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Abstract

Concatenative Text-To-Speech (TTS) synthesis and statistical TTS synthe-

sis are the two main approaches to text-to-speech synthesis. A concate-

native TTS (CTTS) directly uses parameters of natural speech features,

selected from a recorded speech database. Consequently, CTTS systems

enable speech synthesis with natural quality. However, since the desired

segments, having required characteristics, are not always available, other

segments with the closest characteristics to the required ones are used in-

stead. Concatenation of such segments may result therefore in audible dis-

continuities. Consequently, the smaller the footprint size of the TTS system

is, the lower is the quality of generated speech that is achieved. On the other

hand, a statistical TTS systems (STTS), while having a smaller footprint

than CTTS, generate speech that is free of such discontinuities but, in gen-

eral, is of lower quality than CTTS in terms of naturalness, as often it sounds

muffled and buzzy. This is due to over-smoothing of model-generated speech

features.

In this research we developed two approaches aimed to improve the

quality of TTS generated speech. First, we develop two techniques for

improving the quality of the baseline STTS system. Second, we propose a

technique for combining CTTS with STTS for a new class of TTS systems,
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denoted hybrid TTS (HTTS).

In STTS, speech feature dynamics is modeled by first- and second-order

feature frame differences, which, typically, do not satisfactorily represent

frame to frame feature dynamics present in natural speech. The reduced

dynamics results in over-smoothing of speech features, often sounding as

muffled and buzzy synthesized speech.

To enhance a baseline STTS system we propose two methods. First, we

propose to represent speech features dynamics in the transform domain and

not directly in terms of frame to frame variation. In the transform domain,

the insufficient dynamics is characterized explicitly by a marked attenua-

tion in inter-harmonic components. We found that the quality of speech

generated by a STTS system is improved by enhancing these attenuated

components.

Second, we introduce a segment-wise model representation with a norm

constraint. The segment-wise representation provides additional degrees

of freedom in speech feature determination. We exploit these degrees of

freedom for increasing the speech feature vector norm to match a norm

constraint. As a result, statistically generated speech features are not over-

smoothed, resulting in more natural sounding speech, as judged by listening

tests. The proposed method consumes less real-time memory during syn-

thesis, and the applied iterative algorithm has faster convergence than a

Global-Variance (GV) approach, reported earlier, with comparable qual-

ity. The segments-wise representation method is superior to the transform

domain method in terms of generated speech quality. However, the first

2



method is less computational complex, as compared to the second one.

In addition we propose in this work to combine the advantages of CTTS

and STTS into a new type of TTS, denoted HTTS. This is an hybrid sys-

tem in which, for each utterance, natural segments and model-generated

segments are interweaved via a hybrid dynamic path algorithm. As a re-

sults, speech generated by the proposed HTTS includes less discontinuities

than the baseline CTTS system does, and it sounds more natural than the

baseline STTS.

We designed a TTS system where both developed techniques, HTTS

and improved STTS are applied, and subjectively tested.

3
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Chapter 1

Introduction

Rapid development in computer systems and devices requires development

of human-machines interfaces as well. There are many devices that would

be inconvenient to use, if their input-output were restricted by the standard

I/O devices, such as a keyboard, a mouse, or a monitor. Today’s machines

can interact with people in very different ways. Beyond the conventional

I/O devices, additional interfaces like direct human-machine spoken dialog

systems are being developed. The input stage of human-machine spoken di-

alog system should include speech and language recognition modules. While

the output device should be able to translate machine commands and re-

spond by speech, typically generated by a text-to-speech (TTS) system.

There is great interest in improving the quality of Text-To-Speech (TTS)

systems as the number of applications using TTS increases. For example:

1) Any activity that occupies both hands, and at the same time needs to

get response from a machine, may be facilitated by using TTS as an output

device. 2) Vision-impaired people may receive written information through
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a TTS output device. 3) Different computer applications may use TTS as

an output device. In addition for the convenience of using TTS, it enables

a user-friendly interface, because the TTS system output may be adjusted

to produce speech with desired and predefined features. E.g., a user may

choose to get his machine response to sound as the voice of a particular

person. TTS is thus greatly applicable to both industrial and entertainment

applications. All these facts increase the importance of high-quality TTS

devices.

There are two main approaches for solving the TTS paradigm. The first

one uses basic units, which are either recorded speech segments or param-

eters representing these segments. These units may correspond to words,

phonemes or even sub phonemes, as used in this research. This speech

generation method is called concatenative TTS (CTTS). In this approach,

speech is generated by concatenating the best compatible segments accord-

ing to certain concatenation rules. By this approach, generated speech

inherently possesses natural quality. However its quality depends on the

size of the recorded database, as high-quality CTTS needs an extensive

database. The main disadvantage of CTTS is possible discontinuities at

segment boundaries due to concatenation. The smaller is the size of the

stored database, the larger the number of discontinuities that typically ap-

pear in the generated speech. Thus, in applications where storage and

computational resources are limited, such as mobile devices, a small foot-

print system is necessary, resulting in reduced quality of CTTS generated

speech.
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The other TTS approach employs statistical models for speech pro-

duction and is called statistical TTS (STTS). STTS does not use natu-

ral speech segments but rather generates speech from previously learned

statistical models, requiring much less storage than natural segments used

by CTTS. Being generated from statistical models, speech generated by

STTS is smoother. However, generally, STTS-generated speech is often

over-smoothed, resulting in degraded speech quality in the form of muffled

and buzzy speech [16], [24], [26], [30], [27]. Efforts invested in handling the

over-smoothing problem are reported in [16], [24].

In this research we improve the baseline HMM-based STTS system by

introducing new concepts into the current STTS methodology and pro-

vide a systematic approach for the integration of these concepts. The new-

introduced concepts are: a) An alternative model representation, based on

a segment-wise representation, instead of the conventional frame-wise rep-

resentation; b) Norm-regulated statistical speech feature vector meeting a

norm constraint. These concepts are utilized in an iterative algorithm, pro-

posed in this work. This algorithm generates speech features with enhanced

dynamics, resulting in improved generated speech naturalness, as compared

to the conventional generating scheme, and verified by listening tests. The

proposed segment-wise method is denoted as ’SW-STTS’.

While investigating the speech feature over-smoothing technique, we de-

veloped an additional method (to ’SW-STTS’ method) for improving speech

feature dynamics. By this technique speech feature dynamics are enhanced

in the transform domain. Resulting generated speech quality is better than

9



the quality of speech generated by the conventional model. This technique

is inferior in its quality to the quality of SW-STTS, however, its less compu-

tational complex. In addition, examining speech feature dynamics provides

additional insights to the speech feature over-smoothing. The method for

improving speech feature dynamics in the transform domain was published

and is detailed at [28].

Also, in this research we propose to combine the advantageous traits

of CTTS with those of STTS into another kind of TTS systems - hybrid

text-to-speech systems, denoted as HTTS. An HTTS system interweaves

natural segments with statistical model-generated segments via a proposed

hybrid dynamic path algorithm.

The proposed hybrid dynamic path algorithm aims to introduce statis-

tical models to certain positions within an utterance at which CTTS suffers

from discontinuities. As a result, natural segment sequences are bridged by

boundary constrained statistically generated segments. This concatenation

scheme is realized by the proposed hybrid dynamic path algorithm described

in this work.

The main components constituting the proposed HTTS system are the

mentioned hybrid dynamic path algorithm, enabling allocation of natural

segments along with statistical model-generated segments within an entire

utterance, and, a proposed hybrid speech features generating algorithm.

The proposed HTTS system inherits the naturalness of CTTS systems

and the smooth transitions of STTS, while, on one hand, having a lower

footprint than CTTS, and, on the other hand, requiring less computational

10



resources than pure STTS systems. Moreover, the proposed HTTS system

is a generalization of both CTTS and STTS, because it can work in either

a pure CTTS mode or a pure STTS mode, depending on a hybridism ratio

parameter, which controls the ratio of the numbers of natural segments to

the numbers of statistically generated segments comprising a synthesized

utterance. Speech generated in an intermediate (hybrid) mode consists of

natural and statistically generated segments, interweaved within an utter-

ance.

Obviously, the quality of a HTTS system depends on the qualities of

the baseline CTTS and STTS systems. Particulary, different STTS sys-

tems result in HTTS systems having different qualities. Consequently, an

enhanced STTS system will results in a better HTTS. To demonstrate this

aspect we compared the quality of HTTS composed of a conventional STTS

and a baseline CTTS to the quality of HTTS composed of a SW-STTS with

improved dynamics and the baseline CTTS. Speech features, generated by

SW-STTS, are less smoothed, compared to those generated by a conven-

tional STTS, and as a result, the generated speech sounds less muffled and

buzzy. As confirmed by listening tests, combining SW-STTS with CTTS

results in a HTTS system with better naturalness, as compared to HTTS

that is composed of conventional STTS and CTTS.

This thesis is organized as follows. In Chapter 2 we provide the essen-

tials of the baseline CTTS, in Chapter 3 we provide the essentials of the

baseline STTS used in this research. In the rest of the thesis we represent

the methods which were developed in this research. In Chapter 4 we present
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a technique for improving speech feature dynamics in the transform domain.

In Chapter 5 we present the improved quality statistical text-to-speech syn-

thesis based on segment-wise representation with a norm constraint. In

Chapter 6 we present the proposed hybrid text-to-speech system. Finally,

in Chapter 7 we provide a summary and directions for continuation of this

research.
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Chapter 2

Concatenative Text-to-Speech

Synthesis

In concatenative systems, speech is synthesized by concatenating natural

speech segment features, denoted in literature as candidates, units, or seg-

ments. These segments are basic segments for speech synthesis. In different

systems these segments represent phonemes or even sub-phonemes. The cur-

rent research is based on the IBM concatenative text to speech system that

uses a sub-phoneme as a basic segment/units, as described in Section 2.1,

and detailed at [6], [4], [7], and [5]. The main functional blocks of CTTS are:

1) Acoustic context-dependent decision trees for each sub-phoneme, holding

in their leaves parametric representation for natural speech segment fea-

tures, represented by ’Unit Repository’ block in Fig.2, 2) Target-prediction

trees, holding context dependent target energy, pitch and duration, and,

a phonetic text analyzer, providing graphemes to phonemes transcription

and dictating target values for pitch, energy and duration, represented by

13



Figure 2.1: The main blocks of the reference CTTS system used in our
research.

’Front-End’ block in Fig.2, 3)A dynamic search algorithm, finding an opti-

mal sequence of natural speech segment features according to target values,

and concatenative distance between segments, represented by ’Segment Se-

lection’ block in Fig.2, 4) A speech generator that composes speech from the

speech feature sequence found by the dynamic search, represented by the

’Signal Processing and Reconstruction’ block in Fig.2. Typically, natural

speech segment features are stored in a compressed form, and are decom-

pressed during synthesis. This is done in ’Decompression’ block in Fig.2.

2.1 Acoustic context decision tree

Each sub-phoneme context-dependent tree is built off-line in the following

fashion: All occurrences of a particular sub-phoneme are assigned to a root

node of a tree. Afterwards, this root node is split into two other nodes,

14



which may be split further and so forth. There are many possible options

for splitting a certain node. These options are dictated by a sub-phoneme

context. A sub phoneme context is defined by a set of questions concern-

ing neighbors of that sub-phoneme. Each question splits all occurrences of

a node into two groups. A question, which divides a node into two most

homogenous groups, defines a correct split and a node is divided according

to that question. A question is asked concerning immediate neighbors of a

phoneme. Asking questions about more distant contexts may give slightly

more accurate acoustic models. However, it results in appearing leaves

which don’t have segments concatenating smoothly with neighboring seg-

ments. A node’s split occurs when the total homogeneity of its sibling nodes

is lower than its own homogeneity. This process stops when a tree achieves

a predefined number of leaves or when there are not any nodes which may

be split into two nodes with a lower total homogeneity than their parents.

Where a metric for homogeneity is related to variance of a node.

.

2.2 Target prediction trees

2.2.1 Energy prediction trees

An energy prediction decision tree is built for each sub-phoneme in a fashion

like acoustic trees are built, but the questions asked for splitting nodes

concerns just two neighboring phonemes. A stored median value of each

leaf is used for the prediction during synthesis.
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2.2.2 Duration prediction trees

A duration prediction decision tree is built for each sub-phoneme asking

questions concerning two nearest neighbors like an energy tree is built. A

mean value for each leaf is used for duration prediction at the synthesis

stage.

2.2.3 Pitch prediction trees

For each segment in the database a pitch delta is computed at the beginning

and at the end of the segment divided by the pitch at the beginning of the

segment. The geometric mean of these deltas is computed for each sub

phonemes and recorded for later use in pitch contour generation.

During synthesis the words to be synthesized are converted to a phone

sequence by dictionary lookup, with the selection between alternatives for

words with multiple pronunciations being performed manually. The decision

trees are used to convert a phone sequence into an acoustic, duration, and

energy leaf for each sub phoneme in the sequence; and pitch contour is

defined as well. The median training values in the duration and energy

leaves are used as the predicted duration and energy values for each sub-

phoneme.

2.3 Dynamic search

Each acoustic leave, which represents a particular phoneme in a phoneme

sequence comprising a generated text, holds a number of candidates (seg-
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ments), to be concatenated to an entire speech waveform. Clearly, the more

candidates are in any given acoustic leave the higher quality of generated

speech. However, there is an exponential number of possible combinations

of candidates to combine an utterance. Dynamic programming with an

appropriate cost function is applied to find an optimal combination of can-

didates.

The IBM cost function includes two basic components. The first one

is the similarity of segments inherent prosody to the front-end dictated

target prosody. The second is a concatenation cost of each segment with its

adjacent segments in the acoustic leaves sequence.

The overall cost for a particular candidate is composed from the target

cost plus the concatenation cost. A dynamic search, to obtain the optimal

path, is performed using this overall cost:

Θ̂ = argmin
Θ

d(Θ, T )

d(Θ, T ) =
N∑
j=1

du(θj, tj) +
N∑
j=1

dc(θj, θj+1),

du(θj, tj) =
I∑
i=1

ωid
i
u(θj, tj), (2.1)

where, Θ̂ is the optimal sequence of segments, θj is a segment, being con-

sidered at the j-th stage, tj is a required prosody for the j-th phoneme,

dc(θj, θj+1) is a spectral distance between θj and θj+1, diu(θj, tj) is a cost for

the i-th prosody component of θi, and, ωi is a weight of the i-th prosody
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component.

All possible segment concatenations are examined during a forward pass

of the dynamic search. The best path is found on this full connected trellis

by back-tracing. The best path segments are sent to the speech generator,

using overlap and add synthesis. In Section 6.2 we propose a modified

dynamic search, enabling an optimal interweaving of natural segments with

statistically generated segments.

One of our research objectives is to find a way to integrate a statistical

model into the dynamic search, and to define a hybrid synthesis system

that uses data-base segments along with segments derived from statistical

models. The next section describes the statistical model.

2.4 Speech parameters

In this research speech spectrum log-amplitude, A(f ′), of every frame is

modeled by a linear combination of triangular basis functions, Bn(f ′), n =

1, 2, . . . ,M , as follows:

log(A(f ′)) =
M∑
n=1

cn ·Bn(f ′), (2.2)

where f ′ denotes a mel-scale frequency1.

This representation is successfully used in IBM’s state-of-the-art CTTS

system, detailed in [3]. However, it was not previously used in HMM-based

speech synthesis systems. Examination of the suitability of this represen-

1The mel-scale mapping is f ′ = 2595log10(1 + f
700 ).
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Figure 2.2: Triangular basis functions.

tation for HMM-based speech synthesis is one of the goals of this research.

Other common speech representations for HMM-based speech synthesis are

MFCC and LPC, as detailed in [16] and [22], respectively.

2.5 Speech reconstruction

In this research speech waveform is represented by sinusoidal model, [2]:

sω(n) ∼= s̃ω(n) = ω(n)
k=L∑
k=0

Aksin(Θkn+ ϕk), (2.3)

where Ak, Θk, ϕk is the k-th harmonic amplitude, frequency and phase,

respectively. ω(n) is a window function. However, not all the frequencies

are stored, but only the pitch frequency, Θ0. At the reconstruction stage

all the frequencies are generated as multiples of Θ0, Θ̃k = Θ0k.

The phase information is stored for the low band frequencies only, while

the high bad phase information is generated from the low bands phase by

a non-linear operation (such as wive rectification) in the time domain.
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To improve the reconstructed speech naturalness a random frequency

dither is applied to Θ̃k. The dither is applied above a predefined threshold

frequency and gradually increases towards high frequencies.

A short time spectrum is reconstructed in the frequency domain accord-

ing to (2.3). Speech waveform is generated by OLA (overlap-add) method

from a short time wave forms.
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Chapter 3

Statistical Text-to-Speech

Synthesis

In this chapter we briefly describe the conventional approach for deriving

the entire utterance speech feature vector in statistical HMM-based TTS.

3.1 Statistical speech features representation

A speech feature vector over an entire utterance, having N frames, is rep-

resented in this paper by:

c = [cT1 , c
T
2 , . . . , c

T
N ]T , (3.1)

where ci = (ci(1), ci(2), . . . , ci(M))T are the expansion coefficients, intro-

duced in (2.2). ci denotes the static feature vector of dimension M × 1

of the i-th frame, where M = 32. In this research we used frames of the

length of 20ms with a frame overlap of 10ms. The prosody, (pitch, energy

and duration), is modeled by a context-depended regression trees, detailed
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in [6], [4], and [5].

The general HMM architecture assumes statistical independence be-

tween visible states, while hidden states are statistically dependent via a

hidden states transition matrix, as detailed in [20]. However, this assump-

tion is not realistic for speech modeling because temporal events in natural

speech are actually not independent. To handle this discrepancy, which ex-

ists in HMM speech modeling methodology, the static speech features are

augmented by the dynamic speech features, as considered in [9], [21], [16],

[24]. The static speech features along with the dynamic ones constitute an

augmented speech feature space, which is the conventional space for speech

modeling. The static and dynamic features are combined into a vector:

o = [oT1 ,o
T
2 , . . . ,o

T
N ]T , (3.2)

where,

oi = (cTi ,∆
1cTi ,∆

2cTi )T . (3.3)

The dynamic features ∆mci, for the i-th frame, approximate the m-th order

difference in time of the static features ci, as detailed in [8]. When using

only the two-sided first and second order differences, the dynamic features

are computed as:

∆1,2cTi =

L
(1,2)
+∑

τ=L
(1,2)
−

ω1,2(τ)cTi+τ , (3.4)

where ω1,2 are the weighting coefficients of the two-sided approximated first
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and second order derivatives expansions, respectively, and, L(1,2)

(+,−) are the

left (’-’) and right (’+’) expansions limits for the first and second order ex-

pansions, respectively. Consequently, the vector o, over an entire utterance,

can be obtained from c by a linear transformation:

o3M·N×1=W3M·N×M·NcM·N×1, (3.5)

where the matrix W is constructed according to the first and 2nd difference

vectors ∆1ci and ∆2ci, respectively.

3.2 Statistical model

Given a continuous mixture HMM, λ, the optimal observation vector o over

an entre utterance is derived by:

oopt = argmax
o

P (o | λ) (3.6)

and

P (o|λ) =
∑
∀q

P (o,q|λ), (3.7)

where q = (q1, q2, . . . , qN) is the state sequence. We use ’left-to-right’,

without skips, context-dependent HMM models with three emitting states

per phoneme for speech spectrum modeling [20]. So, every phoneme p

consists of three states p1, p2 and p3. The emitting probability densities are

each modeled by a Gaussian mixture model.
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In order to represent statistically an entire utterance we compose a sta-

tistical model over this utterance by concatenation of corresponding context-

dependent HMMs, where contexts are derived from phonetic analysis of

synthesized text [7].

As mentioned in Section 2.4, the prosody is modeled by context-dependent

regression trees, which provide the phonetic identities of states and their du-

rations. Hence, we can reduce the general problem of solving equation (3.6)

to the following problem, which assumes that the state sequence, q, is given:

oopt = argmax
o

P (o | q, λ), (3.8)

Methods for full HMM-based speech feature synthesis appear at [16], [24],

[25].

Without loss of generality the emitting probability distributions are

modeled here by a single Gaussian model, because mixture components

can be considered as a sequence of sub states, where states transitions are

mixture weights. Under such assumptions, the logarithm of P (o | q, λ) can

be written as:

log(P (o | q, λ)) =
1

2
(o−m)TU−1(o−m), (3.9)

with

m = [mT
q1
,mT

q2
, . . . ,mT

qN
]T (3.10)

and
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U−1 = diag[U−1
q1
,U−1

q2
, . . . ,U−1

qN
], (3.11)

where mT
qt and U−1

qt are the mean vector and the inverse covariance ma-

trix of the state qt. The dimensions of m and U−1 are 3MN × 1 and

3MN × 3MN , respectively. If the emitting probability densities are each

modeled by a single Gaussian model, the mixture indices can be omitted.

When the state qt has duration dt frames, its mean vector, mqt and its

inverse covariance matrix U−1
qt are replicated dt times within m3MN×1 and

U−1
3MN×3MN , respectively. This aspect of the conventional representation

will be considered in Section 5.1.

Clearly, given equation (3.9), expression (3.8) is optimized for o = m,

which causes the augmented speech feature vector, o, to become a sequence

of the model means. However, we are interesting in finding the optimal

speech feature vector, copt, which incorporates the speech features dynamics,

∆1,2c. This is achieved by solving the optimization problem in (3.8), taking

into consideration the relation between the static and dynamic features,

defined by equation (3.5) (note that W is not invertable):

oopt = argmax
o

P (o | q, λ)|o=Wc .

Consequently, the cost function over an entire utterance is:

J(Wc) = −lnP (Wc | q, λ)

=
1

2
(Wc−m)TU−1(Wc−m)

=
1

2
‖U−

1
2 (Wc−m)‖2

2. (3.12)
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To find the optimal solution copt over an entire utterance, we set the

first derivative of J(Wc) with respect to c to 0:

∂J(Wc)

∂c
=−WTU−1Wc + WTU−1m

= 0 (3.13)

consequently,

WTU−1Wc = WTU−1m. (3.14)

Assuming that the matrix WTU−1W is invertible, the optimal solution copt

is given by:

copt = (WTU−1W)−1WTU−1m. (3.15)

To solve (3.15) directly requires O(N3M3) computations. However,

utilizing the special structure of WTU−1W, (3.15) can be solved by the

Cholesky decomposition or the QR decomposition with O(NM3L3), where

L:

L = max{L1

+,−, L
2

+,−}.

We can see in Fig. 3.1(a) that, typically, the optimal solution (3.15)

is over-smoothed and has much less dynamics (inter-frame variations), as

compared to the corresponding natural speech features. The natural 8-th
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(a) Variation in time of the 8-th expansion coef-
ficient, c8, in the utterance ’Many problems in
reading and writing are due to old habits’:
copt
8 in solid line; cnatural

8 in dashed line.

(b) Zooming in at the word ’Many’: copt
8 in solid

black line, cnatural
8 in dashed line. The vertical

dashed lines depict the HMM states alignment,
marked above the plot. The state means are shown
in solid gray line.

Figure 3.1: Demonstrating conventional statistically generated speech fea-
ture over-smoothing in time, compared to a reference natural speech feature.

expansion coefficient, cnatural8 is provided as a reference, showing the range

of expected variation. Perceptually, the reduced variance in speech features
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is associated with muffled and buzzy sound, as indicated by listening, and

as also reported in [16], [24], [26], [30], [27]. The buzziness is not caused

by source/filter decomposition, because speech does not sound buzzy after

just analyzing the speech and synthesizing it back from its features.

Fig. 3.1(b) provides zooming into the word ’Many’, partitioned into

the marked HMM-states, M1,M2, . . . , IY3, having duration in frames of

dM1 = 2, dM2 = 3, dM3 = 2, dEH1 = 3, dEH2 = 3, dEH3 = 2, dN1 = 1,

dN2 = 2, dN3 = 1, dIY1 = 1, dIY2 = 3, and dIY3 = 3, respectively. The

state means (solid gray line) are replicated according to the state durations,

e.g., the state ’M3’ lasts two frames. This zoomed part makes it clear

that conventional statistically generated speech features (dashed line) pass

smoothly from state to state. The statistical speech feature trajectory is a

smoothed path, lacking the significant variations, in the reference natural

speech feature trajectory about state means.

Thus, ∆1,2ci do not appear to fully capture the features dynamics, as

also indicated by listening. We conclude from Fig. 3.1(a) and Fig. 3.1(b)

that generated speech features should approximate the model means but, at

the same time, they should fluctuate about the model means in order to have

similar behavior to that of natural speech features. This may be achieved

by a less restrictive model, which enables generating speech features with a

controlled amount of fluctuations around the model means but sufficiently

approximate the models. In addition, the speech feature dynamics may be

enhanced by a different approach to dynamic speech feature modeling.

In the next chapter we propose to model the speech feature dynamics in
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the transform domain, rather than by the conventional approach based on

the first and the second deltas, (3.4).

In Chapter 5 we introduce a new concept of segment-wise model repre-

sentation, which is found to improve the naturalness of generated speech.

The second approach is superior to the first approach in terms of the

generation speech quality, but it is more computational complex.
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Chapter 4

Improving STTS Dynamics In

The Transform Domain

We found that speech features in contiguous frames, as generated by a

STTS system, do not vary much, while those in natural speech vary much

more and thus are more dynamic, as shown in Fig. 4.4. We propose to

represent speech features dynamics in the transform domain and not di-

rectly in terms of frame to frame variation. In the transform domain, the

insufficient dynamics is characterized explicitly by a marked attenuation in

inter-harmonic components. We found that the quality of speech gener-

ated by a STTS system is improved by enhancing these attenuated compo-

nents, making the synthesized speech sound less buzzy and less muffled. We

also propose to differently treat inter- and intra-phoneme (or sub-phoneme)

frames, where the dynamics of intra-phoneme frames is improved by enhanc-

ing inter-harmonic amplitude components, while inter-phoneme transitions

are smoothed by constraining phonemes boundary differences. This ap-

30



proach is published in the international speech conference INTERSPEECH

2008 [28].

This chapter is organized as follows: In Section 4.1 we demonstrate the

proposed approach to modeling speech features dynamics in the transform

domain. In Section 4.2 we show how to combine enhancement of intra-

phoneme dynamics with inter-phoneme transition smoothing, deriving an

optimal solution for the speech features of an utterance. In section 4.3

we provide experimental results, and, finally, we summarize the chapter in

Section 4.4.

4.1 Modeling feature dynamics in the trans-

form domain

Features representation in the transform domain

To analyze the inter-frame speech features dynamics we propose to consider

a phoneme of Ti frames as a quasi-periodic sequence with a period of d

samples, where a phoneme of Ti frames is represented as a one-dimensional

coefficients sequence of length dTi, as in Fig.4.1. In that figure we can see

that the statistically generated one-dimensional sequence is almost periodic,

with a repeating pattern every d samples, while the natural one-dimensional

sequence varies much more from frame to frame. In Fig.4.1, the inter-frame

dynamics of the statistically generated frames (middle plot) is compared

to the inter-frame dynamics of the natural phoneme (top plot), and it is

clearly seen that the statistical features have a much lower dynamics.
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To investigate the inter-frame dynamics of each phoneme we apply a

DFT of length dTi to the whole set of Ti feature frames representing pi

(i-th phoneme), i = 1, 2, . . . , L . Obviously, in the transform domain the

inter-frame dynamics in pi is expressed by the inter-harmonic frequencies:

k + 1, k + 2, . . . , k + Ti − 1, where k = 1, Ti, 2Ti, . . . , (d− 1)Ti.

Comparing the variation from frame to frame of statistically generated

and natural phonemes in the transform domain, one observes an essential

difference between the two. The spectrum of the statistically generated

phoneme features, represented as one-dimensional sequence, has spectral

components that are mostly located at the harmonic frequencies k = lTi,

l = 1, 2 . . . , d, while the transformed natural phoneme coefficients sequence

occupies inter-harmonic frequencies as well, as seen in Fig.4.1. It is seen in

this figure that the inter-harmonic content of the statistical phoneme (dot-

dashed line) is much lower (by ∼ 20− 30dB) than in the natural phoneme

(solid line). This inter-harmonic content describes the variation from frame

to frame within a particular phoneme. This confirms our assumption that

inter-frames dynamics of statistical phonemes is too low.

Consequently, we propose to improve the inter-frame dynamics by en-

hancing in each phoneme the transform components at the inter-harmonic

frequencies. Thus, the inter-frame dynamics can be better modeled by the

non-harmonic components instead of by 41,2.

We propose to enhance the amplitude of the inter-harmonic frequencies

in the transformed features sequence by learning the statistics of the inter-

harmonic content in a training stage for every phoneme and, afterwards,
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Figure 4.1: Features frames of a natural sequence (4 frames on the same
plot) at the top; statistical sequence at the bottom. The frame-to-frame
variations between circled regions demonstrate the low dynamics in the sta-
tistical sequence as compared to the natural sequence.

to match the inter-harmonic content at the synthesis stage to the acquired

statistics, as described below. In Fig. 4.1 we see on the top plot that

conventional generated speech features (solid line) include less dynamics,

as compared to natural speech features (dashed line). In the bottom plot

we see that speech feature enhanced in the transform domain (dashed line)

have more dynamics compared to the natural speech feature.

Learning inter-harmonic content

For all natural segments pertaining to a particular phoneme pi, where a seg-

ment consists of the features of contiguous natural frames from the database

assigned to pi, we learn inter-harmonic amplitude statistics as follows. We

apply a DFT of length dTi to the sequence of coefficients of a natural seg-

ment. The transformed sequence has d harmonic components and d(Ti− 1)
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Figure 4.2: Features frames of natural phoneme (4 frames on the same plot)
at the top; Conventional statistically generated phoneme in the middle;
Proposed statistically generated phoneme at the bottom.

inter-harmonic components (that is, Ti − 1 components between every two

harmonic components). The mean and variance of the inter-harmonic am-

plitudes located between every two harmonic component are computed.

Thus each element m̃k, k = 1, 2, . . . , d, of the inter-harmonic content mean

vector M̃d×1, is the mean value of the amplitudes of the inter-harmonic

component located between k-th and (k+1)-th harmonic components. The

static features statistics, namely, the first d component of Mpi
in Section 3,

are computed, as in the conventional model described in Section 3.2.

Phoneme-level synthesis with inter-harmonic content

In the synthesis stage of a segment (representing pi) of Ti frames, the mean

of the static features of its model is repeated Ti times in order to get a one-

dimensional sequence of length dTi. This one dimensional sequence is trans-

formed by a DFT. The phase of the transformed sequence is stored. Clearly,
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Figure 4.3: Magnitude of transformed natural sequence (3 frames) in thin
solid line; Magnitude of transformed conventional statistical sequence in
dashed line; Magnitude of transformed statistical sequence with enhanced
inter-harmonic content in dot-dashed line. Because of symmetry of the
magnitude sequence, only the 48 (=32 · 3/2) positive frequencies are shown.

the inter-harmonic components of the transformed sequence are exactly zero

because no dynamics is present in the one dimensional sequence due to its

construction by replication. We propose to compute the components within

the k-th inter-harmonic interval by a least squares approximation by a poly-

nomial of order 2 of the points Hk, m̃{k,replicated (Ti−1) times}, Hk+1, where Hk

is the k-th harmonic component and m̃k is mean of the k-th interval inter-

harmonic amplitudes obtained in the training stage. The dot-dashed line in

Fig.4.1 depicts the enhanced amplitudes, which are very close to that of the

natural amplitudes. A gain factor of of Ti is applied to inter-harmonic com-

ponent amplitudes to match their level to the number of frames Ti. Finally,

the inter-harmonic and harmonic components are combined appropriately

and inverse-transformed by means of the IDFT, using the original phase

stored earlier. As a result, we get a segment (representing phoneme) with
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Figure 4.4: Demonstrating features over-smoothing. Top plot: variation in
time of cnatural8 (dashed line) and of copt8 (solid line). Bottom plot: variation
in time. The optimal solution is over-smoothed and has much less dynamics
(inter-frame variations) as compared to the natural segment.

the required static features and enhanced inter-frame dynamics, as seen in

the bottom plot of Fig.4.1.

4.2 Utterance-level synthesis

Problem setting

In conventional statistically generated speech features, the inter-frame tran-

sitions are smoothed both within phonemes (intra-phoneme) and at the

inter-phoneme boundaries. Obviously, intra-phoneme frames transitions

should not be smoothed but rather be synthesized according to their dynam-

ics, as modeled above by inter-harmonic components. On the other hand,

inter-phoneme boundaries transitions should indeed be smoothed in order

to avoid discontinuities. Consequently, these two types of frames should

be subject to different treatment, which is not possible in the conventional

36



statistical speech synthesis. In order to derive an optimal solution over an

entire utterance with intra- and inter-phoneme frames being treated differ-

ently, we propose to modify the linear transformation W in (3.5).

Modified linear transformation

For a particular sequence of phonemes (p1, p2, . . . , pL) of lengths (T1, T2, . . . , TL),

respectively,we propose to model the intra-phoneme frames in the transform

domain, as proposed in Section 4.1, while modeling inter-phoneme transi-

tions by the conventional differences,41,2, and to combine them by applying

a modified linear transformation Ŵ(4·d·(L−1))×d·N instead of W in (3.5):

Ŵ=(ω1; β1;ω2; β2 . . . ; βi−1;ωi; βi+1 . . . ; βL−1;ωL), (4.1)

(; denotes vertical concatenation)

where ωi = [0d·Ti×d·
∑i−1

k=1
Tk

Id·Ti×d·Ti 0d·Ti×d·
∑L
k=i+1 Tk

] is constructed to pre-

serve the dynamics of intra-phoneme frames modeled in the transform do-

main, and βi, shown in (4.2), smoothes the transitions between pi−1 and pi

by applying 41,2:

βi =



0ρ −1
2 ξ

0ξ +1
2 ξ

0ξ 0η

0ρ −1ξ 2ξ −1ξ 0ξ 0η

0ρ 0ξ −1
2 ξ

0ξ +1
2 ξ

0η

0ρ 0ξ −1ξ 2ξ −1ξ 0η


,
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where ρ = d× (d ·
∑i−1

k=1 Tk− 2 · d), ξ = d× d, η = d× (d ·
∑L

k=i+1 Tk− 2 · d)

and (·)y denotes a block of size y of stated dimensions.

Utterance-level optimal solution

In order to derive the optimal solution Copt∗ over an entire utterance, we

rearrange the model mean and the covariance matrix to be compatible with

Ŵ . The intra-phoneme frames are modeled in the transform domain, while,

to satisfy smooth transitions at the phoneme boundaries, 41,2 are con-

strained at boundary frames. Consequently, for a particular sequence of

phonemes (p1, p2, . . . , pL) of lengths (T1, T2, . . . , TL), respectively, the utter-

ance model mean vector and covariance matrix are:

M̂ = [M̂
p1

l1
,4∗

q
, M̂

p2

l3
,4∗

q
, . . . ,4∗

q
, M̂

pL

lL
]T , (4.2)

li=d·Ti×1, q=4·d×1;

Û = diag[sÛp1
l̃1
,4

1

Ûp1
q̃ ,
42

Ûp1
q̃ ,
41

Ûp2
q̃ ,
42

Ûp2
q̃ ,

sÛp2
l̃2
,

41

Ûp2
q̃ ,
42

Ûp2
q̃ ,
41

Ûp3
q̃ ,
42

Ûp3
q̃ , . . . ,

41

Û
pL−1

q̃ ,

42

Û
pL−1

q̃ , sÛpL
l̃L

], l̃i=d·Ti×d·Ti, q̃=d×d. (4.3)

where M̂
pi

1×d·Ti is the mean vector of phoneme pi in the features domain,

with the dynamics that was enhanced in the transform domain; 4∗
1×4·d

constrains the values of 41,2 at phonemes boundaries; sÛpi
d·Ti×D·Ti is the

covariance matrix of the static features for pi;
41
Ûpi
d×d and 4

2
Ûpi
d×d; are the

covariance matrices of the differences41,2 at boundary frames, respectively.

M̂ is column vector, Û is a block diagonal square matrix.
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Consequently, using (4.1), (4.2) and (4.3) in (3.12), the optimal solu-

tion is Copt∗=(Ŵ T Û−1Ŵ )−1Ŵ T Û−1M̂ , where the intra-phoneme frames with

enhanced dynamics are optimally combined with smoothed inter-phoneme

transitions.

4.3 Subjective evaluation

To evaluate the proposed approach we checked: a) Whether the inter-frame

variations in Copt∗ are consistently higher, as compared to those of Cnat.

b) Whether the naturalness of speech generated from Copt∗ is improved, in

comparison to speech generated by the conventional approach from Copt.

This aspect was evaluated by a subjective listening test.

To obtain an objective evaluation for the inter-frame variations of speech

features, we computed the measure Λ = mean(
∑N−1

i=1 ‖ci+1− ci‖ for 30 sen-

tences generated from Cnat, Copt∗ and Copt. The averaged Λ value over these

sentences was 4.81, 4.37, and 1.5 for Cnat, Copt∗ , and Copt, respectively. In

the bottom plot of Fig.4.4 we see that the Copt∗ has much more dynam-

ics than Copt does. This provides an objective support to the proposed

dynamics enhancement method.

As stated above, we also performed an informal listening test to evaluate

subjectively the improvement in the naturalness of the proposed approach

in comparison to conventional statistically generated sentences. The test

includes 20 entries, where each entry is a triplet with the same sentence

appearing three times, in an order related to Cnat, Copt∗ , Copt. The same
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sentence appears in another entry but in an different order related to Cnat,

Copt, Copt∗ . The listeners were asked to compare the naturalness of speech

generated from Copt∗ and Copt to the same sentence generated from Cnat in

a CTTS system, and indicate which of the two sounds closer to the CTTS

sentence. The total preference score given to Copt∗ was 81.7%, while for

Copt it was just 18.3%. This provides a subjective support to the proposed

synthesis method. Notwithstanding the promising results, the naturalness

of Copt∗ is still worse than that of Cnat, so more work is needed to improve

the naturalness of STTS.

4.4 Conclusion

In this chapter we have presented a method for enhancing intra-phoneme

speech features dynamics in the transform domain and for smoothly combin-

ing phonemes into an utterance while maintaining the enhanced dynamics.

The improvement in comparison to conventional STTS is supported by per-

formed subjective tests results, without increasing much the computational

complexity.
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Chapter 5

Segment-Wise Representation

In this chapter we propose an alternative technique, to the technique pre-

sented in Chapter 4, for improving the statistically generated speech quality.

This technique is superior in terms of the generated speech quality to the

technique, presented in Chapter 4. Here, we propose a method to enhance a

baseline STTS system by introducing a segment-wise model representation

with a norm constraint.

5.1 Segment-Wise model representation

As discussed earlier, the insufficient speech feature dynamics in conventional

frame-wise representation STTS systems causes over-smoothing of statisti-

cally generated speech features, resulting in muffled and buzzy speech.

In order to understand the drawbacks of the conventional frame-wise rep-

resentation, consider two contiguous states, qt and qt+1, having durations dt

and dt+1. In the conventional approach the augmented space speech feature

frames ot, ...,ot+dt−1 and ot+dt , ...,ot+dt+dt+1−1 approximate the correspond-
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ing model means mqt and mqt+1 , replicated dt and dt+1 times, respectively.

Consequently, the static features, ct, ..., ct+dt−1, approximate the same

static feature model mean, and at the same time, the corresponding dy-

namic features, ∆1,2
t ct, ...,∆

1,2
t+dt−1ct+dt−1, approximate the same dynamic

feature model mean. The covariance matrix is replicated dt times within

a segment as well, providing the same static and dynamic weight to every

generated frame and inter-frames dynamics, respectively. In addition, av-

eraging over speech features often results in a mean value of the dynamic

features that is of very low magnitude. As a result, statistically generated

speech features lack speech feature dynamics and do not achieve the natural

variances, represented by model covariance matrices, as seen in Fig 3.1(b).

The conventional model just connects smoothly adjacent models, involving

a computationally complex matrix inversion, and redundant data storage

required to store the statistics of ∆1,2ct, which do not have a sufficient effect,

as depicted in this figure.

The above mentioned conventional representation drawbacks often cause

speech feature over-smoothing. To handle the over-smoothing problem we

propose to apply a segment-wise construction of the augmented space vector

o over an entire utterance, implemented by a modified linear segment-wise

transformation, denoted W̃.

We propose not to replicate the model mean mqt dt times, but rather

approximate on average dt augmented space vectors, ot, ...,ot+dt−1, by the
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model mean of state qt, as follows:

ōt =
1

dt

dt∑
k=1

ok, (5.1)

and

J(ōt) =
1

2
‖U
−1

2
qt (ōt −mqt)‖2

2, (5.2)

where ōt, mqt and Uqt are the average augmented feature vector, the model

mean and the model covariance matrix of state qt, respectively. And, J(ōt)

is the corresponding cost function, constructed without replication of the

model of the state qt.

Consequently, using the proposed segment-wise representation, the model

is less restricted and enables more dynamics in generated speech features,

which is decreased in the conventional model.

The segment-wise transformation for speech feature frames pertaining

to a particular state qt with duration dt, is:

W̃qt ,
1

dt


0 1 · · ·1 · · ·

dt−2
1 0

−1
2
−1

2
· · ·0 · · ·
dt−2

1
2

1
2

−1 1 · · ·0 · · ·
dt−2

1 −1


3M×M(dt+2)

. (5.3)

All the matrix elements in (5.3) are diagonal block matrices of dimension

M×M , each. A part of the segment-wise transformation for two contiguous

states, qt and qt+1, having dt = 3 and dt+1 = 2, is shown in (5.4):
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W̃MK×MN =



· · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · 0 1
3

1
3

1
3

0 0 0 · · ·

· · · −1
6
−1

6
0 1

6
1
6

0 0 · · ·

· · · −1
3
−1

3
0 1

3
1
3

0 0 · · ·

· · · 0 0 0 0 1
2

1
2

0 · · ·

· · · 0 0 0 −1
4
−1

4
1
4

1
4
· · ·

· · · 0 0 0 −1
2

1
2

1
2
−1

2
· · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·


MK×MN

.(5.4)

Here, K is the total number of states in a synthesized utterance. Con-

sequently, the argument, (W̃c − m̃), of the segment-wise cost function,

denoted as Jsw(W̃c), is rearranged as:

W̃c− m̃ = [ w1,w2, . . . ,wt, . . . ,wK ]T, (5.5)

where (̃·) denotes non replication of state models, but rather approximation

on average of state models, and wt is:

wt , 1
dt

t+bdt
2
c∑

i=t−bdt
2
c

oTi −mT
qt . (5.6)

The segment-wise cost function, Jsw(W̃c), over an entire utterance is:

Jsw(W̃c) =
1

2
‖Ũ−0.5(W̃c− m̃)‖2

2, (5.7)
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where

m̃3MK×1 = [mT
q1
,mT

q2
, . . . ,mT

qK
]T , (5.8)

and

Ũ−1
3MK×3MK = diag[U−1

q1
,U−1

q2
, . . . ,U−1

qK
] (5.9)

are the non-replicated model mean vector and the covariance matrix, re-

spectively, where m̃3MK×1 and Ũ−1
3MK×3MK consist of K state means, mT

qt ,

and state covariance matrices, U−1
qt , respectively, This is in contrast to the

frame-wise model mean vector, m3MN×1, and the frame-wise model covari-

ance matrix, U−1
3MN×3MN , defined in (3.10) and (3.11), respectively, which

contain replicated terms (note the different dimensions). This defines the

segment-wise representation, where all the static and dynamic features are

approximated on average by the static and dynamic feature model means,

respectively. As a result, statistically segment-wise generated speech fea-

tures can possess enhanced speech dynamics and follow the model means in

the mean, as opposed to the frame-wise synthesis, where every particular

frame follows a smooth trajectory, approximating the model means.

Consequently, the conventional frame-wise cost function in (3.12) should

be denoted as Jfw in order to distinguish between the two different cost

functions. Here and forth, the segment-wise cost function and the frame-

wise cost function will be marked with the corresponding superscripts ’sw’

or ’fw’, respectively.

The optimal solution for the segment-wise cost function, (5.7), is derived
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by the same steps as in (3.13), (3.14) and (3.2):

∂Jsw(W̃c)

∂c
=−W̃T Ũ−1W̃c + W̃T Ũ−1m̃

= 0 (5.10)

consequently,

W̃T Ũ−1W̃c = W̃T Ũ−1m̃. (5.11)

Assuming the matrix W̃T Ũ−1W̃ in (5.11) is invertible, the optimal segment-

wise solution copt,sw is derived by:

copt,sw = (W̃T Ũ−1W̃)−1W̃T Ũ−1m̃. (5.12)

Reiterating, in the segment-wise representation we require that all the

frames of state qt approximate the model of qt on average, (instead of frame-

wise approximation used in the conventional model, where every frame ap-

proximates a corresponding model). This results in an infinite number of

solutions, copt,sw, for states having duration more than one frame. In such a

case, the matrix W̃T Ũ−1W̃ is non-invertible and, consequently, it requires

a special treatment, subject to the requirement on the generated speech

feature norm. A solution to this problem is proposed in Section 5.2.

In Fig 5.1(a) we see that the segment-wise model enables more dynam-

ics in generated speech feature trajectory (dashed line), compared to the

more smooth trajectory by the conventional frame-wise model (solid line).

Zooming in at the word ’Many’ in Fig. 5.1(b), with marked HMM-states,

we see that the frame-wise generated trajectory is much smoother (solid
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line) than the segment-wise generated trajectory (dashed line). The natu-

ral speech feature trajectory, in light gray line, which appears in dashed line

in Fig. 3.1(b), is provided as a reference for expected speech feature dynam-

ics. In the more detailed view of Fig. 5.1(b), we see that the segment-wise

trajectory from state ’M3’ to state ’EH3’ has dynamics compared to the

dynamics of the natural trajectory, while the frame-wise trajectory follows

smoothly over these state model means, and, even, coincides with the mean

of state ’M3’, as clearly shown in Fig. 3.1(b). The last fact emphasizes our

assumption regarding insufficient dynamics in the conventional frame-wise

models.

The proposed segment-wise representation occupies less memory during

synthesis than does the conventional frame-wise representation because the

former and the later representations model dimensions are derived from:

W̃3MK×MN , m̃3MK×1, Ũ3MK×3MK , and W3MN×MN , m3MN×1, U3MN×3MN ,

respectively, where N is the number of frames and K is the number of

models (segments) in a synthesized utterance.

In our experiments, we compared the empirical data fitting by the segment-

wise cost function, Jsw(W̃c), to the empirical data fitting by the conven-

tional frame-wise cost function, Jfw(Wc). We performed this comparison

by computing the cost functions values on real speech examples, cnatural. In

Fig. 5.2 we see the typical evolution of Jsw(W̃cnatural) and Jfw(Wcnatural)

for a real utterance, cnatural, where the x-axis depicts the states alignment

of ’Many’. Obviously, states with duration of one frame gives the same

value in both cost functions, as seen for N1, N3 and IY1. However, all other
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(a) Variation in time of the 8-th expansion coef-
ficient, c8, in the utterance ’Many problems in
reading and writing are due to old habits’:
’copt

8 - frame-wise conventional’ in solid line;
’copt

8 - segment-wise’ in dashed line.

(b) Zooming in at the word ’Many’: ’copt
8 -

segment-wise’ in dashed line; ’copt
8 - frame-wise

conventional’ in solid black line, and reference
cnatural
8 in light gray line

Figure 5.1: Comparison of speech feature dynamics in a conventional frame-
wise model to that of the proposed segment-wise representation.

states have lower value in the segment-wise model, due to its more flexible

construction, providing more degrees of freedom. The longer the state du-
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Figure 5.2: Evolution of cost function over states of the word ’Many’ in a
real speech sample, cnatural: the segment-wise cost function, Jsw(W̃cnatural),
in pluses; the frame-wise cost function, Jfw(Wcnatural), in circles. x-axis -
corresponding states, y-axis - cost function value.

ration, the bigger is the difference is between the values of Jfw(Wc) and

Jsw(W̃c). This demonstrates the better fit of the segment-wise model to

real speech data.

5.2 Norm constraint

We have observed that the squared-norm of statistically generated speech

feature vectors of entire utterances, ‖cstt‖2
2, is often quite lower than the

squared-norm of natural speech feature vectors of entire utterances, ‖cnat‖2
2,

because, firstly, the conventional solution, shown in (3.2), is the minimal

norm least squares solution, and, secondly, due to the insufficient speech

feature dynamics, a statistically generated speech feature vector norm is
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quite close to the model means norm ‖cmdl‖2
2:

‖cstt‖2
2 ≈ ‖cmdl‖2

2 (5.13)

In Fig. 3.1(a) and 3.1(b) we saw that, typically, statistically generated

frames are much smoother than the corresponding natural frames. In or-

der to improve generated speech quality, we can enhance speech feature

dynamics by applying appropriate constraints to the feature vector.

We propose to enhance speech feature dynamics by enforcing a con-

straint on the speech feature vector norm. In addition to the regular terms of

the common statistical model cost function (3.12), we add a norm-dependent

auxiliary term, constraining the speech feature vector norm, thus avoiding

the norm reduction. The proposed approach relies on different concepts

than those of the GV [26] approach, as our approach exploits the principles

of regularization theory, described below. Also, our approach requires just

two additional scalar parameters per speaker database, introduced in this

section, while GV applies a statistical penalty for variance reduction and

needs additional statistics to model global variance.

Comparing statistically generated speech features to corresponding nat-

ural speech features, we found that the norm of statistically generated

speech feature vector ‖cstt‖2
2, is systematically reduced, in comparison to

the norm of natural speech feature vectors, ‖cnat‖2
2, by a factor γ0:

γ0 =
‖̃cnat‖2

2

‖̃cstt‖2
2

, (5.14)
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denoted as the enhancement factor, where ‖̃ · ‖ is an averaged norm over a

set of utterances generated from a particular voice.

Consequently, using (5.13), a constraint on the norm of speech features,

‖cstt‖2
2, should be equal to

Γ = γ0 · ‖cmdl‖2
2, (5.15)

in order to compensate the norm reduction, achieving in our case:

‖cstt,sw‖2
2 ≈ ‖cnat‖2

2 (5.16)

In the following section we provide a systematic approach for speech feature

dynamics enhancement by applying such a constraint.

5.3 Norm-constrained cost function

Our goal is to find an optimal norm-constrained feature vector, copt, over an

entire utterance, which minimizes the model error and possesses sufficient

features dynamics.

We propose to regulate the solution by adding a squared-norm term of

the feature vector to the model-error term of the cost function of (5.7), using

a factor λ to balance the contribution of the two terms.
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Thus, the cost function of (5.7) is replaced by:

Jswc (W̃c) ,
1

2
‖U−

1
2 (W̃c−m)‖2

2

+
λ

2
‖c‖2

2, (5.17)

In the proposed method, the norm term provides a solution with enhanced

dynamics, by using prior information on λ.

5.4 Iterative algorithm

We propose an iterative algorithm that minimizes the model cost function

value, defined in 5.17, while assuring sufficient dynamics in the resulting

solution. The minimization is done by means of a gradient descent algorithm

as follows:

cn+1 = cn − αn∇(cn), (5.18)

where∇(cn) is the gradient of Jc(c) with respect to c, computed at iteration

n, and, αn is the step size, being updated in our experiments according to:

αn = 1
‖∇(cn)‖22

, (5.19)

and from (5.17),

∇(cn) = W̃TU−1W̃cn − W̃TU−1m

+λcn. (5.20)

A final feature vector should approximate well the models, and have

a norm value that is compatible with the enhancement factor, defined in

(5.14). We propose to apply a balancing factor λ that decreases in its

absolute value with the gradient descent algorithm iterations, rather than
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to use a fixed λ. This way the model error term becomes more significant

with the number of iterations, while the norm factor effect decreases with

the number of iterations. Consequently, (5.20) is replaced by :

∇(cn) = W̃TU−1W̃cn − W̃TU−1m (5.21)

+λncn,

where λn is updated according to:

λn+1 = θλn, 0 ≤ θ ≤ 1, (5.22)

where the parameter θ is experimentally determined to enable a slow de-

crease of λ that is consistent with a required norm increase, as elaborated

below. In our experiments we used θ = 0.95, where an acceptable range of

values for θ may reach 0.98.

Taking into consideration the cost function form in (5.7), we conclude

that a negative λ value increases the feature vector norm, while a positive

λ value decreases it.

We found an empiric relation between λ0, the initial value of λ, and the

final norm of the feature vectors, allowing a norm increase that is consistent

with the enhancement factor. In Fig. 5.3(a), we see that an increase in the

negative value of λ0 results in an increase in the final vector norm.

The desired increase in speech feature vector norm is achieved around

150 iterations, each of which consists of one multiplication of the n-th speech

feature vector cn, having dimension MN × 1, by the constant sparse ma-

trix W̃TU−1W̃, having dimension MN ×MN , and one summation of two
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(a) An increase in a feature vector norm ‖cn‖22 as
a function of an initial value for λo, where ‖co‖22 is
the norm of an initial vector.

(b) Relation between λo and the final feature vec-
tor norm ‖c∗‖22. The error bars depict the standard
deviations in ‖c∗‖22 for given values of λo.

Figure 5.3: Evolution of ‖cn‖2
2 as function of λo.

vectors of dimension MN × 1.

The relation between λ0 and, the attained maximal value of the feature

vector norm ‖c∗‖2
2, is represented in Fig. 5.3(b) that is derived from Fig.

5.3(a) by plotting ‖c∗‖2
2 via λo. This relation was obtained by averaging λ0

over a large set of iteratively generated utterances. The standard deviations

of the final speech feature vector norm, for given values of λ0, are represented

by the error bars in Fig. 5.3(b). For λ0 equal to -5, which is consistent with
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the enhancement factor, the standard deviation is 0.023.

Initially, as long as λn sufficiently effects ∇(cn), two updates affect cn

simultaneously: an increase in the norm of cn, occurring due to negative

value of λn, and an attempt to keep cn close to the model means. λn balances

between these two updates, but its effect decreases with the number of

iterations, as λn approaches 0.

When the effect of λn becomes negligible, the gradient descent algorithm

steps towards the minimal model error. However, the static feature vector

norm ‖cn‖2
2 does not decrease along with a decrease of the model error

term but rather stays almost unchangeable at ‖c∗‖2
2. This occurs because

the dynamic features, rather than the static ones exert the primary and

the most significant effect on the model cost function, as described in the

Appendix.

Setting λ0 according to the above mentioned empiric relation enables an

increase in the norm of cn that is consistent with the norm enhancement

factor introduced in (5.14), resulting in enhanced dynamics in generated

speech, as confirmed by listening tests described in Section (5.5).

In our experiments the model means were used for the initial vector, co,

in the gradient descent algorithm.

In Fig. 5.4, we see that there is a systematic increase in speech fea-

ture dynamics, represented by the spectral components variances, computed

over a set of utterances. The natural utterance speech feature variances (in

the upper solid line) provide a reference for the expected speech feature

variances. On the other hand, speech features generated by the conven-
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Figure 5.4: Frequency components variances of natural utterance (top solid
line): conventional STTS generated (bottom solid line); and proposed STTS
generated utterance (middle dashed line).

tional STTS system are often over-smoothed, and have lower variances, as

described previously. Consequently, we expect that speech features gener-

ated by the proposed method, will have more variance than speech features

generated by conventional method but less variance than speech features

generated by a CTTS system. We see in Fig. 5.4 that, indeed, this is the

case. Moreover, in the proposed method, in almost all bands, speech fea-

ture dynamics is closer to that of the natural speech features than to those

generated by the conventional method. The last statement is confirmed by

listening tests, indicating that the proposed method generates speech that

sounds more natural.

The norm-regulated constraint is useful only with the segment-wise

model. Applying the norm-regulated approach to the frame-wise model is

not useful because the frame-wise model has its unique least-squares solu-

tion, copt,fw, derived by (3.2). Clearly, the iterative solution via (5.18) with
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the frame-wise model must converge to copt,fw, having a reduced speech fea-

ture norm, when the effect of λ decreases. On the other hand, the iterative

solution via (5.18) with the segment-wise model, converges to a vector that

approximates the required norm, as shown in Fig. 5.3(a).

5.5 Subjective Evaluation

We have performed three different listening tests to evaluate the naturalness

of speech generated by the proposed method:

5.5.1 Mean opinion score (MOS) tests

5.5.1.1 Test I

In this test we have computed the Mean Opinion Score (MOS), according

to [31], of a set of 9 arbitrary sentences, where each sentence was gener-

ated in three versions: (i) by the conventional statistical speech generation

algorithm, mentioned in Section 3, (group A), (ii) by the proposed speech

generation scheme (group B), and (iii) by IBM’s CTTS system, detailed

in [4], [3], (group C). Thus, 27 samples were included in the test, each of

which was evaluated by 20 listeners. To eliminate prosody influence, the

same target prosody was provided to all versions of a particular sentence.

Fig. 5.5 shows the results of the MOS test for the three groups. We see

that the proposed method improved the naturalness of generated speech by

more than one MOS unit, in comparison to conventional STTS.
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Figure 5.5: Mean Opinion Score (MOS) test, comparing the CTTS system,
the proposed STTS method, and the base-line STTS. The error bars indicate
95% confidence interval, computed using the ’t-test’.

5.5.1.2 Test II

This MOS test consisted of two sessions. In one session a group of 15 listen-

ers evaluated samples generated by the proposed method only. In another

session, another group of 15 listeners evaluated samples generated by the

GV approach [26]. Consequently, the listeners in each group evaluated the

quality of the respective approach, without being affected by the other tech-

nique results. Additionally, in contrast to the first MOS test that included

an arbitrary set of sentences, the second MOS test included 25 sentences in

5 groups of 5 sentences each, selected from several different domains, having

different lengths (from short simple sentences of 2-3 words, to compound

sentences of 25 words) and distinctive phonetic contexts. This set of sen-

tences is a standard set, used for evaluation of different TTS systems, as

detailed in [32]:
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Figure 5.6: Mean Opinion Score - MOS test for different text domains:
’Conv’, ’Guten’, ’MRT’, ’News’, ’SUS’. ’All’ - average score for all text
domains. The samples by the proposed method and by the GV method
are in light gray and dark gray, respectively’. The error bars indicate 95%
confidence interval, computed using the ’t-test’.

• Gutenberg novels - ’Guten’.

• Standard news text - ’News’.

• Conversational/dialog sentences - ’Conv’.

• Phonetically confusable words - ’MRT’, detailed in [11].

• Semantically unpredictable sentences - ’SUS’, detailed in [1].

Fig. 5.6 shows the results of this test. We see that both methods (GV and

the proposed approach) achieve similar overall MOS score, as summarized

by the columns ’All’. The MOS score of analysis-synthesized speech, (just

analyzing the speech and synthesizing it back from its features), is 4.23, as

reported in [2]. This high score for analysis-synthesized speech means that

an ’encoder/decoder’ introduces only a small speech quality degradation.
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5.5.2 ’A vs B’ comparison test

In this test, a set of 11 arbitrary sentences was used. Each of the sentences

was generated in two versions: (i) by the conventional statistical speech

generation algorithm, mentioned in Section 3, (group A), and (ii) by the

proposed speech generation scheme (group B). The two versions of each sen-

tence were compared using an ’A vs B’ comparison test, to provide a further

indication on the improvement of speech quality generated by the proposed

STTS method in comparison to the conventional statistical approach. The

same 20 listeners, that participated in Test I, had three options to evaluate

the relative quality of groups A and B: ’A is preferred’, ’B is preferred’ and

’A is the same as B’. Thus, 11 pairs of sentences were compared in the test,

each of which was evaluated by 20 listeners. Fig. 5.7 shows the results of

this test. We see that group B was preferred over group A in 91.6% of the

cases, on average, 7.4% got the same preference, and group A was preferred

over group B only in 1% of the cases.

5.5.3 Subjective evaluation setup

All the tests were performed with a headphone set. The only information

about the samples that the listener were provided with, was that the test

aims to compare different speech synthesis methods. All the listeners were

graduate and undergraduate students, having no experience with TTS sys-

tems.
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Figure 5.7: ’A vs B comparison test’ (20 listeners, 11 pairs of sen-
tences): the proposed STTS (group B) was preferred in 91.6% of the cases,
on average; 7.4% were judged as having the same quality; and the conven-
tional STTS (group A) was preferred only in 1% of the cases

5.5.4 Conclusion

We conclude that the proposed segment-wise and norm constrained method

significantly improves the synthesized speech quality, as compared to the

baseline frame-wise conventional statistical speech synthesis method and is

comparable in quality to the GV approach.

However, statistically generated speech is inferior in terms of the gener-

ated speech naturalness, compared to the naturalness of speech generated

by CTTS. In the next chapter we propose an hybrid text to speech synthesis

method, which is comprised from STTS and CTTS. Speech generated by

the proposed hybrid TTS synthesis method has less unpleasant audible dis-

continuities, than speech generated by the baseline CTTS system, described

in Chapter 2. And, it is more natural than speech generated by the baseline

STTS system.
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Chapter 6

Hybrid Text-to-Speech

Synthesis

One of the goals of the current research is to efficiently combine the ad-

vantages of CTTS and STTS into another class of TTS systems, named

hybrid TTS system. The hybridism in the proposed system is in interweav-

ing of natural segments with statistically generated segments, using a novel

hybrid dynamic path algorithm. As a result, speech generated by the pro-

posed HTTS includes less discontinuities than the baseline CTTS system

does, and it sounds more natural than the baseline STTS.

The proposed system is based on a) Determination of a hybrid dynamic

path that defines positions for statistical models within an utterance, aimed

to include as many as possible long natural segments sequences, where nat-

ural sequences are smoothly connected in an optimal way by statistical

generated segments, b) Representation of the hybrid speech feature vec-

tor over an entire utterance, c) A gradient descent algorithm with linear
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constraints, where statistical segments within a synthesized utterance are

generated from constrained statistical model [29], while natural parts stay

unchanged, yet they affect the statistically generated parts.

6.1 Different hybridism meanings

In this chapter we discuss the different meanings of the term ’hybridism’ in

the context of text to speech synthesis, as it appears in the literature.

The term hybrid TTS has different connotations when related to TTS

synthesis. One class of TTS systems employs hybridism by combining dif-

ferent speech feature representations, as detailed in [14], [23], [10]. Another

class of TTS systems employs hybridism by combining different modeling

architectures, as detailed in [18], [13], [17], [12]. There are other systems

which use statistically generated speech features as a target for segments

selection in CTTS, as detailed in [15].

6.2 Hybrid dynamic path

6.2.1 Introduction

The major disadvantage of concatenative speech synthesis systems is the

existence of spectral discontinuities between some adjacent speech feature

vectors, causing unpleasant artifacts in the generated speech. These dis-

continuities occur when initially contiguous natural segments can not be

concatenated due to data pre-selection and/or data fragmentation, as de-

tailed in [7], [5]. The concatenation of natural segments in CTTS systems
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is done by means of the Viterbi dynamic programming (DP) algorithm, as

detailed in [6], [4].

Theoretically, a perfect CTTS system, having an unlimited number of

natural segments in any possible context, is able to concatenate natural seg-

ments in their natural order, as they appeared in the training sentences. The

resulting perfect CTTS-generated speech is expected to have natural speech

quality. Unfortunately, such a system is infeasible. Any feasible CTTS may

only approximate the perfect CTTS system, trying to concatenate as many

as possible originally contiguous natural segments.

To justify this assumption we examined a concatenative TTS, having

1,300,000 recorded speech feature segments, which are clustered to 25,000

different acoustic clusters/acoustic tree leaves, as described in Section 2.1.

Such a system is considered, as having a large footprint, since 25,000 acous-

tic leaves sufficiently cover phonetic contexts of English.

We synthesized a set of 40 arbitrary sentences six times. Each time

the maximal number of allowable transitions between any two consecutive

stages of the dynamic search, described in Section 2.3, was different. We

tested 1, 10, 100, 1,000, 10,000, and 50,000 maximal allowable transitions

between any two consecutive stages of the dynamic search. In any stage (in

any acoustic leaf) of the dynamic search, more frequent segments appear

before less frequent segments.

In Fig. 6.1 we see a relation between the discontinuities rate within syn-

thesized utterances to the maximal number of allowable transitions in each

stage of the dynamic search. A discontinuity is defined when spectral dis-
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Figure 6.1: Relation between the discontinuities rate in percents, y-axis, to
the logarithm of the maximal number of allowable transitions in each stage
of the dynamic search, x-axis, where log10(50, 000) ≈ 4.69.

tance between two consequent segments is higher than a permitted spectral

distance.

The discontinuities rate reflects the number of segments that are con-

catenated not to their original neighboring segments, but instead to other

segments, resembling their original neighboring segments. We see that even

for 50,000 transitions, there are still about 20% of segments which are con-

nected to different segments than their original neighbors. The discontinu-

ities rate was averaged over the set of 40 sentences.

Fig. 6.2 presents a relation between synthesis time to the maximal

number of allowable transitions in each stage of the dynamic search. We

see that increasing the the maximal number of allowable transitions in the

dynamic search enlarges significantly the synthesis time1. The synthesis

1The represented times do not reflect the real synthesis times, but rather emphasize
the big difference between the synthesis time, required for the dynamic search to find the
optimal sequence of speech segments, using more than 100 allowable transitions to the
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Figure 6.2: Relation between synthesis time, y-axis, to the logarithm of
the maximal number of allowable transitions in each stage of the dynamic
search, x-axis.

time was averaged over the set of 40 sentences.

Also, we examined how much the discontinuities rate is affected by the

number of acoustic leaves/phonetic contexts in the system. We repeated the

above experiment with different numbers of acoustic leaves: 5,000, 10,000,

15,000, 20,000, 25,000, 30,000, 35,000, 40,000, 45,000, 50,000. We found

that for any of these numbers of acoustic leaves a low discontinuities rate is

achieved only for a huge number of stage-to-stage transitions in the dynamic

search, as shown in Fig. 6.3

Consequently, we conclude that the perfect CTTS system is not feasible,

because in order to cover sufficiently phonetic contexts of a given language,

the system needs a lot of recorded speech feature segments, that results in

an exponential increase of the synthesis time.

time required to find the optimal sequence, using less than 100 transitions.
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Figure 6.3: Relation between the discontinuities rate in percents, y-axis, to
the logarithm of the maximal number of allowable transitions in each stage
of the dynamic search, x-axis. Every line corresponds to a different number
of acoustic leaves. The numbers of acoustic leaves is shown in the legend,
in the order the lines appear on the plot, where the top line corresponds for
5000 acoustic leaves.

6.2.2 Hybrid dynamic path algorithm

We develop the idea of the perfect CTTS system, discussed in Section 6.2.1,

in the proposed HTTS system. We propose to interweave natural segments

with statistically generated segments, where positions of statistical segments

encourage as long as possible natural segments sequences, as they appear at

the training database. Consequently, we try to approximate the behavior

of the abstract CTTS, by concatenating as many as possible contiguous

natural segments.

We propose to determine the positions of statistical segments by means

of an Hybrid Viterbi DP algorithm, denoted HDP, as described below.

Assume that we have a sequence of contexts L1, L2, . . . , LK , representing

the stages of the HDP, where the context Li holds the segments ni1, n
i
2, . . . , n

i
Ni

,
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representing the hybrid nodes of the HDP, as shown Figure.6.4, where Ci−1
k

and eik,1−1 denotes the cumulative cost of a survivor path of node ni−1
k and

the transition cost between ni−1
k and ni1, respectively.

Any hybrid node, nij, can be replaced by a statistical segment, sij, as

described below, where sij is generated by the boundary constrained statis-

tical model, as described in Section 2.2, to ensure smooth connections to

adjacent natural segments.

In a CTTS system the most appropriate segments are concatenated by

means of the Viterbi algorithm, which gradually advances from the first

stage L1 to the final stage LK , computing a survivor path for each node in

each stage in order to find the optimal path by back tracking through the

best survivor path. When computing a survivor for node ni1, the first node

at the stage Li in the HDP shown in Fig.6.4, the existence of the following

condition is examined:

∀j ei−1
j,1 > ε, (6.1)

where ε is a permitted spectral distance (error).

If such a case exists, any path passing through ni1 includes a disconti-

nuity at the transition from Li−1 to Li. Consequently, there is a possible

degradation in generated speech quality due to spectral discontinuity.

We propose to replace ni1 to a boundary constrained statistical model si1.

The statistical node si1 connects smoothly to its neighbors, consequently, a
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Figure 6.4: Hybrid dynamic path. ei−1
j,k is a spectral distance between the

node ni−1
j and nik, C

i
j is the best partial path at the node nij, Li - i-th stage

of the dynamic search.

survivor of si1 is defined as:

psi1 = argmin
j

Ci−1
j , (6.2)

which means that si1 continues smoothly the best survivor path from stage

Li−1 to stage Li.

Although, the node ni1 is replaced by the statistical node si1, the spec-

tral distance from the nodes at the stage Li+1 to the statistical node si1 is

computed as:

e1
i,j = d(ni1, n

i+1
j ), j = 1, . . . , Lt+1,

instead of

e1
i,j = d(si1, n

i+1
j ), j = 1, . . . , Lt+1,

in order to check whether ni1 has its original right boundary neighbor, as they

appeared in the training database, in Li+1. If node ni1 connects smoothly
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to some node ni+1
j of Li+1, then the right boundary of si1, which replaces

ni1, is constrained by ni+1
j . If not, then, the right neighbor of si1 will be a

statistical model, corresponding to the acoustic model of Li+1.

As a result, most of possible discontinuities disappear from the optimal

hybrid path, while contiguous sequences of natural segments are encouraged.

The number of statistical segments within a generated utterance can be

controlled by the value of the permitted spectral distance parameter ε. Set-

ting the permitted distance parameter error value to any negative number

results in STTS, because every distance is positive or zero by definition,

and every transition distance would be higher than any negative permitted

distance, ε < 0. While setting it to any positive number, results in HTTS,

and, finally, setting it to a very large positive number results in CTTS. The

special case, when the permitted spectral distance value is set to zero, is

considered to be an unforced hybrid TTS mode, since statistical models

are introduced any time two natural segments do not connect with zero

distance.

6.3 Hybridism ratio

The proposed HTTS system is a generalization of both CTTS and STTS,

because it can work in either a pure CTTS mode or a pure STTS mode,

depending on a hybridism ratio parameter, ξ, which controls the ratio of

the numbers of natural segments to the numbers of statistically generated

segments comprising a synthesized utterance. Speech generated in an in-
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Figure 6.5: Relation between the hybridism ratio parameter, ξ, and the
permitted spectral distance, ε. Any negative value for ε results in a pure
statistical system.

termediate (hybrid) mode consists of natural and statistically generated

segments, interweaved within an utterance.

We established an empirical relation between ξ and the permitted dis-

tance parameter, ε, mentioned in (6.2.2), for the used database, as shown in

Fig.6.5. In Fig. 6.5 we see the ratio (in percent) of statistical segments to

the overall number of segments in an utterance. Obviously, the statistical

segments ratio is 100% for any negative value of the permitted distance.

While requiring to concatenate only adjacent segments from the training

database corresponds to a permitted spectral distance value, ε = 0, which

results in about 85% of segments to be statistical, as shown in Fig. 6.5. So,

we can set a permitted distance parameter value according to this relation

in order to get a hybrid utterance with a required number of statistical

segments.
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This relation was found by synthesizing an arbitrary set of 40 sentences

in the proposed hybrid TTS, having footprint of 8.3MB. This set of sentences

was generated using ε ∈ {−1, 0 to 5 in steps of 0.2}. For each permitted

spectral distance from the used range, a ratio of statistical segments within

an utterance, ξ, was computed as an average ratio over this sentences.

6.4 Boundary constrained model

For the assumed model in (3.2), the optimal solution copt is the most prob-

able statistically derived vector over the utterance of N frames. In a hybrid

TTS system we have an arbitrary number of natural frames along the utter-

ance. Consequently, we would like to synthesize the optimal vector, given

these natural frames. The smooth connections of natural segments to sta-

tistical generated segments within a whole speech feature vector cdN×1 are

done by means of ∆1,2ci as follows. Assume that we have to connect the

natural segment cnat = [cnat1 , cnat2 , . . . , cnatTi
], having Ti frames, to the left

boundary of a statistically generated segment cstt = [cstt1 , cstt2 , . . . , csttTj ], hav-

ing Tj frames. This connection is done by the following constraints on the

left boundary dynamic features cstt:

∆̃1c1 =
1

2
(cstt2 − cnatTi

), (6.3)

∆̃2
1c1 = (−cnatTi

+ 2cstt1 − cstt2 ), (6.4)

while in the unconstrained boundary synthesis they are:
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∆1c1 =
1

2
(cstt2 − csttTi ), (6.5)

∆2
1c1 = (−csttTi + 2cstt1 − cstt2 ). (6.6)

Here we present a general framework for generating hybrid speech fea-

ture vector over an entire utterance with arbitrary number and positions of

natural frames, even if an entire utterance is composed either totally from

natural segments or from statistical generated segments, as in CTTS and

STTS systems, respectively.

Setting the optimization problem as a constrained optimization problem,

a vector copt is derived not by the expression (3.2) but rather by:

copt = argmin
c

ln(P (Wc)). (6.7)

s.t. Ac = c∗,

where c∗dk×1 = [c∗i1
T , c∗i2

T , . . . , c∗ik
T ]T is a vector that includes the k con-

strained natural frames frames, c∗in
T , n = 1, 2, . . . , k, at positions i1, i2, . . . , ik,

respectively, and Adk×dN is a linear transformation from cdN×1 to c∗dk×1. For

example, for d = 1, N = 5, k = 3, and i1 = 1, i2 = 3, i3 = 4, the matrix A

is:

A =


1 0 0 0 0

0 0 1 0 0

0 0 0 1 0


We derive the optimal solution for this constrained optimization prob-

lem (6.7) by means of the Lagrangian function with a vectorial Lagrange
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multiplier, γ:

L(c, γ) = ln(P (Wc)) + (Ac− c∗)Tγ, (6.8)

where γdk×1 is the vectorial Lagrange multiplier. Consequently, assuming

that WTU−1W is invertible, the speech feature vector for the boundary

constrained model is derived by:

∂L(c, γ)

∂c
= 0, ⇒

copt = (WTU−1W)−1WTU−1M

+ (WTU−1W)−1ATγ, (6.9)

and using (6.9) in (6.8) γ is

γ = (A(WTU−1W)−1AT )−1c∗

− (A(WTU−1W)−1AT )−1A(WTU−1W)−1WTU−1M.(6.10)

Consequently, the optimal speech feature vector, copt, is derived by substi-

tuting (6.10) into (6.9).

We can see in Figures 6.6 and 6.7 that the boundary constrained optimal

solution has two obviously different types of frames. The hybrid utterance

includes 42% of conventionally statistical generated frames. The segments,

where the hybrid (dashed line) features do not coincide with the natural fea-

tures, were not chosen from the natural segments inventory but rather were

supplanted by the statistically generated segments according to the hybrid

dynamic path, as described in Section 6.2. The natural segments within

the hybrid utterance are set as constraints for the statistical model, gen-
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Figure 6.6: Comparison of a hybrid-generated utterance to a natural utter-
ance.

erating the entire utterance. Frames pertaining to natural segments have

much more variations than those pertaining to conventional statistically

generated segments. This difference in the characteristics of natural seg-

ments and statistical segments generated by conventional STTS may result

in unpleasant artifacts in the generated speech.

In the next section we demonstrate an approach which resolves the above

mentioned quality discrepancy between natural and statistical segments by

applying SW-STTS instead of the conventional STTS.
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Figure 6.7: Zooming into the circled segments at the utterance at Fig.6.6.

6.5 Hybrid speech generation algorithm

In Section 6.4 we demonstrated the optimal solution (6.9) for a hybrid

speech feature vector, where an arbitrary number of statistical segments

may appear at arbitrary positions within an utterance, and natural seg-

ments are considered as boundary constraints for statistical models. The

constraints are defined by the linear transformation A, defined in (6.8), and

the optimization problem is set as the Lagrangian function (6.8) with the

vectorial Lagrangian multiplier γdK×1, where the connections between sta-

tistical to natural sequences are optimal and smoothed by means of ∆1,2ci.

The hybrid optimal speech feature vector over an entire utterance (6.9)

includes over-smoothed conventional statistically generated speech features

because no enhancement to speech features dynamics was applied. Al-
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though, the resulting speech naturalness is higher than the naturalness of

speech generated by a pure statistical model due to the contribution of

natural segments to the overall quality of the generated utterance, the low

dynamics in statistically generated segment may introduce unpleasant arti-

facts.

On the other hand, the method introduced in Chapter 5, generates

speech features having enhanced dynamics, resulting in the improved natu-

ralness of the overall statistical generated speech. However, that algorithm

introduces no natural segments to a generated utterance because no frames

are constrained to the natural ones during the iterative generation.

We propose to combine the hybrid speech feature vector representation,

shown in Section 6.4 with the algorithm shown in Section 5.4.

Consider the minimization of the doubly constrained cost function, Jc,c(W̃c),

which is an extension to the norm-constrained cost function, defined in

(5.17):

Jc,c(W̃c) = ‖U−1(W̃c−M)‖2
2 + (Ac− c∗)Tγ + λ‖c‖2

2, (6.11)

where the first term tends to approximate the statistical models, the second

term constrains required frames to natural segments, and finally, the last

term enhances speech features dynamics by systematically increasing speech

features vector norm, as described in Section 5.4. Using the gradient descent
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algorithm, a hybrid speech feature vector after the n-th iteration is:

cn+1 = cn − αn∇̃(cn), (6.12)

where ∇̃(cn) is the gradient of Jc,c(W̃c), which is:

∇̃(cn) = W̃TU−1W̃cn − W̃TU−1m + ATγ + λncn,

= Pcn −Q + ATγ + λncn, (6.13)

where W̃TU−1W̃ and W̃TU−1m are denoted as P and Q, respectively.

Taking into consideration that A∇̃(cn) = 01, ∀n, we can compute the

vectorial Lagrangian constraint γ from:

APcn −AQ+ AATγ + λnAcn = 0, (6.14)

where AAT = I, by the definition of A. Consequently,

γ = AQ−APcn − λnAcn =
Acn=c∗,∀n

= AQ−APcn − λnc∗, (6.15)

The gradient in the update step (6.12) is:

∇̃(cn) = Pcn −Q + ATAQ−ATAPcn − λnATc∗ + λncn, (6.16)

where λn is updated by the rules described in Section 5.4.

Obviously, natural frames influence statistically generated segments,

1Multiplying the equation (6.12) by the constraints defining matrix A, as defined
in (6.8), we get that Acn+1 = Acn − αnA∇(cn), where Ac = c∗, ∀n. Consequently,
equation (6.12) becomes c∗ = c∗ − αnA∇(cn), and, A∇(cn) = 0.
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while remaining unchanged due to the constraints. Statistically generated

segments are connected smoothly to their neighboring natural segments.

However, the hybrid speech feature vector norm increases during the iter-

ations of the algorithm. The proposed scheme combines the hybrid speech

feature vector representation with the iterative speech feature vector algo-

rithm. As a result, the overall quality of the proposed hybrid generated

speech, using a statistical model with improved dynamics is better than

the quality of hybrid generated speech that uses the conventional STTS, as

confirmed by listening tests demonstrated in Section 5.5.

In Fig.6.8 we see speech features generated by the hybrid speech genera-

tion algorithm, presented in this section, as compared to the natural speech

features, and to the hybrid speech features generated using the conventional

statistical model, presented in Section 6.4, in solid grey line, in dashed line,

and, in solid black line, respectively. The constrained frames are natural

speech frames, where all three lines coincide, such as in frames: 7-12, 28-32,

39-44, 94-100, 102-108, and 113-118. Examining the frames 61-71 we see

that, in general, statistical speech features generated using the conventional

statistical model are less dynamic than statistical speech features generated

by applying the segment-wise statistical model, SW-TTS.
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Figure 6.8: Comparison of a hybrid-generated utterance using the segment-
wise representation statistical model, to a hybrid-generated utterance using
the conventional statistical model, and to a natural utterance, in dashed
line, in solid grey line, and, in solid black line, respectively. The vertical
lines mark the constrained natural segments, where all the lines coincide.

6.6 HTTS Experimental Setup

We examined different compositions of the baseline CTTS and the baseline

STTS in the proposed HTTS system. We simulated a CTTS system with

different footprints (by using different numbers of speech feature segments),

having memory size of 5MB, 7MB, 8.3MB, 12MB, and 22MB, respectively.

The simulated system footprints were controlled by a number of stage-to-

stage candidate transitions in the dynamic search.

All the systems had the same number of acoustic leaves/phonetic con-

texts, which was set to 25,000.

The size of the STTS models for 25,000 acoustic leaves was 1.3MB, ap-
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proximately. The sizes of the corresponding HTTS systems were examined

6.3MB, 8.3MB, 12.3MB, and 23.3MB.

The HTTS system was simulated in a double pass fashion. In the fist

pass a particular sentence was generated by the baseline CTTS, which pro-

vided spectral phases for the second pass, In the second pass, the hybrid

dynamic path algorithm, described in Section 6.2.2, was applied. The hy-

brid dynamic-path algorithm determines a hybrid segment sequence, where

some t of the segments are natural speech feature segments, while others are

corresponding statistical models. These models generate statistical speech

feature segments, applying either the conventional statistical speech feature

generation algorithm of Section 3.2, with the boundary constrains, Sec-

tion 6.4, or, the segment-wise model speech feature generation algorithm,

described in Section 5.4 with the boundary constrains, demonstrated in Sec-

tion 6.4. Simulating a HTTS system in a double pass fashion enables us to

compare utterances generated by the HTTS system to those generated by

the CTTS, where the only difference in generated utterances is in the qual-

ity of spectral speech features. The proposed HTTS can work in a single

pass fashion as well, (independent of the spectral phases of the underlined

CTTS system), in which case a linear phase is used for statistical generated

utterances with a dithering in high frequencies, as described in [2].

The number of statistical segments within a hybrid utterance is different

for CTTS systems having different footprint sizes. The smaller the footprint

size, the more discontinuities appear in generated utterances.

Examining different compositions of hybrid utterances, we found that
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almost all natural segments are replaced by statistical models in a HTTS

based on the 5MB baseline CTTS. On the other hand, almost all natural

segments remain in a hybrid utterances for a HTTS based on the 22MB

CTTS. We conclude that the HTTS system is less useful when it is based

on CTTS system that have small sizes, e.g. 5MB, or, on a big size CTTS,

such as 22MB.

The HTTS system, having an intermediate size (among the examined

HTTS systems) of around 7MB-8MB, interweaves a marked amount of both

segments types (natural and statistical), where the ratio between natural

segments to statistical models varies from 30% to 70%. Consequently, we

chose this working point for the HTTS in our experiments.
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6.7 Subjective evaluation

We have performed listening tests to evaluate the quality of speech generated

by the proposed HTTS method.

6.7.1 Mean opinion score (MOS) test

In this test we have computed the Mean Opinion Score (MOS), according

to [31], for a set of 10 sentences, where each sentence was generated in four

versions: (i) CTTS system, using up to 15 possible candidate segments

in each step of the dynamic programming, (a memory size of 22MB),

described in equation (2.3), Section 2, (group A). (ii) Proposed hybrid

text-to-speech synthesis method, applying the segment-wise model repre-

sentation and the iterative algorithm, demonstrated in Section 5.4, with a

7MB baseline CTTS, (group B). (iii) CTTS system, using up to 6 possible

candidate segments in each step of the dynamic programming, (a memory

size of 8.3MB), described in equation (2.3), Section 2, (group C). (iv) Pro-

posed hybrid text-to-speech synthesis method, applying the conventional

statistical speech generation method, discussed in Section 3, with a 7MB

baseline CTTS, (group D).

Fig. 6.9 shows the results of the MOS test for the four groups. We

see that the proposed method outperforms the concatenative system that is

using up to 6 candidate segments in each step of the dynamic programming

step. However, it is inferior to the concatenative system with 15 candidates

segments in each step of the dynamic programming search. The hybrid
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Figure 6.9: Mean Opinion Score (MOS) test, comparing CTTS system,
using up to 15 possible candidate segments in each step of the dynamic
programming search, (a memory size of 22MB), (group A), (ii) by the
proposed hybrid text-to-speech synthesis method, applying the segment-
wise model representation and the iterative algorithm, with a 7MB baseline
CTTS, (group B), (iii) CTTS system, using up to possible 6 candidate
segments in each step of the dynamic programming search, described in
equation (2.3), (a memory size of 8.3MB), (group C), (iv) by the pro-
posed hybrid text-to-speech synthesis method, applying the conventional
statistical speech generation method, with a 7MB baseline CTTS, (group
D).

system that uses the conventional statistical speech generation algorithm,

with 7MB baseline CTTS, is worse than all the other examined methods.

6.7.2 Subjective evaluation summary

All the tests were performed with a headphone set. The only information

about the samples that the listener were provided with, was that the test

aims to compare different speech synthesis methods. All the listeners were

graduate and undergraduate students, having no experience with TTS sys-

tems.
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Chapter 7

Summary and Future Work

In this chapter we discuss advantages of the proposed HTTS for both the

baseline STTS and the baseline CTTS. In Section 7.1 we discuss the im-

provement of STTS by the proposed HTTS. In Section 7.2 we discuss the

improvement of CTTS by the proposed HTTS. Also, in that Section we

consider the effect of footprint size of the baseline CTTS system on the

performance of the proposed HTTS. The advantages of the proposed HTTS

are demonstrated by the results of the performed subjective evaluations. In

Section 7.3 we summarize the entire work. And, finally, in Section 7.4 we

provide possible continuations of this research.
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7.1 Improvement of STTS by HTTS

As described previously, the main disadvantage of STTS synthesis is its

non natural quality. While on the other hand, its main advantages are

smooth transitions in speech features between adjacent phonemes within a

generated utterance, and a small footprint size.

The boundary constrained statistical speech synthesis, provided in Sec-

tion 6.4, enables to connect smoothly statistical generated speech- feature

vectors to natural speech-feature vectors, where positions of natural speech

feature-vectors are determined by the hybrid dynamic path algorithm, pro-

vided in Section 6.2.

Consequently, the overall naturalness of statistically generated speech

can only be improved by the introduction of natural speech segments.

In Fig. 7.1 we see that introducing natural speech feature-segments to

conventional statistical generated speech feature-vector results in a MOS

increase of about one MOS unit.

The quality of segment-wise statistically generated speech increases by

the hybrid scheme as well. However, the increase is lower than with conven-

tional statistical generated speech. The reason is that the initial segment-

wise quality is higher than the quality of conventional statistical generated

speech.

In Fig. 7.2 we see that introducing natural speech feature-segments to

segment-wise statistical generated speech feature-vector results in a MOS

increase of about half a MOS unit.
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Figure 7.1: Contribution of CTTS to the quality of the conventional STTS.
Mean opinion score (MOS) of the proposed HTTS, based on the conven-
tional STTS, with 7MB baseline CTTS, column ’A’; MOS of the base line
pure STTS, column ’B’.

Figure 7.2: Contribution of CTTS to the quality of the SW-STTS. Mean
opinion score (MOS) of the proposed HTTS, based on the SW-STTS, with
7MB baseline CTTS, column ’A’; MOS of the base line pure SW-STTS,
column ’B’.

We conclude that a STTS system is improved by augmenting it by a

CTTS system. The footprint of the CTTS system can be low, including

only most frequent natural segments.
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7.2 Improvement of CTTS by HTTS

The main drawback of CTTS synthesis is the possibility of obtaining abrupt

transitions between adjacent speech feature segments. These abrupt transi-

tions often cause unpleasant audible artifacts in the generated speech. The

lower a CTTS system footprint, the more discontinuities appear in the gen-

erated speech. Yet, in spite of these artifacts it possesses natural features

and is not muffled and/or buzzy, as compared to statistically generated

speech.

In this research we found that the proposed HTTS method can reduce

discontinuities in speech features by applying boundary constraints in the

hybrid dynamic path, thus improving the overall generated speech quality.

In Fig. 7.3 we see that the proposed HTTS system, using the segment-

wise statistical speech model, column ’A’, outperforms the CTTS system,

column ’B’. The footprint of each of these two systems is approximately

8.3MB.

A HTTS system is preferable over a CTTS system when discontinuities

in speech generated by a CTTS system cause an essential degradation in

its quality. We found that a HTTS system, composed of a baseline CTTS

system and of a STTS system, having footprints of 7MB, and 1.3MB, re-

spectively, outperforms a CTTS system alone, having a footprint of 8.3MB.

The smaller the footprint of the baseline CTTS system, the larger is the

improvement in the quality of speech generated by the HTTS system. The

bigger the footprint of the baseline CTTS is, the rarer are discontinuities in
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Figure 7.3: Mean opinion score (MOS) of the proposed HTTS, based on
the segment-wise STTS, column ’A’; MOS of the CTTS system, column
’B’. Both systems have the same size of 8.3MB

generated speech, and, as a result the improvement obtained by the HTTS

system decreases.

7.3 Summary

In this research we examined the characteristics of STTS systems. The main

disadvantage of STTS systems is the over-smoothing of statistically gener-

ated speech features, which causes the generated speech to sound muffled

and buzzy. We found that the over-smoothing problem can be alleviated

by improving statistical speech features dynamics. We proposed two ap-

proaches for the enhancement of speech feature dynamics. The first one

improves speech features dynamics in the transform domain, as described

in Section 4. In the second approach we improved speech features dynam-

ics by introducing a segment-wise representation, described in Section 5.2.
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The segment-wise representation enables more speech feature dynamics by

providing additional degrees of freedom for speech features evolution. This

is realized by requiring the approximation of the model mean by all frames

of a corresponding segment on average, rather than by its approximation

by each frame of the corresponding segment, as it is performed in the con-

ventional frame-wise representation. The additional degrees of freedom of

the segment-wise representation are also employed for increasing the norm

of generated speech feature-vector. The norm increase is regulated by intro-

ducing a norm-constraint, as described in Section 5.3. To generate a speech

feature-vector over an entire utterance, we use an iterative algorithm, de-

scribed in Section 5.4, where the speech feature-models and the speech

feature-norm are balanced by a balancing factor, whose effect is decreased

from iteration to iteration in the iterative algorithm. As a result, accord-

ing to the performed MOS tests, described in Section 5.5, the generated

speech sounds more natural and less buzzy. However, its naturalness is still

worse than the naturalness of CTTS, having a big footprint size. The first

approach (frequency domain) is less computational complex, however, it is

inferior in term of the quality, in comparison to the second (segment-wise)

approach.

In addition, we designed a hybrid TTS system by combining STTS

with CTTS. The designed HTTS combines the advantageous character-

istics of STTS, (optimal smoothed transitions between adjacent segments)

with those of CTTS (the naturalness of natural segments). The HTTS

interweaves natural segments with statistical models, where the positions
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of statistical models are defined by the proposed hybrid dynamic path al-

gorithm of Section 6.2. In order to optimally connect natural segments

to statistical models, boundary constrained statistical models are applied,

6.4. A hybrid speech feature-vector over an entire utterance is generated

iteratively, where natural segments are fixed in the iterations, and constrain

statistical segments, while statistical segments are updated according to the

hybrid cost function gradient, as described in Section 6.5. As a result, ac-

cording to the performed MOS tests (Section 6.7) hybrid generated speech

sounds more natural than a corresponding pure statistical generated speech.

Concerning the comparison of the proposed HTTS system to CTTS sys-

tems, we conclude that the footprint of the compared CTTS system should

be considered as well. CTTS systems having a big footprint ( 20MB and

more) are not improved by combining them with STTS, because in such

a system, there is only a very small number of audible discontinuities in

generated speech. On the other hand, CTTS systems having a small foot-

print ( 5MB and less), generate speech for which almost all segments are

do not connect smoothly, resulting in a noticeable degradation in the gen-

erated speech quality, due to many audible discontinuities. In this research

we show that the proposed HTTS is advantageous at a working point of

7MB (a baseline CTTS size). However, determination of the working point

is not based on some optimality criterion, but rather on subjective evalu-

ations, and this issue is considered as one of the possible continuations of

this research, which are provided in the next section.
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7.4 Future Work

The segment-wise representation provides additional degrees of freedom in

the determination of the statistically generated speech feature-vector. In

this research we employed it for regulating the generated speech feature-

vector norm. However, these degrees of freedom can be employed for regu-

lating other speech features, e.g., speech feature-vector entropy, by properly

choosing an additional term in the cost function, like we did for regulating

the spectral speech features norm.

In this research we employed the gradient descent algorithm to derive

iteratively the speech feature-vector over an entire utterance. Other ap-

proaches for generation of the speech feature vector can be examined both

in terms of complexity and in terms of the final solution characteristics,

e.g., applying different iterative algorithms, or analytic determination of

the norm-regulating balancing factor.

In this research spectral speech features are explored, while phase speech

features are taken either from the original CTTS phases, in the case of

HTTS, or a linear phase is used in the case of STTS. Statistical modeling of

phase speech features could be an important continuation of this research.

The proposed dynamic path algorithm is based on a cost function derived

from the spectral distance between consequent natural segments. A more

sophisticated approach for interweaving statistical models with natural seg-

ment should rely on a metric reflecting a tradeoff between discontinuities in

natural segments to the unnaturalness of statistically generated segments.
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To derive such a metric, further research is needed. In particular, the degra-

dation in synthesized speech quality, caused by the spectral discontinuities

between consecutive natural segments, will be compared to the degradation

in synthesized speech quality caused by the unnaturalness of statistically

generated segments. This hybrid metric should then be used in the hybrid

dynamic path algorithm.

In this research we use the same model (a single Gaussian component

per HMM state for a given phoneme) for every phoneme. Different mod-

els for different broad phonetic classes can improve the overall quality of

statistically generated speech. Probably, certain phonetic classes should be

excluded from statistical modeling at all, e.g., fricative and plosive phonemes

that are seldom modeled properly, causing degradation in generated speech

quality.

The performance of TTS systems is mostly evaluated by subjective lis-

tening tests. An objective metric for TTS system evaluation will improve

an evaluation process of TTS systems. Such a metric can facilitate finding

a working point for HTTS system as well.
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Appendix A

Analysis of Cost Function

Components

In this appendix we elaborate on the behavior of the iterative algorithm,

detailed in Section 5.4, by considering relations between the static and dy-

namic features to corresponding terms of the cost function, J(W̃c).

The cost function, Jsw(W̃c) = ‖U−0.5(W̃c −M)‖2
2, consists of three

terms: the static feature term J1(c), the first dynamic feature term J2(∆1c)

and the second dynamic feature term J3(∆2c). With a diagonal covariance

matrix these terms are independent. Consequently,

Jsw(W̃c) = J1(c) + J2(∆1c) + J3(∆2c), (A-1)

where the terms contributions to the cost function J(W̃c) are weighted

according to corresponding variances of the static and the dynamic features
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Figure A-1: The components of the unconstrained segment-wise cost func-
tion, Jsw(W̃c), where Jsw(W̃c) = Jsw1 (c) + Jsw2 (∆1c) + Jsw3 (∆2c).

Figure A-2: The normalized static feature norm and the normalized dy-
namic feature norm, obtained by the minimization of Jsw(W̃c).

(appeared on the main diagonal of the covariance matrix), which are related

as follows. Denoting the variance of the static features as ρ2, then, the

variances of the ∆1c and the ∆2c are 1
2
ρ2 and 6ρ2, respectively, according

to the construction of ∆1c and ∆2c, defined in (3.4), and the independence

assumption of the model. Consequently, the most influential term is J(∆1c),

because it has the smallest variance.

In Fig. A-1 we see the decomposition of the unconstrained cost function,

Jsw(W̃c), in solid bold line, into Jsw1 (c), in solid thin line, Jsw2 (∆1c), in
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dashed line, and Jsw3 (∆2c), in dot dashed line, where equation (A-1) is

satisfied in each iteration in the iterative algorithm demonstrated in Section

5.4.

In Fig. A-2 we see the evolution of ‖c‖2
2, ‖∆1c‖2

2, and ‖∆2c‖2
2, corre-

sponding to Jsw1 (c), Jsw2 (∆1c), and Jsw3 (∆2c) in Fig. A-1, respectively. The

norm of the static features is almost unchanged, (the change is about 0.01 %

over 10000 iterations). However, the norm of the dynamic features indeed

change at a rate comparable to the change in the cost function. As de-

scribed above, the cost function is mostly changed due to the change in the

dynamic feature norm rather than due to the change in the static feature

norm. Consequently, the dynamic feature model error decreases without re-

ducing essentially the norm of the static features. Indeed, we see in Fig. A-2

that the decrease in ‖c‖2
2 is negligible compared to the decrease in ‖∆1c‖2

2

and ‖∆2c‖2
2.

The initial vector c0 in the iterative algorithm is constructed by repli-

cation of the model means, so, c0 lacks any dynamics in the intra-phoneme

frames, but includes discontinuities at the inter-phonemes frames (phonemes

boundaries). In Fig. A-1 we see that the initial value of J1(c) is zero but

J2(∆1c) and J3(∆2c) are not zero.

From Fig. A-2 we conclude that the transitions between adjacent states

are smoothed as the number of iterations increases, because ‖∆1c‖2
2 and

‖∆2c‖2
2 get smaller.

The above discussion is related to the unconstrained optimization prob-

lem. When the cost function Jswc (Wc) includes an additional term, λ
2
‖c‖2

2,
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Figure A-3: The components of the constrained segment-wise cost function,
Jswc (W̃c), where Jswc (W̃c) = J1

sw
c (c) + J2

sw
c (∆1c) + J3

sw
c (∆2c).

Figure A-4: The normalized static feature norm and the normalized dy-
namic feature norm, obtained by the minimization of Jswc (W̃c).

regulating the norm of the static feature vector, there is an increase in the

static feature vector norm, accompanied with a cost function error increase.

The cost function error increase occurs as long as the balancing factor λ

does not decrease sufficiently. When λ does decrease sufficiently the cost

function components start competing to reduce their errors according to

their significance (inverse variance), where J1(∆1c) + J2(∆2c) is more sig-

nificant compared to J(c). In Fig. A-3 we see the cost function components

dynamics in the norm constrained case. The corresponding feature vector
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dynamics is shown in Fig. A-4. We see that ‖c‖2
2 converges in about 150

iterations.
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  .דסת חשמלנלהבפקולטה  פרופסור דוד מלאך המחקר נעשה בהנחיית
 

יתו ידוד מלאך על הנח' פרופל להביע את תודתי העמוקהאני רוצה 
מהידע  רבהלמדתי ה. חקרכל מהלך המותמיכתו בהדרכתו , המסורה

 נהללמדתי בין היתר כיצד לתכנן ול ,תויבהנחי. והניסיון המחקרי שלו
מטרות את כיצד להגדיר כן ו, תי בכתיבה מדעיתיהתנס, מחקר אקדמי

  .להשיגןהמחקר ו
  

מעבדה לעיבוד אותות בטכניון לבין ההמחקר היה בשיתוף פעולה בין 
אני רוצה להודות אישית לרון . )HRL(בחיפה  IBM של מחקרהמעבדת 

אריאל , צבי קונס, סלבה שכטמן, HRL-ראש קבוצת עיבוד דיבור ב ,חורי
  .על הדיונים המועילים במהלך המחקר IBM -HRLס סורין מכשגיא ואל

  
על ) SIPL(ודות לצוות של מעבדה לעיבוד אותות בטכניון להגם אני רוצה 

אבי רוזן ויאיר , זיוה אבני, אני רוצה להודות לנמרוד פלג ,בפרט. עזרהה
  .SIPLשל  לעבוד עם הצוות נפלאהיתה חוויה יזאת ה. משה

  
להם  תמיכההעידוד והאנטון על  יסופיה ולאח ימילא מאודאני מודה 
  . זכיתי מהם

  
   . א  זה באהבה לאוולינהיהתאני מקדיש את 

  
  
  
  
  

  .יעל התמיכה הכספית הנדיבה בהשתלמות IBM-HRL -ו טכניוןאני מודה ל 
 
 
 
 



 
 

 תקציר
 

ממשק בין אדם הם דורשת שכלול של המערכות מחשב ויישומיבהתפתחות המהירה ה

קלט שלהם יהיו -פלטהלשימוש אם התקני  ותפחות נוח תהיינההרבה מערכות . למכונה

 ישמערכות חדישות ל. מקלדת ומסך, ברעכ: קלט סטנדרטיים כגון-להתקני פלטמוגבלים 

מתפתחים ממשקים , קלט סטנדרטיים-בנוסף להתקני פלט. צורות שונות של ממשקים

קלט  ניהתק. ות פלט בצורה של אות הדיבורמפיקכמו מערכות ש ,רים בין אדם למכונהייש

לדעת  כיםפלט צריה ניוהתק, על זיהוי אותות הדיבור והשפה יםבמערכות כאלה מתבסס

  .דיבור בהתאםהולסנתז את אות אנושית מכונה לשפה  תגובותלתרגם 

  

 קיימות מערכותמפני ש, נתזת אותות דיבוריסאיכות מערכות ל של יש חשיבות רבה לשיפור

תפעול מכונות , נהיגה(, כל פעילות אשר דורשת שתי ידיים. פלט קוליבאשר משתמשות  

תהיה יותר , ובו זמנית דורשת לתקשר עם מכונה ,)'חדרי ניתוח וכובמנתחים , מורכבות

מכונה בצורה של היעילה אם תהיה אפשרות לתת למכונה פקודות קוליות ולקבל פלט מ

, ראייהם בעיות עקלט קולי תהיינה נגישות לאנשים -מכונות עם פלט, כמן כן. בורידאותות 

קלט -פלט, בנוסף לנוחות. קולי להוציא פלט יםמחשב אשר יכול ישומיהרבה י נםיש, ו כןכמ

להינתן כי תגובות קוליות של מכונה יכולות  טבעי ונעים למשתמשיכול להיות יותר  קולי

יותר כיום  נםיש. כמו קול של אדם מסוים, למשתמש ותומוכר תכונות רצויות בעל בקול

ים דכמו טלפונים ניי ,מים אישייםושין ביהן בתעשייה והמערכות עם ממשק קולי ויותר 

    .קלט קולי-אלה הסיבות אשר מנחות קווי מחקר ופיתוח של מערכות עם פלט. ומשחקים

 

בגישה . אותות דיבור מטקסטשל  הסינתזהקריות לפתרון פרדיגמת יות עגישקיימות שתי 

על פי קלטים להרכבת אות דיבור אותות דיבור מושל משתמשים במקטעים , הראשונה

יצוג יאו  אותות דיבור מוקלטיםשל  םמקטעיים כאלה שומרת ובמערכ .יםט מסוסטק

יחידות (, פונמות ,ים המוקלטים האלה יכולים להיות מילים שלמותמקטעה. פרמטרי שלהם

של במחקר זה השתמשנו במערכת . פונמות חלקיאפילו , או, )שפהפונטיות בסיסיות של 

משרשרים  ,בגישה זאת. העם יחידות בסיסיות של שליש פונממטקסט  אות דיבורסינתזת 

 .ם סמוכים במשפטמקטעיים בהתאם לכללים מסוים אשר מתבססים על תכונות של מקטע

   .(concatenative) נתייחס למערכות כאלה בתור מערכות משרשרות ,בהמשך

 



במאגר  נשמריםהים מקטעטבעית של הדומה לאיכות  אהימערכות משרשרות איכות של ה

תלויה במספר של  משרשרותמערכות אות דיבור מסונתז באיכות של ה. מערכתהשל 

דיבור המסונתז האיכות של אות הכך גם  ,מאגר גדול יותרהככל שגודל . ם במאגרמקטעיה

 דיבורהאות איכות של הגם כך  ,בסיסיות קצר יותרהדות ייחהשל  אורךהככל ש. והה יותרבג

, כך למשל .ים סמוכיםמקטעכי יש יותר אפשרויות לחיבור של  ,יותר גבוההמסונתז ה

 ,פונמות יאשר משתמשות בשליש ,מסונתז במערכות משרשרותהדיבור האיכות של אות ה

אשר  מסונתז במערכות משרשרותהדיבור האיכות של אות היותר גבוהה מאשר  אהי

  .  משתמשות בפונמות שלמות

  

מסונתז הדיבור ה ותאיכות של אותה יאז, ק גדוליים אינו מספמקטעהמספר של האם  

נדרש מספר גדול מאוד של  ,באיכות גבוהה מטקסט נתון כדי לסנתז אות דיבור, לכן. נפגעת

 נדרשתאם מאוד להיות גדול  כולל של מערכות כאלההלגודל  הדבר גורם .ים במערכתמקטע

  . מסונתז אותות דיבוראיכות גבוהה של 

 

אשר מופיעות  ,סמוכים יםמקטעקפיצות בין הינו , מערכות משרשרותהחיסרון העיקרי של 

מופיעות כאשר  )רציפויות-אי( הקפיצות. בצורה רציפהים שלא מתחברים מקטעשני כל בין 

בכל  אולם ,אגרים בממקטעבין כל הביותר  יםמתאימ אמנםים אשר מקטעמחברים שני 

מסונתז ומפריעות ה דיבורה הקפיצות האלה מורגשות באות. יש ביניהם מרחק ניכר ,זאת

מסנתזות אותות דיבור  ,יםמקטעמאגר מוגבל של עם משרשרות מערכות , לכן. למאזין

  .יםמקטעעם מאגר יותר גדול של  משרשרות מאשר מערכותיותר באיכות נמוכה 

 

 

שייכים הים מקטעאלא לומדים תכונות של  ,ים מוקלטיםמקטעלא שומרים , בגישה אחרת

 גישהגישה זאת נקראת . פונמות שונות וממדלים אותם בעזרת מודלים סטטיסטייםל

מערכות כאלה צריכות הרבה פחות זכרון ואין  .סטטיסטית לסינתזת אותות דיבור מטקסט

פרמטרי . משרשרותות על ידיהן את הקפיצות הקיימות במערכ יםמסונתזהדיבור הבאותות 

ת באות וואין קפיצ חלק ממודל למודלבאופן טטיסטיות עוברים אותות דיבור במערכות ס

חלקים יתר מוהינם  יםפרמטרי אותות סטטיסטי ,לעתים קרובות, אולם. מסונתזהדיבור ה

ולא  מיםיתר במערכות כאלה גורמת לאותות דיבור להישמע עמוההחלקת . על המידה

נתזת אותות ילס קרי של מערכות סטטיסטיותיסרון העייתר הינה החההחלקת . יםטבעי

  .דיבור

 



נתזת אותות דיבור ילס תודרכים לשיפור מערכות סטטיסטימספר ו מציעים נבמחקר זה א

 מגדירים אנו ;למודלים סטטיסטיים ביצוג אלטרנטייי) א :ןהדרכים המוצעות ה. מטקסט

יצוג יסטטיסטי למסגרות בודדות בהיצוג מיל ילהבד, פונמות שלמות ישלישצוג סטטיסטי ליי

נורמה ל םאיתתש המסונתז כךדיבור הווקטור פרמטרי אות אילוץ הנורמה של ) ב, סטנדרטי

פרמטרי אותות  מציאתאנו מציעים אלגוריתם ל. בור טבעייאות ד יפרמטרווקטור של 

אותות פרמטרי  ריוצ מוצעההאלגוריתם . אשר מתבסס על עקרונות אלה נטטייהס דיבורה

באיכות של אותות כללי השיפור בדינמיקה מביא לשיפור . דיבור עם דינמיקה מוגברת

הסטטיסטית  בשיטה יםמסונתזהדיבור הה לאיכות של אותות אבהשוו יםמסונתזהדיבור ה

אנו  .MOS-Mean Opinion Score)(, ותסובייקטיבי בדיקותהשיפור אומת ב. קונבנציונליתה

   SW-STTS .( Segment-wise STTS)לייצוג האלטרנטיבי  יםראוק

     

אותות איכות של הצוג האלטרנטיבי אנו מציעים שיטה נוספת לשיפור ילשיטת הי בנוסף

אותות  פרמטרי של דינמיקה ה בשיטה המוצעת מתבצע שיפור. סטטיסטיתבגישה הדיבור ה

בהשוואה  יםמסונתזהדיבור השיטה זאת מביאה לשיפור של אותות . דיבור במישור התדרה

-SWשיטה זאת היא פחות טובה משיטת  .קונבנציונלית ה הסטטיסטית השיטב התזינלס

STTS,  בעלת סיבוכיות נמוכה יותרהיא  אך ,איכות אותות הדיבור המסונתזיםמבחינת.   

  

יתרונות העם משרשרות יתרונות של מערכות את הלשלב  מרכיב חשוב בעבודה היא ההצעה

זרת וש ,היברידיתמערכת כאן המכונה , המערכת המשולבת. מערכות סטטיסטיותשל 

סבר ומשפותח בעבודה ום סטטיסטיים בעזרת אלגוריתם דינמי מקטעיים טבעיים עם מקטע

   .בגוף החיבור

  

ים מקטע שלבים סטטיסטיים ממקטעים עם יים טבעמקטעהאלגוריתם הדינמי לשילוב 

ים מקטעה. ים לא מתחברים בצורה רציפהיטבע יםמקטעסטטיסטיים במקומות שבהם 

ים הטבעיים מקטעכאשר האילוצים הינם ה ,הסטטיסטיים מסונתזים עם אילוצים בקצוות

 .הסמוכים

  

אלגוריתם ) ם אינהלסינתזת אותות דיבור היברידית המערכת העיקריים של המרכיבים ה

אלגוריתם ) ב, ים סטטיסטייםמקטעים טבעיים עם מקטעמאפשר שילוב ש ,היברידי דינמי

  .תהיברידיבמערכת ההמסונתזים דיבור הפרמטרי אותות ווקטור את  היוצר

 

המתקבלים ים טבעיים מקטעטבעיות של ההמוצעת שומרת על  היברידיתמערכת הה

 דורשת גם המערכת ההיברידית .יםמקטעבין הועל מעברים חלקים  משרשרתמערכת ההמ



 היא בעלת סיבוכיות נמוכה יותר, כמו כן .מערכת המשרשרתהנמוך יותר מכרון יז גודל

שני הכללה של  נההמוצעת הי ההיברידיתמערכת ה, בנוסף. ותמקובלת וסטטיסטית וממערכ

 של מערכת משרשרתבמצב הן היא מסוגלת לפעול  כי, סטטיסטית ומשרשרת, מערכותהגי וס

שקובע את , היברידיזציהכתלות בפרמטר , הטהור שלמערכת סטטיסטיתן במצב הו הטהור

   .ים במשפטמקטעהמתוך סך  סטטיסטיים יםמקטעשל  כמותה

  

מקטעים מם טבעיים וימקטעמ יםמורכב תיברידיה מערכתב מסונתזיםהדיבור האותות 

מערכת האיכות של משפט היברידי תלויה באיכות של ה .מיוצרים סטטיסטיתה

, SW-STTSמשתמשת במערכת סטטיסטית ש ,יברידיתההשהמערכת  ,מצאנו. סטטיסטיתה

אשר משתמשת  היברידיתהמסנתזת אותות דיבור באיכות גבוהה יותר מאשר המערכת 

 ושנעש, )MOS(בייקטיביים וס םוכח במבחנימ הדבר. קונבנציונלית במערכת סטטיסטית

   .בעבודה

  

רציפויות מאשר -המערכת ההיברידית מסנתזת אותות דיבור עם פחות אי, מצד אחד

יותר טבעיים הם יברידיים האותות דיבור  ,מצד שני. במערכת עם מאגר סגמנטים טבעיים

 .  בבדיקות סוביקטיביות גםכפי שהוכח , בהשוואה לאותות דיבור סטטיסטיים

 

עדיפה על פני מערכות שהמערכת ההיברידית המוצעת  ,למסקנה יםעיגמ בעבודה אנו 

מערכות משרשרות בעלות גדלים קטנים והינה עדיפה על פני מקובלות סטטיסטיות 

- אימערכות משרשרות בעלות גודל גדול מסנתזות אותות דיבור בלי מכיון ש ,ובינוניים

  .מפריעות למאזיןהרציפויות 
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