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Abstract 

In this work we study morphological methods to reduce the amount of redundant points in the Skeleton representation 
of images. The advantage of removing redundant points using morphological operations only lies in the computational 
efficiency of these operations, when implemented on parallel machines. We propose a classification of redundant points of 
the skeleton into several categories and apply this classification in the framework of a generic approach which we present 
for obtaining redundancy-reduced Skeletons. This approach is shown to yield morphological closed formulae for reduced 
Skeletons which have less redundant points than the ordinary Skeleton. The approach is also extended for reducing the 
redundan=y in Multi-Structuring-Element Skeletons (MSES). Although complete removal of the redundancy has not 
been achieved yet for the general case, the generic approach is shown to provide a complete removal of skeleton points 
belonging to most of the redundancy categories, as well as a redundancy-free representation for a particular important 
case of the MSES. 

Zusammenfassung 

In dieser Arbeit untersuchen wir morphologische Methoden, um die Anzahl von redundanten Punkten in Skelett- 
repr/isentation von Bildern zu reduzieren. Der Vorteil des Entfernens von redundanten Punkten nur durch mor- 
phologische Operationen liegt in der Effizienz der Berechnung dieser Operationen wenn sic auf parailelen Maschinen 
implementiert werden. Wir schlagen eine Klassifikation von redundanten Punkten des Skeletts in verschiedene 
Kategorien vor und wenden diese Klassifikation im Rahmen eines generischen Ansatzes, den wir vorstellen, um 
redundanz-reduzierte Skelette zu erhalten. Dieser Ansatz bringt morphologische SchlieBungsformeln fiir reduzierte 
Skelette hervor, die weniger redundante Punkte als gew6hnliche Skelette haben. Dieser Ansatz wird auch erweitert, um 
die Redundanz yon Skeletten aus mehrfache Strukturelementen (MSES) zu reduzieren. Obwohi die vollst/indige 
Entfernung der Redundanz fiir den allgemeinen Fall noch nicht erreicht werden konnte, liefert der generische Ansatz eine 
v011st/indige Entfernung von Skelettpunkten, die zu den am meisten redundanten Kategorien geh6ren und ebenfalls eine 
redundanzfreie Repr/isentation fiir einen besonders wichtige Fall eines MSES. 

R~sume 

Ce travail ~tudie des m6thodes morphoiogiques pour r6duire la redondance des points du squelette. L'avantage 
d'utiliser uniquement des op6rations morphologiques pour ~liminer les points redondants r~side dans le faible cofit de 
calcul r6sultant, si ces operations sont impl~ment(~es sur des machines parall~les. On propose une classification des points 
redondants du squelette en plusieurs categories et on utilise cette classification dans le cadre du calcul de squelettes 
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fi redondance rrduite. Cette approche fournit des formules morphologique permettant d'obtenir des squelettes possrdant 
moins de points redondant que les squelettes ordinaires. L'approche est 6galement &endue fi la rrduction de redondance 
de squelettes h 616ments structurants multiples (MSES). Bien que l'61imination compl&e de la redondance n'a pas 
pu ~tre obtenue dans le cas grnrral, on montre que l'approche permet rrlimination compirte des points appartenant 
fi la plus part des classes de redondance ainsi que obtention d'une reprrsentation sans redondance d'un cas important 
de MSES. 

Key words: Mathematical morphology; Skeleton; Parallel implementation; Redundancy reduction; Shape representa- 
tion; Image coding; Shape analysis 

1. Introduction 

The morphological skeleton is a compact error- 
free representation of images, a property useful for 
image analysis and lossless image data compression 
[4,10]. 

However, some authors have noted the fact that 
the skeleton is a redundant representation, i.e., some 
of its points may be discarded without affecting its 
error-free characteristic. In some applications, such 
as coding, no importance is attributed to the skel- 
eton shape or its connectivity, but only to its ability 
to fully represent imaoes in a compact way. In such 
applications, it is of interest to remove redundant 
skeleton points, so that the representation contains 
as few as possible points. 

For this purpose, Maragos and Schafer defined 
in [4] a Minimal Skeleton as being any set of points 
from the skeleton which fully represents the original 
image and does not so if any of its points is re- 
moved. A minimal skeleton always exists, since in 
the worst case it is the skeleton itself, but usually it 
is not unique, i.e., there can be more than one 
minimal skeleton for a given image. 

Maragos and Schafer propose in [4] an algo- 
rithm for finding a minimal skeleton from the skel- 
eton representation of a binary image. However, 
this algorithm is not fully morphological and there- 
fore cannot be efficiently implemented on a parallel 
machine, in contrast to the morphological skeleton 
itself which is amenable to a parallel implementa- 
tion. A fully morphological algorithm for finding 
minimal skeletons could take advantage of the par- 
allel properties of the morphological operations 
and perform the computation in a more efficient 
way. 

Another important related topic is the 'Reduced 
Skeleton' defined by Maragos in [3] (see also [1]). 
The reduced skeleton has fewer representation 
points than the ordinary skeleton and it is also 
error-free. It is not a minimal skeleton but it is 
obtained by morphological operations only. (The 
mathematical definition is reviewed in Section 2). 
Other efficient morphological representations are 
studied in [5-9]. 

The paper is organized as follows: in Section 2 
we propose a classification of redundant points into 
several categories and apply this classification in 
the framework of a generic approach which we 
present for obtaining 'general' morphological 
error-free reduced skeletons. In particular, we show 
how to use this approach to obtain reduced 
skeletons with no redundant points in most of 
those redundancy categories. This method gives 
not only Maragos' reduced skeleton, as a particular 
case, but also leads to a reduced skeleton which has 
less skeleton points and is still error-free. In 
Section 3, the generic approach is extended for 
reducing Multi-Structuring-Element Skeletons 
(MSES) as well. We first present the definition of 
MSES (which was recently introduced in [2]), 
indicate how to obtain a reduced MSES, and 
present a particular case of the MSES for which the 
approach leads to a redundancy-free representa- 
tion (minimal MSES). 

2. Reduced skeletons 

The concepts discussed in this paper are suitable 
for both binary and grayscale images. However, to 
simplify the presentation we consider here only the 
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binary case. The images may be continuous sets 
(sets in ~ 2 )  o r  discrete sets (sets in Z2). 

Note that every 'single-element' redundant point is 
also a 'future-level' redundant point. 

2.1. Types of redundant points 

Let us consider a collection of subsets { T,} which 
represents a given binary image X in the following 
way: 

Past-level redundancy 
If there exists a union of elements smaller than 

A(n) that covers A(n)t, i.e., 

A(n), ~_ ~ Tm ~A(m). (6) 
m < n  

X = U Tn ~A(n),  (1) 
II 

where ~ stands for morphological dilation, and 
{A(n)} is a given family of shapes, satisfying 
the following increasing property: n > m  =~ 
A(n) ~_ A(m). The parameter n may assume all the 
non-negative continuous values (if X and B are 
continuous sets) or it may assume only discrete 
values n = 0, 1 . . . .  (for X and B which are both 
continuous or both discrete). 

A point t belonging to the subset of order n, 
t ~T., represents an element A(n) translated to t: 

{t}O A(n) = a(n),, (2) 

where A(n),~ {t + ala cA(n)}. 
If t e T. is redundant, then the element it repres- 

ents (A(n)t) is contained in a region represented by 
some or all the other representation points, i.e., 

A(n), ~ (.,~nU T,. ~ A ( m ) ) U [ ( T . -  {t})~A(n)].(3) 

We propose to classify each of the redundant points 
into one or more of the following redundancy cat- 
eoories: 

Single-element redundancy 
• If there exists at least one element bigger than 

A(n) that covers A(n),, i.e., 

am >n, 3zlA(n), ~_ A(m)z. (4) 

Future-level redundancy 
If there exists a union of elements bigger than 

A(n) that covers A(n),, i.e., 

A(n), =_ ~ T,. ~A(m). (5) 
m > n  

lnterlevel redundancy 
If there exists a union of elements with size differ- 

ent from n that covers A(n), i.e., 

A(n), ~_ U Tm ~A(m). (7) 
m ~ n  

Hence, every future-level or past-level redundant 
point is also an interlevel redundant point. 

Intralevel redundancy 
If the redundant point is not interlevel redund- 

ant, i.e., 

A(n),~ U Tm ~)A(m). (8) 
rtt =#n 

In this case, every set of elements (excluding A(n)t) 
that covers A(n), contains at least one element of 
size n. 

2.2. The morphological skeleton and its redundancy 

The Generalized morphological skeleton repres- 
entation of a binary image X (see [1]) is the collec- 
tion of sets {S,} given by 

Sn = X~A(n)  - [X~A(n)]  o B(n), (9) 

where {B(n)} is any given series of shapes, and the 
family of elements {A(n)} is generated from {n(n)} 
by the relation 

A(0) = {(0,0)}, 

A(n + An) = A(n)~B(n), n >10. (10) 

In (10), An = dn (an infinitesimally small number) if 
n is continuous, or An = 1 if n assumes only natural 
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(a )  (b )  (~) 

Fig. 1. Types of redundant points in the skeleton. (a) A binary 
image composed by two disks (P and Q), and its skeleton (the 
segment [p,q]). The point a is a 'future level' redundant point, 
(b) the point b is an 'interlevel' redundant point, and (c) the 
point c is an 'intralever redundant point. 

values. The symbols O and o denote binary ero- 
sion and opening, respectively. The minus sign in 
(9) denotes here set-difference. 

The sets {S,} are called skeleton subsets of order 
n, and satisfy (1) for T, = S,, Vn. 

It is well known that the skeleton, being the set of 
points which are centers of maximal elements, does 
not contain redundant points from the 'single-ele- 
ment' category, i.e., it does not contain 'single-element 
redundancy'. On the other hand, it may contain 
redundant points from all the other categories. 

For demonstration, Fig. 1 shows a continuous 
binary image composed by the union of two disks, 
P and Q, which are centered at the points p and q, 
respectively. The skeleton of the shape, computed 
with B(n) = B (constant) equal to an infinitesimally 
small disk, and for continuous values of n, is the 
segment [p, q]. In this case, all the skeleton points 
are redundant, except for p and q. The point a in 
Fig. 1 (a) is a 'future-level' redundant point, because 
the element it represents (the dotted disk) is con- 
tained in the union of two bigger maximal disks (P 
and Q). The point b in Fig. l(b) is 'interlevel' re- 
dundant, because it represents a disk (the dotted 
one) which in this example is contained in the union 
of a bigger maximal disk (Q) and a smaller maximal 
disk (P). The point c in Fig. 1 (c) is 'intralevel' re- 
dundant, because the dotted disk, which it repres- 
ents, is contained in the union of a larger maximal 
disk (Q) and a maximal disk with the same size (P), 
and it is not contained in any union of only larger 
and smaller maximal disks. 

2.3. The proposed generic approach to obtain 
reduced skeletons 

In [4, 8], the approach used to remove redundant 
points from the skeleton was first to calculate the 
skeleton and then to apply a reduction algorithm to 
remove the redundant points. 

However, we note that the skeletonization itself 
is a partial reduction process, as we demonstrate 
below. If the skeleton subsets S, would have been 
defined as S, = XE)A(n), Vn, then the exact recon- 
struction property (1), for T, = S,, would still be 
satisfied, but this 'skeleton' would contain too 
many points. In fact, So itself would then be equal 
to X. Instead, the sets [XeA(n)]  o B(n) of redund- 
ant points are removed from X~)A(n) for all n in 
the definition of the skeleton (9), so that a compact 
representation is obtained. However, as mentioned 
before, only the 'single-element redundancy' is re- 
moved this way. 

We propose to remove as many redundant 
points as possible durin9 the skeletonization pro- 
cess, which is fully morphological, so that a more 
efficient error-free decomposition than the ordinary 
skeleton is obtained by morphological operations 
only. 

The proposed approach is based on the following 
relation: 

r ep re sen ta t i on )  { redundant \ 

RS. = points of order - [points of 1, (11) 

n \order n / 

where {RS.} are the reduced skeleton subsets. 
When the representation points are the centers of 

elements A(n), the above relation can be written as 
follows: 

representation 

RS. = ~egion of order ) O A(n) 

[ redundant 

- [region of IOa(n).  
\order n / 

(12) 

Usually, the 'representation region of order n' 
is X o A (n). By replacing the field 'redundant region 
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(a) (b) (c) 

Fig. 2. (a) The same binary image as shown in Fig. 1, and its 
reduced skeleton RS ~1}, (b) its reduced skeleton RS ~2~, (c) its 
unique minimal skeleton. 

of order n' in (12) by appropriate sets, one can 
obtain different reduced skeletons. 

A skeleton with no "future-level redundancy' is 
obtained if we choose 'redundant region' to be the 
union of all the maximal elements with size greater 
than n, which we denote F,. A simple formula for 
obtaining Fn before the calculation of the elements 
with size greater than n is provided by the partial 
reconstruction relation satisfied by the skeleton 
subsets (see rl ,  4]): 

O SmO) A(m) = X o A(k).  (13) 
m =k 

By setting k = n + An in (13), we obtain 

fnA-~ U Sm (~ A(m) = X o A(n + An). (14) 
m > N  

The subsets RSt, ~) of the resulting reduced skeleton 
with no 'future-level' redundancy are therefore 
given by 

RS~, t~ & I X  o a(n)] (~a(n) 

-- [X o A(n + An)] O A(n). (15) 

After some simple manipulations on (15), we obtain 

RS~ x) = X E) A (n) - [(X G a(n))o B(n)] • A(n), 
(16) 

which is the reduced skeleton proposed by 
Maragos in [3] (the symbol • denotes binary clos- 
ing). In [3], B(n) is constant and equal to B, and 
then A(n) =nB. See also [1]. 

Fig. 2(a) shows the result of the calculation of 
RS "~ for the binary image shown in Fig. 1. It con- 
tains the point p and the segment [c, q], where c is 
the same 'intralevel' redundant point shown in 
Fig. l(c). The points from the segment (p, c), which 
are 'future-level' redundant in the skeleton, are not 
present in RS"L  

If we include in 'redundant region' of Eq. (12) the 
union of all the representation elements with order 
smaller than n as well, we obtain an error-free 
reduced skeleton, which we denote as RS ~2~, with no 
interlevel redundancy. The union of the representa- 
tion elements with order smaller than n, which we 
denote as Pn, satisfies the following relation: 

P.+A. = P.U[RS~2)~A(n)] ,  n >1 O, 

Po = 0. (17) 

Therefore, it can be computed recursively in the 
discrete case (An = 1). The subsets ofRS c2J are given 
by 

RSt2} &- - X ~ A ( n )  - (P, U F,) ~ A ( n ) .  (18) 

Fig. 2(b) shows the result of the calculation of RS ~2) 
for the same binary image as before. It contains 
only the points p, q and c. The points from the 
segment (c, q), which are interlevel redundant in the 
skeleton, are not present in RSt2L The point c, 
which is intralevel redundant, is still present. 

To obtain a minimal skeleton, the intralevel re- 
dundancy should also be removed. Unfortunately, 
we still do not know how to define a 'redundant' 
region that would remove this kind of redundancy 
without affecting the property of exact reconstruc- 
tion of the reduced skeletons. In the example of 
Fig. 2, the minimal skeleton (which is unique in this 
example) is shown in Fig. 2(c). 

Fig. 3 shows the result of calculating the reduced 
skeletons defined above, for a real binary picture, 
the 256 x 256 'coffee grains'. Its skeleton, Fig. 3(a), 
was calculated using the shapes shown in Fig. 4 as 
the first six elements of {B(n)}, so that {A(n)} is 
approximately a family of increasing disks, and the 
skeleton is as thin as possible. The other elements of 
{B(n)} were derived from them cyclically by the 
formula: B(n) = B(n mod 6). This skeleton contains 
1360 representation points. Fig. 3(b) shows the re- 
duced skeleton RS ~), containing 1145 points 
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(b) 

(c) (d) 

Fig. 3. Reduced skeletons. (a) Binary image and its skeleton, (b) its reduced skeleton RS ~tJ, (c) its reduced skeleton RS TM, and (d) a 
minimal skeleton. 

(15.8% less than the original skeleton), and 
Fig. 3(c) shows the reduced skeleton R S  t2), contain- 
ing 972 points (28.5% less than the original skel- 
eton). For comparison, Fig. 3(d) shows a minimal 
skeleton, obtained with the non-morphological al- 
gorithm presented in [4]. It contains 877 points 
(35.5% less than the original skeleton). According 
to the above numbers, the reduced skeleton R S  ~2) 
was able to remove in this example 80% of the 
redundant points, using morphological operations 
only. 

3. Extension to multi-structuring-element skeletons 

In [2], we define and discuss some of the applica- 
tions of the Multi-Structuring-Element Skeleton 
(MSES). The MSES is a generalization of the ordi- 
nary skeleton, using several families of shapes, in- 
stead of just one, to represent an image. It usually 
contains, after redundancy removal, considerably 
fewer representation points than an ordinary min- 
imal skeleton, and these points are distributed in 
a richer parameter space [2]. 
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+ o  + + 
0 ¸ 

B(0) B0) B(2) 

+ + o  + 

B(3) B(4) B(5) 

Fig. 4. Series of shapes {B(n)} used in the calculations of the 
skeletons in Fig. 3 (The symbol + represents the origin). 

In this section we present a generalized definition 
of the MSES, analog to the generalized skeleton 
above, and extend the approach developed in the 
last section, to obtain reduced MSES representations. 

3.1. Definition of MSES 

Like the ordinary skeleton, the MSES is com- 
posed of the center of the maximal elements picked 
from a given family of elements. The difference lies 
in the dimensionality of this family; for the ordinary 
skeleton, it is a 1-parameter family, whereas for the 
MSES, it is a multi-parameter family. 

Given L series of shapes, { B l(n)} . . . . .  { Bz(n)}, we 
generate the L-parameter family of shapes {A(n)}, 
where n =(nx . . . .  ,nz) is an L-dimensional vector 
with non-negative components, in the following way: 

A(n) = At(n0 ~ A2(n2) (~ ... (~ Az(nz), (19) 

where each family {Ai(n)}, 1 <~ i <~ L, is generated 
from {Bi(n)}, as in the generalized skeleton defini- 
tion (10), by 

A,(O) = {(0,0)}, 

Ai(n + An) = A~(n) ~ Bi(n), n >i O. (20) 

Fig. 5 shows two examples for the family {A(n)}. In 
both of them, L = 2 and the generating families are 

constant, i.e., Bl(n)= Bx and B2(n)= B2, Vn. In 
this case, A(n) = A(nl,n2) = n,Bl ~ n2B2 • 

The MSES's subsets Sn are then defined by 
L 

S , = X e A ( n ) -  U[XGA(n)]oB , (n ) ,  (21) 
l= l  

where X is the original image. The subsets S, con- 
tain the centers of maximal elements of 'size' n. 

The original image can be perfectly recons- 
tructed from the collection {S,} according to the 
following formula: 

X = ( ) S n ~  A(n). (22) 

3.2. Reduced MSES 

Reduced MSESs may be obtained from the same 
generic relation (11). For the multidimensional 
case, (12) should be written as 

(representation ) 
RS~ = \region of order n ~ A(n) 

/ redundant  re-~ 

-/gniOn of order) CA(n) .  (23) 

From this point on, until the end of the paper, we 
will restrict ourselves to the simplest case L = 2, 
and discrete parameters only, i.e., n = (n,m) ~ [~2, 
where N is the set of natural numbers. 

Similar to Section 2.3, we set 'representation re- 
gion of order n = (n,m)' to be XoA(n,m).  In order 
to produce a reduced MSES with no future-level 
redundancy (analog to (16)), and a reduced MSES 
with only intralevel redundancy (analog to (18)), 
we define P.,,, and F., . , ,  analogous to P.  and 
F. defined in Section 2, as the union of the repre- 
sentation elements smaller than A(n,m), and 
the union of the maximal elements bigger than 
A(n,m), respectively. The concepts of smaller and 
biooer require the definition of a relation of order in 
1~2, so we chose to use the lexicooraphic relation of 
order ( < ): 

(a,b) < (c,d), a,b,c,d e I~, 

(24) 

(a <c)  or (a = c and b < d). 
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Fig. 5. Two examples for the family of shapes { A (n) }, for L = 2 and constant generators. (a) BI is a square and B2 is rhombus, (b) B, is 
a unitary vertical line and B2 is a unitary horizontal line. 

The process of calculating the reduced MSES is 
done obeying the lexicographic order, in such 
a way that a subset RSn, ,  is not computed until all 
the subsets with index smaller than (n, m) are com- 
puted. After the set RS , , . ,  the next subset to be 
computed will be RS., r, + 1, if X ~ A(n, m + 1) # O, 
or RS~ + ,. 0 otherwise. 

P.,m are found recursively in the same way as 
P~, 'accumulating' the representation regions 
Sn, m ~ A(n, m) for each step (n, m). 

It can be shown that Fn,m as defined above, can 
be computed at each step (n, m) by the formula 

F~,m = [ X o A ( n , m  + 1)] U [ X o A ( n  + 1,0)]. (25) 

The reduced MSES, with no future-level redund- 
ancy, is hence defined as 

R, 'O)  zx ~n,m = X O A(n,m) - Fn,m @ A(n,m),  (26) 

whereas the reduced MSES, with no interlevel re- 
dundancy, is obtained by 

R~,(2) ~ X e A ( n , m ) - ( P . , m U F ~ . m ) @ A ( n , m ) .  (27) 

3.3. Minimal M S E S  

For a particular but important choice of the 
families of shapes for the MSES with two structur- 
ing elements, formula (27) yields a representation 
with no redundant points, i.e., a minimal MSES. The 

families of shapes which provide this result are 
A(n,m) = nBl t~mB2,  where BI and B2 are ele- 
ments containing exactly two points, which we call 
discrete elementary directional structuring elements. 
The shapes in Fig. 4 are examples of discrete ele- 
mentary directional structuring elements. 

It is well known [4] that the ordinary skeleton, 
computed with any directional structuring element, 
contains no redundancy. As an extension to this 
property, the reduced MSES obtained in (27), com- 
puted with any pair of structuring elements from 
Fig. 4 (or any other pair of elementary directional 
elements), contains no intralevel redundancy. 

Since the reduced MSES from (27) has no inter- 
level redundancy, the conclusion is that it contains 
no redundant points at all. It is therefore a minimal 
MSES. 

In contrast to 1-parameter families of directional 
shapes, in which there is little interest as kernels, the 
families of shapes generated by pairs of elementary 
directional structuring elements are important 
ones. For example, in the case of the horizontal and 
the vertical elementary structuring elements (the 
first two elements shown in Fig. 4), the family 
A(n,m) obtained is composed of all discrete rec- 
tangles (see Fig. 5(b)). 

We compared the minimal MSES representation 
(given by Eq. (27)) of the binary image 'coffee 
grains' (Fig. 3) calculated with the horizontal and 
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vertical elementary structuring elements mentioned 
above, with a minimal skeleton representation of 
the same image calculated with a unit square as 
structuring element. Note that the 2-parameter 
family of rectangles, used for the MSES calculation, 
contains the 1-parameter family of squares, used for 
the skeleton calculation. In this case, the number of 
points in the minimal MSES is expected to be much 
smaller than the number of points in the minimal 
skeleton. Indeed, in the above simulation the min- 
imal MSES obtained contains 708 points, whereas 
the minimal skeleton contains 990 points (a differ- 
ence of 28.5%). The minimal skeleton calculation 
was performed using the non-morphological algo- 
rithm presented in [4]. 

4. Conclusion 

A morphological approach for obtaining redund- 
ancy-reduced skeletons was presented. This 
approach is able to remove all the interlevel re- 
dundancy from the skeleton, leaving only intralevel 
redundant points. For MSES, and a particular but 
an important choice of the structuring elements, the 
approach provides a redundancy-free representa- 
tion. A fully morphological method to compute 
a redundancy-free skeleton (minimal skeleton) in 
the general case, both for MSESs and for the ordi- 
nary skeleton, is still being sought. 
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