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Abstract—Performance of a distributed video coding system
depends, to a large extent, on the accuracy of joint source
and side information distribution modeling. In this work we
first examine a family of stationary joint distribution models.
As one of our findings, we propose to use the double-Gamma
model as an alternative to the widely adopted Laplace model,
due to its superior performance. In addition, we suggest a new
spatially adaptive model, which enables to follow the spatially
varying joint statistics of the source and side information. We
present two methods, class-based and neighborhood-based, for
estimation of the spatially varying model parameters. We then
show how the obtained pixel domain model can be used in
the transform domain to facilitate utilization of frame spatial
redundancy. Integration of the proposed models into a distributed
video coding system resulted in improved performance.

I. INTRODUCTION

Distributed Video Coding (DVC) is a novel coding scheme
that employs principles of lossy source coding with side
information (SI) at the decoder, also known as Wyner-Ziv
(WZ) coding [1], [2]. In a baseline DVC system [1], the
video sequence is split into Key frames and WZ frames. The
Key frames are encoded by standard intra coding techniques
while the WZ frames are encoded using syndromes (channel
code) and decoded by combining these syndromes with the
SI. In a DVC system, the SI is a prediction of the WZ frame
generated at the decoder by motion compensated interpolation
or extrapolation of the previously decoded Key and/or WZ
frames.

The distributed video coding framework enables to shift the
computational load of motion estimation from the encoder to
the decoder, resulting in reversed encoder-decoder complexity.
This reversed complexity scheme could be appealing for
applications in which the encoder is power and/or complexity
constrained, such as wireless/cellular video, sensor networks
and video surveillance. The operation of a DVC system is
based on a joint distribution model of the source and side
information.

The overall performance of a DVC system is highly affected
by the accuracy of the joint distribution model. The joint
distribution is usually modeled by some distribution family
with a set of adjustable parameters [3]. These parameters can
be preset according to prior information, like off-line modeling
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or alternatively, they can be adapted online, according to
the varying statistics. In this work we study the modeling
problem in detail and analyze the performance of several joint
univariate and multivariate distribution models, which were
not considered in the context of DVC earlier.

This work is organized as follows. In Section II, we examine
a set of models in an off-line mode in order to obtain access
to both the source and the side information. We then integrate
the most suitable model into the DVC system. Next, in Section
III, we present a spatially adaptive model along with a method
to estimate its parameters in the pixel domain, and show how
to utilize these parameters in the DCT domain. Simulation
results are given in each section. This work is concluded in
Section IV.

II. STATIONARY MODELING OF JOINT DISTRIBUTION

The Laplace distribution is a very popular model for the
virtual channel in both the pixel and the transform domains
[3], [4]. It is widely adopted due to its simplicity and good
accuracy. In some works, it is used to model the transition
probabilities of the virtual channel, i.e., the distribution of the
side information given the source, while in others it is used
to model the posterior distribution, i.e., the distribution of the
source given the side information.

In [5], alternative models for the virtual channel were
considered. The Laplace model was compared to Generalized
Gaussian (GG), Gaussian and double-Gamma models. The
robustness of these models was compared with respect to
a mismatch in a model parameter (virtual channel noise
variance) estimation. The double-Gamma and the GG models
were found to be more robust, i.e., less sensitive to the variance
estimation error. However, the simulations were performed in
the pixel domain only. Moreover, the conclusions were drawn
based on two frames only. In [6], inspired by models for
traditional predictive video coding systems, a Wyner-Ziv rate-
distortion function for a first order Markov-Laplace model was
analyzed. Nevertheless, the model was tested only on synthetic
signals and was not tested in a real DVC system.

In our study we also use the Laplace distribution as a
reference model to which we compare the set of our test
models. Estimation of the Laplace distribution scale param-
eter, α, can be interpreted as matching the variance of the
model, σ2 = 2/α2, to that of the empirical data. However,
when examining higher order characteristics of the Laplace



distribution, such as kurtosis κ = µ4/σ
4 (the peakedness of

the distribution, where µ4 and σ are the forth central moment
and the standard deviation, respectively), it rarely matches the
one obtained empirically. This is mainly because the kurtosis
of the Laplace distribution is independent of α and equals to
6.

In order to allow for more accurate and flexible modeling,
we study the performance of models in the Generalized
Gamma Distribution (GΓD) [7] family, which is given by:

fX(x; a, v, p) =
pa−pv

2Γ(v)
|x|pv−1

e−( |x|
a )

p

, (1)

for x ∈ R and a, v, p > 0, where Γ(z) =
∫∞

0
xz−1e−xdx

is the Gamma function. GΓD is highly versatile and can be
degenerated into various other distributions. For instance, the
Generalized Gaussian distribution is obtained for vp = 1, the
Normal distribution for p = 2 and v = 0.5, the Laplace
distribution for p = 1 and v = 1, and a degenerate double-
Gamma distribution with shape parameter of 0.5 is obtained
by setting p = 1 and v = 0.5.

Parameters estimation of the GΓD has been an active
research topic for several decades. Unfortunately, maximum
likelihood (ML) estimation leads to transcendental equations
that can only be solved graphically or numerically [7] and
[8]. Maximum likelihood estimators for the GGD, double-
Gamma, Laplace and Normal distributions can be obtained by
substituting the specific values of a, v and p, corresponding
to these distributions, into the maximum likelihood estimation
equations for GΓD.

In order to compare the different models we evaluate
their goodness of fit to the virtual correlation channel of
the Distributed Video Coding system. The test is performed
in an off-line mode and both Wyner–Ziv frames, X , and
side information frames, Y , are assumed to be available. In
addition, it is assumed, as accustomed in DVC systems [3],
that the noise samples can be characterized as additive, white
and independent of the side information Y (or alternatively of
the WZ frame X). A DCT is applied to the difference X−Y
and the distribution parameters are estimated for each of the
DCT coefficient bands. The goodness of fit is measured by
two metrics: the Akike Information Criterion (AIC) [9] and
the Minimum Description Length (MDL) [10]. These metrics
are defined as follows:

AIC(θ̂ML) = −2 log
[
f
(
x; θ̂ML

)]
+ 2k, (2)

MDL(θ̂ML) = − log
[
f
(
x; θ̂ML

)]
+

k

2 log(n)
, (3)

where θML is the maximum likelihood parameters set, n is
the sample population size and k is the number of model
parameters. As can be inferred from (2) and (3), a model
with a better fit to the data will produce smaller MDL and
AIC values. Note that both metrics penalize distributions with
large number of parameters in order to avoid over-fitting.

We performed simulations on standard test sequences, listed
in Table I, all at CIF resolution. For each sequence, a Group

TABLE I
MDL AND AIC AS GOODNESS OF FIT METRICS FOR DCT DOMAIN

VIRTUAL CHANNEL

Sequence GΓD dbl.-Gamma GGD Laplace Gauss.
Mobile AIC 1.80e+04 1.80e+04 1.92e+04 2.00e+04 2.25e+04

MDL 9.01e+03 9.03e+03 9.62e+03 9.99e+03 1.13e+04
Coastguard AIC 1.64e+04 1.65e+04 1.73e+04 1.74e+04 1.87e+04

MDL 8.22e+03 8.25e+03 8.66e+03 8.70e+03 9.37e+03
Container AIC 7.98e+03 8.23e+03 1.09e+04 1.10e+04 1.24e+04

MDL 4.00e+03 4.12e+03 5.45e+03 5.49e+03 6.22e+03
Foreman AIC 1.48e+04 1.49e+04 1.64e+04 1.67e+04 1.82e+04

MDL 7.41e+03 7.45e+03 8.22e+03 8.34e+03 9.11e+03
Flower Garden AIC 1.41e+04 1.41e+04 1.72e+04 1.93e+04 2.19e+04

MDL 7.04e+03 7.06e+03 8.61e+03 9.65e+03 1.10e+04
Hall Monitor AIC 1.07e+04 1.10e+04 1.44e+04 1.44e+04 1.55e+04

MDL 5.33e+03 5.50e+03 7.19e+03 7.21e+03 7.74e+03

of Pictures (GOP) size of 2 was used and the side information
frame was obtained using motion compensated interpolation
[11]. The motion was estimated from two Key frames, adjacent
to the WZ frame, using full-search block matching. Maximum
likelihood parameters were estimated for the following distri-
butions: Generalized Gamma, Generalized Gaussian, double-
Gamma, Laplace and Gaussian. Next, MDL and AIC metrics
were calculated. The results were averaged over all frames and
across the DCT bands and are summarized in Table I.

Analyzing the results, one can see that GΓD outperforms all
other examined models, for all tested sequences, both for AIC
and MDL metrics. However, the performance of the double-
Gamma distribution is very close to that of GΓD and for some
sequences even matches it. This observation is very inspiring
since double-Gamma distribution has only one parameter, as
opposed to 3 for GΓD and 2 for GGD. Moreover, the double-
Gamma distribution parameter can be obtained using a closed
form ML estimator given by:

âML =
2

n

n∑
i=1

|xi| , (4)

where {xi}ni=1 are the n samples used for estimation.
It should be noted that the sample population size implicitly

affects both MDL and AIC metrics through the ML (first) term
of (2) and (3). For CIF resolution, assuming that a whole
frame is a single slice, each DCT coefficient band has 6336
elements which makes the penalizing terms of (2) and (3)
negligible and results in a factor of 2 difference between AIC
and MDL. Aiming to keep the modeling and the subsequent
estimation problems as simple as possible and based on these
off-line observations, we selected the double-Gamma model
as a candidate to replace the traditional Laplace model.

We compared the performance of the double-Gamma based
model vs. the Laplace based model for Coastguard at QCIF
resolution and Flower Garden at CIF resolution test sequences.
The utilized DVC system is based on the design proposed
by the Stanford group [1]. The Key frames were intra coded
using H.264. The WZ frames were syndrome coded using
LDPC codes, applied to quantization indices of 4 × 4 DCT
coefficients. The quantization steps were adjusted to obtain
constant quality. At the decoder, the side information was
generated using motion compensated interpolation of the Key
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Fig. 1. Comparison of virtual channel models for Flower Garden (top) and
Coastguard (bottom) sequences.

frames [11]. The Coastguard sequence is coded with a GOP
size of 4 while the Flower Garden with a GOP size of 2. The
Rate-PSNR curves obtained for these sequences are depicted
in Fig. 1. The bit rate corresponds to a frame rate of 15 frames
per second. In addition, the performance of the DVC system
is compared to that of a baseline H.264 operating in Intra
mode, denoted by ’H.264 Intra’, or in Inter mode denoted
by ’H.264 IBI’ for a GOP size of 2 and similarly by ’H.264
IBBBI’ for a GOP size of 4. Comparing the rates, it can be
seen that adopting the double-Gamma model instead of the
Laplace model results in a decrease in the coding rate by at
least 2.5% and up to 4% for Flower Garden, and by 2% to
18% for Coastguard.

III. SPATIALLY ADAPTIVE MODELING

The modeling approach discussed in the previous section
relies on the assumption that the virtual channel is stationary
across the whole frame or across a number of slices tiling
the frame. In practice, this means that a model with a
single set of parameters is used for all pixels, in the pixel
domain DVC system, or for every DCT coefficients band
in the transform domain system. The stationarity assumption
is obviously an oversimplification of the actual properties
of natural video sequences. The correlation characteristics
vary across the frame as a function of the prediction (side
information) accuracy at each pixel. Side information accuracy
is affected by various factors such as image spatial content
(edges, texture), camera and objects motion and algorithms
used at the decoder for motion estimation and compensation.

Accurate model adaptation to the spatially varying statistics
has the potential to significantly improve the coding efficiency
of a DVC system.

Spatially adaptive modeling in a pixel domain DVC system
was first studied by Brites et.al., in [11] and [3]. They proposed
to estimate the Laplace model parameters at frame, block and
pixel levels. Peculiarly, for certain combinations of frame level
and block level variances, the pixel level model parameter
is estimated from a single sample, while for other scenarios
the block or frame level parameter is adopted. Nevertheless,
rate reductions of up to 5% were reported for pixel level
relatively to the frame level modeling. A similar approach was
adopted by Brites et. al., for the transform domain modeling
and a rate decrease of 3%, on average, was reported for
coefficient level relatively to a band level modeling. First, a
frame level parameter is estimated for each DCT band. Second,
for each coefficient with squared magnitude, m2, larger than
the band variance, the model parameter is set to

√
2/m. A

more interesting approach was presented in [4] by Skorupa et.
al. First, it was proposed to estimate a block level variance in
the pixel domain. Next, a set of transform domain coefficients
variances was obtained by considering each DCT coefficient
as a linear combination of the pixel domain components.
However, the resulting transform domain covariance model
relies on some empirically crafted expressions. Moreover, it
has a fixed form which depends only on the pixel domain
block variance.

Here we follow a similar approach to that discussed in [4].
However, we allow for different forms of the autocovariance
function and show how the transform domain parameters
can be analytically obtained from those in the pixel domain
without any approximations. The virtual channel is modeled
by a MultiVariate Laplace (MVL) distribution over blocks of
nb × nb pixels in the spatial domain. The MVL distribution
was selected due to its invariance to linear transformations,
a property that will shortly prove to be useful. It is worth
mentioning that this property could not be verified for the
multivariate double-Gamma distribution.

The MVL distribution is a generalization of the univariate
Laplace distribution and is defined as follows [12]:

f(z) = 2(2π)−
d
2 |Σ|−

1
2

(
z′Σ−1z

2

) v
2

Kv

(√
2z′Σ−1z

)
, (5)

for z ∈ Rd, where Σ is a positive definite autocovariance
matrix, d = n2

b , v = (2 − d)/2 and Kv(·) is the modified
Bessel function [13]. In the following, we refer to the elements
of the autocovariance matrix as σij , 0 ≤ i, j ≤ d.

Alternatively, the MVL distribution can be defined by its
characteristic function [12]:

Φ(t) =
1

1 + 1
2 t
′Σt

, t ∈ Rd. (6)

Marginalization of the MVL distribution results in lower di-
mension MVL distribution or in the familiar univariate Laplace
distribution.



In our virtual channel model, the MVL autocovariance
matrix, Σ, varies from block to block, enabling to follow
the spatial variations. The elements of the autocovariance
matrix are estimated in the pixel domain from the noise
image, Z = X − Y . However, statistical characterization
of transform domain virtual channel is needed in order to
facilitate utilization of the spatial correlation.

Similarly to the Multivariate Gaussian distribution, linear
transformation, A, of a Multivariate Laplace distributed vector
X ∼ MV L(Σ), results in a Multivariate Laplace distributed
vector Y ∼MV L(AΣA′). This property can be easily verified
by examining the characteristic function of Y = AX , as
following:

ΦY (t) = E[eiY
′t] = E[ei(AX)′t] = ΦX(A′t). (7)

Consequently, since the DCT is a linear transform, the spatial
characteristics of the virtual channel can be transformed to
obtain spatially varying characterization of the noise image
DCT coefficients. Next, we present two methods for pixel
domain MVL parameters estimation.

1) Neighborhood-based Virtual Channel Modeling: In or-
der to estimate the MVL parameters, a decoder-side noise
image is constructed, following the steps in [14]. First, motion
estimation is carried out between two reference frames, one
preceding and the other following the Wyner-Ziv frame to
be decoded. Second, motion compensation to the time instant
corresponding to the Wyner-Ziv frame is performed on these
reference frames. The average of these compensated versions
is used as the side information, Y . However, since X is not
available at the decoder, the true noise image Z = Y − X
can not be obtained. Instead, the decoder constructs a noise
image approximation as half of the difference between the
compensated reference frames [3].

Once the noise image is at hand, we propose to estimate
a local autocovariance matrix for a each block by examining
the block’s close neighborhood within a window xw(·, ·) of
nw × nw pixels. The estimate of the autocovariance matrix is
obtained using the standard sample autocovariance estimator
as follows:

Cov(u, v) =
1

(nw − u)(nw − v)
×∑

|k−i|=u,
|l−j|=v

xw(k, l)xw(i, j). (8)

It should be noted that this approach might suffer from
instability, i.e., the estimated autocovariance matrix might not
be positive definite. On the one hand, we would prefer the
neighborhood window to be as small as possible in order to
obtain better localization of the model. On the other hand, for
a small sample size, the estimated parameters are less reliable.
Moreover, the estimated autocovariance matrix might be non-
positive definite, implying that the distribution is degenerate.
A possible solution to these problems is achieved by adopting
a model for the autocovariance matrix, such as a first order
exponential model given by Cov(u, v) = σ2 exp(ρ1u

2+ρ2v
2)

and estimating the model parameters, in this case ρ1 and ρ2.
Another option is to utilize shrinkage estimation methods [15].
We adopt a simpler approach, first we transform the auto-
covariance matrix to the DCT domain, as described bellow,
and then replace all elements on the main diagonal that are
below some predefined threshold, thr > 0, by one half of the
smallest legitimate variance: min {σii|σii > thr}.

The DCT domain distribution parameters are obtained by
transforming the covariance matrix according to (7) with A
given by the 2D DCT transform. The obtained transform
domain autocovariance matrix contains the DCT coefficients’
variances across the main diagonal, while other matrix ele-
ments are the cross terms. Typically the cross terms have very
small values, relative to the variances due to the de-correlating
property of the DCT transform. Two examples of DCT domain
autocovariance matrices are presented in Fig. 2. Consequently,
the cross-band correlation can be discarded without significant
loss in the system’s performance. As a result, each DCT
coefficient is assumed to be a sample of a univariate Laplace
Distribution with a scale parameter given by αi =

√
2/σ2

ii,
where σ2

ii is the DCT coefficient variance obtained from
the main diagonal of the transform domain autocovariance
matrix. It should be noted, that though each DCT coefficient is
modeled by a univariate Laplace distribution, each coefficient
has a different scale parameter which is explicitly affected by
the spatial variations in the noise image. This is in contrast to
stationary modeling, where DCT coefficients within each band
are modeled by univariate Laplace distribution, which has a
single fixed scale parameter α across the whole frame.

2) Class-based Virtual Channel Modeling: The reliability
of the estimation process can be improved by increasing the
sample size. Nevertheless, simply enlarging the neighborhood
window, nw×nw will result in a loss of locality. Alternatively,
the sample size can be increased by grouping blocks with
similar characteristics, like foreground or background, static or
dynamic, textured or smooth and their combinations. However,
classifying the blocks into various classes is a complex task.
Here, we consider a simplified classification approach which
uses only two classes as described below.

When examining an image of the virtual channel noise (see
Fig. 3 top) together with the Wyner-Ziv frame, it is easy
to see that the blocks of the noise image can be roughly
classified into two sets. One set containing the blocks with
the scene background and the other containing the blocks
with moving objects’ edges, we denote these sets by Sbkg and
Sedg , respectively. Typically, the scene background is static
or undergoes global motion and thus can be predicted quite
accurately by the decoder, resulting in relatively low noise.
On the other hand, around moving objects, some pixels are
revealed while others are occluded. This makes the prediction
around the edges less accurate, which leads to higher noise.

We propose to estimate the MVL parameters for each class
separately. First, we use one of the compensated reference
frames to locate the edges in the image, applying the Sobel
edge detector [16], see Fig. 3 bottom. The obtained edges
are dilated using morphological operators, in order to imitate
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Fig. 2. Sample autocovariance in the DCT domain, obtained by transforming
the pixel domain autocovariance matrices using the Neighborhood based
approach with window size nw = 8 and a block size of 4 × 4. In DCT
domain the energy is concentrated on the main diagonal.

the smearing effect around the edges due to the motion. The
structuring element used in the dilation process can be adapted
to the sequence and frame characteristics. For instance, in fast
motion sequences or when working with large GOPs (resulting
in a large number of WZ frames between any two key frames),
a larger structuring element is applied.

Next, the resulting edge image is used to classify the blocks
into the two classes of scene background and moving objects,
as mentioned earlier. This is performed in the following
manner. The edge image is divided into nb × nb blocks. A
soft classification method is then applied to each block, i.e.,
two weights, wbkg and wedg , are assigned to each block. The
sum of these weights for each block equals 1 and the weight
of the moving objects class is proportional to the number of
pixels containing an edge in the block.

Similarly to the Neighborhood-based approach, model pa-
rameters are estimated using the decoder’s version of the noise
image. In each class, the blocks, bm, of the noise image are
considered as samples of an nb × nb multivariate Laplace
distribution and are used for sample autocovariance matrix
estimation.

Covclass(u, v) =
1

(nb − u)(nb − v)
∑

bm∈Sclass
wm,class

×∑
bm∈Sclass

∑
|k−i|=u,
|l−j|=v

wm,class · xbm(k, l) · xbm(i, j) (9)

The estimated autocovariance matrices are associated with the
image blocks according to the original classification. Blocks

Fig. 3. Approximated decoder side noise image (top) and the corresponding
edge image (bottom) obtained by applying Sobel edge detector to motion
compensated preceding reference frame for the 244th frame of Flower Garden
sequence. Higher error values are obtained along the edges in the image.

with mixed content (containing both background and objects’
edges) are modeled as a mixture of the two MVL distributions.

Once the autocovariance matrix is estimated for each block,
we proceed as before. The transform domain statistics are ob-
tained by block-wise transformation of the autocovariance ma-
trix estimates. Similarly to the Neighborhood-based method,
the energy is concentrated on the main diagonal, see Fig. 4.
Consequently, only the variance values are used, while the
cross band correlations are discarded.

The performance of the proposed spatial adaptive MVL
based system was compared to that of stationary Laplace
and double-Gamma based systems. The results are depicted
in Fig. 5, where the curve corresponding to the proposed
Neighborhood-based method for estimation of the MVL pa-
rameters is denoted by ’MVL nbhd.’ and the one correspond-
ing to the Class-based method is denoted by ’MVL cls.’. As
it can be seen, the MVL based system with neighborhood-
based parameter estimation outperforms the double-Gamma,
Laplace and the class-based MVL systems. A rate reduction
of 6% to 10% can be observed for Flower Garden and 6%
to 19% for Coastguard. Alternatively, gains of up to 1dB for
Flower Garden and of 0.5dB for Coastguard are noticed.

IV. CONCLUSION

In this work we have considered the problem of source
and side information joint distribution modeling. We have
addressed both the model selection problem as well as the
invalid spatial stationarity assumption. We have demonstrated
that the Laplace model falls behind the Generalized Gamma
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Fig. 4. Transform domain autocovariance matrix of the background class
blocks, Σbkg , (top); and the edges class blocks, Σedg , (bottom). Obtained
for the second frame of the Flower Garden sequence.

and the double-Gamma distributions. In addition, we have pre-
sented spatially adaptive modeling based on the multivariate
Laplace distribution. Simulations of a DVC system based on
the spatially adaptive model have shown that it outperforms
both double-Gamma and Laplace stationary models.

There are several possible directions for future work, as
we see it. First, further steps can be taken in modeling the
spatially varying joined distribution. It is expected that more
accurate information can be obtained by utilizing knowledge
of the frame structure, such as edges and texture, along with
a reliability metric on the estimated motion field. A second
direction might be generalizing the spatially adaptive modeling
into spatio-temporal adaptive modeling. Instead of estimating
model parameters based on a window within a single frame,
the estimation can be extended to several frames, such that it
is performed within a 3D volume. The 3D volume should be
aligned along the motion trajectory of the object.
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