
Region-of-Interest based

Adaptation of Video to

Mobile Devices

Tamir Nuriel

Region-of-Interest based

Adaptation of Video to

Mobile Devices

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Electrical Engineering

Tamir Nuriel

Submitted to the Senate of

the Technion — Israel Institute of Technology

Tishrei 5770 Haifa October 2009

The research thesis was done under the supervision of Prof. David Malah in

the Electrical Engineering Department.

Acknowledgements

I would like to express my deep gratitude to Prof. David Malah, for his devoted

supervision and professional guidance throughout this research work.

I also wish to thank the staff of the Signal and Image Processing Lab (SIPL)

for their help and technical support.

Finally, I owe a great debt to my dear wife, Tal, for her patience, understand-

ing, and moral support. This work is dedicated to her.

The generous financial support of the Technion and Negev consortium is grate-

fully acknowledged.

Contents

Abstract 1

Abbreviations and Notations 3

1 Introduction 5

2 Previous Work 10

3 Region Tracking by Horizontal and Vertical Projections 16

3.1 Scale Estimation using Cross-Correlation of Slices in the Fre-

quency Domain . 21

3.2 Scale Estimation using the Mellin Transform in the Frequency-

domain . 22

3.3 Effect of Fixed-Size Display . 27

3.4 Scale Estimation using Spatial-Domain Mellin transform 28

3.5 Global Translation Estimation 33

3.6 Local Motion Estimation . 35

4 Computational Complexity and Performance Analysis of ROI

Tracking Algorithms 36

4.1 Complexity of ROI Tracking Algorithms 36

4.2 Performance Analysis using a Statistical Model 38

5 Model-Based Region Tracking 45

5.1 Dynamic Model . 46

5.2 Kalman Filtering . 47

5.3 Particle Filtering . 49

i

6 Region of Display Determination 56

7 Active Speaker Detection 61

7.1 Video Based Speaker Detection 62

7.1.1 Active Speaker Detection Based on Motion Vectors . . . 62

7.1.2 Active Speaker Detection Based on Pixels Intensities . . 63

7.2 Active Speaker Detection Aided by Audio Track Information . 64

7.2.1 Onsets Detection . 64

7.2.2 Tracking of pixels in video 68

7.2.3 Audio-Visual Correlation 70

8 ROI Determination from a Single Click on a face 73

8.1 Skin Color Detection . 73

8.2 Face Segmentation using Region Growing 75

9 Experimental Results 78

9.1 Video Samples . 78

9.2 Tracking Results . 79

9.3 Kalman and particle filtering 86

10 Conclusion 93

10.1 Summary . 93

10.2 Future Directions . 95

A Scale Estimation Using AFMT 97

B Computational Complexity of Scale Estimation Methods 99

C Probabilty Distribution Function of Estimated Scale 101

Abstract in Hebrew �

ii

List of Figures

2.1 Features for the Viola-Jones face detector 11

2.2 Visual attention model . 12

2.3 Results of extracting salient regions 13

3.1 A graphical illustration of the projection slice theorem in two

dimensions . 18

3.2 Frames from BBC movie . 19

3.3 Horizontal and vertical projections for BBC movie 19

3.4 Frames from Euro News movie 20

3.5 Horizontal and vertical projections for Euro News movie 20

3.6 Original frame and the frame after scale change 22

3.7 Horizontal projections of the original frame and the frame after

scale change . 23

3.8 Magnitudes of Fourier transform of the projections before and

after the scale change . 24

3.9 Cross-Correlation of magnitudes of slices of 2D-Fourier trans-

form of slices before and after scale change 25

3.10 Empirical parameter for Mellin Transform as a function of the

scale . 27

3.11 Scale Estimation results using iterative method 28

3.12 Fixed-size display effects on the projections 29

3.13 Example of reducing fixed-size display effects 30

3.14 Comparison between estimation results using correlation in the

frequency domain and spatial-domain Mellin transform 31

iii

3.15 Empirical parameter for spatial-domain Mellin Transform as a

function of the scale . 32

3.16 Scale Estimation MSE as a function of parameter 𝑠 33

3.17 Projection of a frame and its shifted version 34

4.1 Examples for probability distribution functions of scale estimation 42

4.2 Comparison between estimation methods 43

4.3 Comparison between estimation methods 44

5.1 The y-component of ROI center before and after Kalman filtering 50

5.2 The y-component of ROI center before and after particle filtering 55

6.1 ROI and ROD example - BBC movie 57

6.2 ROI and ROD example - “Euro News” movie 59

6.3 Output display example - “Euro News” movie 60

7.1 Interview scene - two regions with speakers 61

7.2 Motion vectors of an active speaker 62

7.3 Mean energy of motion vectors 63

7.4 Number of pixels with low intensities 64

7.5 Example for an audio event . 66

7.6 Example for detecting audio events locations 67

7.7 Good points to track . 70

7.8 Best visual point associated to the audio 72

8.1 Skin color cluster in RGB space 74

8.2 Skin pixels detection . 75

8.3 Skin-color detector . 76

8.4 Region growing example . 77

8.5 Region growing result . 77

9.1 Frames from “BBC” video clip 78

9.2 Frames from zoom-in video clip 79

9.3 Frames from zoom-out video clip 79

9.4 First frame from a movie with constant scale change between

frames . 80

iv

9.5 Frame 40 from a movie with constant scale change between frames 81

9.6 Frame 40 from a movie with an increasing zoom-in factor . . . 82

9.7 Last frame from a scene with a zoom-in 83

9.8 First frame from a scene with zoom-out 84

9.9 Last frame from a scene with zoom-out 85

9.10 First frame from a scene with talking-head moving to the left . 86

9.11 Last frame from a scene with talking-head moving to the left . 87

9.12 Frames from CNN mideast movie 88

9.13 Tracked region in CNN mideast movie 89

9.14 Tracked region in CNN mideast movie after applying a Kalman

filter . 90

9.15 Tracked region in CNN mideast movie after particle filtering . . 92

v

vi

Abstract

Mobile TV is a growing and promising market. The goal of this work is to

develop methods for the adjustment of video in standard definition resolution

to the smaller resolution used in mobile devices. The naive solution is to scale

each frame to the desired size, thus reducing the size of all the objects. But,

objects must be at a sufficient size to be recognized easily. Therefore, it was

suggested in previous works to display only a Region Of Interest (ROI), which

is a region including only the most important content.

In this work we focus on news broadcasting and interview scenes. The ROI

is defined by a rectangle around the speaker’s face. At the beginning of every

scene, the ROI should be detected and tracked smoothly up to the end of the

scene. Only the ROI is adjusted to the desired resolution. An editor can mark

several ROIs for tracking. For example, marking two speakers in an interview

scene and transmit only the active speaker in each frame.

We developed several tools for the editor. We present a novel algorithm

for tracking the ROI. The algorithm estimates the global motion caused by

the camera and the local motion caused by the speaker’s movements. We use

a pan, tilt and zoom camera model. We initially present an algorithm for esti-

mating these parameters in the frequency domain. We show that only slices of

the 2D Fourier transform are needed. By using the slice-projection theorem,

we can compute these slices efficiently by computing the 1D Fourier transform

of the horizontal and vertical projections. We reduce complexity by applying

the 1D Mellin-transform on the slices in the frequency domain. This trans-

form converts the scale parameter into a multiplicative parameter. We further

reduce complexity by applying the 1D Mellin-transform on the projections in

the spatial domain. We compute and compare the computational complexity

1

of the different methods. We also developed a statistical model for analyzing

the performance of the motion parameters estimation.

The result of the tracking algorithm is jittery due to estimation errors

caused by noise and interference. We reduce the jitter by using a Kalman

filter. For more complicated cases (e.g., occlusion), we use a particle filter,

obtaining also a more robust tracking.

In addition, we present a tool for the editor for detecting the ROI. The

editor is required to click on the speaker’s face image and the tool finds the

ROI containing it, using a skin-color detector combined with a region growing

algorithm.

Another tool developed is for detecting the ROI containing the current

active speaker. We tested methods solely based on visual information, as

motion vectors and pixels’ intensities. Another method examined uses also

the soundtrack. We track visual points on the speakers’ faces and find the

time instants of significant changes in their motion, and compare them to

audio onset times. The correlation between the time instants of the events in

video and audio is used to determine the current active speaker.

All the tools were tested by simulations as well as by real scenes recorded

from TV.

2

Abbreviations and Notations

𝛼 — Scale factor.

𝑓(𝑥, 𝑦) — Frame intensity at pixel (𝑥, 𝑦).

𝐹 (𝑓𝑥, 𝑓𝑦) — Fourier transform of a frame at frequencies (𝑓𝑥, 𝑓𝑦).

𝑑𝑥 — Shift in x-axis.

𝑑𝑦 — Shift in y-axis.

𝑆 — slices through the origin of the 2D Fourier transform.

𝑃 (𝑥) — Projection on the x-axis.

𝑀𝑓 — Analytical Fourier-Mellin transform of frame 𝑓 .

𝑀𝑑
𝑓 — Discrete form of the analytical Fourier-Mellin transform of frame 𝑓 .

𝑀𝑃 (𝑠) — Mellin transform with parameter 𝑠 on the projection 𝑃 .

𝑠 — Parameter for the Mellin transform.

𝜎 — Parameter for the analytical Fourier-Mellin transform.

𝑊 — Width of the frame.

𝐻 — Height of the frame.

𝜇𝑥 — Mean of random variable 𝑥.

𝜎𝑥 — Standard deviation of random variable 𝑥.

𝑘 — Frame number.

(𝑥(𝑘), 𝑦(𝑘)) — Location of the center of the ROI in frame 𝑘.

𝑤(𝑘) — Width of the ROI in frame 𝑘.

ℎ(𝑘) — Height of the ROI in frame 𝑘.

𝑣𝑥(𝑘) — Velocity of x component of the center of the ROI in frame 𝑘.

𝑣𝑦(𝑘) — Velocity of y component of the center of the ROI in frame 𝑘.

𝑣𝑤(𝑘) — Change of width of the ROI in frame 𝑘.

𝑣ℎ(𝑘) — Change of height of the ROI in frame 𝑘.

𝑆(𝑘) — State at frame 𝑘.

3

𝑧(𝑘) — Observations in frame 𝑘.

𝐴 — State transition model matrix.

𝐻 — Observation model matrix.

Γ — Control-input model matrix.

𝑄 — Covariance matrix.

𝑇 — Time between consecutive frames.

𝑃 (𝑘∣𝑖) — Error covariance matrix in frame 𝑘 given observations up to frame 𝑖.

𝐾(𝑘) — Kalman filter gain at frame 𝑘.

𝐿(𝑘, 𝑖) — Measure of the estimated state quality for a particle 𝑖 in frame 𝑘.

𝑃𝑈𝐿(𝑘, 𝑖) — Upper-Left point of particle 𝑖 in frame 𝑘.

𝑃𝐿𝑅(𝑘, 𝑖) — Lower-right point of particle 𝑖 in frame 𝑘.

𝑤(𝑘, 𝑖) — Weight of particle 𝑖 in frame 𝑘.

𝑁 — Number of particles.

𝑁𝑒𝑓𝑓 — Effective number of particles.

�⃗�𝑛,𝑚 — Motion vector of block 𝑛,𝑚.

𝐼(𝑥, 𝑦, 𝑡) — Frame intensity at pixel (𝑥, 𝑦) at time 𝑡.

𝒲 — Window around visual point to track.

𝑔 — Gradient vector at the visual point to track.

4

Chapter 1

Introduction

In recent years Mobile TV is a growing and promising market. Most of the

video content today have SD (standard definition) resolution. The SD resolu-

tion is different for various transmission methods, e.g. NTSC or PAL, and can

be up to 720x576 pixels. On the other hand, the resolution of mobile devides

displays, like cellphones or palm PCs, is usually smaller. Ordinary display

resolutions are CIF (Common Intermediate Format), which is 352x288 pixels,

or QCIF (Quarter CIF - one fourth of the CIF area as quarter implies that the

height and width of the frame are halved). Therefore, production of a content

suitable for watching video on small displays becomes an important task [3].

A simple and naive adjustment method is to rescale each frame of the original

video in SD resolution to the desired output resolution. This method is simple

and can be done automatically by a computer without the need of a human

editor. However, this method has a siginificant disadvantage. It reduces the

sizes of all the objects in the frame. Some objects may be too small for viewing

propely. For example, a speaker’s face may be too small for recognition.

An alternative adjustment method was suggested in [3]. A region in each

frame is declared as a Region of Interest (ROI), and only this region will be

displayed on the mobile devices. The process of marking the ROI in each scene

is done by an editor in the editing phase, before saving the video for transmis-

sion. The editor marks manually the location of the ROI. This is added as a

metadata to the compressed video stream. Just before the transmission of the

edited video to the mobile device, the location of the ROI information is used,

5

and only the ROI is extracted and rescaled. The main disadvantage of this

production process is that a human editor has to edit every scene manually

and therefore it is time consuming. The process can be improved by using

tracking algorithms. The ROI is marked at the start of every scene manually

by the editor and a region tracking algorithm can be used to track the ROI

to the end of the scene. However, most of the region tracking algorithms,

which will be surveyed in chapter 2, have a very high computational complex-

ity. Therefore, it is hard to perform the tracking in real-time on an ordinary

editor’s PC. For example, one of the methods for tracking a region is based

on a color histogram. The algorithm searches in the current frame a region

with a color histogram similar to the histogram of the ROI from the previous

frame. Calculating color histogram for an entire region requires many opera-

tions. When we look for a region with similar color histogram in the current

frame, we have to calculate the color histograms for each possible region in

the vicinity of the region in the previous frame. This makes the algorithm not

feasible for the typical computational power available.

In this work we develop several tools that make the production process

semi-automatic. We will focus on news and interview scenes and thus we as-

sume that the ROI is always a rectangle containing the speaker’s face. First,

we present a novel and efficient tracking algorithm. We assume that an initial

rectangular ROI is given (manually or in an automatic manner) at the begin-

ning of every scene. We track this ROI in the next frames, limiting ourselves

to a rectangular ROI. The algorithm estimates the global motion caused by

the camera movements and the local motion caused by the speaker’s move-

ments. We use a three parameters model to describe the camera movement.

The parameters represent the zoom factor, pan (left or right shift) and tilt (up

and down shift). An algorithm for estimating these parameters by applying

a two-dimensional Fourier transform to the whole frame is presented. This

algorithm has a high computational complexity becuase of the 2-D Fourier

transform. But, we show that, actually, only two slices of this transform are

needed. Using the well-known slice-projection theorem, we exploit the relation

between slices of the 2-D Fourier transform and the 1-D Fourier transform of

the horizontal and vertical projections. Hence, our motion estimation algo-

6

rithm is based solely on the horizontal and vertical projections. Thus, instead

of performing a 2-D transform of each frame, we perform only 1-D transforms

of the projections and thus reduces complexity.

Since we focus on news or interview scenes we can assume that the camera

movement is relatively slow. Hence, it is realistic to assume that changes in

the motion parameters of consecutives frames are small. We use as an initial

estimation for the current frame the estimated parameters from the previous

frame. Given an initial estimation of the motion parameters, we show that

we can further reduce complexity by using the Mellin-transform in the spatial

domain to estimate the current motion parameters. This transform converts

the scale parameter into a multiplicative parameter, which can be estimated

at a reduced complexity. We compare the computational complexity of the

different methods. We also developed a statistical model, which is used for

analyzing the performance of the motion parameters estimation.

The result of the tracking algorithm can be jittery due to small estimation

errors caused by random noise and interferences. We suggest using a linear

dynamic model for the region movement. For example, the region might have a

constant velocity. We estimate its state from all the previous estimated motion

parameters. By updating the region location according to the estimated state,

we force its motion to be much less jittery and more robust. We can estimate

the state using a Kalman filter, assuming the posterior probability density

function of the state is Gaussian. If the true density is non-Gaussian (e.g., if

it is bimodal), we suggest using a particle filter. The main idea is to represent

the required posterior density function by a set of random samples. As the

number of samples increase the particle filter approaches the optimal Bayesian

estimate.

The ROI can have any size. Rescaling the ROI might cause distortion be-

cause the height/width ratio of the ROI may be different than the height/width

ratio of the output display. Therefore, we will define another region as the Re-

gion Of Display (ROD). This region always contains the ROI and has the same

propotions as the output display. That way, the distortion will be avoided. A

more restrictive demand from our system is to extract one of two size options.

The first option is to extract the entire frame and then rescale it to the desired

7

output size. The second option is to extract only a window which has the same

size as the desired output size. We extract the pre-defined small region size

(e.g., CIF) only when the ROI size is smaller than the display size. Otherwise,

the whole frame will be rescaled and sent to the display.

There are many types of possible contents (e.g., news, sports, nature

scenes), and thus it is hard to automatically detect the ROI. In this work

we assume that the ROI always contains the speaker’s face. We present a tool

for the editor for detecting the bounding box of a face from only a single point

marked by the editor on the speaker’s face. This tool is used to help the editor

mark the ROI at the start of every scene. We use a skin-color detector [27] for

detecting the pixels of the face. A skin-color detector may detect also pixels

outside the face as skin. Therefore, we further improve the face detection by

combining the skin-color detector with the region growing algorithm, which

segments the image by finding pixels with similar intensities.

We allow the editor to mark several ROIs at the beginning of every scene,

and track all the ROIs to the end of the scene. But, only a single ROI is to

be transmitted to the mobile device in any frame. The ROI to be sent is the

ROI containing the active speaker. A tool was developed for detecting that

ROI. We checked methods for active speaker detection that are solely based on

visual information. Motion vectors are used to detect activity. We also used

pixels’ intensities to detect changes in the mouth area [8]. These methods

were not robust enough. Another method that we examined uses also the

soundtrack. We track visual points on the speakers’ faces and find the time

instants of significant changes in the motion characteristics e.g., acceleration.

We then compare these time instants to audio onset times. The correlation

between the time instants of the events in video and audio [12] is used to

detect the current active speaker in each frame.

This work is organized as follows: Chapter 2 overviews previous work.

Chapter 3 describes our proposed algorithms for tracking regions in video.

Chapter 4 presents the computational complexity and a performance analysis

of the tracking algorithms. Chapter 5 presents the usage of Kalman and par-

ticle filters for improved ROI tracking. In chapter 6, we describe methods for

displaying the ROI without distortions and without jitter. Chapter 7 presents

8

methods for detecting an active speaker in an interview scene. In chapter 8

we present an algorithm for the detection of the ROI from a single click by the

editor. Chapter 9 describes experimental results obtained in simulations as

well as of real scenes recorded from TV. In chapter 10 the work is concluded

and directions for future work are given.

9

Chapter 2

Previous Work

The first stage in our application is the detection of the region of interest. We

focus in this work on a talking head or interview scenarios. Therefore, the ROI

is defined always by the location of the speaker’s head. Many algorithms exist

for detecting faces. It was verified, using training data, that skin-colors are

clustered in color space [10]. It is common to think that different people have

skin-colors which differ significantly from each other due to the existence of

different races. However, what really occurs is a larger difference in brightness

/ intensity and not in color.

Another method for detecting faces was suggested by Viola and Jones in

[18]. In their work, a fast method for detecting faces based on simple features

was proposed. An example for a feature called the two-rectangle feature is the

difference between the sum of the values of two adjacent rectangular windows.

A three-rectangle feature considers three adjacent rectangles and computes the

difference between sum of the pixels in the extreme rectangles and the sum

of the pixels in the middle rectangle. An example for such features is shown

in Fig. 2.1. They introduced a new image representation called the “Integral

Image” which allows the features used by their detector to be computed very

quickly. Then, they used Adaboost [20] for learning. Adaboost is an algorithm

that selects a small number of critical visual features from a larger set and

yields extremely efficient classifiers.

A different method for detecting ROI is based on detecting salient objects

in the frame, not necessarily faces. A visual attention system, inspired by

10

Figure 2.1: Features for the Viola-Jones face detector. Figure taken from [19]

the behavior and the neuronal architecture of the early primate visual system,

was presented in [21]. Multi-scale image features are combined into a single

topographical saliency map as shown in Fig. 2.2. The features are based

on color, intensity and orientation. Several algorithms have been proposed

for detecting a region of saliency using a modification of the saliency map.

Fig. 2.3 demonstrates results for extracting a salient region suggested in [22].

For some applications, the ROI is marked at the start of every scene by an

operator. The operator has to mark, for exmaple, a bounding region around

the speaker’s face. Marking a region requires indicating at least two points on

the frame. A fast object selection that can be used as an auxiliary tool for

the operator was proposed in [23]. They proposed an efficient semi-automatic

algorithm for marking the bounding region. The operator needs to indicate

only one point inside the object. Their work is based on the visual attention

model presented by [21].

After detecting the ROI at the start of a scene, its location has to be tracked

up to the end of the scene. One of the methods for tracking a region is based

on a color histogram (e.g. [24]). The algorithm searches in the current frame

for a region with a color histogram similar to the histogram of the ROI from

11

Figure 2.2: Visual attention model. Taken from [21]

the previous frame. There are several functions that can be used to measure

the distance between two histograms. One of the most known functions is the

Bhattacharya similarity, which measures not the distance, but the similarity

between two histograms. ∑
𝑥

√
𝑓1(𝑥)𝑓2(𝑥), (2.1)

where 𝑓1(𝑥), 𝑓2(𝑥) are histograms of the ROIs in two adjacent frames.

The search for the ROI in the current frame is in the area of the ROI in

the previous frame. The ROI is used for display so we can assume it is always

a rectangular. The ROI can be defined by its center, width and height. There

are four parameters that can be changed: two for the center coordinates, one

for the width and one for the height. The search area can be defined by small

pertubations of these parameters. The search is usually performed by the

12

Figure 2.3: Results of extracting salient regions. Taken from [22]

N-step [1] or diamond search [2] methods, in the four-parameter space. Note

that when calculating the histograms for all the regions, one can just update

the previous results for faster computation.

In [25] the concept of spatiogram is introduced. The second-order spa-

tiograms contain spatial means and covariances for each histogram bin. This

spatial information still allows quite general transformations, as in a his-

togram, but captures a richer description of the region to increase robustness

in tracking.

Another method of tracking is by using visual features. Finding features

in the ROI in the previous frame and then detecting similar features in the

current frame, can be used to track the ROI movement. In [26] it is proposed

to use color cue and local scale-invariant feature transform (SIFT) features

with particle filtering [30]. The particle weight is calculated firstly by color

similarity measurement and then updated according to the distribution of

SIFT matches.

A different approach for region tracking is by using a motion model. One

method for motion estimatation is by using motion vectors. The computa-

tion of motion vectors has a high computational complexity. Therefore, these

methods are suitable when the motion vectors have to be computed for other

13

reasons such as compression [38]. A combination of tracking by visual features

and motion model was proposed in [37]. They suggested a fitting method of

the motion vectors in a target region to the perspective motion model. The

proposed method considers the motion vectors only of the feature points in

the target region.

The tracking result might be too jittery for viewing. Noise can cause wrong

estimated values of the ROI location. In order to solve the jitter problem use

of a dynamic model is suggested in [9]. The dynamic model means that the

region movement is controlled by certain parameters. For example, the region

might have a constant velocity with a small random acceleration. The motion

of the ROI can be much less jittery if we update it by estimating the state of

the dynamic model.

In the Bayesian approach to dynamic state estimation, one tries to estimate

the posterior probability density function of the state, based on all the set of

received measurements. The Kalman filter, presented in [29], is one of the

well-known methods for estimating the state of a model. Assuming a linear

dynamic model and that both the state noise and the measurement noise

processes are Gaussian, the Kalman filter is the optimal (in terms of MMSE)

state estimator [31]. A Kalman filter is suggested in [9] for smoothing the

motion of a tracked region.

A single Gaussian can not describe well the true posterior probability den-

sity function if it is non-Gaussian. Therefore, the Kalman filter will not work

well in such a case. Particle filtering was introduced in [30] and tutorials can be

found in [31, 32]. The main idea of particle filtering is to represent the required

posterior density function by a set of random samples (particles) with associ-

ated weights and to compute estimates based on these samples and weights.

The particle filter approaches the optimal Bayesian estimate when the number

of particles increases. A particle filter is expected to yield an improvement in

the estimation process when the density function is non-Gaussian.

Kalman filtering or particle filter reduces most of the noise in the tracking

estimate. That may be sufficient for some applications. But, for broadcasting

applications it is still too jittery. In [9] it was suggested to use a virtual

camera. When a speaker is moving only within a small region, an experienced

14

camera operator usually does not move the camera at all. When the speaker

is moving, the camera operator should move the camera smoothly in order to

track him while keeping the video steady. The virtual camera detects if the

speaker is in the same place and not moving significantly and extract the same

region location for viewing. The virtual camera follows the speaker when he

is moving.

The main disadvantage of all the methods described on this section is the

high computational complexity required. In our work we develop efficient

algorithms for detecting and tracking the ROI.

15

Chapter 3

Region Tracking by

Horizontal and Vertical

Projections

In this chapter we develop a novel algorithm for region tracking in video.

At the beginning of a new scene the ROI location in the frame is marked

by an operator. Our goal is to track the ROI location up to the end of the

scene. Our algorithm is based on the horizontal and vertical projections of

each frame. As will be shown, using these projections we can estimate the

camera movements and the changes in the location of the region on the display.

Camera movements change the location of the ROI. For example, consider the

ROI location is known in a given frame and the camera moves to the right.

The ROI location in the next frame should be moved also to the right to track

the camera movement. Another example - consider the ROI location is known

in a given frame and the camera zooms in. In the next frame the objects are

bigger due to the zoom, and therefore the ROI size should increase by the

same scale factor.

To track the ROI we need first to estimate the camera parameters by

estimating global motion parameters between each two consecutive frames.

After updating the ROI location, on the basis of the estimated global motion

parameters, we need to find the local motion of the object of interest (e.g., a

face) inside the ROI. For example, if the object moves to the right, we move

16

the location of the ROI also to right, so that object will remain in the center

of the ROI.

Our work focuses on news and interview scenes, where the speakers are in

front of the camera. In such scenes, the camera usually only perform zoom,

pan and tilt operations. Since the speakers are far enough from the camera

in a studio, we assume zooming is the result of a change in the camera’s focal

length and not by an approaching object to the camera. Hence, assume a

three-parameter model for zoom, pan and tilt suffices to describe the global

motion of the scene. The relation between two adjacent frames according to

the assumed model is:

𝑓2(𝑥, 𝑦) = 𝑓1(𝛼𝑥+ 𝑑𝑥, 𝛼𝑦 + 𝑑𝑦) (3.1)

Where, 𝑓1 denotes the previous frame and 𝑓2 denotes the current frame.

The global motion parameters are 𝛼 - the zoom (scale) factor, 𝑑𝑥 - the hor-

izontal shift, and 𝑑𝑦 - the vertical shift. Note that when 𝛼 > 1 the camera

zooms out and when 𝛼 < 1 the camera zooms in.

We have three parameters to estimate. If there is no scale change (i.e.,

𝛼 = 1), we can simply estimate the shifts, by using 2D correlation in the

spatial domain. However, to estimate 𝛼, we need to find a transformation

which is invariant to all the parameters, except the scale factor.

Transforming equation (3.1) into the frequency domain:

𝐹2 (𝑓𝑥, 𝑓𝑦) =
1

𝛼2
𝑒𝑗2𝜋(𝑓𝑥𝑑𝑥+𝑓𝑦𝑑𝑦)𝐹1

(
𝑓𝑥
𝛼

,
𝑓𝑦
𝛼

)
(3.2)

The shift parameters appear only in the phase of the Fourier transform.

The relation between the magnitudes of the Fourier transforms of the current

and next frames depends only on the scale parameter.

We do not need to calculate the entire two-dimensional Fourier transform.

Instead, we can use the projection-slice theorem [5]. The theorem states that

the Fourier transform of the projection of a two-dimensional function onto

a line is equal to a slice through the origin of the two-dimensional Fourier

transform of that function which is parallel to the projection line.

We demonstrate this theorem by an example: Consider the projection 𝑃 (𝑥)

17

on the x-axis, defined as:

𝑃 (𝑥) =

∫
∞

−∞

𝑓 (𝑥, 𝑦) 𝑑𝑦 (3.3)

The 2D Fourier transform of 𝑓(𝑥, 𝑦) is given by:

𝐹 (𝑓𝑥, 𝑓𝑦) =

∫
∞

−∞

∫
∞

−∞

𝑓 (𝑥, 𝑦) 𝑒−2𝑗𝜋(𝑥𝑓𝑥+𝑦𝑓𝑦)𝑑𝑥𝑑𝑦 (3.4)

The theorem states that the slice of the 2D Fourier transform, 𝑆 (𝑓𝑥), and

the projection 𝑃 (𝑥) are a Fourier pair.

𝑆 (𝑓𝑥) = 𝐹 (𝑓𝑥, 0) =

∫
∞

−∞

∫
∞

−∞

𝑓 (𝑥, 𝑦) 𝑒−2𝑗𝜋𝑥𝑓𝑥𝑑𝑥𝑑𝑦

=

∫
∞

−∞

[∫
∞

−∞

𝑓 (𝑥, 𝑦) 𝑑𝑦

]
𝑒−2𝑗𝜋𝑥𝑓𝑥𝑑𝑥 =

∫
∞

−∞

𝑃 (𝑥) 𝑒−2𝑗𝜋𝑥𝑓𝑥𝑑𝑥 (3.5)

Fig. 3.1 shows a graphical illustration of the projection-slice theorem in

two dimensions.

Figure 3.1: A graphical illustration of the projection slice theorem in two dimensions.

Using equation 3.2 we can estimate the scale 𝛼 by taking the absolute value

of a slice of the transform corresponding to the line 𝑓𝑦 = 0 (or 𝑓𝑥 = 0):

∣𝑆2 (𝑓𝑥)∣ = ∣𝐹2 (𝑓𝑥, 0)∣ = 1

𝛼2

∣∣∣∣𝐹1

(
𝑓𝑥
𝛼

, 0

)∣∣∣∣ = 1

𝛼2

∣∣∣∣𝑆1

(
𝑓𝑥
𝛼

)∣∣∣∣ (3.6)

Where 𝑆1 (𝑓𝑥) , 𝑆2 (𝑓𝑥) are slices through the origin of the 2D Fourier transform

of the previous frame and the current frame.

18

We use the slice-projection theorem as follows: Calculating the projections

on the x-axis for the current and next frame and then taking the magnitude

of the Fourier transform yields both sides of equation (3.6). In the next sub-

sections we describe how to estimate the scale from these functions.

Fig. 3.2 shows an example of a speaking man moving to the left. We can see

the corresponding change in the projections in Fig. 3.3. Horizontal projection

is the projection on the x-axis and vertical projection is the projection on the

y-axis.

Frame number 1 in BBC movie Frame number 100 in BBC movie

Figure 3.2: Frames 1 and 100 from BBC movie.

0 100 200 300 400 500 600 700 800
0

50

100

150
Horizontal projection − frame 1 from BBC movie

0 100 200 300 400 500 600
0

50

100

150

200
Vertical projection − frame 1 from BBC movie

0 100 200 300 400 500 600 700 800
0

50

100

150
Horizontal projection − frame 100 from BBC movie

0 100 200 300 400 500 600
0

50

100

150

200
Vertical projection − frame 100 from BBC movie

Figure 3.3: Horizontal and vertical projections for frames 1 and 100 from BBC movie.

In another example, the camera is zooming out while moving to the left.

19

The zoom action causes the pattern to shrink and move to the right. The

distortion is non-linear. Motion due to zoom is proportional to the distance

from the center of the image. The frames and the projections are shown in

figures 3.4 and 3.5, respectively.

Frame number 1 in Euro News movie Frame number 70 in Euro News movie

Figure 3.4: Frames 1 and 70 from Euro News movie.

0 100 200 300 400 500 600 700 800
50

100

150

200
Horizontal projection − frame 1 from Euro News movie

0 100 200 300 400 500 600
0

100

200

300
Vertical projection − frame 1 from Euro News movie

0 100 200 300 400 500 600 700 800
50

100

150

200
Horizontal projection − frame 70 from Euro News movie

0 100 200 300 400 500 600
0

100

200

300
Vertical projection − frame 70 from Euro News movie

Figure 3.5: Horizontal and vertical projections for frames 1 and 70 from Euro News movie.

20

3.1 Scale Estimation using Cross-Correlation of Slices

in the Frequency Domain

In the previous section we found the relations between slices of the Fourier

transforms of frames before and after a scale change. Next, we want to estimate

the scale from these slices. By converting the frequency axes in equation (3.6)

to logarithmic scale we have:

∣𝑆2 (𝑙𝑜𝑔𝑓𝑥)∣ = 1

𝛼2
∣𝑆1 (𝑙𝑜𝑔𝑓𝑥 − 𝑙𝑜𝑔𝛼)∣ (3.7)

Estimation of the scaling factor can be done by performing a cross-correlation

between both sides of equation (3.7), and finding where the maximum is

achieved. We work only in a part of the frequency band. Since natural images

are smooth, high frequencies will not contains much information. We also

don’t want to work with frequencies close to zero becuase of the numerical

problems when changing to logarithmic scale. Hence, we selected the band

edges as:

𝑓𝑚𝑖𝑛 = 0.2𝜋, 𝑓𝑚𝑎𝑥 = 0.8𝜋 (3.8)

The relation between the frequencies in logarithmic scale is:

𝛼 = 𝑏𝑎𝑠𝑒−𝑙𝑎𝑔

𝑏𝑎𝑠𝑒 =

(
𝑓𝑚𝑎𝑥
𝑓𝑚𝑖𝑛

) 1
𝑁−1

, (3.9)

where𝑁 is the number of points in the logarithmic scale. Given the desired

resolution we can calculate the number of points to use as will be shown in

section 4.1.

We can repeat the estimation process for the vertical slice 𝑓𝑥 = 0, and

then average the scale estimation results.

We demonstrate this process in the following example. We took a frame

from the Euro News movie. We rescaled it by a scale factor of 0.9 using bilinear

interpolation. The original frame and the frame after the scale change are

shown in Fig. 3.6.

The horizontal projections for these frames are shown in Fig. 3.7.

21

Original Frame Frame after scale change of 0.9

Figure 3.6: Original frame and the frame after scale change of 0.9.

In the next step, we calculate the Fourier transform of the projections.

According to the slice-projection transform, we get the slices through the

origin of the two-dimensional Fourier transform of the entire frame, which

are parallel to the projection line. Before calculating the Fourier transform,

we multiply the projections by windows to reduce finite-length effects. The

magnitudes of the slices are shown in Fig. 3.8. Note, that the frequency axis

is in logarithmic scale.

In the final step, we perform a cross-correlation between the magnitudes

of the slices (in logarithmic scales). By equation (3.9), the lag where the

maximum is achieved corresponds to the estimated scale. We can clearly see

the peak at 𝛼 = 0.9 in Fig. 3.9.

3.2 Scale Estimation using the Mellin Transform in

the Frequency-domain

The cross-correlation method for estimating the scale has high complexity.

The resaon for the high complexity is that we need to calculate the cross-

correlation for a large number of lags (typically, hundreds) in order to achieve

good resolution for the scale estimation. In a typical scene, there are up to

1000 frames. We need a good resolution becuase the estimation errors are

accumulated. For example, if instead of 𝛼 = 1 we estimate 𝛼 = 1.001 for 1000

22

0 100 200 300 400 500 600 700 800
40

60

80

100

120

140

160

180

200
Projections

Projection of original frame
Projection of frame after scale change of 0.9

Figure 3.7: Horizontal projections of the original frame (solid line) and the frame after
scale change(dashed line).

frames, we have a total scale factor of 𝛼 = 1.0011000 ≈ 2.7. In section 4.1 we
will discuss further the complexity of the algorithms considered in this chapter.

In order to reduce the complexity we seek a transform that after applying it to

the magnitudes of the slices, the scale parameter will become a multiplicative

parameter.

We start by considering the 2D Analytical Fourier-Mellin transform [28].

This transform can be used to estimate scale and rotation. We show how it can

be used for estimating scale and shifts parameters. Then, we will show that

for our model we can use just a 1D Mellin transform, using the slice-projection

theorem. The Mellin transform for scale estimation was introduced in [6].

Definition - Analytical Fourier-Mellin Transform (AFMT):

𝑀𝑓 (𝑘, 𝑣) =
1

2𝜋

∫
∞

0

∫ 2𝜋

0
𝑓 (𝑟, 𝜃) 𝑟𝜎−𝑗𝑣𝑒−𝑗𝑘𝜃𝑑𝜃

𝑑𝑟

𝑟
(3.10)

Where 𝜎 is a parameter.

23

100
−5

0

5

10

15

20

Normalized frequency [radians] − logarithmic (base 10) scale

Fo
ur

ie
r t

ra
ns

fo
rm

 m
ag

ni
tu

de
 [d

B
]

Fourier transform magnitude of projections before and after scale change

Original frame
Frame after scale change of 0.9

Figure 3.8: Magnitudes of Fourier transform of the projections before (solid line) and after
(dashed line) the scale change.

For frames related by scale and rotation, 𝑓2 (𝑟, 𝜃) = 𝑓1 (𝛼𝑟, 𝜃 + 𝛽) we have:

𝑀𝑓2 (𝑘, 𝑣) =
1

2𝜋

∫
∞

0

∫ 2𝜋

0
𝑓1 (𝛼𝑟, 𝜃 + 𝛽) 𝑟𝜎−𝑗𝑣𝑒−𝑗𝑘𝜃𝑑𝜃

𝑑𝑟

𝑟

= 𝛼−𝜎+𝑗𝑣𝑒𝑗𝑘𝛽𝑀𝑓1 (𝑘, 𝑣) (3.11)

Where 𝛼 is the scale parameter and 𝛽 the rotation parameter.

In appendix A we show how to estimate the scale parameter using the

AFMT for our model which is given by 3.1.

Calculating the AFMT on the entire image has high complexity. Instead,

we will use the one dimensional Mellin transform on a slice from the Fourier

transform. As before, the relation between the Fourier transforms is given by

(3.2). And if we take the absolute value of the slice corresponding to 𝑓𝑦 = 0

(or 𝑓𝑥 = 0) we will have the relation given in equation (3.6).

24

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

2

4

6

8

10

12

Scale α

C
or

re
la

tio
n

Cross−Correlation Result

Figure 3.9: Cross-Correlation of magnitudes of slices of 2D-Fourier transform of slices
before and after scale change.

Definition - One-dimensional Mellin transform:

𝑀 (𝑠) =

∫
𝑓 (𝑥) 𝑥𝑠−1𝑑𝑥 (3.12)

Where 𝑠 is a parameter.

The relation between the one-dimensional Mellin transform of the absolute

values of the Fourier transforms of the projections is given by

𝑀2 (𝑠) =

∫
∣𝑆2 (𝑥)∣ 𝑥𝑠−1𝑑𝑥 = 1

𝛼2

∫ ∣∣∣∣𝑆1

(
𝑥

𝛼

)∣∣∣∣𝑥𝑠−1𝑑𝑥
=

1

𝛼2

∫
∣𝑆1 (𝑥)∣ (𝛼𝑥)𝑠−1 𝛼𝑑𝑥 = 𝛼𝑠−2

∫
∣𝑆1 (𝑥)∣𝑥𝑠−1𝑑𝑥

= 𝛼𝑠−2𝑀1 (𝑠) (3.13)

25

Now we can estimate the scale by:

𝛼 =

[
𝑀1 (𝑠)

𝑀2 (𝑠)

] 1
2−𝑠

(3.14)

Near 𝑠 = 2 we may have numerical problems. However, experimental

results show that we should use values of 𝑠 around 2. Normalizing the Fourier

transforms by 𝐹1 (0) , 𝐹2 (0), we get

∣∣∣𝑆1 (𝑓𝑥)
∣∣∣ = ∣𝑆1 (𝑓𝑥)∣

∣𝐹1 (0)∣ =
∣𝐹1 (𝑓𝑥, 0) ∣
∣𝐹1 (0) ∣∣∣∣𝑆2 (𝑓𝑥)

∣∣∣ = ∣𝑆2 (𝑓𝑥) ∣
∣𝐹2 (0) ∣ =

∣𝐹2 (𝑓𝑥, 0) ∣
∣𝐹2 (0) ∣∣∣∣𝑆2 (𝑓𝑥)

∣∣∣ = ∣∣∣∣𝑆1

(
𝑓𝑥
𝛼

)∣∣∣∣ (3.15)

Applying the 1D-Mellin transform to the normalized slices gives:

𝑀2 (𝑠) = 𝛼𝑠𝑀1 (𝑠) (3.16)

The scale estimation is now given by:

𝛼 =

[
𝑀1 (𝑠)

𝑀2 (𝑠)

] 1
−𝑠

(3.17)

The parameter 𝑠 has a significant effect on the estimation. We want to find

an empirical value of 𝑠 that yields the lowest error for the scale estimation. We

used hundreds of frames from our video samples, changed their scale and then

estimated the scale using different values of 𝑠. We then found the parameter 𝑠

which resulted in the best result for each scale. We can see in Fig. 3.10, that

the best empirical value of 𝑠 is different for different scale factors.

Since we don’t have the true scale, we suggest to use an iterative method

to estimate the scale. We begin the estimation with 𝑠 = 1, and then update it

iteratively by the previous scale estimation until convergence. The results are

shown in Fig. 3.11. We can see that the estimation results using the Mellin

transform are not good as the results using the slice cross-correlation, even

when using the iterative method. In the next subsections we will investigate

the problem further and propose an improvement.

26

0.9 0.95 1 1.05 1.1 1.15
0.5

1

1.5

2

2.5

3

3.5

Scale (α)

M
el

lin
 p

ar
am

et
er

 s

Empirical parameter s for Mellin Transform as a function of the scale

Figure 3.10: Empirical parameter 𝑠 for Mellin as a function of the scale 𝛼.

3.3 Effect of Fixed-Size Display

The results for the scale estimation using the Mellin transform on the absolute

of the Fourier transform are not good enough. The main reason for that are

the effects caused by the fixed size of the display. The global motion causes

some part of the frame not to appear in the next frame. We can see in Fig. 3.12

an example for the effects on a projection in a case of zoom in. The projection

without the effects caused by the fixed-size display is longer than the projection

with the effects. This is because after zoom in, some of the picture is out of

the frame. Also, we can see that the amplitude of the projection with the

effects is different than the projection without the effects. This is due to the

fact that the most upper and lower rows are out of the frame.

We can solve this problem by zeroing the parts of the each frame that do

not appear in the other frame. An example can be seen in Fig. 3.13.

After this operation, we have almost no edge effects. Some edge effects

may still appear because we are working at a one-pixel resolution. Assum-

27

0.9 0.95 1 1.05 1.1 1.15
0.9

0.95

1

1.05

1.1

1.15

True scale factor

Estimated scale factor

Estimated scale factor − Slices cross−correlation
Estimated scale factor − Mellin

Figure 3.11: Scale Estimation results using iterative method.

ing that changes between scales and shifts for consecutives frames are small,

and assuming we have previous scale and shifts estimation, we can use these

estimations as a good guess for removing the edge effects.

3.4 Scale Estimation using Spatial-Domain Mellin

transform

We assume that we have the previous frame estimated scale and shifts and

that they are also good estimates for the current parameters. We perform

the vertical and horizontal projections on the current frame after zeroing out

parts of the frame to reduce the effect of the fixed-size. The relation between

the projections after normalization by the number of summed pixels is:

𝑃2 (𝑥) = 𝑃1 (𝛼𝑥+ 𝑑𝑥) (3.18)

28

−400 −300 −200 −100 0 100 200 300 400
40

60

80

100

120

140

160

180
Finite size effects on the projections

Columns

P
ro

je
ct

io
n

Original projection
Projection after scaling − Simulation
Projection after scaling − Theory

Figure 3.12: Fixed-size display effects on the projections.

Since we assume that the we have a good estimation for the shift 𝑑𝑥 from

the previous frame, we can perform shift correction and then the relation

between the projections is:

𝑃2 (𝑥) = 𝑃1 (𝛼𝑥) (3.19)

Since we have the shifts estimations, we can apply the Mellin transform

directly on the projections in the spatial domain. We can estimate the scale

by the Mellin transform. The relation between the Mellin transforms of both

sides of equation (3.19) is given by:

𝑀𝑝2(𝑠) =

∫
𝑃2(𝑥)𝑥

𝑠−1𝑑𝑥 =

∫
𝑃1(𝛼𝑥)𝑥

𝑠−1𝑑𝑥

=

∫
𝑃1(𝑥)

(
𝑥

𝛼

)𝑠−1 1
𝛼
𝑑𝑥 = 𝛼−𝑠

∫
𝑃1(𝑥)𝑥

𝑠−1𝑑𝑥

= 𝛼−𝑠𝑀𝑝1(𝑠) (3.20)

29

(a) (b)

(c) (d)

Figure 3.13: Example of reducing fixed-size display effects. Image (a) is the previous
frame. Image (b) is the current frame which is a scaled and shifted version of the previous
frame. Image (c) is the previous frame after zeroing out the parts that do not appear in the
current frame. Image (d) is the current frame after zeroing out the parts that do not appear
in the previous frame.

30

Therefore, the scale estimation is:

𝛼 =

[
𝑀𝑝1 (𝑠)

𝑀𝑝2 (𝑠)

] 1
𝑠

(3.21)

The estimation results for the Mellin transform in the spatial domain, after

reducing the fixed-size display effects, are very good as can ce seen in Fig. 3.14.

0.9 0.95 1 1.05 1.1 1.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10−3

Real Scale

Mean absolute of estimation error

Estimated scale − Mellin
Estimated scale − Correlation

Figure 3.14: Comparison between estimation results using correlation in the frequency
domain and spatial-domain Mellin transform.

We suggest estimating the scale and shift parameters between the first

two frames in each scene using the slices cross-correlation method described

in section 3.1. For the following frames, up to the end of the scene, we suggest

estimating the scale using the spatial domain Mellin transform. After esti-

mating the scale 𝛼, we will estimate the translation parameters as described

31

in section 3.5.

We repeat here the process for finding the empirical parameter 𝑠. We

used hundreds of pictures, changed their scale and then estimated the scale

using different values of 𝑠. Reducing the fixed-size display effect should result

in very good performance for any parameter 𝑠. Therefore, we determined

the parameter 𝑠 that yields the best results for noisy frames. Gaussian noise

with a standard deviation 𝜎 is added to every pixel in the frame, so that

𝑆𝑁𝑅 = 20𝑑𝐵. The mean value of a pixel, 𝑀𝑒𝑎𝑛𝑃𝑖𝑥𝑒𝑙𝑉 𝑎𝑙𝑢𝑒, is 128.

𝑆𝑁𝑅 = 20𝑙𝑜𝑔10

(
𝑀𝑒𝑎𝑛𝑃𝑖𝑥𝑒𝑙𝑉 𝑎𝑙𝑢𝑒

𝜎

)
(3.22)

We then found the parameter 𝑠 which yields the best result for each scale.

The results are shown in Fig. 3.15. The solid line in the figure connects the

discrete values of 𝑠 for the true scale 𝛼 that were tested.

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Scale (α)

M
el

lin
 p

ar
am

et
er

 s

Empirical parameter s for Mellin transform as a function of the scale

Figure 3.15: Empirical parameter 𝑠 for spatial-domain Mellin transform as a function of
the scale 𝛼.

The improvement using empirical parameter 𝑠 is shown in Fig. 3.16. We

32

calculated the mean square error (MSE) of the estimated scale value using

different values of the Mellin transform parameter 𝑠, for the true scale of

𝛼 = 0.99. We can see in the figure that using the empirical parameter 𝑠

improves significantly the results.

0.5 1 1.5 2 2.5

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
x 10−6

Mellin transform parameter s

M
S

E

Scale Estimation MSE as a function of parameter s

Figure 3.16: Scale Estimation MSE as a function of the Mellin transform parameter 𝑠.

3.5 Global Translation Estimation

After estimating the scale factor between any two consecutive frames, we can

estimate the horizontal and vertical shifts between them. The relation between

the projections is given by equation (3.18). The translation is estimated by

first scaling the projection of the previous frame 𝑓1 with the estimated scale

𝛼. We define the scaled projection as 𝑃 𝑟
1 (𝑥).

𝑃 𝑟
1 (𝑥) = 𝑃1(𝛼𝑥) (3.23)

The relation between the scaled projection for the previous frame and the

33

projection from the current frame:

𝑃 𝑟
1 (𝑥) = 𝑃2

(
𝑥− 𝑑𝑥

𝛼

)
(3.24)

The translation is estimated by performing cross-correlation between the

scaled projection and the projection from the current frame 𝑓2.

We demonstrate this by an example. We took a frame and created a new

frame by scaling it by 0.9 and then shifting it by 5 pixels. After the scale

estimation, by any of the methods described in the previous sections, we scale

the projection of the previous frame so it has the same scale as the current

frame. An example of the projections after scaling is given in Fig. 3.17. We

can see that now the projections have the same scale, but are shifted. The

shift is estimated performing a cross-correlation between the projections.

0 100 200 300 400 500 600 700 800
40

60

80

100

120

140

160

180

200
Projections

Original frame
Shifted frame

Figure 3.17: Projection of a frame and its shifted version.

34

3.6 Local Motion Estimation

In the previous sections we estimated the global motion caused by the camera.

In this section we estimate the local motion, which is typically the motion of

the speaker inside the ROI. The ROI window is updated according to the

estimated global motion parameters. Next, we need to find if there was a

local motion inside the ROI. For example, a talking man moving his head.

Our assumption is that there is no local scale change (like in the case of a man

approaching the camera).

We calculate horizontal and vertical projections only for the ROI in the

previous frame and in the current frame. We scale, using bilinear interpola-

tion, the projections from the previous frame with the estimated global scale

factor. We then estimate local horizontal and vertical shifts by performing

cross-correlation between the scaled projection for the previous ROI and the

projection from the current ROI in the spatial domain.

35

Chapter 4

Computational Complexity

and Performance Analysis of

ROI Tracking Algorithms

In the previous chapter we have developed novel algorithms for ROI tracking in

video. In this chapter we will analyse the algorithms. In the first section we will

calculate the computational complexity of the algorithms. We will calculate

the number of multiplications and additions needed for each algorithm. In the

second section we will propose a statistical model. This model enable us to

calculate the probabilty distribution function of the estimated scale. We will

test the model results by simulations.

4.1 Complexity of ROI Tracking Algorithms

We compare in this section the complexity of scale estimation in two of the

proposed methods. We compare the complexity of the method using cross-

correlation of slices in the frequency domain, described in section 3.1 and

the complexity of method using spatial-domain Mellin transofrm, described in

section 3.4.

In the first method we perform slice cross-correlation in a logarithmic scale.

We work only in the frequency band given in equation (3.8). The relation

between the frequencies in a logarithmic scale is given by equation (3.9). We

36

mark by 𝑁1 the number of points in the logarithmic scale. Then:

𝑏𝑎𝑠𝑒 =

(
𝑓𝑚𝑎𝑥
𝑓𝑚𝑖𝑛

) 1
𝑁1−1

(4.1)

Given the desired resolution we wish to calculate the number of points to use.

Since we use a logarithmic scale it is hard to define a resolution because, the

resolution is different for different values of scale. We will find the resolution

around the scale value of 1. The scale estimation is done by:

𝛼 = 𝑏𝑎𝑠𝑒−𝑙𝑎𝑔 (4.2)

Where lag is the value found for maximum cross-correlation.

The next possible value of scale after 𝛼 = 𝑏𝑎𝑠𝑒0 = 1 in the logarithmic

scale is 𝛼 = 𝑏𝑎𝑠𝑒1. Therefore the resolution near 𝛼 = 1 is:

Δ𝛼 = 𝑏𝑎𝑠𝑒1 − 𝑏𝑎𝑠𝑒0 = 𝑏𝑎𝑠𝑒− 1≈𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (4.3)

Assume that we want a resolution of 0.001 we have:

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 0.001

⇒ 𝑁1 = 1388 (4.4)

We want to find scale values in the range 𝛼 ∈ [0.8, 1.25], 𝛼𝑚𝑖𝑛 = 0.8, 𝛼𝑚𝑎𝑥 =
1.25. We need 2𝑀 − 1 shifts in the correlation.

𝑀 =
𝑙𝑜𝑔 (𝛼𝑚𝑎𝑥)

𝑙𝑜𝑔 (𝑏𝑎𝑠𝑒)
=
−𝑙𝑜𝑔 (𝛼𝑚𝑖𝑛)

𝑙𝑜𝑔 (𝑏𝑎𝑠𝑒)
≈ 223 (4.5)

Therefore, the number of operations (multiplications and additions) for

the correlation is (2𝑀 − 1)𝑁1 ≈ 617, 660. We can assume that the scale 𝛼

does not change much between consecutives frames. Therefore, except for the

pair of frames in each scene, we can use the previous estimation of the scale

as an initial guess. Then, we should calculate the cross-correlation only in the

vicinity of the previous estimated scale value. From empirical experience, it

is enough to calculate the cross-correlation for 20 points around the previous

estimated value. Therefore, for all the frames, except the first pair of frames,

37

we have only 54, 132 operations.

For the method using Mellin transform in the spatial domain, we don’t

need to perform a Fourier transform. Therefore, for this method the number

of operations is equal to the length of the projection.

The rest of the complexity analysis is given in Appendix B. We assume

the frame has width𝑊 = 720 and height 𝐻 = 576 and frame rate of 30 frames

per second.

The results are summarized in Table 4.1.

Method Additions(MIPS) Multiplications(MIPS)

2D Fourier transform 1,082.9 1,082.9

Slice cross-correlation - first pair 43.8 18.9

Slice cross-correlation 26.9 2.0

Spatial-domain Mellin transform 25.5 0.5

Table 4.1: Summary of algorithms complexity

Considering that we will perform the correlation method only once in a

scene, we have that the average complexity is around 25.5𝑀𝐼𝑃𝑆. It can

be easily implemented for real-time applications on a Pentium with a 3GHz

processor. The projections are the most consuming operation and they can be

implemented using parallel computing, so the algorithm can work efficiently

on a single computer with multiple processors.

4.2 Performance Analysis using a Statistical Model

In this section we calculate the variance of the scale estimation error using the

spatial-domain Mellin transform method. For that purpose, we first calculate

the probability distribution function of the estimated scale. We assume, as in

the previous section, that the frame has width 𝑊 and height 𝐻. We assume

that a Gaussian noise with a standard deviation 𝜎 is added to every pixel in the

frame. Using the pdf of the estimated scale we will calculate the distribution

of estimation errors for different true scale values and different signal to noise

ratios (SNR). The first operation is the projection. For example, we will

38

consider the vertical projection:

𝑃 (𝑥) =
1

𝐻

𝐻∑
𝑖=1

𝑓 (𝑥, 𝑦𝑖) (4.6)

The projection operation reduces the noise variance by the value of height

𝐻. We mark with tilde the noisy functions.

𝑃 (𝑥) =
1

𝐻

𝐻∑
𝑖=1

𝑓 (𝑥, 𝑦𝑖) + 𝑛 (𝑥, 𝑦𝑖) = 𝑃 (𝑥) + 𝑛 (𝑥)

𝜎2
𝑛 =

𝜎2

𝐻
(4.7)

We perform the projection operation for two consecutive frames. Before

applying the Mellin transform we have to shift one of the projections using the

estimated shift from the previous frame as described in the previous section.

Instead of calculating the projection’s samples after the shift, we can use the

same samples with a shifted x-axis. The Mellin transform in that case is:

𝑀(𝑠) =

∫
𝑥
𝑃 (𝑥− 𝑑𝑥)𝑥

𝑠−1𝑑𝑥 =

∫
𝑥
𝑃 (𝑥)(𝑥+ 𝑑𝑥)

𝑠−1𝑑𝑥 (4.8)

Therefore, we can assume that the noise after the adjustment is still Gaussian

with the same standard deviation as before.

The noisy Mellin transform, for a fixed scalar parameter 𝑠, are given by:

�̃� (𝑠) =
1

𝑊

∑
𝑥

𝑃 (𝑥) 𝑥𝑠−1

=
1

𝑊

∑
𝑥

[𝑃 (𝑥) + 𝑛 (𝑥)] 𝑥𝑠−1

= 𝑀 (𝑠) +
1

𝑊

∑
𝑛 (𝑥)𝑥𝑠−1

= 𝑀 (𝑠) + 𝑛𝑀 (4.9)

The variance of the noise is now given by:

𝜎2
𝑛𝑀

=
𝜎2

𝑊 2𝐻

∑
𝑥

(
𝑥𝑠−1

)2
(4.10)

We know that the scale estimation is given by equation (3.21). Therefore,

39

we have:

�̃�𝑠 =
�̃�𝑝1 (𝑠)

�̃�𝑝2 (𝑠)
=

𝑀𝑝1 (𝑠) + 𝑛𝑀1

𝑀𝑝2 (𝑠) + 𝑛𝑀2

(4.11)

The noises 𝑛𝑀1 , 𝑛𝑀2 are both Gaussian noises with known variances. The

noises are assumed to be uncorrelated. Therefore:

�̃�𝑝1 (𝑠) ∼ 𝒩 (𝑀𝑝1 (𝑠) , 𝜎𝑛𝑀
)

�̃�𝑝1 (𝑠) ∼ 𝒩 (𝑀𝑝1 (𝑠) , 𝜎𝑛𝑀
) (4.12)

We want to find the distribution of the estimated scale �̃� by equation

(4.11). As shown in Appendix C:

𝑓�̃� (�̃�) = ∣𝑠�̃�𝑠−1∣𝑏(�̃�
𝑠) ⋅ 𝑐(�̃�𝑠)
𝑎3(�̃�𝑠)

1√
2𝜋𝜎𝑛𝑀

𝜎𝑛𝑀

[
2Φ

(
𝑏(�̃�𝑠)

𝑎(�̃�𝑠)

)
− 1

]

+
1

𝑎2(�̃�𝑠) ⋅ 𝜋𝜎𝑛𝑀
𝜎𝑛𝑀

𝑒
−

1
2

(
𝑀2

𝑝1
(𝑠)

𝜎2
𝑛𝑀

+
𝑀2

𝑝2
(𝑠)

𝜎2
𝑛𝑀

)
(4.13)

Where,

𝑎 (�̃�𝑠)) =

√
1

𝜎2
𝑛𝑀

�̃�2𝑠+
1

𝜎2
𝑛𝑀

𝑏 (�̃�𝑠) =
𝑀𝑝1 (𝑠)

𝜎2
𝑛𝑀

𝑧 +
𝑀𝑝2 (𝑠)

𝜎2
𝑛𝑀

𝑐 (�̃�𝑠) = 𝑒

1
2

𝑏2(�̃�𝑠)

𝑎2(�̃�𝑠)
−

1
2

(
𝑀2

𝑝1
(𝑠)

𝜎2
𝑛𝑀

+
𝑀2

𝑝2
(𝑠)

𝜎2
𝑛𝑀

)

Φ (�̃�𝑠) =

∫ �̃�𝑠

−∞

1√
2𝜋

𝑒−
1
2
𝑢2 𝑑𝑢 (4.14)

We can repeat the above estimation process for the horizontal projection.

Hence, assuming that we have scale estimations �̃�𝑉 , �̃�𝐻 using vertical and hor-

izontal distributions, and that we have 𝑓�̃�𝑉
(�̃�𝑉) , 𝑓�̃�𝐻

(�̃�𝐻)- the corresponding

probability distribution functions, we can estimate the scale averaging of them.

�̃� =
1

2
(�̃�𝑉 + �̃�𝐻) (4.15)

For simplicity we will assume that the noises in two estimations are in-

dependent. This is only an approximation, since in the projections stage we

40

are summing the noise along the columns, for the horizontal projection, and

along the rows for the vertical projections. Therefore, the noises that are being

summed are from different pixles, except for only one. Its contribution is neg-

ligible and therefore, we can assume that after the projections the noises are

independent. The probability distribution functions of 0.5�̃�𝑉 , 0.5�̃�𝐻 is given

by:

𝑓0.5�̃�𝑉
(𝑥) = 2𝑓�̃�𝑉

(2𝑥)

𝑓0.5�̃�𝐻
(𝑥) = 2𝑓�̃�𝐻

(2𝑥) (4.16)

The probability density function of the sum of two independent random

variables is the convolution of their separate density functions:

𝑓�̃� (�̃�) =

∫
∞

−∞

𝑓0.5�̃�𝑉
(𝑦) 𝑓0.5�̃�𝐻

(𝑥− 𝑦) 𝑑𝑦 (4.17)

We will now show an example of the estimated probability distribution

function. We use 𝑠 = 1 as the Mellin transform parameter, and assume that

the mean value of a pixel,𝑀𝑒𝑎𝑛𝑃𝑖𝑥𝑒𝑙𝑉 𝑎𝑙𝑢𝑒, is 128. Therefore, from equations

(4.7) and (4.9), we can also assume that 𝑀𝑝1 (𝑠) = 128. Given an SNR (signal

to noise ratio) we can calculate the standard variation of the noise 𝜎.

𝑆𝑁𝑅 = 20𝑙𝑜𝑔10

(
𝑀𝑒𝑎𝑛𝑃𝑖𝑥𝑒𝑙𝑉 𝑎𝑙𝑢𝑒

𝜎

)

⇒ 𝜎 = 10−𝑆𝑁𝑅/20𝑀𝑒𝑎𝑛𝑃𝑖𝑥𝑒𝑙𝑉 𝑎𝑙𝑢𝑒 (4.18)

Using 𝜎2 we can calculate the variance of the noise after the projection and

the Mellin transform 𝜎2
𝑛𝑀

as described above.

Examples for probability distribution functions for different SNR values

and the true scale 𝛼 are shown in Fig. 4.1.

We performed simulations to test the model. We randomly selected frames

from our movies. For each frame we created another frame with a scale change

of 0.95,1 and 1.05. Then we added random Gaussian noise to each pixel in

both frames, so that 𝑆𝑁𝑅 = 10𝑑𝐵. We estimated the scale change using the

spatial-domain Mellin transofrm as was described in section 3.4. We calculated

an histogram of the estimated values. The normalized histogram is compared

41

0.945 0.95 0.955
0

2000

4000

6000

8000

10000

12000

14000

Scale

P
ro

ba
bi

lit
y

D
is

tri
bu

tio
n

Fu
nc

tio
n

PDF for scale = 0.95

SNR = 10
SNR = 20
SNR = 30

0.995 1 1.005
0

2000

4000

6000

8000

10000

12000

14000

Scale

P
ro

ba
bi

lit
y

D
is

tri
bu

tio
n

Fu
nc

tio
n

PDF for scale = 1

SNR = 10
SNR = 20
SNR = 30

1.046 1.048 1.05 1.052 1.054
0

2000

4000

6000

8000

10000

12000

14000

Scale

P
ro

ba
bi

lit
y

D
is

tri
bu

tio
n

Fu
nc

tio
n

PDF for scale = 1.05

SNR = 10
SNR = 20
SNR = 30

Figure 4.1: Examples for probability distribution functions of scale estimation.

to the probabilty density function in Fig. 4.2. We can see from the figure that

the simulations results are quite similar to those expected from theory.

We used the same noisy frames to compare the estimation methods. We

estimated the scale change using frequency-domain cross-correlation as was

described in section 3.1. We calculated an histogram of the estimated values.

The normalized histogram is compared to the normalized histogram of the es-

timated values using the spatial-domain Mellin transofrm method. The results

are shown in Fig. 4.3. We can see that the spatial-domain Mellin transofrm

method performs better than the frequency-domain cross-correlation.

42

1.046 1.047 1.048 1.049 1.05 1.051 1.052 1.053 1.054 1.055
0

100

200

300

400

500

600

700

800

Scale

P
ro

ba
bi

lit
y

D
is

tri
bu

tio
n

Fu
nc

tio
n

Comparison between theory and simulations

PDF − theory
Spatial−Domain Mellin Transform

Figure 4.2: Comparison between estimation methods.

43

1.046 1.047 1.048 1.049 1.05 1.051 1.052 1.053 1.054 1.055
0

100

200

300

400

500

600

700

800

Scale

P
ro

ba
bi

lit
y

D
is

tri
bu

tio
n

Fu
nc

tio
n

Comparison between estimation methods

Spatial−Domain Mellin Transform
Frequency−Domain Cross−Correlation

Figure 4.3: Comparison between estimation methods.

44

Chapter 5

Model-Based Region Tracking

In the previous chapter we introduced a novel algorithm for region tracking in

video. We estimate the global motion caused by the camera movements and

the local motion caused by the movement of the object (e.g., face) inside the

region we want to track. The result of the tracking algorithm is the location

of the region in every frame. This result can be jittery due to small estimation

errors or small movements of the camera and the tracked object. Also, random

noise and interferences can result in a wrong estimation of the ROI location in

some of the frames. Consider, for exmaple, a reporter standing near a road. A

passing car can cause a wrong estimation of the movement in several frames.

In order to solve the jitter problem as well as the interferences problem we

sugget in this chapter to use a dynamic model. The dynamic model assumes

that the region movement has certain parameters. For example, the region

might have a constant velocity with a small random acceleration. We use the

estimated values of the global and local motions to estimate the state of the

dynamic model, e.g. its velocity in a certain frame. By updating the region

location according to the estimated state of the dynamic model, we force its

motion to be much less jittery. Moreover, since the state of the dynamic

model can be estimated from all the previous estimated values of the global

and local motion, wrong motion estimated values for a few frames will have a

minor effect on the tracking. Therefore, the tracking will be more robust and

less sensitive to interferences, e.g., a passing car.

45

5.1 Dynamic Model

In this section we present the dynamic model that we use for describing the

region movement.

We can define a state in frame 𝑘 by:

𝑆(𝑘) = [𝑥(𝑘), 𝑦(𝑘), 𝑤(𝑘), ℎ(𝑘), 𝑣𝑥(𝑘), 𝑣𝑦(𝑘), 𝑣𝑤(𝑘), 𝑣ℎ(𝑘)]
𝑇 (5.1)

Where

𝑥(𝑘), 𝑦(𝑘) - are the location coordinates of the center of the ROI.

𝑤(𝑘), ℎ(𝑘) - are the width and height of the ROI.

𝑣𝑥(𝑘), 𝑣𝑦(𝑘), 𝑣𝑤(𝑘), 𝑣ℎ(𝑘) - are the corresponding velocities components.

We model the movement by:

𝑆(𝑘 + 1) = 𝐴𝑠(𝑘) + 𝑛𝑠(𝑘) (5.2)

Where

𝑛𝑠(𝑘) - is random noise, and

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 𝑇 0 0 0

0 1 0 0 0 𝑇 0 0

0 0 1 0 0 0 𝑇 0

0 0 0 1 0 0 0 𝑇

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We use 𝑇 = 1 so that the units of the velocities are in pixels per frame.

The observations are given by:

𝑧(𝑘) = [𝑥(𝑘), 𝑦(𝑘), 𝑤(𝑘), ℎ(𝑘)]𝑇 (5.3)

𝑧(𝑘) = 𝐻𝑠(𝑘) (5.4)

Where,

46

𝐻 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

The observations vector 𝑧(𝑘) defines the location of the ROI in frame 𝑘.

5.2 Kalman Filtering

The Kalman filter, presented in [29], exploits the dynamics of the ROI, which

governs its time evolution, to remove the effects of noise. It is used to get an

improved estimate of the ROI location, e.g., in [39]. Since the results of the

earlier described tracking methods are often too jittery, The Kalman filter can

be used for smoothing the motion [9]. Assuming a linear model and that both

state noise and measurement noise processes are Gaussian, as described in the

previous section, the Kalman filter is an optimal (in terms of MMSE) state

estimator [31].

We can model the movement, for example, in the x direction by:

𝑥(𝑘 + 1) = 𝑥(𝑘) + 𝑣𝑥(𝑘)𝑇 +
𝑎𝑥(𝑘)𝑇

2

2
+ 𝑜(𝑇 3)

𝑣𝑥(𝑘 + 1) = 𝑣𝑥(𝑘) + 𝑎𝑥(𝑘)𝑇 + 𝑜(𝑇 2) (5.5)

Where 𝑘 is the frame number, 𝑥 is the location, 𝑣𝑥 is the velocity, and 𝑎𝑥 is

the acceleration. The movement in the y direction and the change in width or

height can be modeled in the same way. We assume that the acceleration is a

random noise. Therefore, we can re-write equation (5.2) as

𝑆(𝑘 + 1) = 𝐴𝑆(𝑘) + Γ𝑎(𝑘) (5.6)

47

Where 𝑆(𝑘) and 𝐴 are as defined in equation (5.2), and

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑇 2

2 0 0 0

0 𝑇 2

2 0 0

0 0 𝑇 2

2 0

0 0 0 𝑇 2

2

𝑇 0 0 0

0 𝑇 0 0

0 0 𝑇 0

0 0 0 𝑇

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑎(𝑘) = [𝑎𝑥(𝑘), 𝑎𝑦(𝑘), 𝑎𝑤(𝑘), 𝑎ℎ(𝑘)]
𝑇

The acceleration vector 𝑎(𝑘) is assumed to be Gaussian random noise with

a known diagonal covariance matrix 𝑄𝑎(𝑘).

We define:

𝑄(𝑘) = 𝑐𝑜𝑣(Γ𝑎(𝑘)) = Γ𝑄𝑎(𝑘)Γ
𝑇 (5.7)

Where 𝑐𝑜𝑣 denotes the covariance matrix.

We define 𝑆(𝑘∣𝑖) as the estimate of the state at time 𝑘 given observations

up to and including time 𝑖.

We define 𝑃 (𝑘∣𝑖) - the error covariance matrix (a measure of the estimated
accuracy of the state estimate) at time 𝑘 given observations up to and including

time 𝑖. The matrix is initialized by a zero matrix.

The Kalman filter equations are:

Predict:

𝑆(𝑘∣𝑘 − 1) = 𝐴𝑆(𝑘 − 1∣𝑘 − 1)
𝑃 (𝑘∣𝑘 − 1) = 𝐴𝑃 (𝑘 − 1∣𝑘 − 1)𝐴𝑇 +𝑄(𝑘 − 1) (5.8)

Update:

𝐾(𝑘) = 𝐻𝑇
(
𝐻𝑃 (𝑘∣𝑘 − 1)𝐻𝑇

)−1
𝑆(𝑘∣𝑘) = 𝑆(𝑘∣𝑘 − 1) + 𝑃 (𝑘∣𝑘 − 1)𝐾(𝑘)

(
𝑧(𝑘)−𝐻𝑆(𝑘∣𝑘 − 1)

)
𝑃 (𝑘∣𝑘) = (𝐼 −𝐾(𝑘)𝐻)𝑃 (𝑘∣𝑘 − 1) (5.9)

48

Where 𝐾(𝑘) is the Kalman filter gain. The observation vector 𝑧(𝑘) is the

estimated ROI location and is the output of the tracking algorithm described

in the previous chapter.

We use the estimated state to update the ROI location in the current frame.

We use the observation matrix 𝐻 given in 5.4. After the tracking algorithm,

the ROI location in frame 𝑘 is given by the observation vector 𝑧(𝑘).

𝑧(𝑘) = 𝐻𝑆(𝑘∣𝑘) (5.10)

After calculating the Kalman filter equations given in (5.8),(5.9), we re-

place the ROI location in frame 𝑘 with the estimated observation vector 𝑧(𝑘),

which is calculated using the estimated state of the dynamic model (5.10).

The estimated observation vector contains the width, height and center of the

ROI, similarly to (5.3). The state of the dynamic model is estimated from all

the previous estimated values of the global and local motion. Therefore, the

motion of the ROI should be much less jittery and the tracking should become

more robust to small errors in global and local motion estimation. Compar-

ison of tracking with and without a Kalman filter is shown in Fig. 5.1. The

y-component of ROI center before and after Kalman filtering is shown for the

first 50 frames of a video clip, where the camera is zooming-in while moving

to the left. We can see that after Kalman filtering the curve is smoother.

Experimental results will be given in chapter 9.

5.3 Particle Filtering

Particle filtering was introduced in [30] for estimating Bayesian models. As a

result of the popularity of particle methods, several tutorials have already been

published on the subject [31, 32]. In the Bayesian approach to dynamic state

estimation, one tries to estimate the posterior probability density function

of the state, based on all available information, including the set of received

measurements. The main idea of particle filtering is to represent the required

posterior density function by a set of random samples (particles) with associ-

ated weights and to compute estimates based on these samples and weights.

As the number of samples increases, this Monte-Carlo characterization be-

49

0 10 20 30 40 50
195

200

205

210

215

220

Frame number

P
ix

el

The y−component of ROI center before and after Kalman filtering

Before Kalman filtering
After Kalman filtering

Figure 5.1: The y-component of ROI center before and after Kalman filtering.

comes an equivalent representation to the usual functional description of the

posterior probability density function, and the particle filter approaches the

optimal Bayesian estimate. If the true density is non-Gaussian (e.g., if it is

bimodal or heavily skewed), then a Gaussian can never describe it well. For

example, in case of interefence, such as a passing car in front of the speaker,

the posterior probability density function is highly non-Gaussian. In such

cases, particle filters will yield an improvement in performance in comparison

to that of a Kalman filter and its extentions.

In this section we will describe the use of a particle filter for our tracking

method and dynamic motion model.

Stage 1:

In the first frame of each scene, we are given the initial location of the ROI

[𝑥(0), 𝑦(0), 𝑤(0), ℎ(0)]𝑇 . We assume that the number of particles is 𝑁 . We

draw random particles with states around the initial location. The state of

50

particle 𝑖 is given by:

𝑆(0, 𝑖) = [𝑥(0), 𝑦(0), 𝑤(0), ℎ(0), 0, 0, 0, 0]𝑇 + 𝑛𝑖𝑛𝑖𝑡𝑠 (𝑖) (5.11)

Where 𝑛𝑖𝑛𝑖𝑡𝑠 (𝑖) is the state noise in the first frame and particle 𝑖 and it is a

random Gaussian noise vector with standard deviation given by:

𝜎𝑛𝑖𝑛𝑖𝑡
𝑠

=
[
0, 0, 0, 0, 𝜎𝑣𝑥 , 𝜎𝑣𝑦 , 𝜎𝑣𝑤 , 𝜎𝑣ℎ

]𝑇
(5.12)

The values of 𝜎𝑣𝑥 , 𝜎𝑣𝑦 , 𝜎𝑣ℎ , 𝜎𝑣𝑤 are defined by the operator.

The initial ROI state is the weighted mean of all the particles. Every

particle is assigned with an initial weight of 1
𝑁 .

Stage 2:

We estimate the state of each particle by the model of the movement (5.2).

𝑆(𝑘 + 1, 𝑖) = 𝐴𝑠(𝑘, 𝑖) + 𝑛𝑠(𝑘, 𝑖) (5.13)

Where 𝑛𝑠(𝑘, 𝑖) is the state noise in frame 𝑘 and particle 𝑖 and is a random

Gaussian noise vector with standard deviation given by:

𝜎𝑛𝑖𝑛𝑖𝑡
𝑠

=
[
𝜎𝑥, 𝜎𝑦, 𝜎𝑤, 𝜎ℎ, 𝜎𝑣𝑥 , 𝜎𝑣𝑦 , 𝜎𝑣𝑤 , 𝜎𝑣ℎ

]𝑇
(5.14)

Then, we estimate the current location of each particle by:

𝑧(𝑘, 𝑖) = 𝐻𝑆(𝑘, 𝑖) (5.15)

Note that when calculating the current location we do not round the results

to integers, in order to avoid quantization errors that affect the next stages.

Stage 3:

We estimate the global motion (scale, horizontal shift and vertical shift) of the

frame as was described in sections 3.1 to 3.5.

51

Stage 4:

Each particle has a different location. Therefore, we need to estimate the

local motion for each particle. The estimation of local motion was described

in section 3.6.

Stage 5:

We update the location of each particle according to the global motion and

local motion.

Stage 6:

Now we have two estimated values of the location for each particle. The first

estimated value is given by updating the location according to the state of the

particle (5.15). The second estimated value is given by updating the location

according to the global and local motion estimations. We can calculate the

distance between the locations. Each particle defines a region by its center,

width and height. Instead, the location can be defined by two points, the

upper-left point and the lower-right point. We will define these points as

𝑃𝑈𝐿(𝑘, 𝑖), 𝑃𝐿𝑅(𝑘, 𝑖). We have two estimated values for these points. The

distance between them is given by:

𝑑(𝑘, 𝑖) =
√
∥𝑃 1

𝑈𝐿(𝑘, 𝑖) − 𝑃 2
𝑈𝐿(𝑘, 𝑖)∥2 + ∥𝑃 1

𝐿𝑅(𝑘, 𝑖)− 𝑃 2
𝐿𝑅(𝑘, 𝑖)∥2 (5.16)

Indices 1, 2 donate the two estimated values of the points.

A measure of the estimated state quality for a particle 𝑖 in frame 𝑘 can be

given by:

𝐿(𝑘, 𝑖) = 𝑒−𝑑
2

(5.17)

This measure is bounded in [0, 1], which helps the stability of the calculations.

Stage 7:

We update the weights of each particle according to the quality measure of its

estimated state. We also have to normalize the weights so the sum of them is

one.

52

𝑤(𝑘, 𝑖) =
𝑤(𝑘 − 1, 𝑖), 𝐿(𝑘, 𝑖)∑𝑁
𝑗=1 𝑤(𝑘 − 1, 𝑗), 𝐿(𝑘, 𝑗)

𝑁∑
𝑖=1

𝑤(𝑘, 𝑖) = 1 (5.18)

The current weighted mean state is given by:

𝑆(𝑘) =
𝑁∑
𝑖=1

𝑤(𝑘, 𝑖)𝑆(𝑘, 𝑖) (5.19)

The location of the ROI in the frame 𝑘 is given by:

𝑧(𝑘) = 𝐻𝑆(𝑘) (5.20)

Stage 8:

We calculate a measure for the effective number of particles. It has been

shown [33] that the variance of the particles weights can only increase over

time, and thus, it is impossible to avoid a degeneracy phenomenon. This

degeneracy implies that a large computational effort is devoted to updating

particles whose contribution to the approximation is almost zero.

𝑁𝑒𝑓𝑓 =
1∑𝑁

𝑖=1 𝑤
2(𝑘, 𝑖)

(5.21)

𝑁𝑒𝑓𝑓 is a measure for the effective number of particles. In the case where

all the particles have the same weight, 𝑤(𝑘, 𝑖) = 1
𝑁 , we have that 𝑁𝑒𝑓𝑓 = 𝑁

as expected. When only one particle has weight 1 and the others have weight

0 then, 𝑁𝑒𝑓𝑓 = 1 as expected. If the effective number of particles is smaller

than a threshold, we redistribute the particles according to their weights. We

used the systematic resampling proposed in [34]. First, we create a new vector

𝑄 by cumulative summation over the particles weights. We omitted the frame

index 𝑘 for convenience.

𝑄(𝑚) =
∑𝑚
𝑖=1 𝑤(𝑖), 𝑚 = 1, . . . , 𝑁 (5.22)

53

Also, 𝑄(0) = 0.

We draw one random sample 𝑈(1) by:

𝑈(1) ∼ 𝒰
[
0,
1

𝑁

]
(5.23)

Where 𝒰 [𝑎, 𝑏] is the uniform distribution between 𝑎 and 𝑏.

We define 𝑈(𝑖) by:

𝑈(𝑖) = 𝑈(1) +
𝑖− 1
𝑁

, 𝑖 = 2, . . . , 𝑁 (5.24)

We are now associating a number of offsprings 𝑛(𝑖) with each particle 𝑖.

𝑛(𝑖) = ∣{𝑈(𝑗) : 𝑄(𝑖− 1) ≤ 𝑈(𝑗) ≤ 𝑄(𝑖)}∣ (5.25)

Where ∣⋅∣ denotes the number of elements in the group.
Finally, we resample by taking 𝑛(𝑖) times the particle 𝑖, for all 𝑖 = 1, . . . , 𝑁 .

Particles with with 𝑛(𝑖) = 0 are deleted, and particles with 𝑛(𝑖) > 1 are

duplicated. After the resampling all the new particles weights are set to 1
𝑁 .

Other resampling methods can be used as well. Comparison of resampling

schemes for particle filtering, can be found in [35, 36].

For the next frame, we return to stage 2.

Comparison of tracking with and without a particle filter is shown in

Fig. 5.2. The y-component of ROI center before and after particle filtering

is shown for the first 50 frames of a video clip, with an interference between

frames 30 to 40. The true location of the ROI should not be changed during

these frames. We can see that the particle filter reduced the effect of the in-

terference. In chapter 9 we will compare experimental results using Kalman

filtering and particle filtering.

54

0 10 20 30 40 50
90

100

110

120

130

140

150

160
The y−component of ROI center before and after particle filtering

Frame number

P
ix

el

True value
Before particle filtering
After particle filtering

Figure 5.2: The y-component of ROI center before and after particle filtering.

55

Chapter 6

Region of Display

Determination

The ROI is the region in the video that should be extracted for vieweing.

But, we can not simply extract only the ROI for viewing becuase of two

reasons. The first reason is that the speaker might move his head while talking.

Tracking this movement cause the output video, which contains only the ROI,

to be too jittery for the viewers’ eyes.

The second reason not to extract only the ROI is that its size may be

arbitrary. The output video has a pre-defined size (e.g., CIF). Extracting the

ROI and scaling it to the pre-defined size will cause distortion. Therefore, we

will define a region of display (ROD) as the region to be extracted. The ROD

always contains the ROI. From our application requirements, we can extract

only two different sizes of regions: The whole frame or a smaller pre-defined

size (e.g., CIF). Therefore, the ROD can have only two possible sizes. When

the ROD is determined to be the whole frame, we have to scale it to the output

size. In this section we describe the process of finding the ROD location and

size in each frame.

In the first frame of each scene we check the size of the ROI. If its height and

width are both smaller than the pre-defined output size, with some margins

(we use 30 pixels margin), we mark the ROD as a region with the pre-defined

output size and locate its center at the center of the ROI. In the next frames,

if the ROI is not getting close to the borders of the ROD, we do not change the

56

ROD location. That way, small movements of the ROI will not cause any jitter

in the output display. When the ROI is getting too close to the borders of

the ROD (e.g., closer than 5 pixels), we change only the ROD center location.

We must have some delay since we do not want to change the ROD location

according to the ROI in every frame because of its jittery motion. We track

the ROI in the next several frames and calculate its new center. Only then, we

move the ROD center to the new center of the ROI over the same few frames

using a constant motion. The reason for changing the ROD center location

over several frames is to make it look like a natural camera movement.

BBC movie − frame number 1 BBC movie − frame number 10

BBC movie − frame number 20 BBC movie − frame number 50

Figure 6.1: Frames from the movie “BBC” with the ROI marked as a blue rectangle and
the ROD marked as a green rectangle. The ROD always contains the ROI.

An example is given in Fig. 6.1. We can see in the figure that in the first

57

frame of the movie the ROD has the same center as the ROI. In the next

frames the man is moving his head to the left. We use here a delay of 20

frames. We can see that in frame 20 the ROD and the ROI both moved to

the left and have the same center location. In frame 10, the location of the

ROI is determined by the tracking algorithm. But, the location of the ROD is

determined by a linear interpolation between the ROI center location in frame

1 and frame 20. Linear interpolation is needed in order to have the ROD move

at a constant velocity. In frame 50, the man has moved to the right, but he

didn’t move much. The ROI has also moved to the right, but the ROD is in

the same position as in frame 20.

The next case is when the ROI becomes bigger (due to a zoom-in) than

the ROD size. We change the ROD size and mark the whole frame as a ROD.

We apply the change in the size of the ROD in a single frame. Therefore, it

looks like a scene cut.

An example is given in Fig. 6.2. We can see the initial ROI marked in

frame 1. The ROI is bigger than the pre-defined output size and therefore

the ROD is the whole frame. In frame 80 the ROI is getting smaller due to a

zoom-out operation. The ROD in frame 80 is still the whole frame. In frame

81, the ROI is small enough so that the ROD changes its size to the smaller

pre-defined output size. We can see that in frame 120 The ROI is even smaller,

and the ROD is still of the same size.

Fig. 6.3 shows the ROD of the frames after rescaling to the desired output.

If the ROD has the size of the whole frame and the ROI is getting smaller

(due to zoom-out) than the pre-defined output size, with some margins, we

change the size of the ROD to the smaller size. Again, we apply the change in

the size of the ROD in one frame so it looks like a scene cut. In order, not to

update the ROD location too many times, we apply the hysteresis principle

for all the cases mentioned above.

58

Frame number 1 Frame number 80

Frame number 81 Frame number 120

Figure 6.2: Frames from the movie “Euro News Zoom-Out” - with the ROI marked as a
blue rectangle and the ROD marked as a green rectangle. The ROD always contains the
ROI.

59

Frame number 1 Frame number 80

Frame number 81 Frame number 120

Figure 6.3: Frames from the movie “Euro News Zoom-Out” - output display.

60

Chapter 7

Active Speaker Detection

In an interview scene we may have several ROIs, one for each person in the

scene. We track separately each ROI and determine its corresponding ROD.

The ROI with the current active speaker is the one to be displayed. Therefore,

we need to determine in each frame which is the ROI with the active speaker.

An example for interview scene is shown in Fig. 7.1.

Interview scene − two regions with speakers

Figure 7.1: Interview scene - two regions with speakers.

61

7.1 Video Based Speaker Detection

7.1.1 Active Speaker Detection Based on Motion Vectors

In this section we assume we that have the motion vectors of the blocks inside

each ROI. An example for motion vectors of an active speaker is shown in

Fig. 7.2. We remove the effect of the global movement caused by the camera

from the motion vectors. We use the global motion estimation described in

the previous chapter. This way, the motion vectors correspond only to motion

inside the ROI.

Figure 7.2: Motion vectors of an active speaker.

We define activity measurements for each ROI based on the motion vectors,

after removing the effect of the global motion. The ROI with the highest

activity measure is the current active ROI.

A simple activity measurement is the mean sum of squares of the current

motion vectors:
1

𝑀𝑁

∑
𝑛,𝑚

∣⃗𝑣𝑛,𝑚∣2 (7.1)

62

where 𝑁,𝑀 are the height and width of the region.

An example for this activity measure is shown in Fig. 7.3. Only the person

in Region 1 was speaking during the whole scene.

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500
Mean Energy of Motion Vectors

Time [samples]

M
ea

n
E

ne
rg

y

Region 1
Region 2

Figure 7.3: Mean energy of motion vectors.

It is clear that this algorithm will not work properly if the non-active

speaker will not be still. Non-active speaker can move, for example, nod his

head or smile. Therefore, algorithms based on motion only are not robust

enough.

7.1.2 Active Speaker Detection Based on Pixels Intensities

In this section we assume that the motion vectors are not available since

computing them has too high complexity. When opening the mouth, the

number of pixels with low intensities is increasing [8]. The number of pixels

with low intensities in the mouth area of each ROI in each frame is counted

as suggested in [8]. The active region is the one with the highest variance. An

63

example is shown in Fig. 7.4.

Figure 7.4: Number of pixels with low intensities.

This algorithm requires detection of the mouth location. The location of

the mouth is set to be the lower half of the ROI in each frame.

The algorithm will not work properly if the speaker reads with his face

down, when his mouth can not be fully seen in the frame.

7.2 Active Speaker Detection Aided by Audio Track

Information

Correlation between events in the audio-track and in the video can be used

to detect the pixels that are producing the sound [11]. For speech, the onsets

times might be correlated with a high acceleration of the speaker lips [12].

In the next subsections we will describe an algorithm for onset detection and

an algorithm for tracking pixels in video. Then we will describe how to use

the correlation between onsets locations and features from the trajectories of

the tracked pixles, in order to find the pixels that are related to the audio.

Determing the pixels that correspond to the audio will help us determine the

current active speaker.

7.2.1 Onsets Detection

In phonetics, onset refers to the beginning of a syllable, at which the amplitude

rises from zero to an initial peak. There are many algorithms to detect the

64

onsets locations, e.g. [13, 14, 12]. In [12], several musical instruments can

be playing different tunes simultaneously. Therefore, they suggested to detect

new frequencies using the spectogram.

In our application we do not expect speakers to talk simultaneously. There-

fore, a simple energy detector should be enough to detect the onsets location.

We calculate the energy using a sliding window. The window we used is a

Hamming window and the length of the window was set to be 0.1 second. We

search for consecutive increases in the energy. When we find such consecutive

increases, we check the energy before the first increase. If it is lower than a

certain thrsehold, meaning that the increase occured after silence, we mark it

as a candidate for an onset. Our goal is to detect instants of audio events to

be correlated with the instants of video events. We define the time location

of an audio event to be the time between the onset and the end of the rise in

energy. After having a candidate for an onset, we search for the first decrease

in the energy. The first decrease is marked as a candidate for an audio event

end. We calculate the difference between the energy in the candidate location

for end of the event and the energy in the candidate location of the onset.

This difference is the total increase in energy during the audio event. If the

total increase is larger than a certain thrsehold, then we declare it to be an

audio event. Using this method we also have the start and end locations of

the audio events. We noted during experiments that the consecutive increases

in the energy can start before the sharp increase during the real location on

the onset. Therefore, we look for the time location where 20% of the total

increase in energy is obtained and mark this place to be the onset location.

An example for an audio event is given in Fig. 7.5.

In order to use the same thrseholds for different audio volume, we need

an automatic gain control (AGC) before calculating the energies. We use a

simple agc. We divide the soundtrack into sections and the agc rescales the

enregy in every section to a pre-defined value. The rescale in not perfomed

on section which have initial very low energy, since it means that the section

contain only silence and noise.

An exaple for audio events detction is given in Fig. 7.6.

65

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

Samples

Audio event example

Energy
Audio event

Figure 7.5: Example for an audio event.

66

1.4 1.6 1.8 2 2.2 2.4

x 104

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Samples

Audio Events Detection

Soundtrack
Energy
Audio events

Figure 7.6: Example for detecting audio events locations.

67

7.2.2 Tracking of pixels in video

In this section we desccribe an algorithm for tracking pixels in video. We

choose to work with a tracker known as the Kanade-Lucas-Tomasi (KLT)

tracker [15], implemented by [17], as was suggested in [12]. The description of

the tracker in this section is based on [15, 16, 17, 12].

The motion model for the KLT-tracker assumes displacement only.

𝐼(𝑥, 𝑦, 𝑡+ 𝜏) = 𝐼(𝑥− 𝑑𝑥, 𝑦 − 𝑑𝑦, 𝑡) (7.2)

Where I(x,y,t) is the value of pixel (𝑥, 𝑦) in time 𝑡, and 𝑑 = (𝑑𝑥, 𝑑𝑦) is defined

as the displacement.

An important problem in finding the displacement d of a point from one

frame to the next is that a single pixel cannot be tracked, unless it has a

very distinctive brightness level with respect to all of its neighbors. Because

of this problem, the KLT-tracker does not track single pixels, but blocks of

pixels. We do not use a more complex model for small windows, such as affine

motion. This is becuase of the danger of over-parametrization. We therefore

only estimate the displcement vector 𝑑.

Define 𝐽(x) = 𝐼(𝑥, 𝑦, 𝑡 + 𝜏) and 𝐼(x − 𝑑) = 𝐼(𝑥 − 𝑑𝑥, 𝑦 − 𝑑𝑦, 𝑡). Our local

image model is given by;

𝐽(x) = 𝐼(x− 𝑑) (7.3)

The displacement vector d is then chosen so as to minimize the residue

error defined by the following double integral over the given window 𝒲:

𝜖 =

∫
𝒲

[𝐼(x− 𝑑)− 𝐽(x)]2 𝑤(x)𝑑x (7.4)

Where 𝑤(x) is a weighting function, which can be Gaussian-like, to emphasize

the central area of the window.

When the displacement 𝑑 is much smaller than the window size, the lin-

earization method can be used. The intensity function can be approximated

by its Taylor series truncated to the linear term.

𝐼(x− 𝑑) = 𝐼(x)− 𝑔𝑇 𝑑 (7.5)

68

where 𝑔 denotes the gradient vector of 𝐼 at x.

Now we can write the error function from equation (7.4) as:

𝜖 =

∫
𝒲

[
𝐼(x)− 𝑔𝑇 𝑑− 𝐽(x)

]2
𝑤(x)𝑑x (7.6)

This error function is a quadratic function of the displacement 𝑑. As a

consequence, the minimization can be done in closed form. Differentiating the

last expression of the error function given in equation (7.6) with respect to 𝑑

and setting the result equal to zero yields the following vector equation:

∫
𝒲

[
𝐼(x)− 𝑔𝑇 𝑑− 𝐽(x)

]
𝑔𝑤(x)𝑑x = 0 (7.7)

Since (𝑔 ⋅𝑑)𝑔 = (𝑔𝑔𝑇)𝑑 and 𝑑 is assumed to be constant within𝒲, we have:
(∫
𝒲

𝑔𝑔𝑇𝑤(x)𝑑𝑥

)
𝑑 =

∫
𝒲

[𝐼(x)− 𝐽(x)] 𝑔𝑤(x)𝑑𝑥 (7.8)

This is a system of two scalar equations in two unknowns, which are the

components of the displacement vector 𝑑. It can be rewritten with a symmetric

2x2 coefficient matrix 𝐺 and a two-dimensional vector 𝑑.

𝐺𝑑 = 𝑒 (7.9)

𝐺 =

∫
𝒲

𝑔𝑔𝑇𝑤(x)𝑑𝑥

𝑒 =

∫
𝒲

(𝐼(x)− 𝐽(x)) 𝑔𝑤(x)𝑑𝑥

Equation (7.9) is the basic step of the tracking procedure. For every pair of

adjacent frames, the matrix 𝐺 can be computed from one frame, by estimating

gradients and computing their second order moments. The vector 𝑒, on the

other hand, can be computed from the difference between the two frames,

along with the gradient computed above. The displacement 𝑑 is then the

solution of system (7.9).

We also use an algorithm for automatic location of good points to track.

This is done by recognizing that a good point is one that can be tracked well.

The tracking equation is defined in equation(7.9). Consequently, a window

𝒲 is chosen if its corresponding matrix 𝐺 is well-conditioned. This implies

69

that the window can be tracked reliably [15].

7.2.3 Audio-Visual Correlation

In this section we will use the audio events locations and the trajectories of

the tracked points in order to detect the current active speaker. We assume

that we have several regions that we track during the scene and we have to

determined in which of them is the current active speaker.

We use the software in [17]. At the beginning of a scene, we select points

to track, as was decsribed in section 7.2.2. An example of good points to track

is shown in Fig. 7.7.

Points to track

Figure 7.7: Good points to track.

We track these points for the rest of the scene. We also calculate the audio

events locations as was described in section 7.2.1. In [12] it was proposed to

calculate the correlation between the audio events locations and the times of

a significant acceleration of the visual points. The use of the acceleration is

becuase we are interested in locating instances of significant temporal variation

in the motion of a visual point.

In our work we added two modifications. First, we use the global motion

estimation described in chapter 3 to eliminate the effect of the camera motion

from tracked points. For every point 𝑝1 = (𝑥1, 𝑦1) in the current frame, we use

70

the global motion prameters to calculate the estimated location of the point

in the next frame 𝑝2 = (�̂�2, 𝑦2).

𝑝2 = 𝐴𝑝1 + 𝑏 (7.10)

Where

𝐴 =

⎛
⎝ 𝛼 0

0 𝛼

⎞
⎠ (7.11)

𝛼 is the estimated global scale and 𝑏 is a two element vector with the estimated

global horizontal and vertical shifts.

Then we can use the location of the point in the next frame found by

the KLT-tracker, 𝑝2 = (𝑥2, 𝑦2) and subtract the estimated point location 𝑝2.

The difference between the points coordinates is the change in location of the

tracked point, without the effect of the camera motion.

The second modification is that we calculated the acceleration only in the

vertical axis. This is becuase we are looking for a point on the speaker face

that is correlated to his voice, and the mouth movements are mostly in the

vertical axis. After calculating the acceleration in the vertical axis for each

tracked point, we use a thrsehold to detect times of significant changes.

The audio events are given in a vector 𝐴𝑢𝑑𝑖𝑜𝐸𝑣𝑒𝑛𝑡𝑠(𝑖) where 𝑖 is the

soundtrack samples index. At the audio events locations the vector is equal

to 1, and otherwise it is 0. Similarly, for every tracked point we have a vector

of acceleration onsets or visual events 𝑉 𝑖𝑑𝑒𝑜𝐸𝑣𝑒𝑛𝑡𝑠(𝑘) where 𝑘 is the frame

number. We use linear interpolation to obtain 𝑉 𝑖𝑑𝑒𝑜𝐸𝑣𝑒𝑛𝑡𝑠(𝑖) where 𝑖 is

the soundtrack samples index. Then we calculate the correlation coefficient

between the vector of audio events and the vectors of acceleration onsets. Note

that these two vectors are binary vectors. We denote their standard deviations

as 𝜎𝑉 𝑖𝑑𝑒𝑜𝐸𝑣𝑒𝑛𝑡𝑠 and 𝜎𝐴𝑢𝑑𝑖𝑜𝐸𝑣𝑒𝑛𝑡𝑠.

𝜌 =
𝑐𝑜𝑣(𝑉 𝑖𝑑𝑒𝑜𝐸𝑣𝑒𝑛𝑡𝑠,𝐴𝑢𝑑𝑖𝑜𝐸𝑣𝑒𝑛𝑡𝑠)

𝜎𝑉 𝑖𝑑𝑒𝑜𝐸𝑣𝑒𝑛𝑡𝑠𝜎𝐴𝑢𝑑𝑖𝑜𝐸𝑣𝑒𝑛𝑡𝑠
, (7.12)

Where 𝑐𝑜𝑣 means covariance.

The tracked point with the highest correlation is declared to belong to the

current active speaker. For our application, we need this algorithm only for

71

cases where there are multiple regions that can be the current ROI. We track

visual points only inside these regions. The region with the point that achieve

the highest correlation is declared as the current active ROI. In Fig. 7.8 we

mark in red the visual point that was the most correlated with the audio

onsets. We can see that the point is indeed on the speaker’s face, near his

mouth.

Figure 7.8: Best visual point associated to the audio.

72

Chapter 8

ROI Determination from a

Single Click on a face

In the previous chapters we assumed that at the start of every scene, the ROI

is marked by an operator. In this chapter we develop an auxiliary tool for

the operator. Earlier it was assumed that the operator draws a bounding

box defining the ROI, requiring at least two clicks on the image. Since our

work focuses on news or interviews scenes, we assume that in most of the

scenes the ROI is bounding the speaker’s face. Here we propose an algorithm

that automatically finds the ROI by indicating only one point inside the face,

therefore requiring only one click. The algorithm is based on a combination

of skin-color detection and region growing.

8.1 Skin Color Detection

It was verified, using training data, that skin-colors are clustered in color space

[10]. It is common to think that different people have skin-colors which differ

significantly from each other due to the existence of different races. However,

what really occurs is a larger difference in brightness / intensity and not in

color. An example is shown in Fig. 8.1 (taken from [10]). The skin-color

pixels were obtained from a color face database containing images of people

of different races, ages and gender [40].

However, using only skin color as a face detection algorithm is not good

73

Figure 8.1: Skin color cluster in RGB space.

enough. We can see in Fig. 8.2 that the skin-color detector detects many

wrong pixels as skin. For example a shelf behind the man has a color that is

identified as skin color. Therefore, morphological operations and connectivity

analysis are needed to detect faces.

We use the skin-color detector that was proposed in [27] for the YCbCr

color space. A pixel is labeled as a skin-candidate if it falls within the region

where 𝑆𝑘𝑖𝑛(𝐶𝑏,𝐶𝑟) = 1, which is defined by:

𝑆𝑘𝑖𝑛(𝐶𝑏,𝐶𝑟) =

⎧⎨
⎩ 1, (𝐶𝑏 < Γ𝑢𝑝(𝐶𝑟)) ⋅ (𝐶𝑏 > Γ𝑏𝑜𝑡𝑡𝑜𝑚(𝐶𝑟))

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(8.1)

Where

Γ𝑢𝑝(𝑥) = 𝛼2𝑥
2 + 𝛼1𝑥+ 𝛼0 (8.2)

Γ𝑏𝑜𝑡𝑡𝑜𝑚(𝑥) = 𝛽2𝑥
2 + 𝛽1𝑥+ 𝛽0 (8.3)

74

(a) Frame (b) Skin Pixels

Figure 8.2: Skin pixels detection.

For the upper bound, the quadratic coefficients are 𝛼2 = 0.0225, 𝛼1 = 6.1251

and 𝛼0 = 290 while the lower bound coefficients are 𝛽2 = 0.0284, 𝛽1 = 9.1477

and 𝛽0 = 836. These functions are shown in Fig. 8.3.

8.2 Face Segmentation using Region Growing

Region growing is an algorithm for detecting a homogenous region which has

similar intensity values, starting with any point inside the region [41]. Starting

with a point inside the face region, as indicated by the operator, the region

is iteratively grown by comparing all unallocated neighboring pixels to the

region. The difference between a pixel’s intensity value and the region’s mean

is used as a measure of similarity. The pixel with the smallest difference is

allocated to the respective region if the difference is smaller than a certain

threshold. This process stops when the intensity difference between the re-

gion mean and any of the unallocated neighboring pixels is larger than the

threshold.

We applied the region growing algorithm on the skin-color detector output.

We also applied the region growing algorithm on the original frame with the

same starting point, using only the intensities. An example is shown in Fig. 8.4.

We can see that non of the outputs are good enough to locate the speaker’s

face. But if we combine the outputs by using a logic AND operation, we

75

120 130 140 150 160 170 180 190
90

95

100

105

110

115

120

125

130

135

140

Cr

C
b

Region of skin−color in CbCr space

Γup
Γbottom

Figure 8.3: Skin-color detector.

get a better estimation of the face location. The final result after the AND

operation is shown in Fig. 8.5. The face region is then defined by the bounding

rectangle of the region.

76

Region growing after skin−color detection

(a)

Region growing − intensity image

(b)

Figure 8.4: Region growing example. (a) Region growing on the skin-color detector output.
(b) Region growing on the frame.

Region growing − final result

(a)

Face detection by using skin−color detection and region growing

(b)

Figure 8.5: Region growing result. (a) Combination of region growing on the skin-color
detector output and region growing on the frame using an AND operation. (b) Face region
is marked on the frame.

77

Chapter 9

Experimental Results

In this chapter we present test results of the algorithms developed in this work

using simulation on real TV video clips as well as simulated ones.

9.1 Video Samples

We tested the algorithms on 3 short video sequences. In the first video clip

the camera is static, but the talking man is moving his head. In the second

clip, the camera is zooming-in while moving to the left. In the third clip, the

camera is zooming-out while moving to the right. The first and last frames

from each video clip is shown in Figs. 9.1, 9.2 and 9.3.

(a) (b)

Figure 9.1: Frames from “BBC” video clip (a) First frame (b) Last frame

78

(a) (b)

Figure 9.2: Frames from zoom-in video clip (a) First frame (b) Last frame

(a) (b)

Figure 9.3: Frames from zoom-out video clip (a) First frame (b) Last frame

9.2 Tracking Results

In order to test the tracking algorithm, and mainly the global motion estima-

tion we first created a video sequence with known scale and shift values. We

did it by taking the first frame from a real TV interview and created the rest

of the frames by transforming it with the known parameters. It is important

to note that we perform the transformation on the first frame, and not as a

79

cascade of transformations. This is because a cascade of transformations will

cause distortion. We used a zoom factor of 𝛼 = 0.99 and horizontal and verti-

cal shifts of 𝑑𝑥 = −3 𝑑𝑦 = 2. We marked an ROI and tracked it using only the

global motion estimation. The ROI is marked in blue in the following figures.

We can see the initial ROI mark in Fig. 9.4, and in Fig. 9.5 the ROI in frame

40. The tracking provides a good result since the ROI contains exactly the

same objects in both frame 1 and 30, despite the simulated camera movement.

Figure 9.4: Frame 1 from a movie with constant scale change between frames.

We created another movie with known parameters. In this movie the

scale was changing over time. We wanted to test the use of scale and shift

parameters from previous frame to reduce finite-size display effects, as was

described in section 3.3, even when they are not accurate. The initial scale

factor is 𝛼 = 0.99 and in frame 40 the final scale factor is 𝛼 = 0.98. Note

that when 𝛼 is decreasing the zoom-in factor 1
𝛼 is increasing. We can see in

80

Figure 9.5: Frame 40 from a movie with constant scale change 𝛼 = 0.99 between frames.

81

Fig. 9.6 that the tracking algorithm provides a good result.

Figure 9.6: Frame 40 from a movie with an increasing zoom-in factor.

Next, we tested our algorithm on a real TV interview. We marked the

ROI as the head of the interviewee. In the first scene, the camera zoomed-in

and also moved to the right and up. The first frame is shown in Fig. 9.4. The

last frame in the scene, frame 300, is shown in Fig. 9.7.

In the second scene, the camera zoomed-out and also moved to the left

and down. The first frame is shown in Fig. 9.8 and the last frame from the

scene, frame 159, is shown in Fig. 9.9. We can see that the algorithm tracked

the head till the end of the scene.

In the next example, the camera was still, but the talking head moved

during the scene. We can see in Figs. 9.10 and 9.11 that the tracking worked

well and that the head is in the middle of the ROI in both the first frame and

the last frame, frame 100. We expected the tracking algorithm to detect no

camera movement when estimating the global motion parameters. Then, we

82

Figure 9.7: Last frame from a scene with a zoom-in.

83

Figure 9.8: First frame from a scene with zoom-out.

84

Figure 9.9: Last frame from a scene with zoom-out.

85

expect it to detect local motion (the head motion) to the left. In this case, our

estimation erroneously detected the head motion as a camera shift to the left.

This is because the head is a big object regarding to the frame size. Therefore,

the head movement to the left looks as moving the camera to the left. After

we updated the ROI using the global motion parameters, we calculated the

local motion. In this case no local motion was detected because we already

moved the ROI to the left. Therefore, despite the erroneous movement due to

global motion estimation, to the left, the final tracking result is good.

Figure 9.10: First frame from a scene with talking-head moving to the left.

9.3 Kalman and particle filtering

In this section we test the tracking using a Kalman filter and particle filtering.

In the video scene we chose, the reporter is standing across a road. Passing

cars are almost hiding him for several frames. We chose this video becuase it

has an interference, so that in some of the frames, the global motion estimation

86

Figure 9.11: Last frame from a scene with talking-head moving to the left.

87

is expected to be wrong. Assuming a dynamic model and estimating its state

should improve the tracking, as was discussed in 5. Three frames from the

video are shown in Fig. 9.12. In the first frame the reporter is standing and

talking to the camera. In frame 40, a passing car is almost hiding the reporter.

In the last frame the reporter is moving to the right.

Frame 1

(a)

Frame 40

(b)

Frame 90

(c)

Figure 9.12: Frames 1, 40 and 90 from CNN mideast movie.

The results of the tracking algorithm, without Kalman or particle filtering,

is shown in Fig. 9.13. We can see that when the car passed, the tracked region

moved down erroneously. Since the motion in the frame when the car is passing

doesn’t match the global motion model assumed, the movement of the tracked

region is erratic.

The results of the tracking algorithm with a Kalman filter is shown in

Fig. 9.14. We can see that the region still moved down, but less than without

the Kalman filter. This is becuase the state of the tracked region is estimated

to be motionless before the passing car. When the car passes, the global

88

Tracked region in frame number 1

(a)

Tracked region in frame number 40

(b)

Tracked region in frame number 90

(c)

Figure 9.13: Tracked region in CNN mideast movie in frames 1, 40 and 90.

89

motion that is detected is downward. The state is updated slowly, considering

also the previous measurements, and therefore the movement is smaller. We

can change the parameters of the Kalman filter so that the state updating

process will be even slower. But, in that case, the Kalman filter won’t be able

to track the reporter when he moves to the right. We couldn’t find parameters

that satisfy the trade-off between the fast update of the state needed when the

reporter moves and the slow uopdate of the state needed when the car passes

by.

Tracked region in frame number 1 after Kalman filtering

(a)

Tracked region in frame number 40 after Kalman filtering

(b)

Tracked region in frame number 90 after Kalman filtering

(c)

Figure 9.14: Tracked region in CNN mideast movie in frames 1, 40 and 90 after applying
a Kalman filter.

The results of the tracked region after particle filtering is shown in Fig. 9.15.

We can see that the tracking results are much better. The particle filter does

not assume that the posterior probability density function of the state is a

Gaussian distribution. In this case the distribution is a bimodal distribution.

One peak is a state with location around the reporter’s face and no velocity.

90

The other peak is a state that its location is moving downward with high ve-

locity, becuase of the wrong estimated values. The use of the particle filtering

enbales to better describe than the Kalman filter this posterior probability

density function.

The Kalman filter state, when the car passes, changes to a state with

a velocity downwards, becuase of the wrong estimated motion parameters.

After the car passes, the estimated motion parameters are close to zero. The

Kalman filter relates to this estimated parameters as errors since they are very

different from its state. It takes a few frames till the state update to a state

with no velocity.

The particles with the largest weight, at the start of the scene, are the

particles with locations around the face and with no motion. When the car

passes, the weights of these particles decrease. The weights of particles with

high velocity downwrads increase. The output is the weighted average of these

particles’ states. The particles represent the posterior probability density func-

tion of the dynamic model state, and thus this weighted average is an estima-

tion of the expectation value of the state. After the car passes the weights of

particles that represent a state with no motion increase again. Therefore, as

can be seen from the example, the particle filter estimates well the posterior

probability density function of the state.

91

Tracked region in frame number 1 after particle filtering

(a)

Tracked region in frame number 40 after particle filtering

(b)

Tracked region in frame number 90 after particle filtering

(c)

Figure 9.15: Tracked region in CNN mideast movie in frames 1, 40 and 90 after particle
filtering.

92

Chapter 10

Conclusion

10.1 Summary

The goal of this work is to perform an adjustment of video in SD (standard

definition) resolution to the resolution used in cellular phones or other mobile

devices. The naive solution requires the rescaling of each frame to the desired

output size. However, this solution will make it hard to recognize important

small objects. For example, faces should be shown in a sufficient size. Ex-

tracting only the region of interest (ROI) for the output display solves this

problem. We focus in this work on news broadcasting and interview scenes.

Our main contributions in this work are summarized in this section.

We developed a novel algorithm for tracking the ROI. We assumed a model

of three parameters for the global motion casued by the camera movements,

representing zoom, tilt and pan. This simple model is sufficient for news

broadcasting or interview scenes, where the speakers are not approaching the

camera. We showed that two-dimensional Fourier transform of the whole

frames can be used for estimating the model parameters. We showed that only

slices of the two-dimensional Fourier transform are enough for the estimation,

enabling us to use the slice-projection theorem and thus reduce computational

complexity. We then developed an efficient algorithm based on only on the

horizontal and vertical projections. We developed another method for scale

estimation using the Analytical Fourier-Mellin Transform (AFMT). We then

reduced computational complexity by applying the one-dimensional Mellin

93

transform to slices in the freuqency domain, instead of applying the AFMT

to the whole frames. Assuming that the changes in the motion parameters

of consecutives frames are small, we used the estimated parameters from the

previous frame as an initial estimation for the current frame. Then, we further

reduced the computational complexity estimating the parameters by using

the Mellin transform in the spatial-domain. The Mellin transform is used to

convert the scale factor into a multiplicative factor, which can be estimated

more efficiently.

The result of the tracking algorithm is jittery usually due to estimation er-

rors caused by noise and interference. We reduced the jitter by using a Kalman

filter. For more complicated cases including interferences (e.g., occlusion), we

use a particle filter, obtaining also a more robust tracking. We showed that

the particle filter improve estimating the dynamic model state of the ROI.

The ROI should not be extracted as is for vieweing for two reasons. The

first reason is that the speaker might move his head while talking. Track-

ing this movement cause the output video to be jittery to the viewers’ eyes.

The second reason is that its size may be arbitrary and scaling it will cause

distortion. Therfore, we define a region of display (ROD) as the region to

be extracted. The ROD always contains the ROI and its location changes

smoothly resulting in a stable video required for broadcasting quality.

For interview scenes, several regions can be marked as regions of interest

in the first frame of every scene. Only one region should be sent to the output

display. We proposed to make a decision which region to send, by finding

the region with the current active speaker. Finding the current active speaker

is done by finding the correlation between times of significant changes in the

acceleration of visual points and times of audio onsets. We showed that the

visual points with the highest correlation to the onsets in the soundtrack are

likely to be on the speaker’s lips area. Therefore, we can make a decision that

the region with the current active speaker is the region with the visual point

with the highest correlation to the audio onsets. We showed that a simple

audio onsets detector based on energy increase is sufficient for that purpose.

We proposed a method for detecting the ROI in a semi-automatic manner

by a single click of an operator on the speaker’s face. We used a combination

94

of a skin-color detector and region growing to determine the bounding box

around the speaker’s face.

10.2 Future Directions

We suggest several issues for future research.

The first issue involves motion estimation. In our work we assumed a

three parameter model for describing the global motion. The parameters are

the zoom factor, tilt and pan. This model is sufficient to describe well a news

scene or an interview scene. More complicated models, such as the affine or

the perspective models, can describe more types of content. Also, in our work

we assumed that the main object in the ROI (e.g., face) has a local motion

that can be described by horizontal and vertical shifts only. This model is

sufficient for cases where the object is in the same distance from the camera

for the whole scene. In the case where an object is approaching the camera or

is moving away from the camera, there is also local scale change in the ROI. A

more complicated model is needed to describe that motion well. Introducing a

model with more parameters than in our work will enable the tracking to work

well for more complex scene types, but probably will increase the complexity

of estimating the parameters. In our work we reduced the complexity by using

the projection-slice theorem and the Mellin transform. Similar methods for

reduced complexity parameters estimation should be developed for the more

complicated models.

The second issue concerns the active speaker detection. In our work we

proposed to use the correlation between audio onsets and significant changes

in the acceleration of visual points. We showed that visual points on the

speaker’s lips area have good correlation with the soundtrack. For tracking

the visual points we used the well known KLT-tracker. An improvement to our

work can be made by introducing a model for the movement of the speaker’s

lips. Using such a model will lead to a more robust tracking of points on

the speaker’s lips. Also, in our work, we use only the time locations of audio

onsets and the time locations of significant chages in acceleration of the visual

points. We did not use the amount of change in the audio energy or in the

acceleration. Taking these amounts into consideration when performing the

95

correlation might improve the active speaker detection.

The third issue concerns tracking a Region of ADvertisments (ROAD). A

ROAD should be a region of ’no-interest’, i.e., not containing motion, faces,

etc. The tracking algorithms developed in this work can be also used to track

such a region.

Another extension is the development of a transcoder that uses the in-

formation generated by our work. The location of the ROI in each frame is

added as a metadata to the compressed video stream in the edtiting phase.

Only when needed for transmission, the ROI is extracted and scaled to match

the desired output display, and then it is compressed. The naive solution is to

decode the compressed video stream, extract the ROI, rescale it and compress

it again. Compression of video have high complexity. An extension for our

work is the development of a transcoding scheme for the extraction, rescaling

and compressing. A transcoder may re-use information from the original com-

pressed video stream and thus reduce computational complexity. For example,

the motion vectors inside the ROI from the original compressed stream may

be reused when compressing only the extracted ROI for transmission.

96

Appendix A

Scale Estimation Using

AFMT

The AFMT is defined in equation 3.10. It is written here again for clarity.

𝑀𝑓 (𝑘, 𝑣) =
1

2𝜋

∫
∞

0

∫ 2𝜋

0
𝑓 (𝑟, 𝜃) 𝑟𝜎−𝑗𝑣𝑒−𝑗𝑘𝜃𝑑𝜃

𝑑𝑟

𝑟
(A.1)

Where 𝜎 is a parameter.

The relation between frames related by scale and rotation is given in (3.11).

In [6] the AFMT was used to estimate this model parameters. Our model is

different since we have scale and shifts parameters. The relation between

frames in our model is given in (3.1). Therefore, we change to Cartesian

coordinates.

𝑀𝑓 (𝑘, 𝑣) =
1

2𝜋

∫
∞

0

∫ 2𝜋

0
𝑓 (𝑟, 𝜃) 𝑟𝜎−𝑗𝑣𝑒−𝑗𝑘𝜃𝑑𝜃

𝑑𝑟

𝑟

=
1

2𝜋

∫
∞

0

∫ 2𝜋

0
𝑓 (𝑟, 𝜃) 𝑟𝜎−𝑗𝑣𝑟𝑘 (𝑟𝑐𝑜𝑠𝜃 + 𝑗𝑟𝑠𝑖𝑛𝜃)−𝑘 𝑑𝜃

𝑑𝑟

𝑟

=
1

2𝜋

∫
∞

0

∫ 2𝜋

0
𝑓 (𝑟, 𝜃) 𝑟𝑘−1+𝜎−𝑗𝑣 (𝑟𝑐𝑜𝑠𝜃 + 𝑗𝑟𝑠𝑖𝑛𝜃)−𝑘 𝑑𝜃𝑑𝑟

=
1

2𝜋

∫
∞

0

∫ 2𝜋

0
𝑓 (𝑝, 𝑞)

(
𝑝2 + 𝑞2

) 𝑘−1+𝜎−𝑗𝑣

2 (𝑝+ 𝑗𝑞)−𝑘
𝑑𝑝𝑑𝑞

(𝑝2 + 𝑞2)0.5

=
1

2𝜋

∫
∞

0

∫ 2𝜋

0
𝑓 (𝑝, 𝑞)

(
𝑝2 + 𝑞2

) 𝑘−2+𝜎−𝑗𝑣

2 (𝑝+ 𝑗𝑞)−𝑘 𝑑𝑝𝑑𝑞 (A.2)

97

Where

𝑝 = 𝑟𝑐𝑜𝑠𝜃

𝑞 = 𝑟𝑠𝑖𝑛𝜃 (A.3)

Note, that we divided the integrand by the Jacobean 𝑟 when changing to

Cartesian coordinates, in the fourth equality.

In discrete form [6]:

𝑀𝑑
𝑓 (𝑘, 𝑣) =

1

2𝜋

𝑞=𝑄𝑚𝑎𝑥∑
𝑞=𝑄𝑚𝑖𝑛

𝑝=𝑃𝑚𝑎𝑥∑
𝑝=𝑃𝑚𝑖𝑛

𝑓 (𝑝, 𝑞)
(
𝑝2 + 𝑞2

) 𝑘−2+𝜎−𝑗𝑣

2 (𝑝+ 𝑗𝑞)−𝑘 (A.4)

Suppose we have two frames 𝑓1, 𝑓2 with a relation by the model in (3.1).

The relation between their Fourier transforms is given by equation (3.2). Tak-

ing the absolute values of the Fourier transforms, we get:

∣𝐹2 (𝑓𝑥, 𝑓𝑦)∣ = 1

𝛼2

∣∣∣∣𝐹2

(
𝑓𝑥
𝛼

,
𝑓𝑦
𝛼

)∣∣∣∣ (A.5)

Performing an AFMT on the absolute values of the Fourier transforms, we

get 𝑀𝑓1 ,𝑀𝑓2 . The scale estimation is given by 𝛼 = 𝑒
𝑡

2−𝜎 , where 𝑡 is define by:

𝑡 =

∑𝑣=𝑉
𝑣=−𝑉

∑𝑘=𝐾
𝑘=−𝐾

(
𝑙𝑛∣𝑀𝑑

𝑓1
(𝑘, 𝑣) ∣ − 𝑙𝑛∣𝑀𝑑

𝑓2
(𝑘, 𝑣) ∣

)
(2𝐾 + 1) (2𝑉 + 1)

=

∑𝑣=𝑉
𝑣=−𝑉

∑𝑘=𝐾
𝑘=−𝐾

(
𝑙𝑛∣𝑀𝑑

𝑓1
(𝑘, 𝑣) ∣ − 𝑙𝑛∣𝛼−2𝛼𝜎−𝑗𝑣𝑒−𝑗𝑘𝛽𝑀𝑑

𝑓1
(𝑘, 𝑣) ∣

)
(2𝐾 + 1) (2𝑉 + 1)

=

∑𝑣=𝑉
𝑣=−𝑉

∑𝑘=𝐾
𝑘=−𝐾

(
𝑙𝑛∣𝑀𝑑

𝑓1
(𝑘, 𝑣) ∣ − 𝑙𝑛∣𝑀𝑑

𝑓1
(𝑘, 𝑣) ∣ − 𝑙𝑛∣𝛼−2+𝜎∣

)
(2𝐾 + 1) (2𝑉 + 1)

=

∑𝑣=𝑉
𝑣=−𝑉

∑𝑘=𝐾
𝑘=−𝐾

(−𝑙𝑛∣𝛼−2+𝜎∣)
(2𝐾 + 1) (2𝑉 + 1)

= (2− 𝜎) 𝑙𝑛 (𝛼) (A.6)

98

Appendix B

Computational Complexity of

Scale Estimation Methods

In this section we calculate the complexity of the different scale estimation

methods, the frequency-domain slice cross-correlaton method described in sec-

tion 3.1 and the spatial-domain Mellin transform method described in 3.4.

For both methods we need to calculate the projections. The number of

additions to be done is determined by the width 𝑊 and height 𝐻. We will

demonstrate the operations for 𝑊 = 720,𝐻 = 576.

For the slice cross-correlation method we can calculate the projections for

each frame only once. This means that we have 2𝑊𝐻 more additions per

frame for horizontal and vertical projection. For our example, the value is

2𝑊𝐻 = 829, 440.

For the Mellin transform method, we need to calculate the projections for

each frame twice because of the method for reducing the fixed-size display

effects. For the method using cross-correlation of slices in the frequency do-

main, we do not need to use the method for reducing the effects, becuase the

estimation results were sufficiently good. The first time that we need to per-

form projections is when calculating the global motion parameters between

the previous frame and the current frame. We need to zero out parts in the

current frame that do not appear in the previous frame, in order to reduce the

fixed-size display effects. The second time that we need to perform projections

is when calculating the global motion parameters between the current frame

99

and the next frame. We need to zero out parts in the current frame that do

not appear in the next frame. The parts that need to be zeroed out in both

cases may be different. This means that we have to calculate the projections

twice and do 4𝑊𝐻 additions. But, we can use the results of the projections

from the first time and just subtract the pixels that we want to zero out, or

add the pixels that were zeroed out and we want them for the current pro-

jection. Typically, this is quite a small number of pixels. For example, if the

scale factor is 0.99, the width is 720 and the height is 576, we need to zero out

7 rows and 6 columns, which means we are left with a frame of 713 ∗570. The
number of pixels for the subtraction is 8, 310. It means that we can calculate

both projections by 2𝑊𝐻 + 2 ∗ 8, 310 = 846, 060 additions.
We now summarize the number of additions and multiplications for each

method. The number of operations for the slice cross-correlation method for

the first pair of frames is 2𝑊𝐻 = 829, 440 additions for the projections,

𝑊𝑙𝑜𝑔2𝑊 + 𝐻𝑙𝑜𝑔2𝐻 = 12, 116 additions and multiplications for the Fourier

transforms and (2𝑀 − 1)𝑁1 = 617, 660 additions and multiplications for the

correlation. Per frame we have 1, 459, 216 additions and 629, 776 multiplica-

tions. Assuming 30 frames per second we have 43, 776, 480 ≈ 43.8𝑀𝐼𝑃𝑆 for

the additions and 18, 893, 280 ≈ 18.9𝑀𝐼𝑃𝑆 for the multiplications (MIPS -

Million Instructions per Second).

The number of operations for the slice cross-correlation method for all the

frames, except the first pair of frames, is 2𝑊𝐻 = 829, 440 additions for the

projections,𝑊𝑙𝑜𝑔2𝑊+𝐻𝑙𝑜𝑔2𝐻 = 12, 116 additions and multiplications for the

Fourier transforms and (2𝑀 − 1)𝑁1 = 54, 132 additions and multiplications

for the correlation. Per frame we have 895, 688 additions and 66, 248 multi-

plications. Assuming 30 frames per second we have 26, 870, 640 ≈ 26.9𝑀𝐼𝑃𝑆

for the additions and 1, 987, 440 ≈ 2𝑀𝐼𝑃𝑆 for the multiplications.

The number of operations for the Mellin transform is 2𝑊𝐻 +2𝑊 +2𝐻 =

832, 032 additions for calculating the projections and 2 ∗ 8, 310 = 16, 620 ad-
ditions and multiplications for the calculating the transform. Assuming 30

frames per second we have 25, 459, 560 ≈ 25.5𝑀𝐼𝑃𝑆 for the additions and

498, 600 ≈ 0.5𝑀𝐼𝑃𝑆 for the multiplications.

100

Appendix C

Probabilty Distribution

Function of Estimated Scale

In this Appendix we find the probability distribution function of the estimated

scale factor �̃�, defined in section 4.2.

We want to find the distribution of the estimated scale �̃�. First we will

find the distribution function of �̃�𝑠. Considering equations (4.11) and (4.12),

we need to find the distribution of a ratio of two Gaussian random varaibles.

Define two normal distributed variables:

𝑋 ∼ 𝒩 (𝜇𝑥, 𝜎𝑥)

𝑌 ∼ 𝒩 (𝜇𝑦, 𝜎𝑦) (C.1)

We also assume that the variables are uncorrelated. The distribution of

their ratio is the distribution of a variable 𝑍 = 𝑋/𝑌 and is given by [7]:

𝑝𝑍(𝑧) =
𝑏(𝑧) ⋅ 𝑐(𝑧)

𝑎3(𝑧)

1√
2𝜋𝜎𝑥𝜎𝑦

[
2Φ

(
𝑏(𝑧)

𝑎(𝑧)

)
− 1

]
+

1

𝑎2(𝑧) ⋅ 𝜋𝜎𝑥𝜎𝑦 𝑒
−

1
2

(
𝜇2𝑥
𝜎2
𝑥
+

𝜇2𝑦

𝜎2
𝑦

)

(C.2)

Where:

𝑎 (𝑧) =

√
1

𝜎2
𝑥

𝑧2 +
1

𝜎2
𝑦

𝑏 (𝑧) =
𝜇𝑥
𝜎2
𝑥

𝑧 +
𝜇𝑦
𝜎2
𝑦

101

𝑐 (𝑧) = 𝑒

1
2

𝑏2(𝑧)

𝑎2(𝑧)
−

1
2

(
𝜇2𝑥
𝜎2
𝑥
+

𝜇2𝑦

𝜎2
𝑦

)

Φ(𝑧) =

∫ 𝑧

−∞

1√
2𝜋

𝑒−
1
2
𝑢2 𝑑𝑢 (C.3)

Note, that 𝑝𝑍(𝑧) is a standard Cauchy distribution for the case where 𝜇𝑥 =

𝜇𝑦 = 0 and 𝜎𝑥 = 𝜎𝑦 = 1. In our case 𝜇𝑥 and 𝜇𝑦 are positive and therefore not

0.

We define 𝑧 = �̃�𝑠. Therefore, 𝑓𝑧 (𝑧) is given by (C.2) with expectations

and variances as given in (4.12). The next step is finding the probability

distribution function of �̃� given the probability distribution function of 𝑧.

�̃� = 𝑧
1
𝑠 =

[
�̃�𝑝1 (𝑠)

�̃�𝑝2 (𝑠)

] 1
𝑠

=

[
𝑀𝑝1 (𝑠) + 𝑛𝑀1

𝑀𝑝2 (𝑠) + 𝑛𝑀2

] 1
𝑠

(C.4)

We can define �̃� = 𝑔 (𝑧) = 𝑧
1
𝑠 . Therefore, the probability distribution

function of �̃� is given by:

𝑓�̃� (�̃�) =

𝑛(�̃�)∑
𝑘

∣ 1

𝑔′
(
𝑔−1𝑘 (�̃�)

) ∣ ⋅ 𝑓𝑧 (𝑔−1𝑘 (�̃�)
)

(C.5)

Here, 𝑔−1 denotes the inverse function and 𝑔′ the derivative. 𝑛 (�̃�) is the

number of solutions for the equation �̃� = 𝑔 (𝑧), and 𝑔−1𝑘 (�̃�) are these solutions.

We also note that 𝑔 (𝑧) is monotonic so that we have:

𝑓�̃� (�̃�) = ∣ 1

𝑔′
(
𝑔−1𝑘 (�̃�)

) ∣ ⋅ 𝑓𝑧 (𝑔−1𝑘 (�̃�)
)
= ∣ 1

𝑔′ (�̃�𝑠)
∣𝑓𝑧�̃�𝑠 (C.6)

Since 𝑔′ (�̃�) = 1
𝑠 �̃�

1
𝑠
−1 ,we have that:

𝑓�̃� (�̃�) = ∣𝑠�̃�𝑠−1∣𝑓𝑧�̃�𝑠 (C.7)

Equations (4.10), (C.2), (C.3), (C.4), (C.7) define the probability distribu-

tion function of �̃�.

𝑓�̃� (�̃�) = ∣𝑠�̃�𝑠−1∣𝑏(�̃�
𝑠) ⋅ 𝑐(�̃�𝑠)
𝑎3(�̃�𝑠)

1√
2𝜋𝜎𝑛𝑀

𝜎𝑛𝑀

[
2Φ

(
𝑏(�̃�𝑠)

𝑎(�̃�𝑠)

)
− 1

]

102

+
1

𝑎2(�̃�𝑠) ⋅ 𝜋𝜎𝑛𝑀
𝜎𝑛𝑀

𝑒
−

1
2

(
𝑀2

𝑝1
(𝑠)

𝜎2
𝑛𝑀

+
𝑀2

𝑝2
(𝑠)

𝜎2
𝑛𝑀

)
(C.8)

Where

𝑎 (�̃�𝑠)) =

√
1

𝜎2
𝑛𝑀

�̃�2𝑠+
1

𝜎2
𝑛𝑀

𝑏 (�̃�𝑠) =
𝑀𝑝1 (𝑠)

𝜎2
𝑛𝑀

𝑧 +
𝑀𝑝2 (𝑠)

𝜎2
𝑛𝑀

𝑐 (�̃�𝑠) = 𝑒

1
2

𝑏2(�̃�𝑠)

𝑎2(�̃�𝑠)
−

1
2

(
𝑀2

𝑝1
(𝑠)

𝜎2
𝑛𝑀

+
𝑀2

𝑝2
(𝑠)

𝜎2
𝑛𝑀

)

Φ (�̃�𝑠) =

∫ �̃�𝑠

−∞

1√
2𝜋

𝑒−
1
2
𝑢2 𝑑𝑢 (C.9)

We use 𝑓�̃� (�̃�) for the perfomance analysis of the scale estimation.

103

Bibliography

[1] T. Koga, K. Iinuma, A. hirano, Y. Iijima, and T. Ishiguro, “Motion

compensated interframe coding for video conferencing,” in Proc.

Nat. Telecommun. Conf., New Orleans, L.A., pp. G5.3.1-G5.3.5.

Nov.-Dec. 1981.

[2] J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim, “A

novel unrestricted center-biased diamond search algorithm for block

motion estimation,” IEEE Trans, Circuits Syst. Video Technol.,

Vol. 8, No. 4, pp. 369-377, Aug. 1998.

[3] Deigmoeller, J. Itagaki, T. Stoll, G., “An approach for an intelligent

crop and scale application to adapt video for mobile TV,” IEEE

International Symposium on Broadband Multimedia Systems and

Broadcasting, 2008.

[4] B.S. Reddy, B.N. Chatterji, “An fft-based technique for translation,

rotation,and scale-invariant image registratio,” IEEE trans. on Im-

age Processing, Vol. 5, issue 8, pp. 1266–1271, Aug. 1996.

[5] Dan E. Dudgeon, Russell M. Mersereau, “Multidimensional Digital

Signal Processing,” Prentice Hall, Englewood Cliffs, NJ, 1984.

[6] Xiaoxin Guo, Zhiwen Xu, Yinan Lu, Yunjie Pang, “An application

of Fourier-Mellin transform in image registration,” The Fifth In-

ternational Conference on Computer and Information Technology,

CIT 2005.

[7] D. V. Hinkley, “On the Ratio of Two Correlated Normal Random

Variables,” Biometrika, Vol. 56, No. 3, pp. 635-639. Dec. 1969.

104

[8] Siatras, S. Nikolaidis, N. Krinidis, M. Pitas, I. “Visual Lip Activity

Detection and Speaker Detection Using Mouth Region Intensities,”

IEEE trans. on Circuits and Systems for Video Technology, pp.133-

137, Jan. 2009.

[9] X. Sun, J. Foote, D. Kimber and B.S. Manjunath, “Region of inter-

est extraction and virtual camera control based on panoramic video

capturing,” IEEE Trans. On Multimedia, vol. 7 no. 5, pp. 981-990,

Oct. 2005.

[10] Rogerio Schmidt Feris, Teofilo Emidio de Campos, and Roberto

Marcondes Cesar Junior, “Detection and Tracking of Facial Features

in Video Sequences,” MICAI, pp. 127-135, 2000.

[11] Einat Kidron, Yoav Y. Schechner, Michael Elad, “Pixels that

sound,” Proc. IEEE CVPR, Vol. 1, pp. 88-96, 2005.

[12] Zohar Barzelay, Yoav Y. Schechner, “Harmony in motion,” Proc.

IEEE CVPR, 2007.

[13] J. Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davies, and

M. Sandler,“A tutorial on onset detection in music signals,” IEEE

Trans. Speech and Audio Process, vol. 13, pp. 1035-1047, 2005.

[14] A. Klapuri, “Sound onset detection by applying psychoacoustic

knowledge,” Proc. IEEE ICASSP, vol. 6, pp. 3089-3092, 1999.

[15] J. Shi and C. Tomasi, “Good features to track,” Proc. IEEE CVPR,

pp. 593-600, 1994.

[16] C. Tomasi and T. Kanade, “Detection and Tracking of Point Fea-

tures,” Carnegie Mellon University Technical Report CMU-CS-91-

132, April 1991.

[17] S. Birchfield, “An implementation of the Kanade-Lucas-Tomasi fea-

ture tracker,” Available at http://www.ces.clemson.edu/s̃tb/klt/.

105

[18] Paul Viola, Michael Jones, “Rapid Object Detection Using a

Boosted Cascade of Simple Features,” Proc. IEEE CVPR, Vol. 1,

pp. 511-518, 2001.

[19] Paul Viola, Michael Jones, “Robust Real-time Object Detection,”

International Journal of Computer Vision, 2001.

[20] Yoav Freund and Robert E. Schapire, “A decision-theoretic general-

ization of on-line learning and an application to boosting,” Compu-

tational Learning Theory: Eurocolt ’95, pp. 23-37, Springer-Verlag,

1995.

[21] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual

attention for rapid scene analysis,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 20, No. 11 pp. 1254-1259,

Nov 1998.

[22] Ki Tae Park, Young Shik Moon, “Automatic Extraction of Salient

Objects Using Feature Maps,” IEEE ICASSP, Vol. 1, pp.617-620,

Apr. 2007.

[23] Remi Trichet, Bernard Merialdo, “Fast Video Object Selection for

Interactive Television,” IEEE International Conference on Multi-

media and Expo, pp. 989-992, 2006.

[24] D. Comaniciu, V. Ramesh, and P. Meer, “Real-Time Tracking of

Non-Rigid Objects using Mean Shift,” Proc. IEEE CVPR, pp. 142-

151, 2000.

[25] Birchfield, S.T. Sriram Rangarajan, “Spatiograms Versus His-

tograms for Region-Based Tracking,” Proc. IEEE CVPR, Vol. 2,

pp. 1158-1163, 2005.

[26] Peiliang Wu, Lingfu Kong, Fengda Zhao, Xianshan Li, “Particle

Filter Tracking Based on Color and SIFT Features,” IEEE ICALIP,

pp. 932-937, 2008.

106

[27] Ming-Chieh Chi, Mei-Juan Chen, Chia-Hung Yeh, Jyong-An Jhu,

“Region-of-interest video coding based on rate and distortion vari-

ations for H.263+,” Signal Processing: Image Communication 23,

pp. 127-142, 2008.

[28] F. Ghorbel, “A complete invariant description for gray-level images

by the harmonic analysis approach,” Pattern Recognition Letters,

Vol. 15 p. 1043-1051, Oct. 1994.

[29] Rudolf E. Kalman, “A New Approach to Linear Filtering and Pre-

diction Problems,” Transactions of the ASME–Journal of Basic En-

gineering, Vol. 82, Series D, 1960.

[30] Gordon N.J., Salmond D.J. and Smith A.F.M. “Novel approach to

nonlinear/non-Gaussian Bayesian state estimation,” IEE Proceed-

ings F Radar and Signal Processing, Vol. 140, pp. 107-113, Apr.

1993.

[31] M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim

Clapp, “A Tutorial on Particle Filters for Online Nonlinear/Non-

Gaussian Bayesian Tracking,” IEEE Transactions on Signal Pro-

cessing, Vol. 50, No. 2, Feb. 2002.

[32] A. Doucet, A.M. Johansen, “A tutorial on particle filtering and

smoothing: fifteen years later,” Technical report, Department of

Statistics, University of British Columbia. Dec. 2008

[33] A. Doucet, “On sequential Monte Carlo methods for Bayesian fil-

tering,” Dept. Eng., Univ. Cambridge, UK, Tech. Rep., 1998.

[34] G. Kitagawa, “Monte Carlo filter and smoother for non-Gaussian

non-linear state space models,” Journal of Computational and

Graphical Statistics, Vol. 5, pp. 1-25. 1996.

[35] R. Douc, O. Cappe, “Comparison of resampling schemes for particle

filtering,” Proceedings of the 4th International Symposium on Image

and Signal Processing and Analysis, pp. 64-69, 2005.

107

[36] Hol, Jeroen D. Schon, Thomas B. Gustafsson, Fredrik, “On Resam-

pling Algorithms for Particle Filters,” IEEE Nonlinear Statistical

Signal Processing Workshop, pp. 79-82, Sep. 2006.

[37] S.H. Choi, S.W. Lee, “Region tracking using perspective motion

model,” Pattern Recognition, Vol. 33, Issue. 12, pp. 2095-2098, Dec.

2000.

[38] M. Ritch, N. Canagarajah, “Motion-Based Video Object Tracking

in the Compressed Domain,” IEEE ICIP 2007, Vol. 6, pp. 301-304,

Oct. 2007.

[39] Y.D. Guo, X.D. Gu, Z.B. Chen, Q.Q. Chen, and C. Wang, “Adap-

tive Video Presentation for Small Display While Maximize Visual

Information,” Lecture Notes in Computer Science, pp. 322-332,

2007.

[40] J. Yang, W. Lu and A. Waibel, “Skin-Color Modeling and Adapta-

tion,” CMU CS Technical Report, CMU-CS-97-146. May, 1997.

[41] Matei Mancas, Bernard Gosselin, Benoit Macq, “Segmentation us-

ing a region-growing thresholding,” Image Processing: Algorithms

and Systems IV. Proceedings of the SPIE, vol. 5672, pp. 388-398,

2005.

108

�� ����� ��	�
 ����� ��
��
������ �������� �
��� ����

������ ����

�� ����� ��	�
 ����� ��
��

������ �������� �
��� ����

���� �� ���	�

����� ����� ��	
��� �	
���
��
 �	�

�	� ������ �
��� ���
�

������ ����

���	
�
������� ��� – ��
���� ���� 	���

���� ������� ��
� ��	���
�	�

���� ����	� 	
���� ���� ��� ��� �����	� 	��� ����	

���� ����

���	 ���� �� ����� 	����	 ������	� �����	 �� ���� ���� 	����	 �����

���

	����	� 	���	 �� ������� ����� ������ 	����	 ����� �� ����	� 	��� ���

�����
	

�	� ������ �� 	���� �	����	� ������	 �� ��
 �	���	 ����� ������ 	���

��������	� 	����	 ����	 	����	 �� ��� ������ �����
� 	��� ���

�����

���� �� ���		
	��� �	���� ��� ��� ��� �	�		� �	�	���� �	�	��� 	���	�

����� �� ����� ��� �	��� 	���� �� ��� �	��� �	���� �		��� �	����

�	������ ��� ������ ���	�� �	�� ������ ���	� �� ������ ��	� ��� �	� ��

��	�� �	�		� �	�	��� �� �		����� �	�	���� ���� ���	�� ������ ���	 �����

������ �	���� �	������� ����� ����� �� �� ����� ���� ��� 	�	��� ������

���	� �	��� ��� �� ������� �	���� �� �� ������ ��� �� ����� �� �����

���� ����� ����	� ��� �� �	��� ����� ��	�� �	�		 �	���� ����
�� ��

�	��� ���	� ����� ��		��� ���	� �� �� �	��� ���� ������ ������� ���� ������

����	� ���� ����� �� ��

�� �	�	��� ��� ���	�� �� ���� ���		�� �� ���	��� �	����� ��� �� ������

����� �		��� ���	� �	����� ���� �� �	�	�� �	���� �	���� �		�� ���	�� �����

���� �		��� ���	� ��	��
	��� ��	����� �� ����� 	�� �� �	��� ����� ��	��

�	 ��	�� �� ��	�� ������ �� ����� ����� ���
��� ��� ����	�� ��	�� ����

���� ��� ���	���
��� ��� ��� ����� �	�� ������ �		��� ���	� �� ����

��		��� ���	� �� �� ����� ������ �	������� ����� ���� �	

��	��� 	��� ��	����� ���	� ����	��
���� �	�� ���� ���	� �� ������

��	�� �		��� ���	� ���	� ������ �� ��	�� ��	�� ������ �		��� ���	� ��

������ �	������ ������ ��
���� ��	������ �
���� 	�	 �� ����� ��	���

�	����� ������ �� ��� ��� �	������ �		��	� �� ������ ������ ������

���� �� ������ ������ ����� ���� �		�� ��� ������ �� ������� ������

��� ������ 	��	� ����� ���� ������ ��� ���� �� ����� ���� ����� �� �	�	�

�	��� ����� ���	� �� ������ ��� �	�����
����� ��	����� ��	� �	�	��

������
��� ������ �� �	���� ����� 	� �	��� ��� ������� �� �� �	��	����

�

����� ����� ��	
 ��������� ����� �����
 ������ ��	 ���� �����������

���� �	 ���� ��� ���
� ����� ������� ������� ��
��
 ���������

�������� ������� ��
�� ����	
� ��
 ���	�� ��
 ���� ���
��������

��� ���
���	 ������ ������ ���� ����� ����� ����
 �
� ��
�� �����

���� ����� ����	 ����
 ����� ��	���� �����	��� �� ���� �
� ��
��	

��
� ����� �
��� ���
� ��� �������� ����
 ���� ��� ���������� ��

���� ����
 ����� ����� �� ����� �������
�
� ��������� (𝑀𝑒𝑙𝑙𝑖𝑛)

���� ��� ����� ����� ��	��� �����	��	 ����
 ���� ��
�� ����
 �
����

�����
� ������ �� ��
� ����� �
��� ���
� �
���� ����
 ����� ���

�� ����	 ���� ��� ����������� ������	 ����� ����
 ��� ����� ����	 ���

������� �� ����� ����� �� �����
 ����� ��	 ������ ������	 ������

��	 �������
 ��
��� ����� �
 ��
��� ������ ������ �������� ��

����
 ���� �� �
��� ��� ����� ��� ���� ��
��� ���� ����	 ���	� ����

��
���
� ����� 	���� ����	 ��
� �����	 ��� �� ���	 ���������

�����
 ��	���� �����	��� �� ������ ��	�� ��� ��������� ��������

���� �����	 �� ���
 ���� �� �������
��� ������ ��� ��� ��� ������

������� ������

�	��� ���� ����� ����
 �����

�
� ������ ����� �� ��
���� ��� ����

�
��� ����� �� �� ���
� ������� ������ ������ ����	 ����� ��� ��

���� ������� ����� ��	� �����
��� ������ ��� ������� �� ��
��
 ���
� ���

�� ������ ��� �����
 ����� ��	 ���	� ������	 �� ������ ����� ���� �� ����

����
���� ����� ����	 ������� ���
��� �
�	 ������ ����� ���
� ����

������ �����
 	����� ����� ��	� �����
 ����� ��	 ���	� ������	 ������

����	 ����� ��� ������� ���
��� �
�	 �� ������ ��	� ������ ����� ���

���
���� �����

��� ��	� ������
�	 ������ ����� ������� ����� ����
 ��
�

�����	�� ���� �������
 �	��	 �
������� ����� ��� ��
� ���� �������

��	� �����	 ������ ����	� ���� ���
� ������
 ��	� �� ����	 ������ ����

��� ����
� �����
 ������ �����
 ����	
�
 ����� ���	��� �����

����	� ������ �����
 ���� 	�� ����� ���
�
� ������
� ����	 �����

������ �������� �� ����
 ��� �����
� ����	 ������ ������ �������� �����

������ ��
 ���
�
�
 ���
�� ��� ���
� ������ ����� 	��
 ���	����

���� ��	�
��
	�� ���
� ��������� ������ ������
 ���
� �������

��
 ���	�� ������ �����
 �������� ������ �������
 ���� ����� ���
��

	

����� ������	
���� �� �� ����� �����	 ������	 �������	 �� ������ �����

������	 �������� ����� �
���� ������� ��� �� ������		 ������ �������

��	 �� ���� ���������� �� ��	 ������	 	������	 �	� ��
�� ��	���

����� �����
��� �� ��
�� ���	� ���� ������� ���� ���������

��� ������	
���� �� �

��� ���
 �� 	���	 ������ �� 	���	
��� ��

������ ��� 	����	 �� ���	� ����
 �� ���� ��	 	����
 	�� ����� ��� ��

	���� 	����	 �� ���	� �
�� ��� �	�	�
��	 �� ����� �
��	 �� ��
	

�� ����� ���� ��� ��	 �����	
����� ��	 	���� 	�� ���
�� ���� ��� 	����

��� ����� ��� ������ ����� �����	
���� �� �
 	������
 ����� ��
��� ���

��� �� ��
� �
�� �� ���	� 	��� �����	
���� �� ��
� �
��	 �� ���	�

�� ����� ���� 	�
���� �	����	
����
�� ����
���� ��
���� ��� ���� �����	

����� �� ���� �� �����	 ��� �� ��
��
�� ��� ���� �� 	�	�� �����	
����

�	����	

�
��� �
��	 �	����	 ����� �����	
���� ��	��� �
���
�� ���
���� ���� �����

����	 �����	
���� �� ����� ���
����	�
��	 ��� �� �� ��� 	���� �����

���
�� �� �� ���� ������� ���
����	 �� ����� ��� �� �
��	 ��� ��

���
�		 ��
� �����	 	������� ���
����

����� ��� ���� �	����	 ��� 	���� ����� �
����
��� ���� ���� �
��	

�
����� ����
 ��� ����� ��� ���� ���� 	�	� �� ������
���� �	� ��� �

���� 	��� ����� ���� ��� ��
��� �� ����	
��	 �� �

��� �� ������

	���� ��� ���
��
��� �� ����� �
����
��� �� 	
�� ����	
��	 ������

��
�	 ����� ����� ��� 	����	� ���� ��� �� ����	
��	 ��	��� �����

���� ��� �� ����	
��	 ������ 	��� ��� �� ���	 �	�	
���� �������

�����	 ��
��	 ��� �� ����� ������
���
�� 	��� ����� ����	 �� ����

����� �	���� �� ����� ������� ��������� ������� �� �	 �����	 �������

	���� ����� ����	 �� ��������� ����
�� ���� ������ ���� �	���� �����

����� ����
��	 ���� �� 	���
��	 �	
	 ����� �� ���	� 	����	 	��
�� 	��

���
 �� ����	
��	 ��	��� ����� ���	����

��� �����	� ������� ������
�� ��� ��������� �	 ���� ������ ����	 ��

�	������ �
���

�

