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a b s t r a c t

This paper presents a tree-based framework for producing self-dual morphological operators, based on a
tree-representation complete inf-semilattice (CISL). The idea is to use a self-dual tree transform to map a
given image into the above CISL, perform one or more morphological operations there, and map the result
back to the image domain using the inverse tree transform. We also present a particular case of this gen-
eral framework, involving a new tree transform, the Extrema-Watershed Tree (EWT). The operators
obtained by using the EWT in the above framework behave like classical morphological operators, but
in addition are self-dual. Some application examples are provided: pre-processing for OCR and dust
and scratch removal algorithms, and image denoising. We also explore first steps towards obtaining tree
transforms that induce a CISL on the image domain as well.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

An operator w is called self-dual when wð�f Þ ¼ �wðf Þ for any
input image f. In contrast to linear signal processing, where practi-
cally every operator is self-dual, morphological operators usually
come in dual pairs – dilation/erosion, opening/closing, etc. This is
a challenge for some applications, like image denoising, where
self-duality is an expected property. As a consequence, the design
of self-dual morphological operators is an active research field.

One of the main approaches for producing self-dual morpholog-
ical operators is by using a tree transform, which represents an
image by means of a tree. For instance, Salembier and Garrido pro-
posed a Binary Partition Tree for hierarchical segmentation in
[9,11], and a tree of shapes was proposed by Monasse and Guichard
[14,15] (see also [16,17]). These tree representations are usually
used for performing connected filtering operations on an image;
however, they do not yield non-connected operators, such as ero-
sions, dilations or openings by a structuring element.

In [3] (see also [4]) a new complete inf-semilattice (CISL), called
the shape-tree semilattice, was introduced. This semilattice provides
non-connected morphological operations, based on the above-men-
tioned ‘‘tree of shapes.” As a consequence, self-dual erosions and
openings were obtained. Similar operators had been developed ear-
lier on the so-called Reference Semilattices (introduced in [5], and
ll rights reserved.

k), renato.keshet@hp.com (R.

ep., Technion–Israel Institute
further studied by Heijmans and Keshet in [7]); however, they
require a reference image, which somewhat limits the usage of these
operators. The self-dual operators in the shape-tree semilattice pro-
vide erosions and openings without the need for a reference image.

In this paper, which is an extension to the conference paper [1],
we present a general framework for tree-based morphological im-
age processing, which generalizes the shape-tree operators. This
framework yields a set of new morphological operators (erosion,
dilation, opening, etc.), for each given tree representation of
images. The heart of the proposed approach is a novel complete
inf-semilattice of tree representations of images. Because many
of the properties of the tree are inherited by the corresponding
operators, the choice of the tree representation is of high impor-
tance. We focus mostly on self-dual trees, which represent dark
and bright elements equally.

A particular case of the proposed framework is also presented,
based on a novel tree representation, the Extrema-Watershed Tree
(EWT). Following the general framework, we derive self-dual mor-
phological operators from the EWT. Examples of applications dis-
cussed here are pre-processing for OCR (Optical Character
Recognition) algorithms, de-noising of images, and pre-processing
for dust and scratch removal.
2. Theoretical background

2.1. Complete inf-semilattices

A complete inf-semilattice (CISL) is a partially-ordered set S,
where the non-empty infimum operation ð^Þ is always well-
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Fig. 1. Proposed tree-based morphology. An image is transformed into a tree
representation, morphologically processed in a complete inf-semilattices of tree
representations, and then transformed back to the images domain.

Fig. 2. An example of image tree representation.
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defined (but the supremum _ is not necessarily so). The theory of
mathematical morphology on complete semilattices was intro-
duced in [6,7], and is an almost-straightforward extension of the
traditional morphology on complete lattices. It mathematically
supports intuitive observations, such as the fact that erosions
(when defined2 as maps that commute with non-empty infima)
are naturally extended from complete lattices to CISLs, whereas
dilations are not universally well-defined on CISLs.

On the other hand, some results may not be necessarily intui-
tive. The main ones are as follows: (a) it is always possible to asso-
ciate an opening c to a given erosion e by means of
cðxÞ ¼

V
fy jeðyÞ ¼ eðxÞg, (b) even though the adjoint dilation d is

not universally well-defined, it is always well-defined for elements
on the image of S by e, and (c) c ¼ de. The closing ed is only par-
tially defined.

2.2. Rooted trees and their corresponding CISL

This section reviews basic graph theory notions (given in [19,
Chapter 1]), including the natural partial ordering on rooted trees,
which provide them with a CISL structure.

A graph is a pair of sets G ¼ ðV ; EÞ such that E # ½V �2, that is, the
elements of E are 2-element subsets of V. A path is a non-empty
graph P ¼ ðV ; EÞ of the form: V ¼ fx0; x1; . . . ; xkg; E ¼ fx0x1; x1x2;

. . . ; xk�1xkg, where the xi are all distinct. The points x0 and xk are
the end points of the path. A graph G is connected if any two verti-
ces are end points of some path in G. A connected component of a
graph G is a maximal connected sub-graph of G.

A cycle is a graph consisting of a path with end points x0 and xk,
where k P 2, plus the edge x0xk. A graph not containing any cycles
is called a forest. A connected forest is called a tree (thus, a forest is
a graph whose connected components are trees). In a tree, any two
vertices are joined by a unique path.

Sometimes it is convenient to consider one vertex of a tree as
special; such a vertex is then called the root of this tree. A tree with
a fixed root is a rooted tree. Choosing a root r in a tree t imposes the
following partial ordering on VðtÞ : x�ty() x 2 rty, where rty is
the unique path in t that connects y to the root. Note that ðV ;�tÞ
is a CISL, where r is the least element, and the maximal elements
are the leafs of t. The infimum between vertices is the nearest com-
mon ancestor vertex.

We say that a tree t1 is smaller than another tree t2 if t1 # t2.

3. Tree semilattices

This section presents the proposed general framework for tree-
based morphological image processing (introduced in [2]). This
framework enables the definition of new morphological operators
that are based on tree representations. The proposed image pro-
cessing scheme is shown is Fig. 1.

3.1. CISL of tree representations

The heart of the proposed approach is a novel complete inf-
semilattice of tree representations of images.

Let L be an arbitrary set of ‘‘labels,” and t ¼ ðV ; EÞ a rooted tree,
with root r, such that V # L. Therefore, t is a tree of labels. More-
over, let E may be an Euclidean space or a discrete rectangular grid
within an image area, and M : E! V be an image of vertices, map-
ping each point in E to a vertex of t.

Definition 3.1 (Tree representation). The structure T ¼ ðt;MÞ shall
be called a tree representation. The set of all tree representations
2 In complete lattices, erosions can also be defined by means of adjuctions [8].
associated with the label set L and with the root r shall be denoted
by TL

r .

Fig. 2 depicts an example of a tree representation.

3.1.1. Partial ordering
Consider the following relation between tree representations:

for all T1 ¼ ðt1;M1Þ and T2 ¼ ðt2;M2Þ in TL
r ,

T1 6 T2 ()
t1 # t2 and
M1ðxÞ�t2

M2ðxÞ 8x 2 E;

(
ð1Þ

where # is the usual graph inclusion and �t2
is the partial ordering

of vertices within the tree t2 (see Section 2.2).

Proposition 3.1. The above tree relation 6 is a partial ordering on
TL

r .

Proof. It is easy to see that 6 is reflexive. Now, if T1 6 T2 and
T2 6 T1 then t1 # t2 and t2 # t1, therefore t1 ¼ t2,t. Moreover,
M1ðxÞ�tM2ðxÞ, and M2ðxÞ�tM1ðxÞ; 8x 2 E, and therefore
M1ðxÞ ¼ M2ðxÞ; 8x 2 E, which means that 6 is anti-symmetric.
Finally, assume that T1 6 T2 and T2 6 T3. Then besides t1 # t3, we
have M1ðxÞ�t2

M2ðxÞ, and M2ðxÞ�t3
M3ðxÞ; 8x 2 E. But since t2 # t3,

we can also write M1ðxÞ�t3
M2ðxÞ; 8x 2 E. Therefore, M1ðxÞ�t3

M3ðxÞ; 8x 2 E, and 6 is transitive. h

An example of this partial ordering is shown in Fig. 3.
A relevant question at this point is what are the infimum and

supremum operators related to the above partial ordering and
whether they are well-defined for any subset of tree representa-
tions. In other words, is ðTL

r ;6Þ a lattice or a semilattice, and if
so, complete or not?
Fig. 3. An example of order of trees. The tree representation T2 is larger than T1

because the tree t1 is included in tree t2, and all pixels in T1 are mapped to labels
that are smaller or equal to those in T2.



Fig. 4. An example of a tree intersection that does not yield a tree.
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3.1.2. Infimum
First notice that, for two graphs g1 and g2, the intersection g1 \ g2

is the infimum graph. However, if g1 and g2 are trees, then unfortu-
nately g1 \ g2 is not necessarily a tree. This is because the resulting
graph may be disconnected, in which case g1 \ g2 is a forest, but
not a tree. For instance, consider the two trees t1 ¼ ðfr; a; b; dg;
fra; ab; bdgÞ and t2 ¼ ðfr; a; c; dg; fra; ac; cdgÞ as shown in Fig. 4. The
intersection is given by t1 \ t2 ¼ ðfr; a; dg; fragÞ, which has two con-
nected component: ðfr; ag; fragÞ and ðfdg; fgÞ. Notice, however, that
the connected component that contains the root r is the largest tree
with root r that is included both in t1 and in t2. That is, the subtree
containing r is the infimum between the two trees regarding the
inclusion order.

This is true in general. That is, if we define Crð�Þ to be the oper-
ator that extracts from a given graph (and thus from a given rooted
tree in particular) its connected component containing the root r,
then Crðt1 \ t2Þ is the infimum t1 ^ t2 between the trees t1 and t2.

Let us turn now to the infimum of images of vertices. The ele-
ment M1ðxÞft1^t2 M2ðxÞ would be the natural candidate for the inf-
imum of the two vertices M1ðxÞ and M2ðxÞ. However, it may occur
that either M1ðxÞ or M2ðxÞ (or both) do not belong to its set of ver-
tices Vðt1 ^ t2Þ. For instance, consider the trees t1 and t2 as in the
example above, and assume that M1ðxÞ ¼ b and M2ðxÞ ¼ c as shown
in Fig. 5. Neither M1ðxÞ nor M2ðxÞ belongs to Vðt1 ^ t2Þ ¼ fr; ag.

The infimum is obtained by first ‘‘projecting” each vertex M1ðxÞ
and M2ðxÞ to Vðt1 ^ t2Þ, and then taking the infimum of the pro-
jected vertices on the tree t1 ^ t2. By ‘‘projection” of a vertex v onto
a subtree t0 # t we mean finding the vertex w in Vðt0Þ that is the
closest to v in the path connecting v to r inside it t. For instance,
in the above example, the projection of both M1ðxÞ ¼ b and
M2ðxÞ ¼ c onto t1 ^ t2 is a. Recalling that vtr represents the path
linking v to r in the tree t, the projection Pt!t0 ðvÞ of v onto the sub-
tree t0 could be also defined as the leaf of vtr \ t0.

In summary, we get the following proposition.

Proposition 3.2. Consider the non-empty collection of tree represen-
tations fTigi ¼ fðti;MiÞgi. Let t̂ ¼ Crð

T
itiÞ, where Crð�Þ stands for the

connected graph containing r. Also, let M̂ ¼ ðft̂ÞiPti!t̂ðMiÞ, where
Pt!t̂ð�Þ means the projection onto t̂, i.e., the leaf of ð�Þtr \ t̂. Then the
tree representation infimum is given by^

i

Ti ¼ ð̂t; M̂Þ: ð2Þ

Proof. In general, an element X̂ is the infimum of fXig iff (1)
X̂ 6 Xi; 8i and (2) any X� that is smaller or equal to any Xi is also
smaller or equal to X̂. Let us then first show that ð̂t; M̂Þ is smaller
or equal to all Ti. First t̂ ¼ Crð

T
itiÞ# ð

T
itiÞ# ti; 8i. Also,

M̂ ¼ ðft̂ÞiPti!t̂ðMiÞ�t̂Pti!t̂ðMiÞ�t̂Mi; 8i. And since, for all i, t̂ # ti,
then M̂�ti

Mi. Therefore, ð̂t; M̂Þ 6 Ti; 8i.
Fig. 5. An example of the projection of vertices M1ðxÞ and M2ðxÞ onto the subtree
t1 ^ t2.
Now assume that T� ¼ ðt�;M�Þ is smaller or equal to all Ti. Then
t�# ð

T
itiÞ. But t� is a tree with root r, so it is also smaller than the

largest tree with root r that is included in
T

iti. Which is the
connected component of

T
iti that contains r, i.e., Crð

T
itiÞ. So,

t�# Crð
T

itiÞ ¼ t̂. Moreover, for all x, M�ðxÞ is a vertex in t�; but
t�# t̂, so M�ðxÞ is a vertex of t̂. Let v be the largest vertex in the path
M�ðxÞt1M1ðxÞ that belongs to t̂. Since M�ðxÞ�t1 M1ðxÞ, then v is also
the largest vertex in the path rt1M1ðxÞ that belongs to t̂. Because
t̂ # t1, we have that rt1M1ðxÞ \ t̂ is the path rt̂v, so v is the leaf of
rt1M1ðxÞ \ t̂, which is given by Pt1!t̂ ½M1ðxÞ� by definition. So,
M�ðxÞ�t̂Pt1!t̂ ½M1ðxÞ�, and similarly M�ðxÞ�t̂Pti!t̂ ½MiðxÞ�; 8i. There-

fore M�ðxÞ�t̂ðft̂ÞiPti!t̂ ½MiðxÞ� ¼ M̂ðxÞ. The conclusion is that

T� 6 ð̂t; M̂Þ. h
3.1.3. Supremum
Now, let us find out what the supremum of the tree representa-

tions is. First, notice that the union t1 [ t2 of two trees t1 and t2 is al-
ways connected, but one cannot assure that it does not contain loops.
Therefore, the union is not necessarily a tree. Worse, there does not
necessarily exist a smallest tree that is larger than the union. For in-
stance, if t1 ¼ ðfr; a; cg; fra; acgÞ and t2 ¼ ðfr; b; cg; frb; bcgÞ, then
t1 [ t2 is equal to the graph ðfr; a; b; cg; fra; ac; rb; bcgÞ, which is not
a tree, and there does not exist a tree that contains it. Therefore, there
does not exist a supremum of tree representations if the union of
their trees is not a tree. Now, suppose that the union is a tree; let
us focus on the image of vertices. Now both M1ðxÞ and M2ðxÞ do be-
long to Vðt1 [ t2Þ, but their supremum in t1 [ t2 may not exist. For in-
stance, if t1 ¼ ðfr; ag; fragÞ and t2 ¼ ðfr; bg; frbgÞ, then t1 [ t2 is a
tree; however, if M1ðxÞ ¼ a and M2ðxÞ ¼ b for some x, then
½M1gtM2�ðxÞ does not exist.

In summary, we obtain the following.

Proposition 3.3. Let fTig ¼ fðti;MiÞg be a collection of tree repre-
sentations. If �t,

S
iti is a tree, and ðg�tÞiMi exists, then the supremumW

iTi is given by ð�t; ðg�tÞiMiÞ. Otherwise, the supremum does not exist.
Proof. First, assume that �t,
S

iti is a tree and that ðg�tÞiMi exists.
Then, ð�t; ðg�tÞiMiÞ is the supremum, since �t is the smallest tree with
root r that contain all ti, and ðg�tÞiMi is the smallest image of verti-
ces that is larger than all Mi. Now, if �t,

S
iti is not a tree, then there

is not a tree containing all ti, and therefore the supremum does not
exist. And if ðg�tÞiMi does not exist, then there is not a image of ver-
tices that is the smallest majorant of fMig. h

In conclusion, ðTL
r ;6Þ is a CISL. The least element is T0,ðt0;M0Þ,

where t0,ðfrg; fgÞ, and M0ðxÞ � r;8x 2 E.

3.2. Fixed tree

Let us now focus on the particular case where all tree presenta-
tions involved in an infimum or supremum operation have a com-
mon tree associated with them:

Proposition 3.4. Let fTi ¼ ðt;MiÞg be a collection of tree represen-
tations with a common tree t. In this case,^

i

Ti ¼ ðt;ftfMigÞ; ð3Þ

and_
i

Ti ¼ ðt;gtfMigÞ; ð4Þ

whereft andgt are the pointwise infimum and supremum associated to
vertex order �t , respectively. Notice that gtfMigmay not always exist.
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The situation where the set of tree representations share the
same tree is what one encounters when defining flat erosions
and dilations on the complete inf-semilattice of tree representa-
tions. The flat erosion can be defined as the operator e given by

eBðTÞ,
^
b2B

T�b ¼
^
b2B

ðt;M�bÞ; ð5Þ

where b is a structuring element, and M�bðxÞ ¼ Mðxþ bÞ. It is easy to
verify that the above operator is indeed an erosion on TL

r .
Using Proposition 3.4, one obtains that

eBðTÞ ¼ ðt;ftfM�b jb 2 BgÞ: ð6Þ

As mentioned in Section 2.1, concerning complete inf-semilat-
tices, one can associate to any given erosion e an opening c (and,
in fact, any morphological operator that is derived from composi-
tions of erosions and openings, such as the internal gradient, dark
top-hat transform, and skeletons). Furthermore, the adjoint dila-
tion d exists, and, even though it is not well defined for all complete
inf-semilattice elements, it is always well-defined for elements
that are mapped by the erosion e, and c ¼ de.

In the case of the above tree-representation flat erosion, the ad-
joint dilation is given by

dBðTÞ ¼ ðt;gtfMb jb 2 BgÞ: ð7Þ

We also define the tree-representation reconstruction of T from
a marker T ¼ ðt;MÞ 6 ðt;MÞ ¼ T as the infinite iteration of the con-
ditional dilation

dBðT jTÞ,ðt;gtfMbftM jb 2 BgÞ: ð8Þ

The conditional dilation dBðT jTÞ is indeed a dilation for fixed T, and
variable T smaller or equal to T (see Corollary 3.1 at the end of Sec-
tion 3.3). Notice that it is always well defined, since it consists of a
supremum of bounded elements. This definition is compatible with
the novel approach for designing reconstruction operators, pro-
posed by Ronse in [21]. In fact, (8) is a particular case of the last
equation in Section 4 of [21]. We also note that, for reconstruction,
one would typically use an extensive structuring element B (i.e., one
that contains the origin of E).

3.3. Threshold sets

The image of vertices M in a tree representation T ¼ ðt;MÞ can
be equivalently represented by the collection of sets fRTðvÞg,
v 2 VðtÞ, given by

RTðvÞ,fx 2 E jMðxÞ�tvg: ð9Þ

This is because one can obtain M back from fRTðvÞg and t by

MðxÞ ¼ gtfv 2 VðtÞ jx 2 RTðvÞg: ð10Þ

Proposition 3.5. Let fRðvÞg; v 2 VðtÞ, be an arbitrary collection of
sets indexed by the vertices of a rooted tree t. This collection
corresponds to a tree representation ðt;MÞ, where M is given by (10)
(replacing RT with R), iff:

1. RðrÞ ¼ E,
2. v�tv0 ) RðvÞ 	 Rðv0Þ, and
3. if v and v0 are not comparable in t, then RðvÞ \ Rðv0Þ ¼ ;.

Proof. fRðvÞg corresponds to the tree representation ðt;MÞ, where
M is computed via (10) with RT replaced by R, when (a) M is well
defined, and (b) RTðvÞ ¼ RðvÞ where fRTðvÞg are the thresholds sets
computed from M via (9). Conditions 1 and 3 are sufficient for (10)
to be well defined (the former ensures that fv 2 VðtÞ jx 2 RTðvÞg is
not empty, and the latter that it has a supremum). Computing
RTðvÞ for this M yields RTðvÞ¼fx2Ejgtfv0 2VðtÞjx2Rðv0Þg�tvg¼S

v0�vRðv0Þ. Condition 2 is then sufficient to yield RTðvÞ ¼ RðvÞ. Con-
versely, condition 1 is necessary, because, whatever M is, MðxÞ
must be larger than or equal to r for all x. Condition 2 is also nec-
essary because if v�tv0, then MðxÞ�tv implies MðxÞ�tv0, which,
according to (9), leads to RðvÞ 	 Rðv0Þ. And condition 3 is necessary
because MðxÞ cannot be larger than two non comparable vertices at
the same time. h

The following propositions indicate that the set of threshold
sets of tree representations provide an alternative way of charac-
terizing tree morphology on fixed trees.

Proposition 3.6. Let T1 and T2 be two tree representations sharing
the same rooted tree t. Then T1 6 T2 iff RT1 ðvÞ# RT2 ðvÞ; 8v 2 VðtÞ. In
addition, if fTig is a collection of tree representations sharing the same
tree t, then T̂ ¼

V
iTi iff RT̂ðvÞ ¼

T
iRTi
ðvÞ; 8v 2 VðtÞ. Moreover,

assuming that
W

iTi exists, then eT ¼ WiTi iff ReT ðvÞ ¼ SiRTi
ðvÞ;

8v 2 VðtÞ.

Proof. M1ðxÞ�tM2ðxÞ () ðM1ðxÞ�tv ) M2ðxÞ�tvÞ; 8v () RT1 ðvÞ
# RT2 ðvÞ; 8v. This proves the equivalence relationship between
the partial ordering and the inclusion of threshold sets. The inclu-
sion ordering leads then to intersection and union as infimum and
supremum, respectively. h

Notice that the intersection of threshold sets preserves the
three conditions of Proposition 3.5, which corroborates the fact
that the infimum is always well-defined. The union, on the other
hand, does not preserve Condition 3 (even though it does preserve
the other two), which is aligned with the fact that the supremum is
sometimes not well-defined.

Proposition 3.7. Consider the flat erosion eBðTÞ of a tree represen-
tation T. Then, for all v 2 VðtÞ:

ReBðTÞðvÞ ¼ RTðvÞ 
 B; ð11Þ

where ð:Þ 
 B is the conventional binary erosion by the s.e. B.

Proof.

RTðvÞ 
 B ¼fx 2 E jMðxÞ�tvg 
 B ¼
\
b2B

fx 2 E jMðxÞ�tvg�b

¼
\
b2B

fx� b 2 E jMðxÞ�tvg

¼
\
b2B

fy 2 E jMðyþ bÞ�tvg

¼ fy 2 E jM�bðyÞ�tv;8b 2 Bg
¼ fy 2 E jftfM�bðyÞ jb 2 Bg�tvg ¼ ReBðTÞðvÞ: � ð12Þ

Proposition 3.7 suggests an alternative algorithm for computing
the erosion. For any v, (a) compute RTðvÞ, (b) compute ReBðTÞðvÞ ¼
RTðvÞ 
 B, and (c) assign ‘ðvÞ to all points within ReBðTÞðvÞ n

S
v�v0

ReBðTÞðv0Þ.

Proposition 3.8. Assume that the flat dilation dBðTÞ of a tree
representation T exists. Then, for all v 2 VðtÞ:

RdBðTÞðvÞ ¼ RTðvÞ � B: ð13Þ

Proof. Assuming that dBðTÞ exists, the proof is similar to that of
Proposition 3.7. h

Proposition 3.9. Consider the conditional dilation dBðT jTÞ of a mar-
ker T inside a mask T, both with the same rooted tree t. Then, for all
v 2 VðtÞ:

RdBðT j TÞ
ðvÞ ¼ RTðvÞ \ ½RTðvÞ � B�: ð14Þ
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Proof. According to Proposition 3.6, RTbft TðvÞ ¼ RTb
ðvÞ \ RTðvÞ. Fur-

thermore, RðgtÞb2B ½T bftT�ðvÞ ¼
S

b2B½RTb
ðvÞ \ RTðvÞ� ¼ ½

S
b2BRTb

ðvÞ�\
RTðvÞ ¼ RTðvÞ \ ½RTðvÞ � B�. h

One can verify that, as in the case of the flat erosion, Eq. (14)
preserves the three conditions of Proposition 3.5. Drawing once
more the analogy with Ronse’s work, we note that (14) above is
a particular case of Eq. (25) in [21].

Notice that the conditional dilation at the right side of (14) is in-
deed a dilation for fixed RT and for RT included in RT . This leads to
the following corollary.

Corollary 3.1. dBð� jTÞ is a dilation on the set of tree representations,
with rooted tree t, that are smaller or equal to T.
4. Image processing on tree semilattices

Now that morphology on the tree representation domain has
been established, we can turn to our ultimate goal, which is to pro-
cess a given grayscale image f.

4.1. General approach

Let us assume that f is an integer-valued function on E, i.e.,
f 2 FunðE;ZÞ. Moreover, let s be an operator that transforms f into
a pair ðT; ‘Þ, where T ¼ ðt;MÞ 2TL

r is a tree representation, and
‘ : L! Z is a function that maps labels into graylevels. The tree
transformation s should be invertible, and the inversion be given
by ½s�1ðT; ‘Þ�ðxÞ ¼ ‘ðMðxÞÞ, 8x 2 E. We propose the following ap-
proach for processing f, using the CISL of tree representations:

1. Compute sðf Þ ¼ ðT; ‘Þ ¼ ððt;MÞ; ‘Þ,
2. Perform one or more morphological operations on T ¼ ðt;MÞ to

obtain a processed tree representation T̂ ¼ ðt; M̂Þ.
3. Transform ðT̂; ‘Þ back into a new image f̂ 2 FunðE;ZÞ, using

f̂ ðxÞ ¼ s�1ðT̂; ‘Þ ¼ ‘ðM̂ðxÞÞ: ð15Þ

If the morphological operation in step 2 above is the erosion eB,
then (15) becomes

f̂ ðxÞ ¼ ‘ðftfM�bðxÞ jb 2 BgÞ: ð16Þ
3 If two extrema have the same area, input first the one that has the smallest
grayscale distance to its closest neighbor.
4.2. Particular cases

4.2.1. Flat zones
In order for the tree transform to be invertible, s should be such

that it assigns a common label to each flat zone of f. This is because
s�1 maps each label to a single graylevel. This suggests that special
attention should be paid to the flat zones of f.

One way of addressing the flat zones of a given image is by con-
sidering its Regional Adjacency Graph (RAG). The RAG is a graph,
where V is the set of all flat zones of the image, and E contains
all pairs of flat zones that are adjacent to each other.

A spanning tree is a sub-graph of a RAG that should, obviously,
be a tree, and have the same vertex set V as the RAG. A spanning
tree creates a hierarchy in the RAG, defining father/son relation-
ships between adjacent flat zones.

The proposed morphological scheme is of particular interest
when t is a spanning tree of the RAG. In this case, the associated
morphological operators do not create new gray/color values.

4.2.2. Self-dual trees
Of particular interest are self-dual trees, which treat bright and

dark ‘‘objects” in the same way. Let us call a tree transform s self-
dual when fRsðf ÞðvÞg ¼ fRsð�f Þðv0Þg. According to Proposition 3.7, if
one can characterize ‘‘objects” in an image by thresholding a tree
representation (i.e., the ‘‘objects” are the sets fRTðvÞg), then the cor-
responding tree-domain erosion performs simultaneous ‘‘shrink-
ing” of all these image ‘‘objects.” In particular, if the tree
representation is self-dual, then all ‘‘objects” are shrunk regardless
of whether they are darker or brighter than their background.

4.2.3. Examples
One particular group of (non self-dual) trees are the Max- and

Min-Trees [10]. When a tree vertex is always brighter (resp., dar-
ker) than its sons, as in the Max-Tree (resp., Min-Tree), the infi-
mum operation always changes the gray level to the local
minimum (resp., maximum), which is precisely what the tradi-
tional grayscale erosion (resp., dilation) does. In other words, for
these trees, the proposed tree approach becomes the traditional
grayscale mathematical morphology (resp., its dual version).

More interesting particular cases are the Boundary Topographic
Variation (BTV) Tree (see [2]), which is spanning tree of the RAG,
built using a minimal topographic distance criterion. Another one
is the shape-tree defined in [18] and the resulting semilattice de-
fined in [3,4]. Both provide self-dual morphological operators,
based on some inclusion criterion. The shape-tree is not a spanning
tree of the RAG, but its nodes are actually the threshold sets of such
a spanning tree.
5. Extrema-watershed tree

Based on the general framework of Section 3, all that is needed
in order to obtain a new set of morphological operators is a given
tree representation. In this section, we explore a particular case of
the proposed framework, using a novel self-dual tree representa-
tion, which we call the Extrema-Watershed Tree (EWT).

5.1. EWT construction

The EWT is a particular case of ‘‘Binary Partitioning Tree” [11];
in particular, the proposed representation is built using a particular
case of the iterative merging process presented by Salembier, Garr-
ido and Garcia in [13], as follows.

Input all the extrema of a given image (i.e., all regions associ-
ated to a local minimum or maximum) into a list, sorted by
increasing area.3 Also, initiate the EWT by setting each flat zone
as a leaf vertex. The main loop for the computation of the EWT is
as follows: Take the first extremum from the ordered list (the
one with smallest area), and merge it with the adjacent neighbor
that is the closest one in terms of graylevels. Then, set the merged
region as the parent vertex of the above two regions (the extre-
mum and its neighbor) in the EWT. Select the graylevel of the
non-extremum region to be the graylevel of the new merged re-
gion. Finally, check whether the newly merged region and all its
neighbors are extrema, and insert those that are into the sorted list
(in their corresponding place, according to the listing order). This
loop runs until the list has just one element, which then becomes
the EWT root.

Fig. 6 illustrates the computation of the EWT. Consider the im-
age in Fig. 6(a), which contains two extrema with the same area: v1

and v3. The first step of the procedure, shown in Fig. 6(b), consists
of merging v1 with v2, since the difference in graylevel between v1

and v2 is smaller than the one between v3 and v4. This merger pro-
duces a new flat zone – v5, with the same graylevel as v2 – which is
a new extremum in the image. In the next step, shown in Fig. 6(c),



(a) (b)

(c) (d)

Fig. 6. Example of the EWT computation. (a) Input image, (b) first merging step, (c)
second merging step, and (d) the final EWT.
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the extremum v3 is merged with v4 to create v6. The procedure
continues until all extrema (old and new) are merged. Fig. 6(d)
shows the final EWT.

The EWT was loosely inspired by a Watershed segmentation
procedure (hence the name), where minima of the gradient image
(which include the extrema of the original image) serve as starting
point for a region growing procedure, which eventually produce a
partition (segmentation) of the image. In [2], evidence of the seg-
mentation characteristics of the EWT are illustrated. One impor-
tant difference between the EWT construction procedure and
Watershed algorithms is the former being computed on the flat
zones of the original image, as opposed to the gradient image. In
this respect, the EWT more closely resembles the flat-zone ap-
proach for segmentation [12].

By construction, the EWT is self-dual, since it does not involve
the polarity of local contrasts, thus an image f and its ‘‘inverse”
�f yield the same merging results, and thus identical tree repre-
sentations, up to an inverted ‘ function. As a consequence, dark
and bright elements are processed in the same way, which is the
goal of self-dual processing.
5.2. EWT morphological operators

Following the approach described in Section 4, we derive EWT
morphological operators by computing morphological operators
Fig. 7. (a) Original image, (b) EWT erosion by square S
in the EWT-representation domain (i.e., the tree transform s is
set to the EWT). Fig. 7 shows the result of the EWT erosion and
EWT opening. These operators inherit the self-duality property of
the EWT; notice that very small features are removed, whereas
the larger ones shrunk, in a self-dual manner. The overall bright-
ness of the picture does not change; in particular, the picture does
not become darker, which is what usually happens after a standard
erosion or opening.
6. Application examples

The EWT has many potential applications; in this section we list
just a few.

One application that requires image simplification is pre-pro-
cessing for OCR (Optical Character Recognition). We have chosen
a specific OCR algorithm, used for recognition of license plate
numbers, that was developed in [20]. This algorithm uses a mask
for each digit and looks for the best correlation among these
masks with an image. The algorithm also outputs a confidence
grade, which can be used for comparing algorithms. Any noise
that exists in the image degrades the correlation value and inter-
feres with the recognition. Consider the example license plate
shown in Fig. 8(a), which has been artificially corrupted with
blobs of different sizes. Without pre-processing the algorithm
fails to read the correct number. Several different algorithms
(including linear filtering and traditional grayscale morphology)
have been applied to this image. In order to compensate for
the lack of duality in classical morphology, we have also com-
pared the EWT with the ‘‘quasi-self-dual” opening–closing by
reconstruction operator. The only algorithms that cause the algo-
rithm to correctly read the number were the median filter, the
quasi-self-dual filter and the EWT opening by reconstruction
(see Fig. 8(b), (c), and (d), respectively). The confidence grades
associated with the EWT pre-processed image were higher than
those for the median filter and the quasi-self-dual filter. Further
details on this experiment can be found in [2].

Another example uses opening by reconstruction as an initial
step for an application that removes dust and scratches from
images. The elements filtered by the opening by reconstruction
are completely extracted, including their edges. This enables one
to extract candidates for dust and scratch removal, without cor-
rupting their shapes. The proposed operation is a EWT top-hat fil-
ter. Fig. 9 shows an example. Subsequent steps (not considered
here) can then make further analysis of the image in order to de-
cide which candidates should be removed. We have compared
the proposed approach to linear and median filters. Subjective
and objective criteria were used. The subjective criterion is the
overall corruption of the candidate shapes. The objective criterion
is the measured energy of the filtered images. The EWT performed
better in both criteria. On the one hand, for the relevant structuring
E 5
 5, and (c) EWT opening by square SE 5
 5.



Fig. 8. (a) Input image, artificially corrupted, (b) filtered with a median filter, (c) filtered with regular ‘‘quasi-self-dual” opening by reconstruction, and (d) filtered by the EWT-
based opening by reconstruction, using circle SE of radius 4.

Fig. 9. Top hat, using cross SE 3
 3, as a pre-processing stage for dust and scratch removal. (a) Original image and (b) top hat by reconstruction based on EWT.
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elements, the energy of the EWT filtered image was lower than for
the linear and median filters. On the other hand, the linear and
median filters do not completely extract the artifacts, as can be
seen in Fig. 10 for the ‘‘cross” structuring element.
Fig. 10. Detail view of Fig. 9. Top hat, using cross SE 3
 3, as a pre-processing stage for d
EWT, (c) top hat using median, and (d) top hat using an averaging filter. Notice that the E
as the fonts. This simplifies a subsequent artifact removal process. The median produces ‘
unnecessary candidates (the rectangle borders, in this case).
7. Towards tree-based image semilattices

We have proposed in Section 3.1 a CISL of tree representations,
and its use for image processing, which, as seen in Section 6, can be
ust and scratch removal. (a) Original image, (b) top hat by reconstruction based on
WT top-hat is the only result that faithfully extract both the hair-like artifact as well
‘broken lines,” whereas the averaging-based filter introduces fringes/halos as well as
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very useful. On the other hand, what we would really like is the
CISL of tree representation to induce a CISL in the image domain.
That is, we would like, for instance, the composite operation of
s�1es to be an erosion in the image domain. However, that is not
guaranteed. If one fixes the label function ‘ (that is, make it inde-
pendent from s), then the partial ordering in the tree-representa-
tion domain does induce a partial ordering for images, for any s;
however, the infimum operation is not guaranteed to be well-de-
fined. In fact, the EWT proposed here, in its current form, does
not yield a CISL in the image domain. On the other hand, the shape
tree does induce a CISL in the image domain, as shown in [3]. In this
section, we explore first steps towards designing tree transforms s
that ensure an image CISL.

Let F be a set, ðT;6Þ be a CISL, and consider the maps
s : F!T and s�1 : T!F, such that s�1s is equal to the identity.
Let F� be the image of F through s. Moreover, let T� be the clo-
sure of T� by the CISL infimum, that is, T� is the set of elements in
T that can be written asffsfig for some collection ffig in F. Define
a partial order on F as follows: f1 v f2 () sf1 6 sf2.

Proposition 7.1. ðF;vÞ is a CISL with infimum uffig given by
s�1ð^fsfigÞ iff ss�1 is an opening on T�.
Proof. First, let us show that if ss�1 is an opening on T�, then
ðF;vÞ is a CISL. Consider a set ffig of elements in F, and the ele-
ment given by s�1ð^fsfigÞ. We have ss�1ð^fsfigÞ � ^
fsfig � sfi; 8i, therefore s�1ð^fsfigÞ v fi; 8i. Furthermore, if some
arbitrary element g satisfies, g v fi; 8i, then sg 6 sfi; 8i, which
leads to sg 6 ^fsfig. Applying ss�1 to both sides, and using
ss�1s ¼ s, yield sg 6 ss�1ð^fsfigÞ, and therefore g v s�1ð^fsfigÞ.
The conclusion is that s�1ð^fsfigÞ is the infimum of ffig, and since
it is well-defined, ðF;vÞ is a CISL.

Now let us prove the opposite direction. Assume ðF;vÞ is a CISL
with the infimum s�1ð^fsð�ÞgÞ. Then s�1ð^fsfigÞ v fi; 8i, that is,
ss�1ð^fsfigÞ 6 sfi; 8i, which in turn leads to ss�1ð^fsfigÞ 6 ^fsfig.
In other words, ss�1 is anti-extensive for elements in T�. Moreover,
since s�1s ¼ id, we have ss�1ss�1 ¼ ss�1, which means that ss�1

is also idempotent. Finally, assume that ^fsfig 6 ^fsgig; then
^fsfig 6 sgi; 8i, and therefore ss�1ð^fsfigÞ 6 sgi; 8i, which leads
to s�1ð^fsfigÞ v gi; 8i. But this means that s�1ð^fsfigÞ v
ufgig ¼ s�1ð^fsgigÞ. Therefore ss�1ð^fsfigÞ 6 ss�1ð^fsgigÞ, and
we get that ss�1 is also increasing for elements in T�. h

Let us focus now on the case of tree representations. F is the set
of functions, ðT;6Þ is the CISL of tree representations, and s is a
tree transform, where ‘ is fixed – i.e., the label function ‘ does
not depend on s, so that, instead of s�1ðT; ‘Þ, we will write simply
s�1ðTÞ in this subsection.

The best situation is, of course, when T� ¼T, and then T� also
must be equal to T. In this case ss�1 is the identity operator on T�,
since any element in T� can be written as s~f for some ~f 2F, thus
ðss�1Þs~f ¼ sðs�1sÞ~f ¼ s~f . Being the identity,ss�1 is an opening, and
this ensures that ðF;vÞ is a CISL. However, this situation does not
occur for tree representations; one usually can replace the tree t in
a representation T ¼ ðt;MÞ by another tree t0 (e.g., any t0 such that
t0 � t), and the reconstruction s�1ðTÞ will not change. That is, s is
not bijective, and therefore T� �T.

Another good situation is the case when T� ¼T� �T, where
we still obtain ss�1 ¼ id as above. But this case is not common
either: Suppose we have T1 ¼ ðt;M1Þ and T2 ¼ ðt;M2Þ, and that
M1ftM2 spans only a subset t0 of the tree t. Then we get that
ss�1½ðt;M1ftM2Þ� will probably not return ðt;M1ftM2Þ; instead it
could return ðt0;M1ftM2Þ < ðt;M1ftM2Þ – if s is designed
appropriately.

Rather than the above ideal situations, it is more likely for one
to be able to design s such that ss�1 is an opening different from
the identity. A good strategy could be the following. First, fix the
label function ‘ a priori (make it independent from s). Now design
s such that (a) ss�1 preserves the image of vertices, i.e., if
ðt0;M0Þ ¼ ss�1½ðt;MÞ�, then M0 ¼ M, and (b) the mapping t#t0 is
an opening w.r.t. the inclusion order. This is not necessarily a trivial
task, and this subject is still under investigation.

8. Conclusion

We have presented a general framework for producing new
morphological operators that are compatible to given tree repre-
sentations. Furthermore, a useful particular case is provided, based
on a new tree representation, the Extrema Watershed Tree. The
resulting morphological erosion and opening operators were ap-
plied to a number of application examples, giving better results
in comparison to other filtering techniques, including classical
morphological filtering. In general, EWT-based filtering performs
well in tasks suitable for classical morphological filtering, espe-
cially when self-duality is required. We have also presented first
steps towards the design of tree representations that induce a CISL
in the image domain.
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