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ABSTRACT
This work deals with 2D object description and recognition based
on coefficients of implicit polynomials (IP). We first improve the
description abilities of recently published Min-Max and Min-Var
algorithms by replacing algebraic distances by geometric ones in
the relevant cost function. We propose a new recognition approach
that is based on deriving linear rotation invariants from several poly-
nomials of different degrees, fitted to the object shape, as well as on
their fitting errors. This approach is found to considerably improve
the recognition and is denoted as Multi Order (degree) and Fitting
Errors Technique (MOFET). We also use a Shape Transform, based
on the Scatter Matrix of the objects’ shape, to allow Affine invariant
classification. Finally, we compare the performance of our approach
with the Curvature Scale Space (CSS) method and find that it has
an advantage over CSS, at about the same complexity.

1. INTRODUCTION

Implicit polynomials have been exploited for quite some time for
the representation and recognition of 2D data, defined by discrete
points taken along its boundary [1] – [8], [12]-[14]. Over the years,
different algorithms for fitting Implicit Polynomials to the data were
developed. Early iterative fitting algorithms, like [4] often failed to
derive an Implicit Polynomial defining a single closed curve that
fits well the boundary of the data, i.e., they were unable to obtain
a reliable representation. Furthermore, due to numerical instability
and high computational cost, these algorithms are able to fit the data
by polynomials of relatively low degree only (usually, up to degree
4), and, therefore, fail to represent or recognize relatively compli-
cated objects. Recent versions of fitting algorithms: 3L [1] and,
especially, Gradient1 [2], Min-Max and Min-Var [3], apply a linear
LS (Least Squares) solution to the fitting problem (having, there-
fore, a lower computational cost than earlier iterative algorithms),
appear to have much better performance in both representation and
recognition tasks. Hence, in our work we focus on the last three
algorithms, namely: Gradient1, Min-Max and Min-Var.

2. BACKGROUND

The ability to efficiently describe curves that represent the boundary
of 2D objects is important in computer vision tasks and computer
graphics. Implicit Polynomials provide a solution to this problem,
using the coefficients of the polynomial to represent the data. The
technique assumes that the data is a curve that is lying in the zero-
plane (i.e., in 3D space, with axes x,y,z , the zero-plane is defined
by z=0), and that one of the zero-sets of the polynomial (z= f(x,y) )
is supposed to fit this curve.

An example of a curve lying in the zero-plane and a polynomial
describing it is shown in Fig. 1.

2.1 2D Object description by Implicit Polynomials
As will be shown in the sequel (subsection 2.2), a polynomial that
efficiently describes a 2D object, given by a set of points (data-set)
along the object’s boundary, should meet several conditions. We
will start here from the obvious and most intuitive requirement: the
zero-set of the fitting polynomial should be close to the data-set.
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Figure 1: (a) - curve representing the boundary of an object (dashed line)
and the zero-sets of the 4-th degree polynomial attempting to fit the object
(solid). Note that there is a spurious zeros-set (outside solid curve). (b) -
surface of a 4-th degree polynomial attempting to fit the object.

Let’s define:

x
4
= [x1 x2 ... xn]′: a vector of the first coordinates of the data

set, where (·)′ denotes the transpose of (·);
y
4
= [y1 y2 ... yn]′: a vector of the second coordinates of the data

set;
Pr

a(x,y) = a0,0 +a1,0x+a0,1y+a2,0x2 +a1,1xy+a0,2y2 + . . .+
ar,0xr + ar−1,1xr−1y + . . . + a0,ryr: a polynomial of degree r with
coefficients-vector

a
4
= [a0,0 a1,0 a0,1 ... ar,0 ar−1,1 ...a0,r]′. (1)

The above expression can then be written as:

Pr
a(x,y) = a′pr(x,y), (2)

where

pr(x,y)
4
= [1 x y x2 xy y2 ... xr xr−1y ... yr]′ (3)

is a vector of monomials at a point (x,y).
The length of both the monomial vector and the coefficient

vector is (r+1)(r+2)
2 . The zero-sets of Pr

a(x,y) are denoted by
ZS

(
Pr

a(x,y)
)

=
{
(x,y) : Pr

a(x,y) = 0
}

.
Note, that a polynomial may have several zero-sets, where a

zero-set is defined as a continuous curve satisfying Pr
a(x,y) = 0.

Actually, a polynomial of degree r may have up to r zero-sets.
Thus, we would like to find a polynomial having a zero-set that

best fits the given data-set for different criteria (equations (5), (6)
and (12)).



2.2 Gradient-one, MinMax and MinVar algorithms

In this subsection we bring a brief overview of the recent fitting
algorithms that are used in the sequel. These algorithms are based
on a simple linear LS solution, generally produce a single zero-set
that is close to the data-set (instead of two or more zero-sets
fitting the data-set), and are numerically stable even when using
polynomials of relatively high degree (in our work we used up to
an 8-th degree polynomials).

1. Gradient-one algorithm

In order to produce a single zero-set resembling the data-set,
the Gradient-one algorithm [2] attempts to fulfill two conditions.
The first condition is to minimize the algebraic distance between
the polynomial and the data-set: i.e.,

min
a

n

∑
k=1

Pr
a(xk,yk)2 (4)

The second condition exploits the fact that the gradient vector
at a point belonging to the zero-set is perpendicular to the zero-set
tangent at this point. Assuming that the resulting zero-set indeed
lies nearby the data-set, the Gradient-one algorithm requires that
the gradient of the polynomial at the data-set points will be perpen-
dicular to the data-set curve-tangent. In addition, the authors of [2]
show that large fluctuations in the first derivative of the polynomial
can result in a polynomial sensitive to data-set fluctuations. Hence,
the required value of the gradient at data-set points is set to 1.

Thus, the Gradient-one algorithm formulates the following
minimization problem:

mina{ ∑n
k=1 Pr

a(xk,yk)2+
∑n

k=1(g
′
N(xk,yk) ·a−1)2+

∑n
k=1(g

′
T (xk,yk) ·a)2}.

, (5)

where gN(x,y) and gT (x,y) are derivatives of monomials at normal
and tangent directions to the data-set, respectively.

2. Min-Max and Min-Var Algorithms

These two algorithms [3] aim to reduce the sensitivity of the
zero-set to polynomial coefficients perturbations. The algorithms
propose to constrain the values of the gradient at the data-set points
(which are assumed to be close to the derived zero-set), so that all
points belonging to the obtained zero-set would be equally sensi-
tive to small coefficient perturbations. As a result, the algorithms
propose to minimize:

mina {∑n
i=1 Pr

a(xi,yi)2+

∑n
i=1

( g′
T
(xi,yi)·a

wm(m/v)(xi,yi)

)2
+

∑n
i=1

( g′
N
(xi,yi)·a

wm(m/v)(xi,yi)
−1

)2
}

(6)

where wm(m/v)(x,y) means wmm(x,y) or wmv(x,y), for Min-Max and
Min-Var, respectively.

wmm(x,y)
4
=

(r+1)(r+2)
2

∑
i=1

|pr
i (x,y)| (7)

and
wmv(x,y)

4
=

√
pr(x,y)′pr(x,y). (8)

3. MODIFICATION OF MIN-MAX AND MIN-VAR
ALGORITHMS

3.1 Improving Fitting Performance

Min-Var and Min-Max algorithms minimize the polynomial value
along the data-set. We propose to minimize the approximated fitting
error (see [4]):

min
a

n

∑
k=1

(
Pa(xk,yk)

||5Pa(xk,yk)||
)2

, (9)

instead.
Naturally, the value of the gradient at every point of the data-set

is needed. Although the exact value of the gradient is not available
before the problem is solved, in the case of Min-Max and Min-Var
we have a clue of its value. In the case of Min-Max a good solution
presupposes values of the gradient at a point (x,y) to be close to
wmm(x,y) (7), and in the case of Min-Var, close to wmv(x,y) (8).
Thus, substituting these values into (9) we get:

min
a

n

∑
i=1

(
Pa(xi,yi)

wm(m/v)(xi,yi)

)2

. (10)

However, by dividing the first element in (6) by a factor bigger
than one, we weaken its influence on a problem solution. To regain
its weight we multiply (10) by

Wm(m/v) =
1
n

n

∑
i=1

wm(m/v)(xi,yi) (11)

and thus get the following minimization problem:

min
a





n

∑
i=1

(
Wm(m/v)

Pa(xi,yi)
wm(m/v)(xi,yi)

)2

+

n

∑
i=1

(
g′T (xi,yi) ·a

wm(m/v)(xi,yi)

)2

+
n

∑
i=1

(
g′N(xi,yi) ·a

wm(m/v)(xi,yi)
−1

)2


 (12)

Figures 2 and 3 demonstrate the difference in fitting between
the original Min-Max/Min-Var and the modified Min-Max/Min-Var
(Mod. Min-Max/ Mod. Min-Var). If we compare the fittings, we
conclude that the original algorithms make more effort to fit points
lying far away from the origin, than points lying close to it; while
the modified algorithms result in a more uniform solution (further
details can be found in [19]).

3.2 Invariance to rotation

Although, Min-Max and Min-Var algorithms show better fitting per-
formance than Gradient-one, these algorithms are not rotation in-
variant (which is important in recognition tasks), due to the wm(m/v)
factor. We propose to substitute it by a factor dependent only on the
distance of the data-set points from the origin (and update Wm(m/v),
respectively), thus gaining rotation invariance. In the case of Min-
Max, (7) is substituted by

wri
mm(dk) = mean

x,y, x2+y2=d2
k

(wmm(x,y)) . (13)

The use of this average value is not expected to harm the Min-Max
or Mod. Min-Max properties. Fig. 4 shows the value of wri

mm(d) as
a function of d along with the minimum and the maximum values of
wmm(x,y)|x2+y2=d2 . It can be seen that for high degree polynomials
these three quantities hardly differ.
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Figure 2: Min-Max (left) and Mod. Min-Max (right) fit (polynomial of
degree 8). Data-set – dash-dotted line, obtained zero-sets – solid.

(a1) (a2)

(b1) (b2)

Figure 3: Min-Var (left) and Mod. Min-Var (right) fit (polynomial of
degree 8). Data-set – dash-dotted line, obtained zero-sets – solid.

In the case of Min-Var we redefine the polynomial as follows:

Pa(x,y) = ∑r
l=0 ∑l

i=0 al−i, jxl−iyi

= ∑r
l=0 ∑l

i=0
al−i,i√(l

i
)

︸ ︷︷ ︸
bl−i,i

·
√(l

i
)
xl−iyi

= ∑r
l=0 ∑l

i=0 bl−i,i

√(l
i
)
xl−iyi

4
= P r

b (x,y),

(14)

where P r
b (x,y) denotes a polynomial of degree r, and the vector

b is comprised of coefficients bl−i,i that multiply the f actorized

monomials of the form
√(l

i
)
xl−iyi. Thus, (8) rewritten with respect
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Figure 4: wri
mm(d) (dashed line) along with the minimum (solid line) and

the maximum (dash-dotted line) value of wmm(x,y)|x2+y2=d2 as a function
of the distance from the origin d for different degrees of the polynomial. (a)
2-nd degree, (b) 4-th degree, (c) 6-th degree, (d) 8-th degree.

to vector of f actorized monomials (which is sensitive to bl−i,i),
becomes

wri
mv(x,y)

4
=

√
∑r

l=0 ∑l
i
(l

i
)
x2·(l−i)y2i

=
√

∑r
l=0(x2 + y2)l

(15)

Note also, that because the data-set lies mostly inside a circle
of radius 1, the higher the monomial power the bigger its coeffi-

cient. On the other hand, the factors,
√(l

i
)

also tend to grow with
monomials power. Thus the dynamic range of b is smaller than
the dynamic range of a and, hence, b is less sensitive to coefficient
noise, as it can be seen in Fig. 5.

4. APPLICATION OF IMPLICIT POLYNOMIALS TO 2D
OBJECT RECOGNITION

The ability to recognize objects is very important in many fields,
such as medical and robotic fields. In this section we propose a
novel IP based technique.

4.1 Data preprocessing

In our work we took some preprocessing steps, before applying the
IP algorithm on data. First, we filtered out the measurement noise
by passing the data-set through a low-pass filter (the procedure ap-
pears in [3]). Then, in order to provide affine invariant classifi-
cation, the data was centered and its Scatter Matrix normalized.
The use of this concept in combination with different recognition
algorithms can be found, for example, in [10] and [11]. If there
is no need in affine invariant classification, this step can be easily
skipped. Finally, we put the data-set close to the unit circle in order
to avoid large perturbations in the coefficients as a result of data-set
noise (see [2]). We center the data-set and then apply S75% scaling
factor that scales the data-set so that 75% of its points would ap-
pear inside the unit circle and the rest – outside of it. This scaling
factor ia stable to outliers, and provide good distinguishing between
different shapes.
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Figure 5: Left column: Application of the original Mod. Min-Var of
degree 8 to the ”Horseshoe” shape. Right column: Application of the RI
Mod. Min-Var of degree 8 to the ”Horseshoe” shape. (a) Heavy-dotted line:
the original data-set, solid line – the fitted polynomial zero-set. (b) Heavy-
dotted line: the original data-set. Solid lines – accumulated zero-sets, when
noise added to each coefficient is uniformly distributed with mean 0 and
absolute maximum value of 2−10 of the biggest coefficient.

4.2 Multi Order (degree) and Fitting Error Technique
(MOFET) for data-set recognition
4.2.1 Drawbacks of single-degree recognition

All the aforementioned algorithms use coefficients of a polynomial
of a predefined degree (typically, 6 or 8) to recognize objects. How-
ever, generally, the dictionary would contain contours of different
complexity. Thus, we can find some contours that cannot be fit-
ted well by the polynomial of the chosen degree, and, as a result,
the resulting zero-set may resemble other shapes in the dictionary,
making them indistinguishable. On the other hand, we might have
some simple contours that can be fitted by a variety of polynomials.

4.2.2 Recognition based on several polynomials

We propose the following solution to the single degree recognition
problem: Matching polynomials of several different degrees to each
of the data-sets.

This way we make sure that for each object there exists a set of
reliable and valuable parameters. In our work we matched polyno-
mials of degree 2, 4, 6 and 8. We calculated the linear geometric
invariants [7] from the obtained polynomial coefficients. Thus, we
got a relatively small (15 features) and stable dictionary. In order to
improve the classification, we also use fitting error feature. That is,
for each fit, we calculate a vector of fitting errors ea and then choose
as a feature the value that is greater than 75% of the elements, but
smaller than the rest 25%. This way we get four more (for the four
polynomial degrees ) features - a total of 19 features for each fit.
We name the proposed technique which takes advantage of both the
coefficients of fitting polynomials of different degrees and fitting
errors, Multi Order and Fitting Error Technique (MOFET).

5. EXPERIMENTS

5.1 Recognition process
Generally, a recognition task consists of two sub-tasks: Recognizer
design (i.e., learning) and Recognizer application (i.e., testing). In
our work it is assumed that the feature vectors from each set of ob-
jects have a Gaussian probability density function (PDF) of feature

vectors, where the parameters of each PDF (i.e., the mean vector
and covariance matrix) are estimated from feature vectors belong-
ing to the different views (after data preprocessing as described in
subsection 4.1) of a corresponding object in the dictionary. Thus,
each dictionary object is represented by its PDF. Then, we apply the
Maximum Likelihood principle for recognition. I.e., we extract the
feature vector from the shape we want to recognize and substitute
it into each object’s PDF. We then recognize the shape as the object
that got the highest likelihood value.

5.2 Experimental Database

In our experiments we used the ”Multiview Curve Database”
(MCD) created by M. Zuliani [18], containing 40 different shapes
taken from 7 different points of view, giving a total of 280 basic
shapes. Examples of different views of the same object are shown
in Fig. 6a. In order to expand this data-base, we added colored noise
to the coordinates of each shape. The colored noise was generated
as follows: normally distributed random noise with std of 0.02 was
filtered by a Gaussian window of a width (std) of 2.5. The filter’s
coefficients were normalized such that the sum of squares of its co-
efficients equals 1. This procedure was carried out twice for each
perturbation: for x and y coordinates of the shape. Each basic shape
was perturbed 20 times by adding colored noise, thus a database of
40× 7× 20 = 5600 different objects was created. An example of
the effect of these perturbations appear in Fig 6b. Note that because
of the shape Scater Matrix normalization the ”stretched” data-sets
are more sensitive to noise then those which undergo a minor nor-
malization.

(a)

(b)

Figure 6: (a) 3 different views of the shape ”Hammer”, (b) The views
perturbed by colored noise with STD = 0.02

5.3 Experimental Results

In our experiments we chose a group of objects from the data-set
obtained in section 5.2 for the recognizer dictionary (i.e., learning
data), while the rest (test data ) were recognized using the obtained
dictionary. For learning we used 6 views × 20 perturbations = 120
data-sets for each of the 40 shapes in the database. The remaining
sets (20 data-sets for each shape) were used for the recognition test.
Then, the MOFET algorithm was applied and the recognition rate
(i.e., the percentage of correctly recognized shapes) was calculated.

In order to get more statistics, we carried out the above pro-
cess several times, where each time different views were used for
learning. Then, the average recognition rate was calculated.

The results of this process for the different recognition algo-
rithms examined are shown in Table 1

As can be seen, there is only a slight difference in perfor-
mance between the different examined algorithms, when applied
with MOFET. We choose Mod. RI-Min-Var for other experiments.

We compared the MOFET approach to an algorithm that uses
only a single-degree along with the ridge-regression factor provid-
ing the best classification rate (see [2]) (i.e., using invariants of a



Table 1: Performance of MOFET for different fitting algorithms.

Grad.One Mod. RI-Min-Max Mod. RI-Min-Var
96.5% 96.2% 96.6%

single fitting polynomial). The results are shown in Table 2, prov-
ing the effectiveness of the MOFET approach. Note that MOFET
doesn’t require adjustment of the ridge-regression factor.

We also performed experiments with 5% missing data. First,
we used 6 views × 20 perturbations = 120 data-sets for each of the
40 shapes in the database. The remaining set (20 perturbations for
each shape) was randomly occluded and used for the recognition
test. As a result we got 91% recognition rate. Then, we produced a
more complete dictionary, based on all the 7 views (without occlu-
sion). For the recognition step, the data-sets were perturbed again
and randomly occluded. As a result we got 95% recognition rate.

Table 2: Comparison between MOFET and single-degree approaches.

MOFET Single-degree
2 4 6 8

96.6% 69.4% 94.8% 94.2% 85.8%

Finally, we compared the performance of MOFET with the CSS
[15] technique (again, 6 views were used for learning ). We chose
this technique, because is has been reported [15] as having better
performance then other known techniques, such as Fourier Descrip-
tors [16] and Convex Hull [17]. We also compared the techniques in
a less noisy environment, i.e., added colored noise of STD = 0.01,
which resulted in only slight data-set deformations. The results of
the comparisons appear in Table 3. It can be seen that the MOFET
algorithm has better performance at both noise levels examinated.

Table 3: Comparison between MOFET and CSS techniques.

STD = 0.02 STD = 0.01
MOFET CSS MOFET CSS
96.6% 93.8% 99.6% 97.5%

6. CONCLUSION

In this work we have improved the performance of existing fitting
algorithms in two aspects: representation and recognition. We have
shown that replacing the algebraic distances by geometric ones, in
the fitting algorithm minimization problem, results in improved fit-
ting of the data-set.

We have also introduced a novel Multi Order (degree) and Fit-
ting Error (MOFET) recognizer that outperforms existing Implicit
Polynomial based recognizers. Fitting several polynomials of dif-
ferent degrees and utilization of their coefficients along with the
fitting errors made it possible to take advantage both of the stabil-
ity of low-degree polynomials and informativeness of high-degree
polynomials, and thus enabled the design of a high performance
recognizer. Making use of the linear invariants designed by Tarel
[7], allows the recognition of objects that underwent an Euclidian
transform. Exploiting the Scatter Matrix normalization technique
enables effective projection-based recognition of 3D objects in a
circumstances allowing approximations of a projective transform
by an Affine transform.

Finally, we compared the proposed MOFET recognizer to the
standard CSS [15] contour based recognition and found MOFET to
have a better performance.
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