*} and \;(k) = E{|F;|*} are the variances of the noise and the
signal k-th spectral components.
It is seen from (2.7) that Ay is obtained from Ry by a multiplicative nonlinear gain

function which depends only on the a priori and the a posteriori SNRs. The gain function

is defined by

A& 1 fooe?
Gr(&k, k) = R 1+& exp {5 ‘/'Uk Tdt}. (2.11)

The log-spectral amplitude estimator is superior to the Minimum Mean-Square Error

(MMSE) STSA estimator, derived in [18], since it results in a much lower residual noise

level without further affecting the speech itself.
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In [18] it was shown that the MMSE complex exponential estimator is the complex

exponential of the noisy phase (ejak = ¢/%). Moreover, it was shown that the optimal

phase estimator of the speech’s phase is the noisy phase itself (o = ).

estimate f of the speech f is given by

f = IDFT{Ae"%} = IDFT{G(&, &) Rie’?*}

Thus, the

(2.12)

It’s clear that this estimator assumes knowledge of a priori SNR &, and a posteriori

SNR 7. Thus they have to be estimated from the observations y. In [18] the authors

proposed two methods for estimating &, defined above. These approaches assume know-

ledge of the noise spectral component variance A,. In practice this variance should be

estimated as well.

Maximum Likelihood Estimation Approach

The ML estimate &, of & in the n-th analysis frame is obtained in [18, 19] by

. Ye(n) =1, F(n)—12>0,
Sk =
0, otherwise,
where
V(1)

Te(n) = e (n = 1) + (1 - a) 0<a<l, f>1.

ﬁ I

(2.13)

(2.14)

The estimation is based on the Gaussian statistical model and the statistical independence

assumed for the spectral components of a noisy speech. Here (3 is correction factor, and

« is the smoothing parameter. They can be determined by informal listening. According

to [18], the best quality of enhanced speech was achieved for o = 0.725, 3 = 2.
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”Decision Directed” Estimation Approach

This estimator was found to be very useful when it is combined with any amplitude or

log-amplitude estimators [18, 19]. The proposed estimator is given by

~ A2(n —1)

&(n) = am +(1—=a)P[wn) -1, 0<a<l (2.15)

where P[] is a hard thresholding operator which is defined by

xz, ifz>0,
Plz] = (2.16)

0, otherwise.

Using the definition of A;(n) we get:
&(n) = oG (E(n — 1), m(n — 1)p(n = 1) + (1 = @) Pl (n) — 1]. (2.17)

The initial condition &(0) = a + (1 — @)P[yx(0) — 1] was found to be appropriate,
since it minimizes the initial transition effects in the enhanced speech. The theoretical
investigation of (2.17) is very complicated due to its highly nonlinear nature. Therefore,
the ”best” value of « is to be determined by simulation. In [18], the best quality of

enhanced speech was achieved for o = 0.98.
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Chapter 3 : Joint Time-Frequency

Representations

3.1 Wavelet Analysis

3.1.1 Introduction

Wavelet and local trigonometric bases are two classes of bases for representing signals
behavior. Under certain circumstances they may provide a better insight and a clearer
interpretation of the signal (see e.g. [5, 11, 20, 22, 43]).

This chapter presents the underlying mathematics of the Wavelet Packet and Local
Trigonometric libraries of bases, and how these are exploited to yield “best basis” repre-
sentations. Instead of restricting ourselves to a specified basis, we consider a library of

orthonormal bases, that may include either wavelet or local trigonometric bases.
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3.1.2 Discrete Wavelet Transforms and Wavelet Packet
Decompositions

Wavelet Packet Decomposition (WPD) constitute a direct extension of multiresolution
analysis [11, 42]. The approach is based on the generation of a library B of Wavelet

Packets (WP) which is defined by
B = {Ypni(t) =2, (2% —k): L€ Z_nc Z, ke Z}, (3.1)

where /£ is the scaling parameter, n is the oscillation (modulation) parameter and k is the
time-domain position parameter [26]. The functions {2¢/21, (2 — k)} are the scaled and

translated versions of orthonormal wavelet bases functions v, (t) defined by

Yon(t) = V2 byt (2t — k) = Hepy(2), (3.2)
Yoni1(t) = V2 gripn (2t — k) = G (2), (3.3)

where H and (G are operators of digital low-pass and high-pass filtering, characterized
respectively by the impulse-response sequences {h;} and {gx}, followed by decimation
(2:1). The filters {hy} and {gx} are the so-called quadrature mirror filters (QMFs) that

have to satisfy the orthogonality, perfect reconstruction and the admissibility condition:

Xk: hj,—onGk—21 = 0, (3.4)
> he= V2, (3.5)
k
; hi—athm o1 + gr—21him o1 = Ok (3.6)
Xk:gk =0. (3.7)

Moreover, the filter {g;} is defined by
gk = (—1)kh1_k. (38)
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The basis functions {t, ;} represent different time and frequency resolution levels, thus
this type of analysis (decomposition) is commonly referred to as “multiresolution analy-
s1s”.

Construction of the library B starts by selecting a so-called characteristic (scaling)

function 1o(t) = ¢(t), that has to satisfy the two scale relation:

o(t) =D hepri(t) = V2 hip(2t — k), (3.9)
Here
pur(t) =202 — k) (3.10)

is the scaled and translated version of the characteristic function. The low-pass filter

coefficients {hy} can be easily calculated from (3.9) via

hie = {p1e, 9) = V2{p(2t = k), 0 (1)), (3.11)

where (-), the inner product, is defined by

(.9) = [ F0)g @t (3.12)

and
Di(t) = V2 gepo(2t — k) = V23 grp(2t — k) = ¥(t) (3.13)

is the mother wavelet 1 (t). A mother wavelet function, defined by Eq. (3.13), must
satisfy the admissibility condition: ¥(w)|y=o = 0. The merits of the library B depend on
the selected mother wavelet and its properties, such as the number of vanishing moments
(smoothness), compactness of support and symmetry.

The construction of an orthonormal basis for L?(IR) is done as follows. Let E,, be the

tree-set of indices {¢,n} that corresponds to the terminal nodes of some binary tree. If a

23



set of disjoint intervals

{Ien} = {[2'n,2"(n +1)) : (4,n) € B} (3.14)
forms a complete cover of [0, 1), then the set
m = {Wenk = 20,2 — k) : (4,n) € By k € Z} (3.15)

(the wavelet packet B,,) constitutes an orthonormal basis for L?(IR). Therefore, a wavelet
packet (basis) By, in the library B is defined by specifying the range of ¢, n and k param-
eters [26].

A particular case of Wavelet Packet Decomposition (WPD) (or so-called Subband De-
composition) of a signal x = {z(7)}!_, is given in the Fig. 3.1. Here the tree-set E,, is
the subset of the set of all terminal nodes in the binary tree (E,, C {(-1,0), (-1,1), (-2,0),

(-2,1), (-2,2), (-2,3)}) and has to satisfy condition, defined by Eq. (3.14).

n
Xo X, X, X4 X, X X X, =0
H G
| Hx, Hx, HX, Gx, Gx; Gx, Gx, l=-1
v H2x, H?x, |GHx, GHx,[HGx, HGx,| G, G, | I =-2

Figure 3.1: Discrete wavelet packet decomposition coefficients on IR®: 2 decomposition levels.

The discrete wavelet transform (DWT) (Fig. 3.2) is a particular case of WPD, where

the coefficients obtained by high-pass filtering are not transformed further.
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\4

Xo X, X, X4 X, X X X, =0
H G
| Hx, Hx, Hx, HXx, Gx, Gx; Gx, Gx, l=-1
H G
v H2x, H?x, |GHXx, GHx, | =-2

Figure 3.2: Discrete wavelet transform coefficients on lR®: 2 decomposition levels.

The expansion coefficients associated with a prescribed signal x can be computed
efficiently, using the operators H and G (Fig. 3.1), according to the well known decom-

position into subband signals [39].

3.1.3 Best Basis Selection and Cost Functions

Of all bases {B,,} contained in the library B one would like to pick up the best basis
according to some criterion. A search algorithm is clearly needed.
Let M denote some “information cost” function. The cost function is said to be

additive (a feature that directly effects the efficiency of the search procedure) if

M(0) =0 and M (©)) = > M(b,), (3.16)

jez
where © = Bf = {0; : j € Z} is the expansion vector of f = {f(i)}/*;" on the basis B.
Examples of such an additive cost functions are [38]:

1) The Shannon entropy:

2 2
2 2

0]2 0?-
HO) = (‘? BT ) (317)

25



2) The log energy:

.
@)= (;1“ [HE

) (3.18)
) (3.19)

Minimization of M(Bf) will yield to the “best basis”.

3) The concentration in £' norm:

0;
|£]]2

o)~ (5

J

We have seen that the library B is organized as a binary tree (Fig. 3.1) whose maximal
depth is J = log, N resolution levels, where N is the length of the signal. Thus, the
best basis can be found by computing the information cost at each node and comparing
“children”-“parent” costs. Starting at the lowest decomposition level ({ = —L, 1 < L <
J), we move upward and include the “children”-nodes in the best basis tree if their cost
is less then the cost of the “parent”-node, otherwise, we chose the “parent”-node. The
basis, that is characterized by the minimal total information cost, will be identified as the
best basis.

Owing to the presumed additive nature of the information cost function, each node
needs to be examined twice (once as a “child” and once as a “parent”), leading to a low-
complexity scheme [9, 43]. Decomposing the signal of length N with FIR filters of length
r requires O(rNL) < O(rN log, N) real-valued products, computing the cost-function -
O(NL), search for best basis is of O(2N). Thus, the complexity of the adaptive WPD

process is of O(rNL). For L = J the complexity is of O(rN log, N).

3.1.4 Multiresolution Analysis

The time-frequency analysis using WPD and related techniques is referred to as “mul-

tiresolution analysis”. The “multiresolution analysis” consists of a characteristic function
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©(t) and a family of closed subspaces Uy, C L*(IR), defined by
Uppn = span[{the, x(t) = 292, (2% — k) : k € Z}). (3.20)

The family of closed subspaces Uy, has to satisfy [26]:

1) Uy, can be decomposed into the following orthonormal direct sum

Un = Ur—1,20 @ Ur—1,2n+1, (3.21)

(implying Up—1,2¢ LUp—1,2n41),

2) Ne=constne z, Uen = {0} (downward completeness)),

3) Uteznez, Uen = L*(R) (upward completeness),

4) x(t) € Upp implies x(2t) € Up_yp,

5) z(t) € Uy, implies z(t — 7) € Uy for all 7 € R (”shift invariance”),

6) There exists ¢(t) € Up,, such that for all £ € Z, {¢.x(t)} constitutes an orthonormal
basis for

Upo = span[{ypx, k € Z}|. (3.22)

The previously mentioned filtering operators H and G can be viewed as orthogonal

projection operators from Uy, onto the subspaces U;_1 2, and Uy_; 2,41 respectively.
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3.2 Shift-Invariant Wavelet Packet

Decompositions

3.2.1 Introduction

It can be shown that as f(¢) is decomposed into orthonormal wavelet packets best basis,

the property of shift-invariance is no longer valid [5].

A strategy for re-introducing shift-invariance has been proposed in [3]. It is based on
extending the wavelet packet library to include all shifted versions of the bases (hence the
name Shifted Wavelet Packet library), organizing it into a tree structure and providing

an efficient “best-basis” search algorithm.

In implementing the Shift-Invariant Wavelet Packet Decomposition (STIWPD) algo-
rithm, shift-invariance is achieved by the introduction of an additional degree of freedom.
The added dimension is a relative shift between a given parent-node and its respective
children-nodes. Specifically, upon expanding a prescribed node, with minimization of
the information cost in mind, we test as to whether or not the information cost indeed
decreases. For any given parent-node it is sufficient to examine and select one of two
alternative decompositions, made feasible by the Shifted Wavelet Packet (SWP) library.
These decompositions correspond to a zero shift and a 27¢ shift where ¢ (—=L < ¢ < 0)
denotes the resolution level. An alternative view of SIWPD is facilitated via filter-bank
terminology. Accordingly, each parent-node is expanded by high-pass and low-pass filters,
followed by a 2:1 down-sampling. In executing WPD, down-sampling is achieved by ig-
noring all even-indexed (or all odd-indexed) terms. In contrast, when pursuing SIWPD,

the down-sampling is carried out adaptively for the prescribed signal.
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3.2.2 Shifted Wavelet Packet Library

Let us consider the following extended forms of shifted and translated scaling and mother

wavelet functions:

e (t) = 22 (2% — 2'm — k), (3.23)

El

S (1) = 22, (2% — 2'm — k), (3.24)

where m is the relative shift index: m € {0,1}.

The SWP library is defined as the collective set
B = {pfm(t) = 2%, (2% — 2'm — k) : L€ Z_,n € Z k€ Z,me {0,1}}. (3.25)

This library is larger than the WP library by a square power, but it can still be cast into
a tree configuration facilitating fast search algorithms [5].

Similarly to Eq. (3.11) we can define
B = (@R @) = VR(p(2t = k= 2m), (1)) = hsom. (3.26)

Moreover, using the previously defined filtering operators H and G, we can define the

(0

operators H(® and G of low and high-pass filtering respectively, followed by a 2:1

downsampling, and the operators H®) and G of low and high-pass filtering respectively,
followed by a unit sample delay and a 2:1 downsampling (Fig. 3.3).
Similar to WPD, SIWPD can be associated with a set of closed subspaces Ugs) C

L?(R), each defined by
Ugf) = span[Béz) = {wérz)k(t) k€ Z}. (3.27)
Each of the subspaces Uéx) can be decomposed into
UXZ) = Ue(inl),zn @ Ue(Tl),znﬂ
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(I,n,m) (In,m)

Ma B

© @
@ © 5 &

(1-1,2n,m) (1-1,2n+ 1,m) (1-1,2n,1-m) (1-1,2n+ 1,1-m)

(a) (b)

Figure 3.3: A “parent” node binary expansion according to STWPD: (a) H® and G(© filtering
operators: low and high-pass filtering followed by a 2:1 downsampling, (b) H") and G(!) filtering
operators: low and high-pass filtering followed by a unit sample delay (D) and subsequently by
a 2:1 downsampling. Each node is defined by the triplet (£, n,m).

or into
(m (1—m) (1 m)
Ue, Ue 1,2n @ —1,2n+1"

The tree structure of SWP is depicted in Fig. 3.4. Each node in the tree is indexed by
the triplet (¢,n,m) and represents the subspace Ué;?). Similarly to the WP binary trees
[9], the nodes are identified with dyadic intervals of the form I, = [2‘n, 2¢(n +1)). The
additional parameter m facilitates a time-shift adjustment of the basis functions. The
generated branches are respectively depicted by thin (no delay) or heavy (a unite delay)
lines (Fig. 3.5).

Let E={({,n,m)} C{Z_- x Z, x {0,1}} denote a collection of indices. If the seg-
ments Iy, = [2‘n, 2¢(n + 1)) are a disjoint cover of [0, 1), then F generates an orthonormal
basis for Uéjg) [5]. The expansion tree associated with a given signal describes the signal’s
representation on an orthonormal basis selected from the SWP library. The index set F
is interpreted as the collection of all terminal nodes. That is, all nodes beyond which no

further expansions are to be carried out.
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(0,0,0)
& >
(-1,0m, o (-1.1m, 9)
& A & A
(-2.0m, o (-2.1m, ) (-2.2m, ) (-2.3m, »
K Y K Y K Y K Y
(‘310,”13,0) (‘3,1,”_13’1) (_312"1_]3’2) (_3!31”_]3,3) (-3,4,“13,4) (‘3'5,"1315) (_316"1_]3’6) (‘3,7,”_13'7)

Figure 3.4: The extended set of wavelet packets organized in a binary tree structure.

‘ (0,0,0) ‘ (0,0,0)

(-1,1,0) (-1,1,0)

(-2,3,0) (-2,3,0) —2.2,0)

-3,5,4) §(-3.4,4)

(-4,10,4 -4,11,4)

Figure 3.5: An example of a SIWPD binary tree. (a) The children-nodes corresponding to
(¢,n,m) are (¢ — 1,2n,m) and (¢ — 1,2n + 1,7m), where n = m (depicted by thin lines) or
m =1 —m (depicted by heavy lines). (b) Rearrangement of the nodes in a sequency order.

A specific example of an expansion tree is shown in Fig. 3.5(a). The nodes at each
decomposition level in this example have a natural or Paley order. It is normally useful to
rearrange them in a sequency order [43], so that the nominal frequency of the associated
wavelet packets increases monotonically as we move from left to right along a given tree
level. The exchange is carried out efficiently using the inverse Gray code permutation
[43]. The resultant tree is depicted in Fig. 3.5(b).

Like the wavelet packet library [9], the tree configuration of the extended library

facilitates an efficient best basis selection process. However, in contrast to the WPD, the
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best-basis representation is now shift-invariant.

3.2.3 The Best Basis Selection

This section follows closely the sequence and notations presented in [5]. Let f = f(t) €
Ué?o); let M denote an additive cost function, and let B represent a SWP library. As for
the WPD, the best basis for f in B with respect to M is B € B for which M(Bf) is
minimal. Here, M(Bf) is the information cost of representing f in the basis B € B.

Let Agfb) denote the best basis for the subspace Ug,r;). The desired best basis can be

determined recursively by setting

B if M(B{VE) < M(AT), ) + M(A,, 1),
A = (3.28)

A§T§?2n @ A§T;32n 41, otherwise,

where the shift indices of the respective children-nodes are given by

. m 1-m
m, if Z%:O M(Aﬂ,znﬂ-f) < Z%:O M(A§71,22L+if)
me = (3.29)

1 —m, otherwise.

The recursive sequence proceeds down to a specified level £ = —L (1 < L < logy N),

where
A" =B (3.30)
The recursive algorithm proposed in [9] for a best basis search in WP library may be
viewed as a special case where (m. — m) is arbitrarily set to zero. Thus the algorithm
searches only through non-shifted bases and the selected basis will be a WPD basis that
does not possess shift-invariance. Moreover, the property of shift-invariance can also be

achieved within the framework of the wavelet transform (WT) and a prescribed informa-

tion cost function (M). It may be viewed as a special case whereby the tree configuration
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is constrained to expanding exclusively the low frequency nodes [3].

So far we have observed that WPD lacks shift-invariance but is characterized by an
attractive complexity level O(rNL), where L denotes the lowest resolution level in the
expansion tree. Comparatively, the quadratic complexity level, O(r N2L+1) [5], associated
with SIWPD is substantially higher. In return, one may achieve a potentially large
reduction of the information cost, in addition to gaining the all important shift-invariance.
However, whenever the SIWPD complexity is viewed as intolerable, one may resort to a
sub-optimal SIWPD procedure entailing a reduced complexity, and higher information
cost while still retaining the desirable shift-invariance [3]. In this case, the depth of
a subtree, used at a given parent-node to determine its shift index, is restricted to d
resolution levels (1 < d < L), and the computational complexity reduces to O[r N2%(L —
d + 2)]. In the extreme case d = 1, the complexity, O(rNL), is similar to that associated
with the conventional WPD. The larger d and L, the larger the complexity, however, the

determined optimal basis generally yields a lower information cost.
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3.3 Local Trigonometric Decompositions

3.3.1 Introduction

In a sense, local trigonometric decompositions (LTD) [1, 9, 20] can be considered as con-
jugates of the wavelet packet decompositions, where the partitioning of the frequency
axis is replaced by the partitioning of the time axis. With this decomposition, a pre-
scribed signal is first split into overlapping intervals. Then a folding operator [43] ”folds”
overlapping parts into segments, and a standard cosine or sine transform is applied to
each segment. In this case, the basis functions are cosines or sines multiplied by smooth
window functions.

Local trigonometric set can be organized into a binary-tree structured library of or-
thonormal bases. The best basis, minimizing a prescribed information cost function, is
searched using the divide-and-conquer algorithm [9].

A library of local trigonometric bases can be extended to a library of shift-invariant

adaptive polarity local trigonometric bases [4].

3.3.2 Smooth Local Trigonometric Bases

Let’s consider a partition of the line with a set of disjoint intervals I; = [a;, a;41), such that
the width of the intervals is never less than a fixed positive number (a;;; — a; > 2e > 0)
for all j € Z:
R= I (3.31)
JEZ
Let 7(t) be a function in the class C* for some s > 0, satisfying the following conditions:
0, ift < -1,

r(t) = (3.32)
1, ift>1,
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Figure 3.6: (a) An example of a right cut-off function in C'. (b) The corresponding window
function on [a, f] for n < (6 — @)/2 (solid), and a modulated function (dashed).

lr@)]* + |r(=t)* =1 for all t € R. (3.33)

It is the so-called “right cut-off function”. An example of a continuously differentiable

real-valued right cut-off function r,(t) € C*! is given by

0, if t < —1,
ri(t) = § sin[T(1+sinT¢)], if —1<t<1, (3.34)
1, ift>1,

and is depicted in Fig. 3.6(a).

A window function b;(t), which is supported on the interval [a; — 1, a;+1 + 7] is defined

bi(t) = r (t _n“j ) r (“J%"j , (3.35)

where 0 < n < e. Here 7 is interval on which a window function rises from being identically

by

zero to being identically one, it allows overlap of windows and controls the smoothness of

the window function. Multiplying a window function by some modulating trigonometric
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function we obtain a smooth local trigonometric function:
Wjk(t) = b; (1) Fj(t), (3.36)

where Fj(t) is a modulating function, and |I;| = (a;4+1 — a;) is the length of the j-th
disjoint interval. Each local trigonometric function ¥; j is well localized in both time and
frequency. The basis function U, ;(¢) is supported on the same interval as the window
function b,(t). The set of the functions ¥, (¢) with j € Z and k € N is an orthonormal
basis for L?(IR). Consequently, each signal f(¢) € L*(IR) can be written in terms of the

functions W, x(t):

f(t) = . Z ijk\Ifj,k(t) (337)
with
i = (f(8), Ujn(t)) - (3.38)

An example of modulating functions can be given by the basis functions of the so-called

DST-IV transform - discrete sampled sines at half-integer frequencies:

Fot) = \/%Sin <7r (k + %) t&j??’ ) | (3.39)

Here ¥, is supported in time on [a; — 77, a;+1 + 1] and thus has a position uncertainty,

that is equal, at most, to the width of the compact interval I;. In the frequency domain, it
consists of two bumps centered at £(2k+1)/(a;+1 — a;), with an uncertainty determined

by the support of the Fourier transform of the window function.

3.3.3 Fast Implementations

The inner products in (3.38) can be efficiently computed using a standard fast discrete
trigonometric transforms (such as DCT-I, DCT-II, DCT-1V, DST-II, DST-IV) [43], after

a preliminary ”folding” step. We consider the DST-IV transform, as an example.
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Let’s define by M, [20] the mirror operator around point «:
M,f(t) = f(2a —t). (3.40)

It’s unitary and essentially flips the function around a. We denote by 7,(t) the right

cut-off function centered at ¢t = a:

o =r (). (3.41)

The left cut-off function I,(¢) will then be given by
lo, = M,yr,,. (3.42)

Let 1; be an indicator function for the interval I - it is equal to 1 if ¢t € I and is equal to
0 otherwise. Accordingly let 1% (t) = 1 e and 17 (t) = 1ig00)-

The folding operator around a point « is defined by
Qo =11+ M)l +15(1 = My)r, (3.43)

and it is unitary if r, satisfies the condition (3.33). The adjoint of the @, operator is
given by

QL = lo(1+ M), + (1 — M,)17. (3.44)

o7

Below we discuss several properties of the folding operator (3.43). Multiplication with
lo ensures a smooth decay to the left of (a + 7). The operator (1 + M,) then adds
this function to its mirrored version. This generates an even around « function. This
function is now cut off by 151. The right part is similar and generates an odd function.
Consequently, if f(t) is smooth, then 1laQa f is a smooth function when extended in an
“even” fashion to the right and 1) Q,f is a smooth function when extended in an “odd”

fashion to the left (by extending in an “even” and “odd” fashions we mean applying the
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operators (1+M) and (1-M), respectively). The adjoint operator (3.44) (which is also
the inverse) does essentially the same but switches the parity properties: even to odd and
vice versa.

Our basic goal is to split L?(IR) into subspaces such that each subspace will contain
functions that are localized around one of the intervals I;. Moreover, we want a basis that
is suitable for representing smooth functions on that interval. The splitting of L?(IR) into

subspaces is done using the orthogonal projection operator:
P[j == T*]_IjT, (345)
where T is the total folding operator which is defined over IR and is given by

T =] Qu, (3.46)

Since 1" is a product of unitary operators, it is necessarily unitary. The total folding
operator transforms a smooth function into a function with specific parity properties at
the endpoints of each interval I;. Then, in order to get good approximation properties
we should use a trigonometric basis which reflects these parities (that’s the reason why
previously defined folding operator (), and consequently the total folding operator 7" are
adopted to DST-IV bases functions).

We decompose L?(IR) into orthogonal subspaces as
L*(R) =D Vi, with Vi, = PIJ.L2(1R). (3.47)
J
An orthonormal basis for V7, is given by {W;s(t) }ren, and consequently

f(t) = Z P[]f(t) = Z Cj,k\IJj’k(t), (348)

JEZ, keEN JEZ, keEN

where the coefficients are given by
Cie = (F(0), Uin(t) = (TF(1), 1, Wx(1)) - (3.49)
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3.3.4 Tree-Structured Library of Bases

The basis functions on interval [«, 3) are the orthogonal direct sum of the basis functions
on its left and right halves ([o, £52) and [252, ) respectively). Thus recursive subdivision
of the intervals I; into halves will propagate this orthogonality through the multiple levels
and this subdivision will build a binary tree. The complete local trigonometric basis will

be the orthogonal direct sum of the basis functions on each subinterval of IR.

IO,O

/\
/\ /\
/\ N /\ /\

3.0 31>< 32>< 33>< 3,4 35

Figure 3.7: Organization of the smooth local trigonometric bases in a binary tree structure.

The organization of local trigonometric library into a binary tree facilitates an efficient
search for a suitable best basis. The best local trigonometric basis is again selected by
searching for the minimum of an additive cost function. The computational complexity of
the LTD with the best-basis selection algorithm is O(LN log, N), where L is the number

of decomposition levels. For L = J, the total complexity is of O(Nlog, N?).
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Chapter 4 : Wavelet-Based

Denoising Techniques

4.1 Wavelet Domain Denoising: The Donoho-

Johnstone Algorithm

4.1.1 Problem Formulation

Suppose we are given noisy data y = {y;} X' with N = 27, where
yi=fite, 1=0,..,N—-1, (4.1)

f = {fi}X¥,! is an unknown discrete real-valued signal which we would like to recover,
and e = {e;}Y;' is a white Gaussian noise (WGN) with zero mean and a presumably
known power spectral density (PSD) o2. Let f = {f;}¥5" denote the vector of estimated
sample values. We now introduce basic denoising techniques using the example of a finite
discrete wavelet transform.

The vector w = {wy, x} of wavelet expansion coefficients of the noisy data y is defined

by

w =Wy, (4.2)
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where £ is the resolution level index (the scaling parameter), n is the oscillation (modula-
tion) index, k is the time-domain position index and W is the finite orthonormal wavelet
transform matrix. The orthonormality of W yields the following reconstruction formula:
y = Wlw.

Under the noise model underlying (4.1), noise contaminates all wavelet coefficients
equally: The noise vector e is assumed to represent WGN so that its orthogonal transform

z=We = {2y,,} is also WGN. Consequently, applying the wavelet transform to y yields
Wenk = Qo + 2o ks (4.3)

where © = Wf = {60;,,} is the vector representing the unknown wavelet transform
coefficients of the noiseless data f. Therefore, every empirical wavelet coefficient wyy, x
contributes noise of variance o2, but only very few wavelet coefficients contain significant
signal energy. This is the heuristic basis to wavelet-based denoising.

Denoising in the wavelet domain is based on the principle of selective wavelet recon-
struction: Given w we determine a final set I' of indexes (¢,n, k) of wavelet coefficients
w, that have to be modified (multiplied by an appropriate gain), and calculate gains g,

for (¢,n,k) € T. The estimate © of © implies:
f=wT6 = WwT{Tw} = WH{T{Wy}}, (4.4)

where T is generally a nonlinear operator, that determines the set I' and performs noise
subtraction in the wavelet domain. Clearly, the quality of the resulting estimation f
depends on the algorithm, that determines I" and the gain function.

We measure the quality of f in terms of quadratic loss at the sampling points. Let

N-1
lollzn = D_ v} (4.5)
i=0
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denote the usual squared /% norm. Thus, we measure performance by the risk
R(f,£) = N'E||f - £|3 v, (4.6)

which we would like to minimize. Owing to its orthonormality, W transforms estimators

in one domain into estimators in the other domain with isometry of risks:
1© = Ol = |[f — f[],. (4.7)

Thus, minimization of R(©, ©) implies minimization of R(f,f).

4.1.2 Thresholding Types

Thresholding techniques are effective whenever few wavelet coefficients contribute to the
noiseless signal. Let’s consider threshold rules, that retain only observed data, which
exceeds a predetermined multiple of the noise level. Often used thresholding techniques

are [16]:

- Hard Thresholding :

Ma(T,t) = T+ L(g-p), (4.8)
where
1,u>0
1) = (49)
0,u<0
- Soft Thresholding :
ns(z,t) = (|z| —t) - sign(z) - 1(jz)—p)- (4.10)
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4.1.3 The RiskShrink Estimator

The RiskShrink and VisuShrink estimators were introduced by Donoho and Johnstone
in [14]. The name RiskShrink emphasizes that modification of wavelet coefficients is
performed by soft thresholding, and that a mean squared error, or “risk” approach has
been taken to specify the threshold.

The RiskShrink estimator is defined by

flRisk) = pTLQWRisk) (w \ 5)}, (4.11)
where
OEIH) (w, X, o) = {8522 (wegn s A 0) e (4.12)
and
O (W, A, 0) = ke i< (4.13)

Ns(Wen e, AT),  Jo <L+ J < J.
Here, o2 is the variance of the additive noise € and A = A(4, J) is the threshold value
that depends on the resolution level ¢ and the maximal depth of a decomposition tree
J =logy N. jp is the so-called low-resolution cutoff. Note that at levels ¢ < jo — J the
basis functions {¢yx(t)} do not have vanishing means, thus wavelet coefficients at these
resolution levels should not be shrunken towards zero. The values of A for different ¢ and

J were computed by Donoho and Johnstone [14] and can be embedded as a look-up table:

t+J 6 7 8 9 10 11 12 13 14 15 16

A 1.474 | 1.669 | 1.860 | 2.048 | 2.232 | 2.414 | 2.594 | 2.773 | 2.952 | 3.131 | 3.310

Table 4.1: Look-up table of A dependent on resolution level £.
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Donoho and Johnstone point out that whenever we rely exclusively on the data, the
RiskShrink estimator mimics the risk in the best possible way. Moreover, they prove
that the RiskShrink performs better than alternative estimators that are based on the

selective wavelet reconstruction principle.

4.1.4 The VisuShrink Estimator

The VisuShrink estimator [14] resembles RiskShrink. The difference stems from the

use of a universal threshold Ay = (2Ind)/? (the asymptotic value of the \) instead of \:
Vi) = wTeVesv (w Ay, 0)}, (4.14)

where
A(VZS’LL) we,n,k’ g + J < jo’
Ge,mk (wg,mk, )\d, O') = (4.15)
Ns(Wenk,oV2Ind), jo <L+ J < J.
Here d = 2(+7) is the number of wavelet coefficients in each subband at the ¢-th reso-
lution level. No look-up table is needed and the threshold can be easily calculated as
04/2(¢ + J)1n2 [14]. Moreover, this estimator has an important visual advantage result-

ing from the almost "noise-free” character of reconstructions. This can be explained as

follows. When {z;} is a white noise sequence i.i.d. N'(0,0?), then
pr{max|z| > ¢(2Ind)*/?} -0, d— .

So that, with high probability, every wavelet transform sample, where the underlying
signal is exactly zero, will indeed be estimated as zero.
The drawback of this simple threshold formula is that the MSE performance of adap-

tive thresholds (like SureShrink) is noticeably better.
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4.1.5 The SureShrink Estimator

The SureShrink estimator [16] suppresses noise by thresholding the empirical wavelet
coefficients adaptively. A threshold value is assigned to each resolution level using the
minimization principle of Stein’s Unbiased Estimate of Risk (Sure).

The SureShrink estimator is defined by

f(Sure) — WT{é(Sure)( {tKSure } tm)es O o)}, (4.16)
where
Sure
t§n )(We,na o) = arg Lrgg)l‘d SURE(wy,t,0) (4.17)

is the SureShrink threshold value for shrinking the wavelet coefficients w,, = {wen .} k(l“) .

that belong to the WPD tree node (subband), indexed by the pair (¢,n). E denotes the

tree-set of indices (¢,n), Ay = 1/2(¢{ + J)In2,

o(4+J) _q
SURE (W, t,0) =2 — 2 glk - lwg,p| < to} + > {min(|wenpl, to)}* (4.18)
k=0

(Sure)

is the unbiased estimate of risk Fy| |® — Opnl3 5eers), and

O™ = {0’ (W, ti ™ o) Yoy (4.19)
The estimate g(eiu,:e of the unknown signal f expansion coefficient 6, is given by

r

W ks L+ J < jo,

O (Wey tin™,0) = 3

Ns(Wen ks TG, Jo <t+J < Jand s, < nga/V2ED,

s (wgn,c,tﬁ“”)a), jo <{l+J < Jand s2, > n,/V2Et),
\ b
(4.20)

Where ng’n = (E + J)3/2 and
(e+J)_
) 1 2 1

Sin = gary o ((wemp/o)® = 1). (4.21)

Detailed explanations can be found in Appendix I11.2.
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4.2 Coifman-Donoho Translation-Invariant

Denoising

Coifman et al [10, 1, 33] observed that denoising with the conventional wavelet transform
and WPD may exhibit visual artifacts, such as pseudo-Gibbs phenomena in the neigh-
borhood of discontinuities. They related these artifacts to the lack of shift-invariance,
and proposed to reduce them by the following averaging procedure [10]: Applying a range
of shifts to the noisy data, subsequently denoising the shifted versions using the wavelet
transform, and finally unshifting and averaging the denoised data. This procedure, termed
Cycle-Spinning [10], often yields a better visual performance on smooth parts of the sig-

nal.

(a) Blocks (b) Bumps
20 60
10 40
0 20
-10 0
0 0.5 1 0 0.5 1
(c) HeaviSine (d) Doppler
10 20
° 10
0
0
-5
10 -10
-15 -20
0 0.5 1 0 0.5 1

Figure 4.1: Test signals.

Figure 4.1 shows the test signals of length N = 2048, chosen to represent various
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signal classes. Figure 4.2 represents the noisy versions of the test signals, where WGN

e ~ N(0,1) was added to each signal.

(a) Noisy Blocks (b) Noisy Bumps
30 60
20 40
10 20
0 0
-10 -20
0 0.5 1 0 0.5 1
(c) Noisy HeaviSine (d) Noisy Doppler
20 20
10 10
0 0
-10 -10
-20 -20
0 0.5 1 0 0.5 1

Figure 4.2: Noisy signals.

Figure 4.3 shows signals, denoised by simple wavelet shrinkage. Here the noisy signals
were transformed into the wavelet domain with WT based on Daubechies nearly sym-
metric mother wavelet with 8 vanishing moments, the wavelet coefficients where modified
with the VisuShrink estimator, and the modified coefficients were transformed into time
domain. As one can see in Fig. 4.3, the enhanced signals contain discontinuities and other
rapid time changes.

Figure 4.4 represents results of fully ”translation invariant” (TT) denoising. Here the
VisuShrink estimator was applied to all N circular shifts of each noisy signal, and the
enhanced signals were obtained averaging all the unshifted denoised versions. As one

can see, the pseudo-Gibbs oscillations are considerably reduced, at the clear cost of over-
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smoothing.

(a) VisuShrink [Blocks] (b) VisuShrink [Bumps]
30 60

20 40

10 20

o
o

o
o

-10 -20
0.5 1 0.5 1
(c) VisuShrink [HeaviSine] (d) VisuShrink [Doppler]
10 20
° 10
0
0
-5
10 -10
-15 -20
0 0.5 1 0 0.5 1

Figure 4.3: Signals, enhanced by VisuShrink estimator.

(a) TIVisuShrink [Blocks] (b) TIVisuShrink [Bumps]
20 60
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20

=

-10 -20
0.5 1 0.5 1
(c) TIVisuShrink [HeaviSine] (d) TIVisuShrink [Doppler]
10 20
° 10
0
0
-5
10 -10
-15 -20
0 0.5 1 0 0.5 1

Figure 4.4: Signals, enhanced by Cycle-Spinning for all N circular shifts
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4.3 Saito Adaptive Estimator

4.3.1 Problem Formulation

Again we consider the additive white Gaussian noise model of Section 4.1.1. For estimating
f we'll use now a library of orthonormal bases (rather than a specific predetermined
basis). Let’s denote this library by B = {Bjy, Ba,...By,, ..., Bi}, where each element
B,, (1 <m < M) represents an orthonormal basis in the library and M is the number of
bases in B. The hope is that the best basis from such a library will represent the unknown

signal f by a small number £ (< N) of elements, associated with B,,, i.e.,
f=wrlok, (4.22)

where W,,, € RY*¥ is the orthogonal transform matrix, W € R"*¥" is an orthogonal
matrix whose column vectors are the basis elements of B,,,, and @(m’“) € IR is the expansion
coefficients vector of f containing only k£ non-zero coefficients.

Now the problem of simultaneous noise suppression and signal compression can be
stated as follows. Given the noisy observations y and a library of orthonormal bases B
find the ”best” k and B,,. In other words, the estimation problem is formulated as a

model selection problem, where model is the basis B,, and the number of terms is k.

4.3.2 The Minimum Description Length (MDL) Principle

One of the most suitable criteria for defined problem is the so-called Minimum Description
Length (MDL) information-theoretic criterion, that was proposed by Rissanen [28]. The
MDL principle suggests that the ”"best” model among the given collection of models is

the one giving the shortest description of the data and of the model itself. For each model
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in the collection, the length of description of the data is counted as the codelength of
encoding the data using that model in bits. The length of description of a model is the
codelength of specifying that model, e.g., the number of parameters and their values when
dealing with a parametric model.

Let Q = {Y; :i=1,2,...} be the collection of models at hand and let T denote the
true model generating the data f. Since the true model YT is not known we use one of
the models in the set  as its estimate: T = T,,. Given the index m, we can write the

codelength for the whole process as
L, Y,,,m)=L(m)+ L(Y,,|m) + L(£]Y,,, m), (4.23)

where £(m) is the codelength for encoding the model number (e.g., for WPD the model
number m uniquely determines the binary tree), £L(Y,,|m) is the codelength for encoding
parameters of the model and their values, and L(f|Y,,, m) is the codelength for encoding
the signal given the model T,,,. The MDL criterion suggests picking the model Y,,, which
results in the minimum of the total description length (4.23). Thus, we should minimize
each of the terms in (4.23), and ignoring the integer constraint for the codelength, it leads

to the so-called Shannon codelength

L(z) = —log,p(), (4.24)

where z is a symbol from a finite alphabet X and p(z) is a probability mass function of z.

Instead of minimizing the ideal codelength (4.23), Rissanen proposed to minimize
- km k -
MDL(f,Y,m) = L(m) + > L ([Um;]) + 7m1og2N + L(f|Y,m) (4.25)
j=1

(see Appendix II1.3.1). Here, {1?m,j}f21 are the k,, real-valued parameters that describe

the maximum likelihood (ML) estimate T of the true model Y, [z] denotes an integer part
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of z, and L£*(-) is the codelength defined by Rissanen [28] (Eq. (II1.21)). The minimization
of (4.25) provides the best compromise between low complexity in the model and high

likelihood of the data.

4.3.3 Simultaneous Noise Suppression and Signal
Compression

To invoke the MDL formalism, given (k,m) in (4.22), Saito [33] prepares a conceptual
encoder which expands the data y on the basis B,,. He then transmits the number (k)
of non-zero terms, the specification of the basis B,,, the k expansion coefficients @§,’§>, the
variance (0?) of the WGN model, and the estimation error. The total codelength to be
minimized may be expressed as the sum of the codelength of: (1) two natural numbers
(k,m), (2) (k+1) real-valued parameters (O¥) 52) given (k,m), and (3) the deviations of
the observed data y from the (estimated) signal f = WZO® given (k,m, O%) 52). The

appropriate total description length (4.25) now becomes
MDL(y,0),5% k,m) = L(k,m) + L(O),5°[k,m) + L(y|OF,5° k,m),  (4.26)

where ©%) and 52 are the ML estimates of ©%) and o2, respectively. In order to suppress

noise and simultaneously compress the signal, Saito defines the approximate MDL:
3 N (k) 9
AMDL = §k10g2N + 510g2”me =0 (Way)ll2,n (4.27)

(see Appendix I11.3.2). Here, n®) is a thresholding operation which keeps the k largest
(in absolute value) elements intact and sets all other elements to zero. Minimizing AMDL
we find the optimal value of k.

Unfortunately, the AMDL principle, as proposed by Saito, is not additive. However,

the search for the index m is equivalent to the search for best basis, and it can be done
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by the minimization of some additive cost function. Thus, Saito employed the Shannon
entropy as the primary cost function for the determination of the best basis B,,, and the
AMDL principle as a secondary criterion.

Using (4.27) we can summarize the procedure that deals with the simultaneous noise

suppression and signal compression. Saito’s algorithm comprises the following steps:

Step 1 Ezpand the data y into the library B = {B,}M_,, i.e., obtain the expansion

m:l)

coefficients w,, = {wm,]'};y:_ol for1<m< M.

Step 2 Determine the optimal basis A = B, = {(ﬁm,j};\gl, i.e., the basis with the

minimal value of some cost function.

Step 3 Pick

k = argmin (AMDL). (4.28)
0<k<N—1

Step 4 Threshold the expansion coefficients:

. S yN-1 .
on ={i0}  =nPw,. (4.29)

Jj=0

Step 5 Reconstruct the signal estimate according to the optimal basis A:
=5 05 6. (4.30)

The library B of orthonormal bases may include any collection of orthonormal bases
that can be organized as a binary tree. The Wavelet Packet and Local Trigonometric

libraries are well known examples.
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4.4 Cohen-Raz-Malah Shift-Invariant Denoising

4.4.1 MDL-Based Additive Information Cost Function

The MDL principle, as proposed by Saito, non-additive. Therefore, in order to use it for
selecting the best basis, Cohen, Raz and Malah [5] proposed a modified additive MDL

cost function.

Let’s consider the model of an additive white Gaussian noise presented in Section 4.1.1.
Also, denote by E,, the tree-set that corresponds to the terminal nodes of a STIWPD tree
and describes the orthonormal basis B,, € B. k, as before, is the number of non-zero
coefficients in the set ©,, of expansion coefficients of the unknown signal f presented on
the basis B,,. {jm,n}ﬁ;é denote the set of position indexes of the non-zero coefficients
in ©,,. The encoding of the noisy observations y, and hence the computation of the
codelength, is carried out in three steps:

1) encoding the observed data assuming E,,, k and {j,,»}5=§ are given,

2) encoding the number of non-zero signal terms k and their locations {j,., }5Z} assuming
that E,, is given,

3) encoding the tree-set F,,.

Accordingly, the total description length of the data is given by
L(y) = L (Y| Bms ks {mn}it) + £ (ks {mn Yozt | Em) + L(Em) (4.31)

In their work Cohen et. al. showed that the optimal number of signal terms k and

k—1

their optimal locations {ﬁmn »—o are given by

A

k=#{wl,>3"mN|[0<n<N-1} (4.32)
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and

{gmn}::) ={n| w?,>30"InN,0<n<N-1} (4.33)
(further details are given in Appendix I11.4.1). Specifically, given E,, we compute the
expansion coefficients of the observed data, and then subsequently identify k as the number

of coefficients exceeding (in absolute value) the threshold ov/31n N, and {]Amn}’fl;%) as their

locations. Thus, the sum of the first two terms in Eq. (4.31) is given by
- (2 2
L(y|E,) = I > min (wm,n, 30%In N) : (4.34)
For |E,,| > 1, the codelength £ (E,,) can be approximated by
L(Em) = 3|Enl, (4.35)

where the constant terms are ignored. Adding the codelength L (y| E..) (Eq. (4.34)) to

Eq. (4.35), the total description length of the observed data is given by
1 N1
— _ _ . 2 2
L(y)=L(En)+L(y|En)=3|En|+ 552103 7;) min (wm,n, 30°In N) . (4.36)

The dependence of £ (y) on the tree-set F,, is introduced here through the number

of terminal nodes and the values of the expansion coefficients {wm,n}ﬁlgol. Since the total

N—-1
n=0

energy of the coefficients -, w2, = |yl is independent of E,,, we want that the
relative energy, contained in the coefficients exceeding 0v/31n N in magnitude, will be as
large as possible. At the same time, we want to minimize the complexity of the expansion

tree (the number of terminal nodes). Thus, search algorithm for the best tree-set E,, that

minimizes £(y) is needed.

4.4.2 The Optimal Tree Design and Signal Estimation

Let B represent the SWP library of orthonormal bases. Since each basis By, in the library

is associated with a tree-set F,,, the search for the optimal FE,, is equivalent to the search
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for the optimal basis in B.

Let’s denote by w,, = {wy,n,;} the set of the expansion coefficients of the observed
data y on the basis B,,, n € E,, is the index of the appropriate terminal node in the
tree-set E,,, 0 < 7 < N, —1 and N, is the number of expansion coefficients that belong

to the n-th terminal node. Then by Eq. (4.36)

Z L{{wm,n,; Nn_l)a (4.37)
nekb,,
where
1 Na—l
No—1y _ -
LHWmmni}iZo ) =3+ 552100 jgo mln{ W iy 307 lnN} (4.38)

is the codelength for the terminal node n € FE,,. Thus, the optimal basis for y in B with
respect to the MDL principle is B,, € B for which £(B,,y) is minimal.

The codelength in Eq. (4.37) constitutes an additive cost function, resulting directly
from the approximations derived in the previous section. Accordingly, we can apply the
SIWPD (Section 3.2.2) to the observed data y and to use the Eq. (4.36) to find the optimal
basis A = By, = {¢nm J}] _o » that minimizes the description length of the observed data,
as described in Section 3.2.3.

From Egs. (IT1.40), (4.32) and (4.33), the optimal estimate f of f is obtained by
expanding the observed data y on the optimal basis A and hard-thresholding the expansion

coefficients by 7 = 0v/31In N. Specifically,

N—
Z wmﬂ ¢ma]’ (439)

where wy, ; = (¥, ¢m,;), and nj,(x) is the hard-thresholding operator.
The following steps summarize the optimal shift-invariant signal estimation by the

MDL principle:
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Step 1 Ezpand the data y into the library B = {B,}M_,, i.e., obtain the expansion

coefficients w,, = {wm,j};.v;()l for1<m< M.

N-1

Step 2 Determine the optimal basis A = B, = {¢m,j}j:0 , i.e., the basis that minimizes

the MDL cost function defined by Eq. (4.36).
Step 3 Hard-threshold the expansion coefficients w,, by T =0vV3InN .
Step 4 Reconstruct the signal estimate using Eq. (4.39).

The computational complexity of executing an optimal SIWPD best-basis expansion
is O(N2*1). Yet, as demonstrated in Section 3.2.3, one may resort to a sub-optimal
SIWPD procedure entailing a reduced complexity at the expense of a longer description
length, while still retaining the desirable shift-invariance property. The larger d and L,
the larger the complexity, but the shorter the description length. This algorithm can be

readily extended to searches over more than a single library.

o6



Chapter 5 : Speech Denoising

Algorithms

5.1 Introduction

In this section we develop WPD-based and LTD-based speech denoising algorithms, and
study the consequences of shift-invariance on speech enhancement and the resulting arti-

facts.

5.2 Implementation and Quality Measures

All the software for this thesis was written for the Matlab® environment and is based
on Matlab® and WavBox® software. All examinations were done for the 3 following
sentences, each pronounced by a male and a female:

1) A lathe is a big tool

2) An icy wind raked the beach

3) Joe brought a young girl.

Each sentence is sampled at 8 KHz sampling frequency and has 16384 samples (J = 14).

Quality of the resulting speech signals was evaluated by listening and according to the
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following quantitative measures:

1) Signal to Noise Ratio (SNR):

f 2
SNR =10log (LLQJ [dB] (5.1)
I —£113

where f is an estimate of clean speech f.

2) Segmental SNR (SEGSNR):

M
SEGSNR = % > SNR; [dB] (5.2)
i=1
where
f;||2
SNR; =10log <L|A22 + 1) , (5.3)
|If; — £ 13

f; and E are the i-th frames of clean speech and estimated speech signals respectively, M
is the number of frames.

3) Log-Spectral Distance (LSD):

LSD = % i D; [dB] (5.4)
where
LN ~ , 1/2
D; = [N z_j (101og | Fy(k)| — 101og | F5(k)|) ] , (5.5)
Fy(k) = DFT{£} (k), Fi(k)=DFT{£} (k), (5.6)

N is the number of samples in the frame.
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5.3 WPD-Based Speech Denoising

5.3.1 Introduction

In this section we compare WPD-based speech denoising algorithms.

Obviously, a WP library allows choice of a mother wavelet with appropriate proper-
ties like linearity of phase, number of vanishing moments, time and frequency localization,
and the WPD can be performed with different numbers of decomposition levels and dif-
ferent cost functions. Moreover, different gain functions can be applied to the WPD

coefficients.

5.3.2 Waiener Filter

Let’s consider the same model of additive white Gaussian noise (Section 4.1.1). When

the speech and the noise signals are independent
Ellw|f3y = E||®[[3 5 + B2,y = ||®3 5 + No™. (5.7)

Among all linear estimators © = G(w,0) - w, the non-causal Wiener filter obtains an

optimal (in mean squared error sense) estimate of the clean signal:

® 2
|| 2,N (58)

G (0,0) = .
1013,n + Ellz3 x

Since ||©][3 y is unknown, we use, on practice, it’s estimate n,(|[w|[3 y, El|z||5 x), s0

s 2 o E|z| 2
Gy(w,0) = ns(|1wllz,n, £l255)

_ (5.9)
ns(IWl3 v, Ell2l[3 5) + Ell2

2 )
2,N
where 7, is soft-thresholding operator which was defined in Section 4.1.2. G} (0, 0) is the
ideal gain, and G, (w, o) is the gain that we practically use. Given y, the variance o2 of

the additive WGN still has to be estimated.
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# | Speaker || Decomposi- || Input Input Input || Output | Output | Output
tion type SNR | SEGSNR | LSD SNR | SEGSNR | LSD
1 | Female WT 10 6.06 11.51 14.08 8.14 9.11
1 | Female WPD 10 6.06 11.51 14.47 8.37 8.86
1 Male WT 10 5.96 11.53 || 12.67 7.06 10.39
1 Male WPD 10 5.96 11.53 13.3 7.34 9.93
2 | Female WT 10 6.68 9.47 12.87 9.34 6.91
2 | Female WPD 10 6.68 9.47 13.33 8.61 7.35
2 Male WT 10 6.73 9 11.97 7.73 7.8
2 Male WPD 10 6.73 9 12.69 8.2 6.96
3 | Female WT 10 6.17 11.11 13.34 7.69 9.57
3 | Female WPD 10 6.17 11.11 13.74 7.89 9.43
3 Male WT 10 5.92 11.51 12.83 7.06 10.28
3 Male WPD 10 5.92 11.51 13.5 7.39 10.01

Table 5.1: Influence of decomposition type on WPD-based denoising performance. # is the
number of the test sentence. SNRs and LSD are in [dB]. The input SNR, SEGSNR and LSD
are the original SNRs and LSD, and output SNR, SEGSNR and LSD are the resulting SNRs
and LSD.

5.3.3 Decomposition Type

Here we compare the performance of WT and WPD-based denoising. The comparison
was performed for noisy speech at 10dB SNR. The noise added to the clean speech was
WGN. The results of this comparison, using the Wiener gain function (Eq. (5.9)) and
a decomposition of whole signal (i.e., without segmentation into frames), L = 5 and the
Daubechies nearly symmetric mother wavelet (DNS) of 8 order (support width is 15 taps)
are presented in Table 5.1. For WPD an entropy-based best-basis selection algorithm was
implemented.

As we can see, for all of the above examples the WPD-based denoising performs better
than WT-based one. Additional simulations have shown that this conclusion does not
depend on the estimator type used for denoising, and for any of the described estimators
WPD-based denoising sounds less noisy. The reason for the advantage of WPD is that

this decomposition type allows better adaptation to the given signals properties.
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# | Speaker || Estimator | Input Input Input | Output | Output | Output
type SNR | SEGSNR | LSD SNR | SEGSNR | LSD
2 | Female || VisuShrink 10 6.68 9.47 10.08 6.76 6.88
2 | Female || RiskShrink 10 6.68 9.47 12.69 8.13 6.47
2 | Female || SureShrink 10 6.68 9.47 14.73 9.28 6.35
2 | Female Wiener 10 6.68 9.47 13.35 8.63 7.34
2 | Female Saito 10 6.68 9.47 9.55 6.52 7.44
2 | Female Cohen 10 6.68 9.47 11.28 7.62 6.85
2 Male VisuShrink 10 6.73 9 9.02 6.29 8.68
2 Male RiskShrink 10 6.73 9 11.74 7.68 6.42
2 Male SureShrink 10 6.73 9 14.19 8.96 6.44
2 Male Wiener 10 6.73 9 12.72 8.22 6.96
2 Male Saito 10 6.73 9 7.37 5.45 8.82
2 Male Cohen 10 6.73 9 10.25 6.89 7.29

Table 5.2: Influence of estimator type on WPD-based denoising performance.

5.3.4 Estimator Type

As we saw in Section 3.3.4, different estimators can be used in wavelet-based denoising.
In this section we compare different approaches for the estimation of a speech signal from

it’s noisy observation.

Tests (Table 5.2) were done under the same conditions as in Section 5.3.3, using WPD-
based denoising with L = 6. The estimators RiskShrink, VisuShrink and SureShrink were

used with soft thresholding.

SureShrink and Wiener estimators are clearly better than all the other examined es-
timators. But enhanced signals obtained by using the SureShrink estimator suffer from
artifacts in the form of spike-like transitions. The reason is that the thresholding opera-
tion leads to discontinuities: there can be situations where in the neighborhood of high-
amplitude coefficients only one expansion coefficient will be set to zero, or vice versa (only
few high-amplitude coefficients will not be set to zero). For example, use of the entropy

for the best-basis selection usually leads to a decomposition tree in which the high fre-
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quency bands are not decomposed (Figure 5.3), thus basis functions that correspond to
these bands have short time support (good time localization properties) and are very os-
cillatory. Leaving only few coefficients in such a band will lead to strong artifacts (Figure
5.1(a)). The same artifacts characterize all soft and hard thresholding-based estimators.
Moreover, in the high frequency regions speech is characterized by relatively low energy,
thus speech, enhanced by the thresholding-based algorithms, sounds oversmoothed - the
estimate of high frequency speech coefficients is zero for the most of the coefficients, and

it seems like the speech was low-pass filtered (Figures 5.1(b), 5.2).

0.8

0.2F T T T T T T T . T T T T T T
— Enhanced — Enhanced
N‘ — Clean — Clean

0.6

‘ |
0.15F ~ \ |

0.8}

-1

L L L L L L L L L L L L L L
4650 4700 4750 4800 4850 4900 4950 3060 3080 3100 3120 3140 3160 3180

(a) (b)

Figure 5.1: Fragments of speech signals, enhanced by thresholding-based algorithms: (a) Ar-
tifacts in speech enhanced by using the SureShrink estimator, (b) Oversmoothing in speech
enhanced by using the RiskShrink estimator.

Despite the fact that the speech enhanced by the Wiener estimator sounds noisier, it’s
quality is much better than for all other tested estimators. In the sequel we’ll show that
the use of the decision directed approach for a priori SNR estimation can suppress the
background noise without introducing artifacts.

In order to improve the speech quality obtained by thresholding-based estimators, we

should use an appropriate cost function and choose a mother wavelet with a wider time

support (worse time localization). However, in the following subsections we’ll show that
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Figure 5.2: Oversmoothing in speech signals, enhanced by thresholding-based algorithms: frag-
ments of speech signals, enhanced by (a) Saito estimator, (b) Cohen et. al. estimator.

these measures do not suppress sufficiently the artifacts, which characterize thresholding-

based estimators.

5.3.5 Cost Function and Lowest Decomposition Level

In order to check if any of the additive cost functions that were mentioned in Section 3.1.3
is better suited for speech denoising, simulations were carried out as presented in Table

5.3. The conditions are the same as in Section 5.3.3, the Wiener estimator and a WPD

with L = 6 were used.

We see that the differences are not significant, but full subband decomposition results
it the best denoising results. Further decomposition (L > 6) doesn’t lead to serious
improvement for any of above cost functions. In conclusion, none of the mentioned above
additive cost functions is globally optimal.

The full subband decomposition is an attractive choice: it can be represented by a
fixed tree structure and can be easily implemented. Moreover, it allows simple utilization

of the decision directed a priori SNR estimation: In order to utilize the latter, we have
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# | Speaker Cost Input Input Input || Output | Output | Output
function SNR | SEGSNR | LSD SNR | SEGSNR | LSD
1 | Female H 10 6.06 11.51 14.54 8.41 8.84
1 | Female £ 10 6.06 11.51 14.63 8.43 8.82
1 | Female o 10 6.06 11.51 || 14.63 8.43 8.77
1 | Female || Full Subband 10 6.06 11.51 || 14.68 8.45 8.83
1 Male H 10 5.96 11.53 13.39 7.37 9.9
1 Male & 10 5.96 11.53 13.53 7.46 9.86
1 Male 2 10 5.96 11.53 13.4 7.37 9.93
1 Male Full Subband 10 5.96 11.53 | 13.55 7.47 9.88
2 | Female H 10 6.68 9.47 13.35 8.63 7.34
2 | Female & 10 6.68 9.47 13.53 8.69 7.2
2 | Female o 10 6.68 9.47 13.49 8.69 7.21
2 | Female || Full Subband 10 6.68 9.47 13.55 8.69 7.2
2 Male H 10 6.73 9 12.72 8.22 6.96
2 Male E 10 6.73 9 12.77 8.25 6.88
2 Male 2 10 6.73 9 12.72 8.24 6.91
2 Male Full Subband 10 6.73 9 12.79 8.26 6.89
3 | Female H 10 6.17 11.11 13.77 7.9 9.42
3 | Female £ 10 6.17 11.11 13.86 7.94 9.37
3 | Female o 10 6.17 11.11 || 13.86 7.94 9.38
3 | Female || Full Subband 10 6.17 11.11 || 13.86 7.93 9.39
3 Male H 10 5.92 11.51 13.54 7.38 10.02
3 Male & 10 5.92 11.51 13.5 7.37 10.03
3 Male o 10 5.92 11.51 13.56 7.39 10
3 Male Full Subband 10 5.92 11.51 || 13.56 7.39 10.02

Table 5.3: Influence of cost function on WPD-based denoising performance. H corresponds to
the Shannon entropy, £ to the log energy, and £ to the concentration in ¢! norm.

to track the a priori SNR for terminal tree nodes. For a fixed tree structure (like the full

subband decomposition) the indices of terminal nodes do not change from frame to frame.

Where as to utilize the decision directed a priori SNR estimation for a WPD (with an

additive cost function) we have to track the a priori SNR at all tree nodes because the

indices of terminal nodes may change from frame to frame.
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Figure 5.3: Examples of WPD trees: (a) Result of entropy-based best-basis selection algorithm,
(b) Full subband decomposition tree.

5.3.6 Mother Wavelet: Phase Linearity and Design

It’s well known that the linearity of phase is of high importance in some fields of Sig-
nal Processing. Thus, it’s important to know should we use wavelet bases that possess
phase linearity (biorthogonal wavelet bases), nearly symmetric wavelets or minimum phase
wavelets. Moreover, as was mentioned in Section 5.3.4, in order to reduce the artifacts for
thresholding-based denoising algorithms, we have to verify the influence of time-resolution

properties of mother wavelet on denoising performance.

Tests (Table. 5.4) were done under the same conditions as in Section 5.3.3 using
WPD with entropy-based best-basis selection, for Daubechies minimum phase (DMP)
mother wavelet (8’th order), Daubechies nearly symmetric (DNS) mother wavelet (8’th
order) and biorthogonal (BIOR) mother wavelets (5’th order for both decomposition and
reconstruction mother wavelets). In order to use biorthogonal mother wavelets, in all the

tests noise variance was estimated for each decomposition band.

According to the listening and the results presented in Table 5.4 we can see that it’s

not important if the mother wavelet possess linearity of phase or not when we decompose
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# | Speaker | Mother || Input Input Input | Output | Output | Output
wavelet || SNR | SEGSNR | LSD SNR | SEGSNR | LSD
1 | Female | DMP 10 6.06 11.51 || 14.43 8.38 9.05
1 | Female DNS 10 6.06 11.51 14.54 8.41 8.84
1 | Female BIOR 10 6.06 11.51 14.16 8.19 9.15
1 Male DMP 10 5.96 11.53 13.4 7.38 9.92
1 Male DNS 10 5.96 11.53 || 13.39 7.37 9.9
1 Male BIOR 10 5.96 11.53 || 12.58 6.96 10.47
2 | Female | DMP 10 6.68 9.47 | 13.48 8.69 7.25
2 | Female DNS 10 6.68 9.47 13.35 8.63 7.34
2 | Female | BIOR 10 6.68 9.47 13.04 8.44 7.67
2 Male DMP 10 6.73 9 12.71 8.22 6.94
2 Male DNS 10 6.73 9 12.72 8.22 6.96
2 Male BIOR 10 6.73 9 11.69 7.57 7.88
3 | Female DMP 10 6.17 11.11 13.83 7.92 9.35
3 | Female DNS 10 6.17 11.11 13.77 7.9 9.42
3 | Female BIOR 10 6.17 11.11 13.19 7.59 9.54
3 Male DMP 10 5.92 11.51 13.51 7.35 10.04
3 Male DNS 10 5.92 11.51 13.54 7.38 10.02
3 Male BIOR 10 5.92 11.51 || 12.78 6.98 10.3

Table 5.4: Influence of mother wavelet type on WPD-based denoising performance. L = 6.

the whole signal. Moreover, there isn’t any advantage in using biorthogonal wavelets even

when the analysis is done with framing.

In order to improve the performance of the thresholding-based denoising algorithms,
we used a generalized Meyer mother wavelet. The Meyer mother wavelet [11] is defined

by its QMF my(w):

;
1, w| < 5,
mO(W) == < CcoS T v 3 w| — 1 , s S w S 2_7T, (510)
2 s 3 3
> 27
\ 0, lw| > =,

where v(z) is the so-called auziliary function, x € [0,1]. The default choice of Matlab® is

v(z) = 35z* — 84x° + 702° — 20z”.
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The generalized Meyer mother wavelet is given by a modified QMF m(w):

1: |w| < %(1_T):
m(w) =< cos EX ”(W)]’ T(1—7) < |w| < Z(1+7), (5.11)
0, lw| > g(1+7"),

where r is the roll-off. The choice of r = 1/3 corresponds to the standard Meyer mother

wavelet:

mo(w) = m(w)lr=1/3- (5.12)

The graphs of my(w) and m(w)|,=1/5 are given in Figure (5.4).

NG m(w)

Figure 5.4: Design of Meyer mother wavelet: (a) Roll-off » = 1/3 yields standard Meyer mother
wavelet, (b) Modified quadrature mirror filter m(w) (r = 1/5).

Given m(w) we can compute its discrete version (approximation):
H(k) = m(w)|y_2ep, k=0,1,.N—1. (5.13)

Taking the real part of the IDFT of the sequence {H(k)}~ -, gives an approximation of

modified Meyer QMF h(n):
h(n) = Re{IDFT({H(k)}}-)(n)}, n=0,1,..N — 1. (5.14)
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# | Speaker Estimator Input Input Input || Output | Output | Output
type,N,r SNR | SEGSNR | LSD SNR | SEGSNR | LSD
2 | Female VisuShrink,fi?,% 10 6.68 9.47 10.62 7.04 6.8
2 | Female RiskShrink,32,% 10 6.68 9.47 13.22 8.44 6.54
2 | Female || SureShrink,32,3 10 6.68 9.47 || 14.81 9.45 6.29
2 | Female Wiener,32, 5 10 6.68 9.47 13.53 8.71 7.26
2 | Female Saito,32,5 10 6.68 9.47 || 10.01 6.88 6.6
2 | Female Cohen,32,% 10 6.68 9.47 11.87 7.82 6.5
2 | Female | VisuShrink,64,5z | 10 6.68 9.47 || 10.69 7.08 6.74
2 | Female RiskShrink,64,§ 10 6.68 9.47 13.28 8.57 6.47
2 | Female SureShrink,Gél,% 10 6.68 9.47 14.83 9.46 6.19
2 | Female Wiener,ﬁél,% 10 6.68 9.47 13.6 8.76 7.24
2 | Female Sait0,64,§ 10 6.68 9.47 10.19 6.99 6.54
2 | Female Cohen,64,% 10 6.68 9.47 11.88 7.94 6.45
2 | Female VisuShrink,Gél,% 10 6.68 9.47 10.79 7.15 6.7
2 | Female RiskS’hrink,M,% 10 6.68 9.47 13.33 8.6 6.43
2 | Female SureShrink,M,é 10 6.68 9.47 14.92 9.47 6.12
2 | Female Wiener,64,7 10 6.68 9.47 || 13.63 8.77 7.2
2 | Female Sait0,64,é 10 6.68 9.47 10.22 7.09 6.5
2 | Female Cohen,64,% 10 6.68 9.47 11.9 7.97 6.44

Table 5.5: Use of generalized Meyer mother wavelet: influence of time and frequency localization
on WPD-based denoising performance.

The filter g(n) can be easily computed via Eq. (3.8). According to uncertainty principle,
the smaller the roll-off, the bigger the order N, that is needed for good approximation
(small reconstruction error).

In Table 5.5 results of WPD-based denoising for different roll-offs  and orders N are
presented.

Speech, enhanced by thresholding-based algorithms, sounds better for Meyer mother
wavelet (N = 32,64) then for other mother wavelets tested before. Reducing time loca-
lization we increase the time-support of bases functions thus suppressing the artifacts.
Moreover, when using mother wavelets with better frequency localization (smaller roll-

off), the quality of enhanced speech improves, resulting in better SNRs and LSD.

In spite of improvement of speech quality for thresholding-based algorithms, the qua-
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# | Speaker | Library || Input Input Input | Output | Output | Output
type SNR | SEGSNR | LSD SNR | SEGSNR | LSD
1 | Female WPD 10 6.06 11.51 16.01 9.12 8.17
1 | Female | SIWPD 10 6.06 11.51 16.16 9.16 7.88
1 Male WPD 10 5.96 11.53 | 15.03 8 9.65
1 Male SIWPD 10 5.96 11.53 14.68 7.86 9.52
2 | Female WPD 10 6.68 9.47 14.92 9.47 6.3
2 | Female || SIWPD 10 6.68 9.47 14.44 9.33 6.44
2 Male WPD 10 6.73 9 14.4 9.11 6.45
2 Male SIWPD 10 6.73 9 14.41 9.11 6.42
3 | Female WPD 10 6.17 11.11 15.06 8.31 9.35
3 | Female | STWPD 10 6.17 11.11 15.36 8.43 9.25
3 Male WPD 10 5.92 11.51 14.89 7.64 9.87
3 Male SIWPD 10 5.92 11.51 14.89 7.65 9.97

Table 5.6: Influence of shift invariance on WPD-based denoising performance. Use of
SureShrink estimator.

lity is worse comparing to enhanced by Wiener filter speech.

5.3.7 Shift Invariance

As it was mentioned in Section 4.2, some of the artifacts that are produced by denoising
were related by scientists  to the lack of shift invariance. Thus it was of high importance
to check if the SIWPD-based denoising leads to improvement when compared to WPD-
based denoising.

Results of WPD and SIWPD-based denoising for SureShrink estimator are presented
in Table 5.6, and for Wiener estimator - in Table 5.7. There the entropy-based best basis
selection algorithm with L = 6 and generalized Meyer mother wavelet (N = 64,r = 1/5)
was used.

According to the results that are presented in Tables 5.6, 5.7 we can see that the
use of SIWPD does not necessarily lead to improvement in the resulting SNR of the

enhanced speech, the speech quality does not improve too. Moreover, if we return to
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# | Speaker | Library || Input Input Input | Output | Output | Output
type SNR | SEGSNR | LSD SNR | SEGSNR | LSD
1 | Female | WPD 10 6.06 11.51 14.79 8.55 8.75
1 | Female | SIWPD 10 6.06 11.51 14.91 8.57 8.73
1 Male WPD 10 5.96 11.53 13.49 7.43 9.91
1 Male SIWPD 10 5.96 11.53 13.64 7.52 9.83
2 | Female | WPD 10 6.68 9.47 13.63 8.77 7.25
2 | Female || SIWPD 10 6.68 9.47 13.77 8.8 7.09
2 Male WPD 10 6.73 9 12.79 8.27 6.89
2 Male SIWPD 10 6.73 9 12.78 8.26 6.85
3 | Female WPD 10 6.17 11.11 14 8.03 9.35
3 | Female || SIWPD 10 6.17 11.11 | 14.09 8.05 9.37
3 Male WPD 10 5.92 11.51 || 13.77 7.48 9.95
3 Male SIWPD 10 5.92 11.51 13.75 7.47 9.98

Table 5.7: Influence of shift invariance on WPD-based denoising performance. Use of Wiener
estimator.

the test signals of Donoho and Johnstone [10] (Section 4.2) and perform STIWPD-based
denoising, the conclusion is the same. The reason for improvement obtained by the Cycle
Spinning denoising approach is that the averaging over time-shifts performs smoothing,

thus suppressing the Gibbs-like artifacts and blurring sharp transitions in the signals.

Test Library | Input Input Input || Output | Output | Output
signal type SNR | SEGSNR | LSD SNR | SEGSNR | LSD
Blocks WPD 17 18.68 9.94 18.23 19.75 9.73
Blocks SIWPD 17 18.68 9.94 18.24 19.85 9.64

Bumps WPD 17 14.19 9.69 21.34 16.25 291

Bumps SIWPD 17 14.19 9.69 21.39 16.25 4
HeaviSine | WPD 17 16.1 4.22 21.65 20.68 0.84
HeaviSine || SIWPD 17 16.1 4.22 21.61 20.67 0.87

Doppler WPD 17 16.32 7.7 20.85 21.01 1.11
Doppler || SIWPD 17 16.32 7.7 21.33 21.09 1.79

Table 5.8: Influence of shift invariance on WPD-based denoising performance. Use of Visu-
Shrink estimator for Donoho-Johnstone test signals. DNS mother wavelet (8’th order).
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5.3.8 Framing and Utilization of Decision Directed a Priori SNR
Estimation

It’s obvious that when speech is corrupted by stationary colored noise, the variance of the
noise process has to be estimated for each decomposition band. Moreover, estimation of
the noise process variance for each of the decomposition bands makes it possible to utilize
the decision directed a priori SNR estimation and to implement a Voice Activity Detector
[21].

In order to utilize the decision directed a priori SNR estimation we have to segment
the speech signal into frames. In general, segmentation of a speech signal can have many
advantages, like obtaining better adaptation to transitions in time and decreasing the
time delay in the denoising unit.

The Wiener gain function, defined by Eq. (5.8), can be rewritten in terms of the a

priori SNR introduced in Section 2.2.2:

G2 (@1l (i) = £ 0 65,15

where j is the index of the analysis frame (j = 1,2,..M), 07,(j) = El|zen(5)]154/d is

106m()I2.4

o7, ) is the a

the noise variance in the band indexed by the pair (¢,n), {n,(J) =
priori SNR of the wavelet coefficients in that band, ©,,(j) are the clean speech wavelet
coefficients in the band, d is the number of the coefficients in the band (d = 2¢+)).

It’s clear that the value of &,,(j) has to be estimated and the estimated value &, (5)

can then be used for gain calculation:

| &)
Guw(Wen(7), 000 (f)) = g(i,n(]) 1 (5.16)

Like in Ephraim-Malah speech denoising algorithm, the estimation of the a priori SNR
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# | Speaker N,L,a Input Input Input || Output | Output | Output
SNR | SEGSNR | LSD SNR | SEGSNR | LSD
3 | Female 128,5,0 10 6.17 11.11 15.96 8.55 9.17
3 | Female 128,5,0.9 10 6.17 11.11 16.5 8.85 8.98
3 | Female 128,J.0 10 6.17 11.11 13.49 7.58 10.1
3 | Female 128,J,0.9 10 6.17 11.11 16.19 8.71 9.21
3 | Female | 256,50 10 6.17 | 11.11 | 15.89 85 8.91
3 | Female || 256,5,0.9 10 6.17 11.11 16.4 8.85 8.98
3 | Female 256,.J,0 10 6.17 11.11 || 13.77 7.78 10.02
3 | Female | 256,.J,0.9 10 6.17 11.11 16.26 8.61 9.12
3 | Female 512,5,0 10 6.17 11.11 15.85 8.61 9.34
3 | Female || 512,5,0.9 10 6.17 11.11 || 16.37 8.82 9.14
3 | Female 512,J,0 10 6.17 11.11 13.8 7.78 10.01
3 | Female | 512,J,0.9 10 6.17 11.11 16.34 8.88 9.19
3 | Female 1024,5,0 10 6.17 11.11 15.23 8.11 9.03
3 | Female | 1024,5,0.9 10 6.17 11.11 16.28 8.73 9.23
3 | Female 1024,J,0 10 6.17 11.11 13.9 7.81 10.02
3 | Female || 1024,J,0.9 10 6.17 11.11 15.98 8.59 9.22

Table 5.9: Influence of frame size N, lowest decomposition level L and smoothing parameter «
on WPD-based denoising performance. L = J corresponds to the lowest allowed decomposition
level (log, N). The approximation of generalized Meyer mother wavelet with 64 taps and roll-off
of 10% was used.

is performed using the decision directed approach:

. Oun(j —1)|I2
& .(j) = 192 — D)ll2,4

=« - + (1 =a)ns(venly), 1), 7=2,3,..M, 5.17
El|zen(j — 1) (1 = )15 (Yem(5),1)5 J (5.17)

2
2,d

S\ [2
where v, (j) = % is the so-called a posteriori SNR and « is a smoothing param-

eter. The initial condition is:

é\é,n(l) =+ (1 - a)ns(’YZ,n(l)a 1)- (5'18)

If & =0, we return to the gain function, defined in (5.16):

1s(ven(3), 1) s(|1Wen (930 BllZen(5)]13.0)
L . (5.19)

Gu(Wen(5), 0en (7)) = 51 e ()3 g

B Ns (Ve (9),

In order to choose the optimal frame size N, lowest decomposition level L and smooth-
ing parameter o, examinations of full-subband WPD-based denoising with Hanning win-

dow of different lengths (50% overlapping) were made (Table 5.9).
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# | Speaker | Library || Input Input Input | Output | Output | Output
type SNR | SEGSNR | LSD SNR | SEGSNR | LSD
1 | Female | WPD 10 6.06 11.51 17.37 9.58 8.52
1 | Female | SIWPD 10 6.06 11.51 17.38 9.56 8.55
1 Male WPD 10 5.96 11.53 | 15.95 8.48 9.62
1 Male SIWPD 10 5.96 11.53 15.92 8.44 9.63
2 | Female | WPD 10 6.68 9.47 16.01 9.58 6.62
2 | Female || SIWPD 10 6.68 9.47 16.03 9.59 6.63
2 Male WPD 10 6.73 9 15.05 9.54 6.31
2 Male SIWPD 10 6.73 9 15 9.51 6.29
3 | Female WPD 10 6.17 11.11 16.56 9.01 9.12
3 | Female || SIWPD 10 6.17 11.11 16.54 9 9.1
3 Male WPD 10 5.92 11.51 15.7 7.94 9.96
3 Male SIWPD 10 5.92 11.51 15.65 7.9 10

Table 5.10: Influence of shift invariance on WPD-based denoising performance. N = 256,
a = 0.9, L = 8 and the approximation of generalized Meyer mother wavelet with 64 taps and
roll-off of 10% was used.

According to the results in Table 5.9 and the resulting speech quality, the preferable
frame size is 256 samples. When using the framing with o = 0, the optimal lowest
decomposition level was found to be L = 5. The perception of the enhanced speech is
better than for denoising without framing, but the background noise becomes colored. The
reason is that the gains in a given band fluctuate from frame to frame. The smoothing
operation (a # 0) alleviates this problem: it arises from the physical model of speech
generation and is based on the fact that spectral envelope of speech changes relatively

slow.

The best results, in terms of SNR and the quality of the enhanced speech were ob-
tained for the full subband decomposition (o« = 0.9, L = log, N - the lowest allowed
decomposition level, where N is the length of the analysis frame). Usage of the "decision
directed” approach to a priori SNR estimation with o = 0.9 smoothes the undesirable

fluctuations of the gain from frame to frame. The resulting speech sounds better than
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for denoising with @ = 0, and the residual noise sounds more like white noise. There-
fore it’s important to use the decision directed approach for a priori SNR estimation and
full-subband WPD in the speech denoising process. The full-subband WPD results in a
low computational complexity and allows simple implementation of the decision directed
approach to a priori SNR estimation.

In Table 5.10 we present comparative results of full-subband WPD-based and full-
subband SIWPD-based denoising. For full-subband SIWPD the best-basis search algo-
rithm still have to be used. We used entropy as the cost function for the best-basis search
algorithm. For both decompositions, the noise variance was estimated for each of sub-
bands and a Wiener filter combined with the decision directed a priori SNR estimation
was used. As it was previously mentioned, one can see that the shift invariance property

of WPD does not improve performance of the wavelet-based speech denoising algorithm.
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5.4 LTD-Based Speech Denoising

As it was mentioned in Section 3.3, LTD is a joint time-frequency representation that
performs adaptive time axis segmentation. In this section we present briefly a LTD-based
speech denoising algorithm. An extended discussion can be found in Appendix IV.

In our investigations we have found that the conclusions, made in the previous section
with regard to WPD-based speech denoising, hold also for LTD-based denoising of speech:
the optimal type of decomposition is “full-subsegment” decomposition, the optimal length
of time segments is 256 samples, improving frequency localization improves speech quality
and corresponding quantitative measures, and the Wiener estimator, combined with the
decision directed a priori SNR estimation, is the best choice.

The Wiener gain function, defined by Eq. (5.9), can be adapted to LTD-based denois-

ing:
Gw(wi,n,kaaé,n,k) - Aé\&in,k (520)
g@,n,k +1
where & pp = %‘—kp is the a priori SNR of the clean speech LTD coefficient 6y, ,
L,n,k

0fnr = Elzenk|” is the noise variance of the k-th “frequency” LTD coefficient in the
time segment indexed by the pair (¢,n). The estimation of the a priori SNR is done using

the decision directed approach:

2
= + (1 - a)ns(fﬂ,n,ka 1)’ (5.21)

where the a posteriori SNR, ok, is defined by

2

|w€ n,k
Venk = w5 5.22
“ 7 Elznal? (5.22)
The initial condition is:
Eok = a+ (1= Q) (ve0x, 1). (5.23)
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Utilization of the decision directed a priori SNR estimation for full “subsegment” LTD
requires tracking of the a priori SNR for £ € {0,1,...,20/*9 — 1}, n € {0,1,...,27¢ — 1}
with £ = —L (constant).

According to the results shown in Table IV.4 and the resulting speech quality, the
preferable lowest decomposition level is L = 6, the best value of o is @ = 0.9, and full

“subsegment” decomposition is preferred.

5.5 WPD Applied to DCT Coefficients

When WPD applied to DCT coefficients it can be viewed as joint time-frequency rep-
resentation that performs adaptive segmentation of time axis like LTD. In this section
we present briefly speech denoising algorithm, which is based on applying WPD to DCT
coefficients of the noisy speech signal. An extended discussion can be found in Appendix
IV, were we show that the conclusions, made with regard to WPD-based speech denoising,
hold also for speech denoising based on this type of representation.

In the case of this type of representation utilization of the decision directed a priori
SNR estimation can be done exactly as for LTD. According to results shown in Table
IV.8 and the resulting speech quality, the preferable lowest decomposition level is L = 6,
the best value of a is a = 0.9, and the best decomposition type is full “subsegment”
decomposition. Since improved frequency localization leads to improved SNR and speech

quality, the best choice of mother wavelet is DNS mother wavelet of 4’th order.
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Chapter 6 : Alternative Speech
Denoising Algorithms : A

Comparative Performance Analysis

6.1 Ideal Denoising

6.1.1 Introduction

In this chapter we compare the speech denoising algorithms proposed herein to existing

speech denoising algorithms.

Soon [36] et al have emphasized the advantages of DCT-based speech enhancement
techniques compared to similar DFT-based. In this chapter we carry out a similar study

comparing our algorithms with previous state of the art denoising schemes.

6.1.2 Real-valued Transforms vs. DFT

Let’s summarize the definitions of the Wiener estimator (Eq. (5.9)) for three transform

types, as follows:
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1) WPD:

N5 ([[Wen(7)|13,4, £ 260 (5)113,4)

Gw = :
|| Wen(4)

: (6.1)

2

2,d
where E|[z,(5)|[34 = 07,d is an estimate of the noise variance in the band, indexed by
the pair (£, 7n), in the j-th time frame, and d = 2¢+7) is the number of wavelet coefficients

in each subband at the ¢-th resolution level.

2) LTD/WPD applied to DCT-I coefficients:

?)

27 E‘Zf,n,k

ns(‘wf,n,k
|Wen k|

Gy = , (6.2)

where E|zyn|> = 07, is variance estimate of the noise k-th spectral component within

the segment indexed by the pair (£, n).

3) DFT/DCT:
_ Elz()? E|Zy () . .
G, = (1-¥), e <1 _ 0s(IY(5) %, E| Zk(5)[?) 6.3
o _ FZGE - (53
. Ve ()]
0, otherwise

where again F|Z;(j)|> = o7 is variance estimate of noise k-th spectral component in
the j-th time frame. Estimation of noise spectral components can be accomplished by
averaging the spectrum over speech-free segments.

The decision directed a priori SNR estimation can be applied to any of these gain
functions, and its purpose is to smooth out frame to frame gain fluctuations caused by
fluctuations of the squared spectral amplitude of the noise process (|Z|? for DF T-based
Wiener filter). For all of the mentioned above gain functions, the decision directed a
priori SNR estimation improves the quality of enhanced speech and results in higher
SNR. Obviously, usage of the (in practice, unknown) exact value of the squared spectral
component for each k, (|Z;|?), of the noise process, instead of its estimate (F|Z;|?), must,

necessarily, improve the performance of the denoising algorithms. We refer to a denoising
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Figure 6.1: WPD-based vs. DFT-based ideal speech denoising.

process based on the exact values of the squared spectral components of the noise signal
as “ideal denoising”.

Results of ideal denoising process applied to test signal #1, when in each of gain
functions (6.1), (6.2) and (6.3) the estimate of the squared spectral amplitude of the
noise is replaced by its exact value, are presented in Tables 6.1, 6.2 and shown in Figure
6.1. The WPD-based denoising executes a full-subband decomposition with a generalized
Meyer mother wavelet (64 taps, 10% roll-off) was used.

As one can see, the WPD-based denoising attains a consistently higher SNR. The
reasons for that are:

1) While performing denoising with N samples per time frame, we obtain N complex-

valued spectral (DFT) coefficients. WPD (or any real-valued transform) yields N inde-

H Transform H Input SNR ‘ 5 ‘ 6 ‘ 7 ‘ 8 ‘ 9 ‘ 10 H
WPD Output SNR | 17.46 | 18.12 | 18.87 | 19.61 | 20 | 20.48
DFT Output SNR | 16.34 | 17.01 | 17.76 | 18.58 | 19.17 | 19.74

DFTsn Output SNR | 16.44 | 17.12 | 17.85 | 18.7 | 19.28 | 19.86

Table 6.1: WPD-based vs. DFT-based ideal speech denoising. DF Ty corresponds to DFT of
zero padded segments (double length).

81



H Transform H Input SNR ‘ 11 ‘ 12 ‘ 13 ‘ 14 ‘ 15 H
WPD Output SNR | 21.04 | 22.01 | 22.73 | 23.05 | 23.64
DFT Output SNR | 20.18 | 21.17 | 21.83 | 22.36 | 22.91

DFTon Output SNR | 20.3 | 21.27 | 21.93 | 22.44 23

Table 6.2: WPD-based vs. DFT-based ideal speech denoising. DFTyx corresponds to DFT of
zero padded segments (double length).

pendent real-valued coefficients. Consequently, DFT-based denoising has at its disposal
only half (~ N/2) the number of amplitude coefficients.

2) While performing a DFT-based denoising, if |Y;|? > |Zx|? we do not modify the phase
of noisy signal, taking it as the optimal estimate of clean speech phase [18]. Whenever
|Yi|? < |Zk|> we take the zero phase as an estimate of clean speech phase. On the other
hand, speech denoising, based on some real-valued transform, achieve an exact phase re-
construction of the clean speech signal (expressed via the sign of the real-valued transform
coefficients) (see Appendix II). This is an intrinsic advantage of real-valued transforms
compared to DFT-based denoising.

A fair comparison between a WPD and a DFT-based ideal denoising is achieved by
zero padding the time segments in DFT-based denoising, thus improving its frequency
resolution, and subsequently, improving the global SNR of enhanced speech by 0.08 +-0.12
[dB] (Fig. 6.1). The results show that the exact phase reconstruction associated with real-

valued transforms leads to global SNR improvement by 0.69 <+ 1.12 [dB].

6.1.3 Simulation Results

In this subsection we present the results of ideal denoising for all the proposed algorithms,
the DFT and DCT-based Wiener estimator, and the DFT-based Ephraim-Malah (E-M)

log-spectral amplitude estimator. The results, presented in Table 6.3, show that DCT and
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WPD-based Wiener estimator overperform the DFTyxy-based one. Moreover, they show

that the Wiener estimator, based on CPD and WPD applied to DCT-I coefficients, attains

lower SNR than the Wiener estimator, based on WPD. The reason is that WPD, DCT

and DFT-based denoising algorithms divide the time axis into overlapping segments, while

introducing some kind of averaging and improving SNR. A fair comparison is achieved

by applying denoising algorithms, which are based on CPD and WPD applied to DCT-

I coefficients, using time-segments of 512 samples per segment with 25% overlap and

Hanning window; the number of decomposition levels is L = 1. The results are presented

in the Table 6.4.

# | Speaker Estimator, Input Input Input || Output | Output | Output
transform SNR | SEGSNR | LSD SNR | SEGSNR | LSD

1 | Female || Wiener, WPD 10 6.06 11.51 || 20.48 11.87 2.43

1 | Female Wiener,DCT 10 6.06 11.51 20.45 11.86 2.38

1 | Female Wiener,CPD 10 6.06 11.51 19.71 11.19 3.31

1 | Female Wiener, WPD 10 6.06 11.51 19.78 11.2 3.25

(DCT-I)
1 | Female || Wiener,DF T,y 10 6.06 11.51 19.86 11.46 2.36
1 | Female E-M,DFTyy 10 6.06 11.51 19.51 10.96 2.86
Table 6.3: Comparative performance of different speech denoising algorithms.
# | Speaker Estimator, Input Input Input || Output | Output | Output
transform SNR | SEGSNR | LSD SNR | SEGSNR | LSD

1 | Female || Wiener,CPD 10 6.06 11.51 20.36 11.8 2.42

1 | Female || Wiener, WPD 10 6.06 11.51 20.5 11.9 2.43
(DCT-I)

based ideal denoising performance. The full-subband decomposition (L

Table 6.4: Comparative performance of two different speech denoising algorithms.

In Table 6.5 we show the influence of frequency resolution and localization on WPD-

8) with prior

segmentation into frames (256 samples per frame) was used. As previously mentioned

(Sections 5.3.6, IV.1.3 and IV.2.3), improvement in frequency resolution and localization
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# | Speaker L,r Input Input Input | Output | Output | Output
SNR | SEGSNR | LSD SNR | SEGSNR | LSD

1 | Female 8,0.1 10 6.06 11.51 | 20.48 11.87 2.43

1 | Female 7,0.1 10 6.06 11.51 19.72 11.44 2.53

1 | Female 6,0.1 10 6.06 11.51 19.14 11.02 2.63

1 | Female 8,0.2 10 6.06 11.51 | 20.12 11.69 2.55

1 | Female 8,1/3 10 6.06 11.51 19.93 11.58 2.6

1 | Female | 8, DNS(8) 10 6.06 11.51 19.3 11.19 2.58

Table 6.5: Influence of frequency resolution and localization on WPD-based ideal denoising
performance. r denotes roll-off of modified Meyer QMF m(w).

# | Speaker | n || Input Input Input || Output | Output | Output
SNR | SEGSNR | LSD SNR | SEGSNR | LSD
1 | Female 6 10 6.06 11.51 18.41 10.5 3.68
1 | Female || 128 10 6.06 11.51 19.71 11.19 3.31
1 Male 6 10 5.96 11.53 17.52 9.32 3.36
1 Male 128 10 5.96 11.53 18.21 9.86 2.95
2 | Female 6 10 6.68 9.47 17.36 11.37 3.93
2 | Female | 128 10 6.68 947 18.21 11.81 3.95
2 Male 6 10 6.73 9 16.49 11.02 3.1
2 Male 128 10 6.73 9 17.02 11.23 2.5
3 | Female 6 10 6.17 11.11 17.72 9.74 2.35
3 | Female | 128 10 6.17 11.11 18.63 10.17 2.16
3 Male 6 10 5.92 11.51 17.28 8.72 3.55
3 Male 128 10 5.92 11.51 17.96 9.03 3.04

Table 6.6: Influence of CP basis functions frequency localization on LTD-based ideal denoising
performance.

leads to improved speech quality and higher global SNR.

In the Table 6.6 we present results of CPD-based ideal denoising for different values
of 1 (Section 3.3.2): 6 and 128. Clearly, an improved frequency localization results in

improved denoising performance.
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6.2 Practical Denoising

Herein, we compare the proposed speech denoising algorithms to the Ephraim-Malah (E-
M) MMSE Log-SA estimator [19] (Section 2.2.2) and to DFT-based Wiener estimator.
In all cases the decision directed a priori SNR estimation was utilized. The smoothing
parameter o = 0.92 was empirically found to be the best value for E-M algorithm, while
for all other algorithms o = 0.9 was used. The results are summarized in Table 6.7.
These results indicate that, for each of the tested speech signals, the DFT-based
Wiener estimator attains the highest global SNR, segmental SNR and LSD. The quality
of the enhanced speech is similar for all the algorithms. Examples of the results of Linear
Prediction Coding (LPC) analysis for two frames of enhanced speech signals are depicted
in Figure 6.2. The notable difference is the level and type of a residual background
noise. All of the algorithms, Ephraim-Malah being the exception, introduce a colored
background noise, that was found to be disturbing the listener. The DFT-based Wiener
estimator is characterized by the lowest level of the residual noise, and is superior to the
proposed algorithms. The Ephraim-Malah algorithm is characterized by a higher level
of background noise then DFT and WPD-based Wiener estimator, but, advantageously,
the background noise is almost white. It’s important to note that Wiener estimator, by
definition, minimizes the mean squared error estimating an unknown signal f, while E-M
algorithm minimizes the mean squared error estimating the log-spectra of the unknown
signal. Hence, it’s expected that the DF'T-based Wiener estimator achieves higher SNR

than the E-M algorithm.
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Figure 6.2: LPC analysis (p = 10) for clean, noisy and enhanced speech signals.
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6.3 Discussion

The comparisons, presented in the previous subsections, show that despite the advantages
of WPD and CPD-based algorithms under ideal denoising conditions, in practice (i.e., with
an estimated noise variance) the DFT-based denoising algorithms are found to be better.
The reasons are:

1) Given the noisy observations y, we can’t know the exact values of the noise squared
spectral components. Hence, using only the estimated averages of the noise squared
spectral components we can’t exactly reconstruct the clean speech phase.

2) It is shown in Appendix I, that if the additive noise is white and Gaussian, the variance
of its squared spectral components, obtained by real-valued transform, is twice (except
for the DC coefficient) the variance of the noise squared spectral components, obtained
by the DFT. This leads to higher deviations of noise squared spectral amplitude from its
estimated value, and subsequently to higher frame to frame gains fluctuations (segment
to segment gains fluctuations for CPD-based denoising) thus reducing the resulting global
and segmental SNR. The frame to frame gains fluctuations cause the residual background

noise to be colored.

Although, the proposed speech denoising algorithms do not outperform the DF T-based
algorithms, they still possess several advantages:
1) The WPD-based denoising can be easily incorporated into a WPD-based speech coding
system.
2) It’s important to note that LTD can be used as a time-segmentation tool. Thus, the
LTD-based denoising algorithm can be easily implemented in speech analysis systems,

which require adaptive segmentation.
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3) The LTD-based speech denoising algorithm can be used in conjunction with the Shift-
Invariant Adaptive Polarity Local Trigonometric Decomposition (SIAP-LTD) [4], that
possess the shift-invariance property, which is potentially critical for recognition applica-

tions.
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# | Speaker || Denoising || Input Input Input || Output | Output | Output
algorithm | SNR | SEGSNR | LSD SNR | SEGSNR | LSD
1 | Female WPD 10 6.06 11.51 || 17.37 9.58 8.52
1 | Female CPD 10 6.06 11.51 || 16.69 9.17 8.56
1 | Female WPD 10 6.06 11.51 16.49 9.04 8.81
(DCT-I)
1 | Female DFT 10 6.06 11.51 || 17.83 9.91 8.07
1 | Female E-M 10 6.06 11.51 17.22 9.45 8.67
1 Male WPD 10 5.96 11.53 || 15.95 8.48 9.62
1 Male CPD 10 5.96 11.53 15.44 8.1 9.69
1 Male WPD 10 5.96 11.53 || 15.31 8.07 9.73
(DCT-I)
1 Male DFT 10 5.96 11.53 || 16.41 8.75 9.5
1 Male E-M 10 5.96 11.53 || 16.00 8.44 9.69
2 | Female WPD 10 6.68 9.47 16.01 9.58 6.62
2 | Female CPD 10 6.68 9.47 15.13 9.43 6.76
2 | Female WPD 10 6.68 9.47 15.02 9.35 6.95
(DCT-I)
2 | Female DFT 10 6.68 9.47 16.22 10.26 6.29
2 | Female E-M 10 6.68 9.47 15.7 9.79 6.81
2 Male WPD 10 6.73 9 15.05 9.54 6.31
2 Male CPD 10 6.73 9 14.37 9.06 6.39
2 Male WPD 10 6.73 9 14.22 9 6.49
(DCT-I)
2 Male DFT 10 6.73 9 15.4 9.85 6.2
2 Male E-M 10 6.73 9 15.06 9.5 6.48
3 | Female WPD 10 6.17 11.11 16.56 9.01 9.12
3 | Female CPD 10 6.17 11.11 15.94 8.59 9.2
3 | Female WPD 10 6.17 11.11 15.83 8.42 9.35
(DCT-I)
3 | Female DFT 10 6.17 11.11 17.01 9.24 8.99
3 | Female E-M 10 6.17 11.11 || 16.46 8.93 9.23
3 Male WPD 10 5.92 11.51 15.7 7.94 9.96
3 Male CPD 10 5.92 11.51 15.24 7.68 9.99
3 Male WPD 10 5.92 11.51 15.16 7.53 10.09
(DCT-I)
3 Male DFT 10 5.92 11.51 16.11 8.12 9.83
3 Male E-M 10 5.92 11.51 15.74 7.97 10.01

Table 6.7: Comparison of the proposed speech denoising algorithms to the state of the art
speech denoising algorithms.
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Chapter 7 : Summary and

Conclusions

7.1 Summary

We have developed speech denoising algorithms based on WPD and LTD. The proposed
speech denoising algorithms utilize the decision directed approach to a priori SNR estima-
tion. It takes into account slow changes of the speech spectral envelope and overcomes the
undesirable fluctuations in the estimate of the noise squared spectral amplitude, thus im-
proving the denoising performance. We have shown that artifacts, introduced by wavelet-
based denoising algorithms [14, 16, 10, 33, 5], applied to speech enhancement, can be
particularly suppressed by increasing temporal support of the basis functions. Moreover,
improvement in frequency localization of the basis functions improves the speech denois-
ing performance. It also has been shown that shift-invariance achieved by Shift-Invariant
Wavelet Packet Decomposition (SIWPD) does not contribute to artifacts suppression and
does not guarantee an improved denoising performance.

We have compared the proposed speech denoising algorithms to the state of the art
speech denoising algorithms [18, 19]. Denoising based on the presumption of prior know-

ledge of the squared spectral amplitude of the noise is referred to as ideal denoising.
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Quite expectedly, simulations confirm that such ideal denoising attains higher SNR than
the practical one. Moreover, we have proved that for WGN, the of squared spectral am-
plitude of the coefficients, obtained by a real-valued orthonormal transform, is twice the
variance obtained by using the DFT. This explains the result that the state of the art
speech denoising algorithms perform better (although close) than the proposed speech

denoising algorithms.

Despite the fact that the speech denoising algorithms proposed herein do not possess
clear advantage over the DFT-based algorithms, they may have merit in a wider sense.
For example, WPD-based denoising can be easily incorporated into a WPD-based speech
coding system. Also, LTD can be used as a time-segmentation tool. Thus, the LTD-based
denoising algorithm can be conveniently implemented in speech analysis systems, which

require adaptive time-segmentation.

7.2 Future Research

There are a number of potentially promising topics for future study:

1) The LTD-based speech denoising algorithm can be used in conjunction with the Shift-
Invariant Adaptive Polarity Local Trigonometric Decomposition (SIAP-LTD) [4], that
possesses the shift-invariance property, which is potentially critical for recognition appli-
cations.

2) Saito and Coifman [32] have described a best-basis method for signal classification
problems, which is based on the conventional WPD and L'TD. They have used cross en-
tropy as a basis selection criterion. Thus, it picks out the most significant basis functions

to serve as feature extractors, that are subsequently utilized in an ordinary classifier.
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The sensitivity of the expansion coefficients to signal shifts is a serious drawback of such
classification methods. Saito [31] proposed to reduce the sensitivity to shift-variance by
creating from each training signal a few circularly-shifted versions. This not only increases
the computational complexity and required memory resources, but generates feature ex-
tractors that remain shift-variant. The proposed in [5] Shift-Invariant Wavelet Packet

Decompositions (as well as SIAP-LTD [4]) are expected to overcome this difficulty.

92



Appendix I : Fluctuations of

Squared Spectral Amplitude

Real-valued Transforms

Let x = {z;}Y," be samples of WGN, where z; ~ N (0,02). When we use a real-valued
orthonormal transformation

X=T-x, (L.1)

where X = {X;}25} and T represents an orthonormal matrix. It is well known that
Xy ~ N(0,02). Let us turn now to the squared amplitude | X}|2.

It’s known [25], that if X} ~ N(0,02), then
1-3-..-(n—1)-07, n=2m
E{[Xy["} = (L.2)
2m-m!-02-\/g, n=2m+ 1.
Thus,

w2 = B{|Xi[’} = o3 (1.3)

and

o, = Var{|Xe"} = B{(|X,* = B{|X,"})"} =

= B{|Xu[*} - (B{|X,})? = 30 — o = 202, (1.4)

T
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Here, the squared spectral amplitude | Xy |? has the so-called chi-square distribution with

one degree of freedom:

_ 1
- Q%F(%)ow

f|Xk\2(|ch|2) = fy(y)|y:|Xk|2, n=1,

fy(y) Y3l ETU(y), (I.5)

where U(y) is a step function.

Discrete Fourier Transform

Let X = {X;}io, denote the DCT coefficients of x = {z;}7 ;' which are samples of

a WGN process with zero mean and variance o2. It is well known [40] that the DCT

-

coefficients X can be obtained by applying a 2/N-point DFT to the sequence u = {u; 2Nt

defined by

zi, i=0,1,..N — 1,

0, i=N,..2N —1.
The DCT coefficients {X;}1— and the DFT coefficients {U,} ' are related then by

7k

Xy = cg - |Ug| - cos (9 — ﬁ)’

k=0,1,.N—1. (L.7)

Here, 9, represents the phase of Uy, and has uniform distribution 9y ~ U[0;27], and

? k = 07

V2, k=1,2,..N — 1.

Forming

7k
[ Xil* = c; - |Uk|? - cos® (0, — ﬁ)

with ¢, |Ug|? and 9, independent and ¢ a constant for a fixed &, leads to

E{|Xe|"} = ck - E{|Uk["} - E{cos® (¥ — %)}- (L.9)
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It’s clear that

1, k=0,
c =
2, k=1,2,..N—1
and
2
k cos” 0, k=0
E{cos? (9), — ;T—N)} - -
JoTcos? (9 — &) Lddy, k=1,2,.N—1
1, k=0,
5, k=12, .. N-1
Hence

1-E{|Us2}-1, k=0
B{| X[’} = = B{|Us[*} (L.10)

2-B{|Us*}-%, k=1,2,.N—1

and according to (1.3)

w2 = E{|U[*} = o7 (L.11)

For o, 2 we get:

ofy,p = Var{|Us*} = E{([U* — E{|U"})*} =

E{|Uc|"} — (E{|U:[*})* = E{|U|"} — 0. (L12)

Here

X4t = ¢ - U] - cos® (9 — 20y

k k k IN )

¢k, |Ux|? and 9}, are independent, ¢, is a constant for a fixed k. Thus

4 4 4 4 mk

B{IX*) = ¢ - BUUL} - Bfcos (9 — ),

and

E{1X"}

E{|U|*} = '
{1U:["} cp - E{cos* (ﬁk—%)}

(1.13)
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It’s clear that

1, k=0,
i =
4, k=1,2,..N —1,
and
E{cos* (¥ — ;—N)} =
;T cost (U, — TEV Ly, k=1,2,..
1, k=0 1,
% (%7919 + isjn?ﬁk + 3%Sin4q9k) |gﬂ" k= L2, N =1 %’
Finally,

E{|X|*}, k=0,

CIARES
“@”, k=1,2,..N -1,
and using (1.2), we obtain
A ol k=0,
E{|U["} =
2% k=12 .N—1,

x?

and substitution of the last equation into (I1.12) gives:

4
20,

) k=0,
Olug2 =
ot k=1,2,..N—1,

x)
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Appendix II : Clean Speech Phase

Reconstruction

As it was claimed in Section 6.1.2, it is shown here that real-valued transform-based
speech denoising, that assumes knowledge of the squared spectral amplitude of the noise,
allows perfect reconstruction of clean speech phase.

Let X} denote the expansion coefficients of the clean speech signal, Z; the expansion
coefficients of noise process, and Y, = X, + Z; the expansion coefficients of noisy speech.
%

Given the exact value of the noise squared-spectral-amplitude, |Zx|*, an estimate )f(\k of

X}, obtained by the use of Wiener filter, is defined by

2_ 2
(Peel), W2 > (22,

X, =Y -Gy =Y, (IL.1)

0, otherwise.

There are three possible cases:
1) sign(Xy) = sign(Z). Then
sign(X;) = sign(Vy) = sign(Xy + Z5) = sign(X;).
2) sign(Xy) = —sign(Z;). We distinguish between the following three cases:
a) | Zy| > | Xk| = |Yi]? =| Xk + Zx|* < |Zi|?, and the reconstructed phase will be 0.
b) 31Xk < |Zk] < |Xk| = |YVi|* = [ Xe+ 2> < 1| Xi|? < | Zk]?, and the reconstructed

phase will be 0.
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o) |Zk| < 3Xe| = |Vil? = | Xk + Zi? > X2 > |Zuf?, sign(Xy) = sign(Yy) =
sign(Xy + Zx) = sign(Xg).

Thus, real-valued transform-based speech denoising, that assumes knowledge of the
squared spectral amplitude of the noise, allows perfect reconstruction of clean speech

phase.
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Appendix III : Derivation of
Ephraim-Malah and State of the Art

Wavelet-Based Estimators

III.1 Ephraim-Malah Log-Spectral Amplitude Esti-

mator

The estimation problem of the STSA is formulated as that of estimation of the amplitude
of each Fourier expansion coefficient of the speech signal f = {f(¢),0 < t < T}, given
the noisy process y = {y(t),0 < t < T}. Both speech and noise process are assumed
to be Gaussian. The Fourier expansion coefficients of the speech process, as well as the
noise process, are modeled as statistically independent Gaussian random variables. The
Gaussian model is motivated by the central limit theorem, as each Fourier expansion co-
efficient is a weighted sum of random variables. The statistical independence assumption
is motivated by the fact that the correlation between the spectral components reduces as

the analysis interval length increases.

Let the F, = Ape’®*, Z, and Y, = Re’% denote the k-th Fourier expansion coef-
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ficients of the speech signal, the noise process and the noisy observations, respectively,
in the analysis interval [0,7]. According to the formulation of the estimation problem
given above, we are looking for the estimator Ak, which minimize the following distortion
measure:

E{(log A, — log A)?}. (IIL.1)

This estimator is easily shown to be
Ay = exp{E[In A |y]} (IIL.2)

and it is independent of the basis chosen for the log in (II1.2). As it was noted in [18],
the estimator (II1.2) equals

Ay = exp{E[In 4;|Y;]}. (IIL.3)

The evaluation of E[ln Ay |y| for the Gaussian model assumed here is conveniently done
by utilizing the moment generating function of In A given Y. Let Dy = In Ax. Then the

moment generating function ®p, |y, of Dy given Y} equals
Py v, = E{exp(uDp) Y} = E{AL[Y5}. (I11.4)

E|ln A Y] is obtained from ®p, |y, by

d
Blln Ay = 2@y, (1) i=o (IIL.5)

From (111.4)

oo r2m
a Yila y O g, & dogda
Pp, v (1) = E{AL[Y3} = Jo 0 QWkp( klak, o) p(ar, o )doyday
Joo Jo " p(Yelak, aw)p(ar, o) dayday,

(I11.6)

On the basis of the Gaussian model assumed here, p(Yy|ax, o) and p(ax, o) are given by

[18]:
1 1
(k) T {‘m

p(Yi|ag, ax) = Y, — akejo"“\Q} , (ITL.7)
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2

p(ak, ox) = 7T/\fk(k) exp {_)\f(kk) } : (II1.8)

where \,(k) = E{|Z;|*} and \;(k) = E{|Fi|*} are the variances of the noise and the

signal k-th spectral components. Substituting (II1.7) and (III.8) into (IIL.6), and using

the integral representation of the modified Bessel function of zero order Iy(-), we obtain:

0 a?“ exp(—ai/)\k)lo(Zak\/ v/ Ak )day

®p, v, (1) = : (IIL.9)
oo fooo ag exp(—aﬁ/)\k)lo(Qak\/Uk//\k)dak
where )\ satisfies 1/A\, = 1/Af 4+ 1/A,, and vy, is defined by
&k Ar(k) R;
= = = II1.10
& and ~y; are the a priori and a posteriori SNRs, respectively.
Further mathematical transformations lead to
d 1 1 © (—up) 1) 1 1 00 gt
@(I)Dk|yk(u):§1n/\k_§<c+7§ -l ;) —éln)\k+§<lnvk+/vk Tdt .
(IT1.11)

The integral in (III.11) is known as the exponential integral of v, and can be efficiently
calculated. Substitution of (III.11) into (IIL.5), using (II1.10) and (II1.3) gives the desired

amplitude estimator:

Ay = oy l/C’oe—_tdt R (IIL.12)
T g P 2 e k- '
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I1I1.2 Donoho-Johnstone SureShrink Estimator

Consider the noise model that was described previously (Section 4.1.1) with 0 = 1. Let
O = {6;}%} be a d-dimensional vector of speech wavelet coefficients, and w = {w; }¢_¢ be
it’s noisy observation with w; ~ N(6;,1). Let © = ©{w} be a particular fixed estimator
of ©. Charles Stein [37] introduced a method for estimation of the loss ||© — ©||? in an
unbiased fashion.

Let

~

O(w) =w + g(w), (IT1.13)

where g = {¢;}%=, is a function from R? into R?. Stein showed that when g(w) is weakly

differentiable, then
Eol|l® - O[] = d+2V-g(w)} + Eo{|lg(w)|]%, (IL.14)

where V-g =3, %gi.
Now consider the soft thresholding estimator @(t) = ns(w;, t), and apply Stein’s result.

According to (4.10)

w; — t-sign(w;), |wi| >t

oY =
and from (II1.13) we get:
—t-sign(w;), |wi| >1¢ 0 0, |w]>t
gi(w) = = 6—wigi(w) = ;
—wj, lwi| <t -1, |wil <t
, 2, lw;| >t _ \
gi (w) = = {min(fwi, ) }".

\wi\Q, |wz| <t
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Substitution of these equations into (II1.14) gives an unbiased estimate of risk:
Eo||®" — B|* = Eo{SURE(w, 1)},

where

SURE(w,t)=d—2-#{i: |w] <t} + di:l{minﬂwi\, )2 (IT1.15)

1=0

The basic idea of SureShrink estimator is usage of this estimator of risk for threshold
selection:

tsure(W) = arg oin. SURE (w,t) (I11.16)

Solution of this optimization problem is very simple. Suppose we’ve ordered the
vector w in the rising of |w;| manner. Between two neighboring points w; the function
SURE(w,t) is the monotonic rising function of . Thus, the threshold ¢g,.. is absolute
value of one of the coefficients {w; }¢¢

It was found that for o close to 0 use of optimal threshold (III.16) results in higher risk
than use of universal threshold A4 (section 4.1.4). For o > 0 use of tgy. results in smaller
risk than use of \;. Consequently, SureShrink estimator employs a hybrid scheme: if
the energy of w is non-negligible, the estimator employs the optimal threshold tg,;., and

for negligible ||w||3 ; it employs the universal threshold A4. The value

i (w? — 1) (I1.17)

Q.IF—‘

was chosen as a measure of energy of w, and the test s2 > ny/ v/d was chosen as an

indicator for threshold selection. Here 7, is given by
na = (log, d)*/?. (I11.18)

For o # 1 fine modifications are needed.
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II1.3 Saito Adaptive Estimator

I11.3.1 The Minimum Description Length (MDL) Principle

Let x = {z;}¥, be a string of symbols drawn from a finite alphabet X, which are inde-
pendently and identically distributed with probability mass function p(z), = € X. The
Shannon code has the shortest codelength on the average, and satisfies the so-called Kraft

inequality:

3 2kl <1 (T11.19)

T; €N
which is the necessary and sufficient for the existence of an instantaneously decodable

code, i.e., a code such that there is no codeword which is the prefix of any other codeword

in the coding system. The shortest codelength on average for the whole sequence f

becomes
N-1 N-1
L(x) = L(z:i) ==Y logsp(zs). (I11.20)
i=0 i=0

Let’s turn now to incoding the integer m. Suppose we don’t know how large it can
be. Rissanen [28] proposed that the code of such a natural number should be the binary
representation of m, preceded by the code describing its length logm, preceded by the
code describing the length of the code for logm, and so forth. This recursive strategy

leads to

L*(m) = logy"m + logyco = logym + logylogym + - - - 4 log,co, (IT1.21)

where the sum involves only the non-negative terms and the constant ¢y ~ 2.865064 (it was

computed to satisfy the Kraft inequality (II1.19) with equality). This can be generalized
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for an integer m by defining

1, m =0,
L*(m) = (IT1.22)

log,*|m/| + log,4cy, otherwise.

Since we don’t know the true model Y,, generating the data f, we’ll have to use some

estimate Y,,. The maximum likelihood (ML) estimate T, minimize
L(E| T, m) = —logop(f| T, m) (I11.23)

by definition (it maximizes p(f| Y, m) with p(f| T, m) < 1). Thus, the ML estimate is
the natural choice of the model.

The ML estimate T, can be described by deterministic real-valued parameters. How-
ever, it’s known that for deterministic real-valued parameters v; € IR the exact code
generally requires infinite length of bits. Thus, in practice, some truncation must be done
for transmission. Let § be the precision and vs be the truncated value, i.e., [v — vs| < 6.
Then, the number of bits required for vs is the sum of the codelength of its integer part

[v] and the number of fractional binary digits of the truncation precision 4, i.e.,
L(vs) = L7([v]) +1ogy(1/6). (I1.24)

The finer truncation precision we use, the smaller the term (II1.23), but the larger the
term E(Tm|m) becomes. Suppose that the model T,, has k,, real-valued parameters, i.e.,

Y = {Vm,1,Vm2; s Umpk,, }- Rissanen showed that the optimal truncation precision 6* is

of order 1/ VN and

A~

min £(f, Trmg,m,0) = L(m) + L(X - [m) + LT g0, m) + O (k)

km km R
~ L(m) + Y LN([0my]) + ?logQN + L(f| Y, m) + O(ky,), (IIL.25)
j=1
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where Tm is the optimal non-truncated model and Tm,(;* is the optimally truncated ver-
sion. For sufficiently large IV, the last term may be omitted, and instead of minimizing
the ideal codelength (4.23), Rissanen proposed to minimize

MDL(f, Y., m) = L(m) + % L*([Bng]) + %’”10g2zv + L(f|Y ), m). (I11.26)
j=1
The minimum of (IT1.26) gives the best compromise between the low complexity in the
model and high likelihood of the data.
Even though the list of models {2 doesn’t include the true model, the MDL method
achieves the best result among the available models. It’s also important to note that the
MDL principle doesn’t attempt to find the absolutely minimum description of the data.

It always requires an available collection of the models and simply suggests picking the

best model from the collection.

I11.3.2 Simultaneous Noise Suppression and Signal
Compression

Since we assumed the noise component is additive WGN, the probability of observing the

data given all model parameters is

—WTek)||2
P(y|0®) o2 k,m) = (2m0?) "% exp (— ly 2m2 = H2’N>. (IT1.27)
o
For the ML estimate of o2, first consider the log likelihood of (II1.27):
N —WEe®k|s2
Inp(y|0® 0% k,m) = —— In2r0? — ly m_m ||2’N. (II1.28)
2 202
Taking the derivative with respect to o2 and setting it to zero, we obtain
1
5 = Iy~ WEOWI[2. (1T 29)
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Substitution of this into (III1.28) leads to
~ 2m
Inp(y|0®) 52 k,m) = ~5n (Wl\y WT@Uf)HQN) - (I11.30)

Let w,, = W,,y denote the vector of expansion coefficients of y in the basis B,,. Since

this basis is orthonormal, we have:

ly = Wie®)3

Thus, it’s easy to see that maximization of (II1.30) is equivalent to minimization of ||w,, —
O[3 5. Since O contains only k nonzero elements, the minimum of ||w,,—O®|[3 y can
be achieved by taking the largest k coefficients in magnitudes of w,,, as the ML estimate

of 0 .,

~

@%) = n®w,, = n(k)(me)’

where 1*) is a thresholding operation which keeps the k largest (in absolute value) ele-

ments intact and sets all other elements to zero. Finally for 52 we get:

1
6° = 5| Wny - 1 (Weay)|15 5

(I11.31)

Let’s now assume that we don’t have any prior information on (k,m) so that the cost
L(k,m) is the same for all cases, i.e., we can drop the first term of (4.26) for minimization
purpose.

As for the second term, by normalizing the sequence wy, by ||y||2,n, We can assume
that the magnitude of each coefficient in (:)(m’“) is strictly less than 1. Thus, its integer
part is zero and we do not need to encode the integer part if we transmit the real-valued
parameter ||y|[|3 y. Now the description length L(6®) 52|k, m) becomes approximately

(L*([32]) + L ([[ly][3.5]) + ££21og, N) bits. Moreover, we need to specify the indices of the
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non-zero coefficients, i.e., where the k non-zero elements are in vector @gf). This requires

klog, N bits. Thus, as a result,
Ok 52 _3
L(Oy 6% k,m) = iklogQN + ¢, (I11.32)

where c is a constant independent of (k,m).

From (II1.27) we get:

A(R) ~ N
L(y|63), 5% k,m) = Zlogs| Wy — 1 (Way) | + ¢, (IT1.33)

where ¢’ is a constant independent of (k,m). Using (II1.32) and (I11.33), Saito defines the

approximate MDL (AMDL):

3 N
AMDL = iklogQN + ElogQ\ Wy — % (W,y)

2 v (I11.34)

108



I1I1.4 Cohen-Raz-Malah Adaptive Estimator

111.4.1 MDL-Based Additive Information Cost Function

Let’s denote by u the parameter vector that describes the true model Y, generating the

unknown signal f:

= (B o Lo Fichs 103, i28) (111.35)

It was established by Rissanen [30] that the shortest codelength for encoding the data
set {wm 1 using the probabilistic model P({wm} "¢ | 1), where y is an unknown

parameter vector, is asymptotically given by

L ({wm,n}gz_ol) - - 10g2 P ({wm,n}fzvz_owﬁ) + glOgQ Na (11136)

where [i is the ML estimator of pu:
i = argmax P ({wmn}h0 1) (I11.37)

and ¢ is the number of free real-valued parameters in the vector y. Recalling that the
expansion coefficients of the noise {2, ,}52 > are i.i.d. ~ N(0,02), it follows from Section

4.1.1 that the probability of observing the data given all model parameters is

B 1 k—1 N-1
P (y|p) = (2n0%) N ?exp (‘Tcz <Z(wm,jmm —Ojmn) >+ D wfn,jmm» . (I11.38)
n=k

n=0

Thus, from (II1.36), the codelength required to encode the observed data, assuming E,,,

k and {jm}EZ0 are given, is

L(¥ | B by G Yih) = =108 P (3| B by GV (B Yik) + & Toy N

- o Nf 2 1 (2 2)Jrkl N (11.39)
T 92021n?2 = Wi, jm,n B 08\ 20 5 08y 1V, .
where
B = Wi 0<n<k—1 (I1L.40)
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are the ML estimates of {0,5,;,. . }-20.

It was shown in Section 4.3.3 that the codelength for encoding k£ and { jm,n}fl;%) is
L (k, {mm =3 Em) = klog, N. (IIL.41)

Since our goal is to obtain the shortest codelength, the optimal number of signal terms k
and their optimal locations {jn}’,ﬁ;é are obtained by minimizing the sum of codelengths

given by (I11.39) and (I11.41):

1 =, 3k
LB En) = 5575 2 Wingaa + 5 1082 N
n=~k
1 N—-1 ) k—1 )
= — ; 30“In N 111.42
20_2 ln2 [ ngk wm,jm,n + 1;)( g n ) Y ( )

where the constant terms are discarded. Clearly,

N—1 N—1 k—1
> min (w2, 30°InN) < 3wl + 3 (30*InN) (I11.43)
n=0 n=~k n=0

forall 0 <k < N —1 and {jm.}f8 € {0,...,N — 1}. Equality in (II1.43) holds for the
optimal value given by

~

k=#{wk,>3"mN|[0<n<N-1} (IT1.44)

and

{Jmn}::; = {n | wh, >30?InN,0<n<N - 1} : (I11.45)

Specifically, given E,, we compute the expansion coefficients of the observed data, and
then k is the number of coefficients exceeding the threshold ov/31In N in absolute value,
and {ﬁmn}ﬁ;é are their locations (notice that & = 0 implies f = 0). Thus the codelength

in (II1.42) reduces to

1 N-1
L(y| En) = 57 >_ min (w2, 30° I N) . (I11.46)
n=0
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To encode the tree-set E,,, with the SIWPD tree we associate a 3-ary string as follows:
for each node of the SIWPD tree we use 0 if its shift-index is identical to the shift-index
of its child-nodes, we use 1 if its child-nodes have a different shift-index, and we use 2 if
it is a terminal-node. Now, we traverse the tree from node to node, top-down from left
to right, starting at the root at the top. The string for the example shown in Fig. II1.1 is

0210222.

2 2

Figure III.1: Exemplifying the description of SIWPD trees by 3-ary strings. Terminal nodes
are represented by 2s, and internal nodes by either Os or 1s, depending on their expansion mode.
In the present example, the string is 0210222.

A SIWPD tree, that corresponds to the basis B,,, includes |E,,| terminal nodes and
|Ey| — 1 internal nodes, where |E,,| is the cardinality of E,,. Since the tree always ends
with a terminal node, the last 2 in the string can be discarded, and thus we need to encode

a sequence containing (| E,,| — 1) 2s and (|E,,,| — 1) symbols from {0, 1}. The description

length of such a sequence is

2 E,| — 2
L (En) = log, + (|Em| = 1) + logy | Eml , (I11.47)
|Ep| — 1

where the first term is required to specify the locations of 2s in the sequence, the second

term to discriminate between Os and 1s, and the third term to encode the number of
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terminal terms. Applying Stirling’s formula to the factorials, the description length of the

tree is given by

|Em| (05} —40!2 ’
111.48
B 1 (B —nma T )

where a4, ap and ¢’ are constants independent of E,, (0 < oy, as < 1). For |E,,| > 1, the

L (Ey) = 3|En| + log,

codelength can be approximated by
L (En) =~ 3|Enl, (IT1.49)

where the constant terms are ignored. Adding the codelength £ (y| E,,) (Eq. (I11.46)) to
Eq. (II1.49), the total description length of the observed data is given by

1 N—-1 - ) )
L(y)=L(En)+L(y|En) =3|E,+ 597102 7;) min (wm,n , 30“In N) . (II1.50)
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Appendix IV : Proposed Speech

Denoising Algorithms

IV.1 LTD-Based Speech Denoising

IV.1.1 Estimator Type

As we saw in Section 3.3.4, different estimators can be used in wavelet-based denoising.
Like WPD, LTD is an orthonormal transformation which preserve the risk (4.7) and can
be organized in binary tree. Thus all the estimators that were described previously (except
Cohen-Raz-Malah estimator which was developed for SIWPD), can be used in LTD-based
speech denoising.

Let’s denote by © = {Og}n)cr the clean speech LTD coefficients, 6= {ég’n}(g,n)eE
- the estimated coeflicients, w = {wy,}n)cr - the noisy speech LTD coefficients, and
zZ = {Zg,n}(g,”)eE - the noise process LTD coefficients. Here wy, = {wg,n,k}z;é are the
LTD coefficients in the segment (terminal tree node), which is indexed by the pair (¢, n),
k is the frequency-domain position index (contrary to WPD, where £ is the time-domain

position index), and d is the number of the coefficients in this segment (d = 2(+7)),

Tests (Table IV.1) were done under the same conditions as in Section 5.3.3, using
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# | Speaker || Estimator | Input Input Input | Output | Output | Output
type SNR | SEGSNR | LSD SNR | SEGSNR | LSD
2 | Female || VisuShrink 10 6.68 9.47 10.34 6.91 6.81
2 | Female || RiskShrink 10 6.68 9.47 12.72 8.03 6.93
2 | Female || SureShrink 10 6.68 9.47 14.48 9.06 5.9
2 | Female Wiener 10 6.68 9.47 12.92 8.05 8.08
2 | Female Saito 10 6.68 9.47 9.67 6.7 7.49
2 Male VisuShrink 10 6.73 9 9.05 6.28 7.31
2 Male RiskShrink 10 6.73 9 11.7 7.59 6.99
2 Male SureShrink 10 6.73 9 14.02 8.81 6.03
2 Male Wiener 10 6.73 9 12.65 7.97 7.61
2 Male Saito 10 6.73 9 7.35 5.45 8.68

Table IV.1: Influence of estimator type on LTD-based denoising performance. L = 6.

Cosine (DCT-1V) Packet Decomposition-based (CPD-based) denoising with L = 6 and
Wickerhauser Symmetric Bell with n = 6 (default choice of WavBoxz®© software). The
estimators RiskShrink, VisuShrink and SureShrink were used with soft thresholding.
SureShrink and Wiener estimators perform better than all the other examined estima-
tors. Speech, enhanced by thresholding the CPD coefficients of the noisy speech, sounds
better than when it is enhanced by thresholding the WPD coefficients of the noisy speech
(DNS mother wavelet of the 8’th order). However, CPD-based denoising still introduces
artifacts similar to WPD-based denoising: setting some CPD coefficients to zero corre-
sponds to subtraction of basis functions from noisy signal. The reason for the better
quality obtained by CPD-based denoising is that LTD is the dual of WPD with respect
to time-frequency tiling: decomposing a signal from resolution level ¢ into resolution level
£ — 1 increases the time support of WPD bases functions, and reduce the time support
of Cosine Packet (CP) basis functions. As mentioned above (Section 3.3), the ¥, (CP
basis function) is supported in time on [a; — n,aj11 + 7] (a; and a;4; are the segmenta-
tion points). For J = 14 and L = 6 the minimal time support of CP basis functions is

20/=L) 4 29 = 256 + 12 = 268 taps, which corresponds to £ = —L resolution level. For the
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same J and L the minimal time support of WP basis functions is (2M —1)2' = 16-2 = 32
taps (here M = 8 is the order of DNS mother wavelet function and its time support is
(2M — 1)), which corresponds to £ = —1 resolution level. Thus, subtraction of WP basis
function with such a time support will lead to an artifact which is stronger and disturbs
a listener more than an artifact produced by subtraction of CP basis function.

Despite the fact that speech enhanced by a Wiener estimator sounds noisier, its quality
is much better than for all other tested estimators. We’ll show in the sequel that the use
of the decision directed approach for a priori SNR estimation suppresses background noise
without introducing artifacts.

In order to improve the quality of speech enhanced by LTD-based estimators we should
look for an appropriate cost function and verify the effect of better frequency localization

on the enhanced speech quality.

IV.1.2 Cost Function and Lowest Decomposition Level

In order to check if any of the additive cost functions that were listed in Section 3.1.3 is
better suited for speech denoising, they were examined in simulations. The results are
presented in Table IV.2. The conditions are the same as in Section 5.3.3, the Wiener
estimator and CPD with L = 6 were used.

We see that the differences are not significant and that the full “subsegment” decom-
position gives the best denoising results. Further decomposition (L > 6) doesn’t lead to
improvement for any of above cost functions. The reason is that the smaller the segments,
the more annoying are fluctuations of gains from segment to segment. Thus, L = 6 was
chosen as an optimal value (256 taps in minimal time segment).

As mentioned in Section 5.3.5, the full “subsegment” decomposition is an attractive
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# | Speaker Cost Input Input Input | Output | Output | Output
function SNR | SEGSNR | LSD SNR | SEGSNR | LSD
1 | Female H 10 6.06 11.51 || 13.33 7.5 10.19
1 | Female £ 10 6.06 11.51 || 13.35 7.5 10.09
1 | Female 2 10 6.06 1151 | 13.34 7.5 10.09
1 | Female || Full subsegment 10 6.06 11.51 | 13.35 7.5 9.95
1 Male H 10 5.96 11.53 || 13.03 7.08 10.52
1 Male & 10 5.96 11.53 | 13.04 7.07 10.52
1 Male 2 10 5.96 11.53 || 13.03 7.07 10.52
1 Male | Full subsegment 10 5.96 11.53 || 13.11 7.11 10.42
2 | Female H 10 6.68 9.47 12.92 8.05 8.08
2 | Female & 10 6.68 9.47 12.97 8.08 8
2 | Female o 10 6.68 9.47 12.98 8.07 7.96
2 | Female || Full subsegment 10 6.68 9.47 12.99 8.05 7.85
2 Male H 10 6.73 9 12.65 7.97 7.61
2 Male £ 10 6.73 9 12.68 7.99 7.63
2 Male Iz 10 6.73 9 12.63 7.96 7.63
2 Male Full subsegment 10 6.73 9 12.73 8.01 7.53
3 | Female H 10 6.17 11.11 || 13.08 7.39 10.2
3 | Female £ 10 6.17 11.11 || 13.15 7.43 10.09
3 | Female Iz 10 6.17 11.11 | 13.14 7.43 10.09
3 | Female || Full subsegment 10 6.17 11.11 | 13.17 7.41 10
3 | Male H 10 5.92 11.51 || 13.02 6.93 10.73
3 | Male & 10 5.92 11.51 || 13.02 6.94 10.68
3 | Male 2 10 5.92 11.51 || 13.01 6.92 10.67
3 Male Full subsegment 10 5.92 11.51 | 13.02 6.94 10.65

Table IV.2: Influence of cost function on LTD-based denoising performance. L = 6. H
corresponds to the Shannon entropy, £ to the log energy, and ¢! to the concentration in £
norm (Section 3.1.3).

choice: it can be represented by a fixed tree structure and can be easily implemented.
Moreover, it allows simple utilization of the decision directed a priori SNR estimation:
In order to utilize the latter, we have to track the a priori SNR for time segments of
the same length. For the full subsegment decomposition these (time segments) are the
terminal nodes and this avoids the need to keep the values of the a priori SNR for all

nodes in the tree, but the terminal nodes.
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IV.1.3 Window Function and Frequency Localization

As we saw in the Section 5.3.6, the better the frequency localization of basis functions, the
better the performance of speech denoising algorithms. Thus, we made some simulations

to verify if this conclusion also holds for LTD-based speech denoising.

As previously mentioned, the frequency uncertainty of CP basis functions ¥ ; equals
to that of the Fourier transform of the window function. The last one has its support on
the interval [a; — 1, a;+1 +n]. Thus, the bigger the value of 7, the smaller is the frequency

uncertainty of CP basis functions. That is, the better their frequency localization.

In order to improve the frequency localization, we have to use the maximal allowed 7.

As stated in Section 3.3.2, n has to satisfy:

ajr1 —a; > 2n>0. (IV.1)

Given J and L, the maximal allowed 7 is given by

Nmazx = 2J—L/2, (IV?)

2J—L

where is the length of the minimal segment. For our examinations J = 14, L = 6,

and hence 7,4, = 128.

Tests were done (Table. IV.3) under the same conditions as in Section 5.3.3, using CP

full “subsegment” decomposition and two values of n: 6 and 128.

Based on listening and on the results presented in Table IV.3, we can indeed state that
the better frequency localization (bigger time support of window function), the better the

quality of enhanced speech and the resulting values of SNR and LSD.

117



# | Speaker | 7 | Input Input Input | Output | Output | Output
SNR | SEGSNR | LSD SNR | SEGSNR | LSD
1 | Female 6 10 6.06 11.51 || 13.35 7.5 9.95
1 | Female | 128 10 6.06 11.51 13.67 7.73 10.03
1 Male 6 10 5.96 11.53 13.11 7.11 10.42
1 Male 128 10 5.96 11.53 13.3 7.26 104
2 | Female 6 10 6.68 9.47 12.99 8.05 7.85
2 | Female | 128 10 6.68 9.47 13.24 8.28 7.8
2 Male 6 10 6.73 9 12.73 8.01 7.53
2 Male 128 10 6.73 9 12.89 8.14 7.5
3 | Female 6 10 6.17 11.11 13.17 7.41 10
3 | Female | 128 10 6.17 11.11 13.44 7.62 9.96
3 Male 6 10 5.92 11.51 13.02 6.94 10.65
3 Male 128 10 5.92 11.51 13.14 7.03 10.62

Table IV.3: Influence of CP basis functions frequency localization on LTD-based denoising
performance.

IV.1.4 TUtilization of Decision Directed a Priori SNR Estimation

In order to utilize the decision directed a priori SNR estimation we have to segment the
speech signal into frames. As discussed earlier, time axis segmentation is inherent to LTD,
thus the decision directed a priori SNR estimation can be easily applied.

The Wiener gain function, defined by Eq. (5.9), can be adapted to LTD-based denois-

ing:
Gw(wé,n,kao-é,n,k) = M (IV3)
gl,n,k +1
where & = |€T‘2"—’°|2 is the a priori SNR of the clean speech LTD coefficient 6y,
L,n,k

0tk = Elzenkl” is the noise variance of the k-th “frequency” LTD coefficient in the
time segment indexed by the pair (¢,n). The estimation of the a priori SNR is done using

the decision directed approach:

= ‘é\ﬂ n—1 k|2
— o bnmLkl (g 1), V.4
gé,n,k aE|Zg,n,k|2 + ( 04)773 (f)/f,n,k ) ( )

where the a posteriori SNR, vk, is defined by
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# | Speaker || Cost Func- || Input Input Input || Output | Output | Output
tion,L, v SNR | SEGSNR | LSD SNR | SEGSNR | LSD
3 | Female H.)5,0 10 6.17 11.11 13.23 7.52 10.21
3 | Female H.)5,0.9 10 6.17 11.11 14.75 8.22 9.4
3 | Female H.6,0 10 6.17 11.11 13.33 7.58 10.14
3 | Female H.6,0.9 10 6.17 11.11 14.91 8.31 9.4
3 | Female H,7,0 10 6.17 11.11 13.23 7.5 10.17
3 | Female H,7,0.9 10 6.17 11.11 14.72 8.14 9.39
3 | Female £,5,0 10 6.17 11.11 13.25 7.53 10.17
3 | Female £,5,0.9 10 6.17 11.11 15.24 8.26 9.37
3 | Female £.,6,0 10 6.17 11.11 || 13.38 7.59 10.06
3 | Female £,6,0.9 10 6.17 11.11 15.71 8.53 9.22
3 | Female E£,7,0 10 6.17 11.11 13.34 7.57 10.05
3 | Female £,7,0.9 10 6.17 11.11 15.61 8.45 9.19
3 | Female 5,0 10 6.17 11.11 13.25 7.54 10.18
3 | Female | ¢'5,0.9 10 6.17 11.11 || 15.27 8.27 9.35
3 | Female 21,6,0 10 6.17 11.11 || 13.33 7.58 10.09
3 | Female 01,6,0.9 10 6.17 11.11 || 15.59 8.41 9.3
3 | Female 27,0 10 6.17 11.11 || 13.29 7.55 10.09
3 | Female 01,7.0.9 10 6.17 11.11 || 15.47 8.37 9.3
3 | Female FS,5,0 10 6.17 11.11 13.28 7.55 10.17
3 | Female FS.,5,09 10 6.17 11.11 15.29 8.27 9.35
3 | Female FS.6,0 10 6.17 11.11 13.42 7.61 10.02
3 | Female FS$5.,6,0.9 10 6.17 11.11 15.94 8.59 9.2
3 | Female FS.7.0 10 6.17 11.11 13.41 7.59 10.08
3 | Female FS5.7,0.9 10 6.17 11.11 || 15.82 8.59 9.21

Table IV.4: Influence of cost function, lowest decomposition level L and smoothing parameter
a on LTD-based denoising performance. F'S corresponds to full “subsegment” LTD. n = Npqz-

The initial condition is:

Yen k =

. ‘wﬁ,n,k
Elzen,]?

2

é\eaozk = + (1 - a)ns(rYE,O,kH 1)

If & =0, we return to the gain function, defined in (IV.3):

Gw (wl,n,ka Gﬁ,n,k) =

775 (/Ye;nyk’ 1)

_ 775 ( ‘ wesnvk

27 O-Zn,k)

773(’7&71,167 1) +1

|w£,n,k

(IV.5)

(IV.6)

(IV.7)

Utilization of the decision directed a priori SNR estimation for full “subsegment” LTD

requires tracking of the a priori SNR for k& € {0,1,...,20+*9—1}, n € {0,1, ...,27¢—1} with
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¢ = —L (constant). Using an adaptive best-basis selection requires the tracking of the a
priori SNR for k € {0,1,...,20+9 -1} n € {0,1,....27¢—~1} and all £ € {-1,-2, ..., —L}.

To choose the best cost function, determine the best values of the lowest decomposition
level L and the smoothing parameter «, several tests were made (Table IV.4). According
to the results shown in Table IV.4 and the resulting speech quality, the preferable lowest
decomposition level is L = 6, the best value of a is & = 0.9, and full “subsegment”
decomposition is preferred.

Increasing L leads to worsening of the frequency localization and decreases the time
support of basis function. But, on the other hand, the time segments become shorter and
the use of decision directed a priori SNR estimation improves the denoising performance.
A further increase of L causes the gains fluctuations to be more annoying and reduces the

quality of the enhanced speech.
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IV.2 WPD Applied to DCT Coefficients

IV.2.1 Estimator Type

Similar to LTD-based speech denoising, all the estimators that were described previously
(except Cohen-Raz-Malah estimator) can be used for speech denoising based on WPD
applied to DCT coefficients.

Let’s use the same notations as in Section IV.1.1 for clean, noisy and enhanced speech
expansion coefficients. Tests (Table IV.5) were done under the same conditions as in
Section 5.3.3, using denoising, based on WPD of DCT-I coefficient, with . = 6 and DNS
mother wavelet of 8’th order. The estimators RiskShrink, VisuShrink and SureShrink were

used with soft thresholding.

# | Speaker || Estimator | Input Input Input | Output | Output | Output
type SNR | SEGSNR | LSD SNR | SEGSNR | LSD
2 | Female | VisuShrink 10 6.68 9.47 10.73 6.77 7.16
2 | Female || RiskShrink 10 6.68 9.47 13.17 8.16 6.67
2 | Female || SureShrink 10 6.68 9.47 14.36 8.72 7.06
2 | Female Wiener 10 6.68 9.47 13 8.16 8.21
2 | Female Saito 10 6.68 9.47 9.16 6.36 7.9
2 Male VisuShrink 10 6.73 9 9.01 6.09 7.92
2 Male RiskShrink 10 6.73 9 11.77 7.61 6.56
2 Male SureShrink 10 6.73 9 13.68 8.54 7.29
2 Male Wiener 10 6.73 9 12.65 8.05 7.8
2 Male Saito 10 6.73 9 7.55 5.51 8.01

Table IV.5: Influence of estimator type on performance of speech denoising, based on WPD
applied to DCT-I coefficients.

SureShrink and Wiener estimators perform better than all the other examined esti-
mators. Speech enhanced by this type of denoising sounds similar to the speech enhanced
by LTD-based denoising. However, it still introduces artifacts similar to those obtained

by WPD-based denoising.

121



Despite the fact that the speech enhanced by Wiener estimator sounds noisier its

quality is much better than for all other tested estimators.

IV.2.2 Cost Function and Lowest Decomposition Level

The conditions in the simulations, the results of which are presented in Table IV.6, are

the same as in Section 5.3.3. In the simulation the Wiener estimator and a WPD with

L = 6 were used.

We see that the differences are not significant and full “subsegment” decomposition

# | Speaker Cost Input Input Input | Output | Output | Output
function SNR | SEGSNR | LSD SNR | SEGSNR | LSD
1 | Female H 10 6.06 11.51 || 13.45 7.59 10.29
1 | Female & 10 6.06 11.51 || 13.44 7.58 10.28
1 | Female Iz 10 6.06 11.51 || 13.45 7.59 10.24
1 | Female || Full subsegment 10 6.06 11.51 | 13.52 7.61 10.21
1 Male H 10 5.96 11.53 || 12.92 7.05 10.66
1 Male & 10 5.96 11.53 || 12.95 7.05 10.65
1 Male 2 10 5.96 11.53 | 12.93 7.05 10.65
1 Male || Full subsegment 10 5.96 11.53 || 12.98 7.06 10.62
2 | Female H 10 6.68 9.47 13 8.16 8.21
2 | Female & 10 6.68 9.47 13.03 8.16 8.17
2 | Female Iz 10 6.68 9.47 13.04 8.16 8.19
2 | Female || Full subsegment 10 6.68 9.47 13.06 8.18 8.14
2 Male H 10 6.73 9 12.65 8.05 7.8
2 Male & 10 6.73 9 12.62 8.03 707
2 Male o 10 6.73 9 12.67 8.07 707
2 Male Full subsegment 10 6.73 9 12.7 8.08 7.72
3 | Female H 10 6.17 11.11 || 13.09 7.43 10.25
3 | Female & 10 6.17 11.11 || 13.08 7.43 10.26
3 | Female 2 10 6.17 11.11 || 13.08 7.43 10.23
3 | Female || Full subsegment 10 6.17 11.11 || 13.12 7.45 10.2
3 | Male H 10 5.92 11.51 || 12.93 6.94 10.77
3 | Male & 10 5.92 11.51 12.9 6.92 10.79
3 | Male Iz 10 5.92 11.51 || 12.93 6.95 10.77
3 | Male || Full subsegment 10 5.92 11.51 || 12.98 6.96 10.76

Table IV.6: Influence of cost function on performance of speech denoising, based on WPD
applied to DCT-I coefficients.
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gives the best denoising results. Further decomposition (L > 6) doesn’t lead to improve-
ment for any of above cost functions. The reason is that the smaller the segments, the
more annoying are the segment to segment gains fluctuations. Thus, L = 6 was chosen

as optimal value (256 taps in minimal time segment).

IV.2.3 Mother Wavelet and Frequency Localization

As we saw in Section 5.3.6, the better the frequency localization of basis functions, the
better the performance of speech denoising algorithms. Thus, we made simulations to
verify if this conclusion also holds for speech denoising based on WPD applied to DCT
coefficients.

In order to improve the frequency localization for this type of joint time-frequency
representation, we have to decrease the time support of the mother wavelet function.
Thus, tests (Table. IV.7) were done under the same conditions as in Section 5.3.3, using
full “subsegment” WPD with DNS mother wavelet of two orders (8 and 4) and the Wiener
estimator. According to the results presented in Table IV.7, we can see that the better

the frequency localization (smaller time support of mother wavelet function), the better

are the obtained values of SNR and LSD.

IV.2.4 Utilization of Decision Directed a Priori SNR Estimation

Utilization of the decision directed a priori SNR estimation for this type of representation
can be done exactly as for LTD. In order to choose an optimal cost function, lowest
decomposition level L and smoothing parameter a, a number of examinations (Table IV.8)
were made, in which WPD with DNS mother wavelet of 4’th order were used. According

to results shown in Table IV.8 and the resulting speech quality, the preferable lowest
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# | Speaker || Order || Input Input Input || Output | Output | Output
SNR | SEGSNR | LSD SNR | SEGSNR | LSD
1 | Female 8 10 6.06 11.51 13.45 7.59 10.29
1 | Female 4 10 6.06 11.51 13.5 7.63 10.13
1 Male 8 10 5.96 11.53 || 12.92 7.05 10.66
1 Male 4 10 5.96 11.53 13 7.06 10.58
2 | Female 8 10 6.68 9.47 13 8.16 8.21
2 | Female 4 10 6.68 9.47 13.04 8.2 8.11
2 Male 8 10 6.73 9 12.65 8.05 7.8
2 Male 4 10 6.73 9 12.7 8.08 7.74
3 | Female 8 10 6.17 11.11 13.09 7.43 10.25
3 | Female 4 10 6.17 11.11 13.13 7.49 9.21
3 Male 8 10 5.92 11.51 12.93 6.94 10.77
3 Male 4 10 5.92 11.51 12.95 6.98 10.7

Table IV.7: Influence of frequency localization on speech denoising performance.

decomposition level is L = 6, the best value of « is &« = 0.9, and the best decomposition

type is full “subsegment” decomposition.
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# | Speaker || Cost Func- || Input Input Input || Output | Output | Output
tion,L, v SNR | SEGSNR | LSD SNR | SEGSNR | LSD
3 | Female H)50 10 6.17 11.11 12.91 7.38 10.27
3 | Female H,50.9 10 6.17 11.11 14.26 7.87 9.53
3 | Female H.,6,0 10 6.17 11.11 12.96 7.41 10.27
3 | Female H.,6,0.9 10 6.17 11.11 || 14.41 7.98 9.48
3 | Female H70 10 6.17 11.11 12.97 7.41 10.26
3 | Female H7.0.9 10 6.17 11.11 14.39 7.97 9.48
3 | Female £.,5,0 10 6.17 11.11 12.91 7.36 10.25
3 | Female £,5,0.9 10 6.17 11.11 14.49 7.93 9.54
3 | Female £,6,0 10 6.17 11.11 13.01 7.42 10.23
3 | Female £,6,0.9 10 6.17 11.11 || 14.72 8 9.47
3 | Female £,7,0 10 6.17 11.11 12.97 7.4 10.26
3 | Female £,7,09 10 6.17 11.11 14.69 7.99 9.48
3 | Female 15,0 10 6.17 11.11 12.96 7.41 10.25
3 | Female 1,5,0.9 10 6.17 11.11 14.62 7.99 9.48
3 | Female 01,6,0 10 6.17 11.11 12.99 7.42 10.24
3 | Female 16,09 10 6.17 11.11 || 14.64 7.95 9.49
3 | Female 07,0 10 6.17 11.11 12.95 7.39 10.24
3 | Female 7,09 10 6.17 11.11 13.64 7.95 9.49
3 | Female FS55,0 10 6.17 11.11 12.99 7.41 10.25
3 | Female FS,5,0.9 10 6.17 11.11 14.7 7.98 9.48
3 | Female FS56,0 10 6.17 11.11 13.03 7.42 10.23
3 | Female FS5.,6,0.9 10 6.17 11.11 || 14.83 8.02 9.45
3 | Female FS;7,0 10 6.17 11.11 12.99 7.4 10.24
3 | Female FS5.7,0.9 10 6.17 11.11 14.67 7.9 9.45

Table IV.8: Influence of cost function, lowest decomposition level L and smoothing parameter
a on denoising performance. F'S corresponds to full “subsegment” decomposition.
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Hebrew Abstract

The problem of enhancing speech degraded by uncorrelated additive noise, when the
noisy speech alone is available, has received much attention. This is due to a variety of
potential applications speech enhancement possesses. Furthermore, technologies enabling
the implementation of such intricate algorithms are now available. The main purpose
of denoising techniques is to improve the quality and comprehension of speech. It’s also
useful to enhance the speech prior to the implementation of techniques such as coding and
recognition. Unfortunately, while existing speech denoising algorithms appear to improve
the quality of speech, they typically do not improve its comprehension.

Wavelet bases are widely used for estimating signals embedded in noise. While tradi-
tional methods often remove noise by low-pass filtering, thus blurring the sharp features in
the signal, wavelet-based methods show good performance for a wide diversity of signals.
The wavelet shrinkage method, developed by Donoho and Johnstone [17], uses a fixed
transform of the noisy data into the wavelet-domain, applies soft or hard thresholding to
the resulting coefficients, and subsequently transforms the modified wavelet-domain coef-
ficients back into the original space. It was recognized that the success of such a denoising
scheme is determined by the extent to which the transform compresses the unknown signal
into few significant coefficients [15]. Given a library of bases and a noisy measurement,

researchers proposed several different approaches to select a “best” basis and a threshold



value, leading to the best signal estimate [13].

Saito [33] proposed to use an information-theoretic criterion, called the Minimum
Description Length (MDL) principle [30], for noise removal. He claimed that the MDL
criterion gives the best compromise between the estimation fidelity (noise suppression)
and the efficiency of representation (signal compression).

It has been observed [10, 1, 33] that denoising with the conventional wavelet transform
and wavelet packet decomposition (WPD) may exhibit visual artifacts, such as pseudo-
Gibbs phenomena in the neighborhood of discontinuities. These artifacts were related
to the lack of shift-invariance, and proposed to reduce them by averaging over different
translations: Applying a range of shifts to the noisy data, denoising the shifted versions
with the wavelet transform, then unshifting and averaging the denoised data. This pro-
cedure, termed Cycle-Spinning [10], generally yields better visual performance on smooth
parts of the signal.

Cohen, Raz and Malah [5] presented an extension of WPD into a Shift-Invariant WPD
(SIWPD). Moreover, they reformulated the MDL principle as an additive information cost
function [8] and presented an adaptive translation-invariant denoising algorithm.

The main purpose of the thesis was to modify and improve existing denoising algo-
rithms and to study the consequences of shift-invariance on speech enhancement and the
resulting artifacts. First, we implemented the state of the art speech denoising algorithms
and wavelet-based denoising algorithms. These algorithms served as benchmarks. We
then developed the speech denoising algorithms, based on WPD and Local Trigonomet-
ric Decomposition (LTD), which utilize the decision directed approach to a priori SNR
estimation.

We have shown that artifacts, introduced by wavelet-based denoising algorithms [14,



16, 10, 33, 5], applied to speech enhancement, can be particularly suppressed by increasing
temporal support of the basis functions. Moreover, improvement in frequency localization
of the basis functions improves the speech denoising performance. It also has been shown
that shift-invariance achieved by Shift-Invariant Wavelet Packet Decomposition (SIWPD)
does not contribute to artifacts suppression and does not guarantee an improved denoising

performance.

Denoising based on the presumption of prior knowledge of the squared spectral ampli-
tude of the noise is referred to as ¢deal denoising. Quite expectedly, simulations confirm
that such ideal denoising attains higher SNR than the practical one. We have proven
that ideal speech denoising, based on some real-valued transform, achieve an exact phase
reconstruction of the clean speech signal (expressed via the sign of the real-valued trans-
form coefficients). This is an intrinsic advantage of real-valued transforms compared to
DFT-based denoising. The results show that the exact phase reconstruction associated
with real-valued transforms leads to global SNR improvement by 0.69 <+ 1.12 [dB] while

comparing WPD-based vs. DFT-based ideal denoising.

We have compared the proposed speech denoising algorithms to the state of the art
speech denoising algorithms [18, 19]. Simulation results indicate that, for each of the
tested speech signals, the DFT-based Wiener estimator attains the highest global SNR,
segmental SNR and LSD. The quality of the enhanced speech is similar for all the algo-
rithms. The notable difference is the level and type of a residual background noise. All
of the algorithms, Ephraim-Malah being the exception, introduce a colored background
noise, that was found to be disturbing the listener. The DFT-based Wiener estimator is
characterized by the lowest level of the residual noise, and is superior to the proposed al-

gorithms. The Ephraim-Malah algorithm is characterized by a higher level of background



noise then DFT and WPD-based Wiener estimator, but, advantageously, the background

noise is almost white.

Despite the advantages of WPD and LTD-based algorithms under ideal denoising
conditions, in practice (i.e., with an estimated noise variance) the DFT-based denoising
algorithms are found to be better. The reasons are:

1) Given the noisy observations, we can’t know the exact values of the noise squared
spectral components. Hence, using only the estimated averages of the noise squared
spectral components we can’t exactly reconstruct the clean speech phase.

2) It is shown in Appendix I, that if the additive noise is white and Gaussian, the variance
of its squared spectral components, obtained by real-valued transform, is twice (except
for the DC coefficient) the variance of the noise squared spectral components, obtained
by the DFT. This leads to higher deviations of noise squared spectral amplitude from its
estimated value, and subsequently to higher frame to frame gains fluctuations (segment
to segment gains fluctuations for LTD-based denoising) thus reducing the resulting global
and segmental SNR. The frame to frame gains fluctuations cause the residual background

noise to be colored.

Despite the fact that the speech denoising algorithms proposed herein do not possess
clear advantage over the DFT-based algorithms, they may have merit in a wider sense.
For example, WPD-based denoising can be easily incorporated into a WPD-based speech
coding system. Also, LTD can be used as a time-segmentation tool. Thus, the LTD-based
denoising algorithm can be conveniently implemented in speech analysis systems, which

require adaptive time-segmentation.

The organization of this thesis is as follows. In the next chapter we review the state

of the art speech denoising algorithms and the so-called “decision directed’ approach to a



priori SNR estimation, that was introduced by Ephraim and Malah in [18]. In Chapter 3
we review the basics of joint time frequency representations: Wavelet packet analysis and
best-basis expansion, the extension of wavelet packet bases for obtaining shift-invariance,
and local trigonometric bases. In Chapter 4 we review different wavelet-based denoising
algorithms, including the so-called “translation-invariant” denoising algorithm of Coifman
and Donoho, and the Cohen-Raz-Malah shift-invariant denoising algorithm, based on
shift-invariant WPD.

The main contribution of this thesis begins in Chapter 5, where we present several
speech denoising algorithms, based on WPD, Cosine Packet Decomposition and WPD
applied to DCT-I coefficients. We utilize the decision directed a priori SNR estima-
tion for each of the mentioned joint time-frequency representations. Importance of shift-
invariance, time support and frequency localization are discussed. In Chapter 6 we in-
troduce a comparative performance analysis of different speech denoising algorithms, and
present some interesting conclusions corresponding a comparison of DF'T-based and real-
valued transform-based denoising. Required proofs are given in the Appendices.

Finally, in Chapter 7 we conclude with a summary and discussion on future research

directions.






