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Abstract 
The Optimized Temporal Decomposition (OTD) technique for 
Line Spectral Frequencies (LSF) speech envelope 
representation, under a MMSE criterion, has been shown to be 
promising for very low bit rate speech coding for storage and 
broadcast applications. In order to improve perceptual speech 
quality, a dynamically weighted OTD (DW-OTD) technique is 
introduced in this work. It extends the OTD by allowing 
temporally changing weights, so as to improve the perceived 
speech quality. Use of Gardner's weighted MSE with DW-
OTD is found to reduce the Log Spectral Distance (LSD) 
measure by 0.3 dB, as compared to OTD. The original OTD 
algorithm delay and complexity requirements make it 
inappropriate for real-time speech coding. In this paper we 
also introduce a modification of this technique, which is sub-
optimal but suitable for on-line speech coding purposes, with 
negligible degradation of performance (of only about 0.06 dB 
in LSD). With the proposed techniques we were able to 
encode speech spectral envelopes at 300-370 bps at LSD of 
2.25-2.1 dB, respectively, with a delay of just 7 frames. 

1. Introduction 
Fixed-frame-length Linear Predictive Coding (LPC) is a 
widely used method for spectral envelope representation at 
low bit rates. Usually, Line Spectral Frequencies (LSF) 
vectors (referred further as parameter vectors) are extracted at 
a constant rate of 40 – 50 Hz, and are coded using different 
vector quantization (VQ) techniques. Those techniques may 
achieve transparent quality of the spectral parameters (i.e. 1dB 
average LSD, less than 2% frames having spectral distortion 
greater then 2 dB and no outliers above 4dB) at a coding rate 
as low as 1000 bps  [1].  

In order to further reduce the coding rate the inter-frame 
redundancies in speech spectral parameters are exploited. 
There are many speech coding schemes based on the fixed-
frame LPC spectral representation, which utilize those 
redundancies to gain an acceptable speech quality at reduced 
bit rates  [3], [4], [6]. Variable or constant bit-rates using joint 
quantization schemes, such as Segment  [4] or Matrix  [3] 
Quantization, represent several LSF vectors by a single 
codeword. However, those methods require very large 
codebooks to obtain good speaker-independent performance. 
Other schemes reduce the bit rate by skipping a number of 
frames, followed by interpolating at the decoder, or combine 
skipping and joint quantization paradigms  [5]. 

 These schemes inevitably increase the delay of the 
system, but are still acceptable for a number of applications, 

such as real-time military/secure voice communications or 
non-real-time storage and broadcasting applications.  

In this work we introduce an improved spectral envelope 
coding scheme, based on Optimized Temporal Decomposition 
(OTD) model  [6], which is computationally efficient and 
capable of drastically reducing speech temporal redundancies, 
resulting in as low as 300 bps for coding the spectral envelope 
with an acceptable speech quality. Section 2 of this paper 
introduces the general TD concepts and describes the OTD 
algorithm, followed by the proposed scheme. Performance 
evaluation results are reported in section 3. The paper is 
summarized in section 4.          

2. Temporal Decomposition (TD) 
2.1. General TD model of speech 

The Temporal Decomposition (TD) model of speech was 
originally introduced by Atal  [6], as a useful technique for 
analyzing the temporal structure of speech. It then proved to 
be a promising technique for very-low-bit-rate speech coding 
 [7], [9]. TD is a method of modeling a set of consequtive 
speech parameter vectors as a sequence of stable event 
parameter vectors (or targets) and an associated set of 
overlapping interpolation functions (event functions), centered 
at the corresponding event instants. 

Let Y be the parameter matrix of a complete utterance, 
having consecutive parameter vectors, of length p each, as its 
columns. Then TD aims to approximate it as  
 ,≅Y AΦ  (1) 
where A is a target matrix, consisting of target column 
vectors, and Φ is an event function matrix (usually sparse),  
containing the event functions as its rows. Each event function 
is supposed to have a limited support.  

TD is usually evaluated over a finite buffered block of N 
parameter vectors. In that case, a modeled parameter vector at 
a given instant is given by (2): 
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where ka is the k-th target vector, ( )k nφ is the value of the k-th 
event function at instant n, and ˆ ( )ny is a TD approximation of 
the input n-th parameter vector ( )ny . M is the expected 
number of events in the block of interest. Usually, TD is an 
iterative process, where each cycle consists of two major steps: 
event functions calculation (while preserving sparseness ofΦ ) 
and then targets refinement. Most proposed TD algorithms 
 [6], [7], [8], [9] calculate the targets (for a givenΦ ), so that the 
total block squared error is minimized. This is a classic Least 



Squares (LS) problem, and its solution is: 
 1( )T T T−=A ΦΦ ΦY  (3) 
Since TΦΦ is a positive definite symmetric sparse matrix, the 
solution in (3) may be efficiently obtained. For example, for 
the case of a Restricted TD (discussed next), where at most 2 
adjacent events may overlap, TΦΦ  is actually tri-diagonal, 
and the solution (3) may be simply found by performing 
simultaneous (from top and bottom) symmetric Gaussian 
elimination for each of the p sets of linear equations (one set 
for each column of TA )  [10]. 

2.2. Restricted TD model of speech (RTD) 

The term Restricted TD  [7] (denoted RTD) refers to the 
overlapping property of event functions and affects the way 
the event function matrix is determined. It assumes that at most 
two adjacent event functions may overlap, replacing (2) by:   
 1 1 1ˆ ( ) ( ) ( ),   k k k k k kn n n n n nφ φ+ + += + ≤ <y a a  (4) 
where kn and 1kn + are the locations of adjacent event instants 
(i.e. column numbers in the parameter matrix, associated with 
the k-th and the (k+1)-th targets). The targets 1,k k +a a are 
usually initialized by the original input parameter vectors at 
selected event instances, i.e., 
 ( ),k kn=a y  (5) 
or fed back from the previous target refinement stage, if the 
process is iterative. 

With RTD, there exists a simple and exact analytic 
solution for the event functions that minimizes the squared 
error (SE), defined as 2ˆ( ) ( ) ( )E n n n−y y , given event 
instances and target vectors  [8]. It may be readily extended to 
minimize the weighted squared-error (WSE), re-defined as: 
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for 1 ,k kn n n +≤ < where ( )nW is a diagonal matrix, 

containing dynamically varying error weights { } 1
( ) p

i i
w n

=
on its 

main diagonal.  
This solution may result in irregular event functions 

shapes, which could be difficult to quantize using vector 
quantization. It has been proposed  [7], [8] to regularize these 
functions, by imposing constraints on the solution (7), such as 
the one’s complementary property of each event function pair 
at each time instant n in addition to non-negativity  [7], and 
monotonicity  [8], of each event function throughout a 
segment. A segment is defined as the time interval between 
adjacent event instants. A solution that satisfies all of those 
constraints was proposed in  [8]:                  (8) 
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2.3. Optimized TD (OTD) 

Due to the simplicity of determining the instant model errors 
in RTD, it is possible to define a full search procedure to find 
the optimal event-functions-matrix in terms of the total SE of 
a block of parameter vectors, given a desired number of 
events, M, per a block of length N   [8]. 

Let ( )E n be the optimal instant error, given an initial 

segmentation { } 1

M
k kn

=
 and target vectors - either according to 

(5) or some other explicit values. Define also the total block 
error for a given segmentation 0 1 1{ 0, , , 1}M Mn n n n N+ +…  
(events at the first and the last event instants are dummy zero 

events) as:
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This formulation can be implemented with the Viterbi 
algorithm, to find the optimal segmentation and event 
functions. In order to minimize large errors at block edges, a 
block overlapping technique is applied, so that the last event 
of the previous block is the first one of the current block  [8]. 
This full search procedure is followed by target refinement 
stage resulting in (3), and the refined targets are fed back to 
the full search stage for the next iteration. Usually 3-5 
iterations is enough to converge  [8]. When the full search 
stage is entered for the first time, (5) is assumed, but in the 
next iterations, following each target-refinement step, the 
targets are kept during the search algorithm.  

Let’s estimate the number of instant error calculations for 
the full search algorithm. For the first run, each parameter 
vector (out of N) is contained in about 2 / 2N  segments with 
different surrounding targets, so there are about 3 / 2N  instant 
error calculations for a N-length block. For the next runs of 
the algorithm, there exist only about 2 / 2M different error 
calculations for each parameter vector, so there are nearly 

2 / 2M N elementary error calculations for the full block. 

2.4. Dynamically weighted Optimized TD (DW-OTD) 

2.4.1. Motivation 

It is known that the SE measure, applied to spectral 
parameters, may fail to describe perceptual distance between 
the original and modeled spectra. The most widely used 
criterion for perceptual model/quantization error evaluation is 
the Log Spectral Distance (LSD) measure, given by  
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where ( )j
nS e ω and ˆ ( )j

nS e ω are the LPC power spectra 
corresponding to the original and modeled spectral parameter 
vectors at instant n, and 1 20 θ θ π≤ < ≤ define the bandwidth 
of interest. It is hard to incorporate this criterion in the search 
procedure due to its complexity, but there exist a number of 
dynamically weighted squared error measures, applied directly 



to LSF parameters, that approximate and track it better then 
SE, such as Paliwal-Atal WSE  [1] (referred here as PA-WSE), 
or Gardner WSE  [2] (referred here as G-WSE). A modified G-
WSE measure, referred as G-WSE(2), is proposed below to 
further improve LSD tracking ability. It is defined by a fixed 
weighting of G-WSE to reduce high band importance, relative 
to the low band: 
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where ( )iw n  is G-WSE weight for the i-th component at 
instant n. Such a drastic attenuation of high band components 
may be unacceptable for targets or parameter vectors 
quantization purposes, but is found to serve well the DW-OTD 
algorithm. Experimentally, it was found that it performs better 
then SE, PA-WSE and G-WSE, in the sense of LSD tracking 
and sensitivity to gross LSD errors, resulting, therefore, in the 
best performance when used as a TD minimization criterion.  

2.4.2. OTD modification 

The event-function-matrix determination step of OTD is 
readily modified to use Dynamic WSE, by using the instant-
error criterion in (6) and event functions (7) or (8). However, 
the target refinement step should be reviewed. We assume that 
the overlapping technique is used, so that the zero target, 
which is placed at zero instant, is not modified by the 
refinement process. To find optimal targets, given the 
matrixΦ , the following total block-error has to be minimized 
(for each speech parameter, out of p):  
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The minimization with respect to { }, 1

M
i k k

a
=
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following symmetric tri-diagonal set of linear equations: 
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where 2 ( ) ( )k k i
n

d n w nφ=∑ , 1( ) ( ) ( )k k k i
n

x n n w nφ φ +=∑ and 

( ) ( ) ( )k k i i
n

b n y n w nφ=∑ . There exist p such sets, and each one 

can be solved as in (3). 

2.5. Sub-optimal TD algorithm (SOTD) 

2.5.1. Sub-optimal search 

To reduce the computational burden of event-functions 
determination in OTD, we propose a sub-optimal algorithm. In 
 [7] no search is done at all. Rather, the event centers are set in 
the block according to a local spectral stability criterion, called 
Spectral Feature Transition Rate (SFTR). However, this 
scheme results in 18-20 events/sec  [7], which are too many for 
very low bit rate coding. So, we choose to refine the initial 
segmentation by a partial search scheme, as follows. Let kY be 
a sub-matrix of Y, consisting of the parameter vectors in the 
interval 1 1[ , )k kn n− + . Assuming that its boundary events are 
fixed, the best placement of the k-th event instant kn may be 

found so that the total modeling error of the kY 's is 
minimized: 
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Applying this operation sequentially on all the events in the 
block, in increasing order, results in the desired suboptimal 
solution. It was found that the algorithm performs better, when 
the effective block end is chosen to be one of the last /N M  
parameter vectors, which minimizes the SFTR criterion  [7], 
while all initial event instants are distributed uniformly.  

The number of instant error calculations of this algorithm 
may be evaluated by noting that each sub-matrix kY has an 

average length of 2 /N M  frames. At the initial run of the 
algorithm, there are 2 2(2 / ) 4 /N M M N M= instant error 
calculations for each pass over the block, compared to 3 / 2N  
in OTD. For the next runs, only two instant errors have to be 
recalculated for each search step. The estimated number 
 of error calculations for those runs is, therefore, 

2(2 / ) 5N N M M N+ = , compared to 2 / 2M N  in OTD. 

2.5.2. Constant event rate 

The OTD algorithm assumes a constant block length, with 
variable overlap length  [8]. This imposes that the system has a 
variable event rate, which may complicate the implementation. 
Our proposed algorithm forces a constant event rate, and 
therefore constant bit rate, by retrieving N new frames for 
each analysis block (not including the overlap with previous 
block). Of course, we need to limit the overlap range to 
prevent memory buffer overflow. 

2.6. Quantization of TD parameters 

The parameters to be quantized are the target vectors and the 
event functions. For the constrained event functions, given in 
(8), only the decreasing branch shape and its length have to be 
quantized. Shape quantization, that fits the very-low-bit-rate 
paradigm, is performed by a small codebook VQ of decreasing 
event functions branches. For each possible length a different 
codebook is stored, while the allowable distance between 
adjacent event instances is limited to 8 (3 bit length coding). 
The targets are quantized, as common, by the Split-VQ 
technique of the lower 4 and upper 6 LSF parameters  [1], 
using the G-WSE criterion. Small event-function shape 
codebooks (2-4 bits) are trained with event functions created 
by the constrained Dynamically Weighted SOTD (DW-
SOTD) algorithm. In order to reduce the quantization 
distortion, both targets and event functions shape quantization 
are incorporated in the TD process (i.e. search in shape 
codebooks is done instead of using the analytic solution for 
event functions (8), and quantized parameter vectors are used 
as a targets).  

3. Experimental results 
A speech dataset consisting of 20 (10 male and 10 female) 
phonetically diverse sentences from the TIMIT speech corpus 
was used as the test data set for TD performance evaluation. 
10th order LSF parameters were extracted, according to the 



MELP-2400 federal standard (MIL-STD-3005), at a 44.44Hz 
frame rate. 

LSD performance of the different algorithms examined is 
shown in the Table 1. These runs use the constant rate scheme, 
with N=15 and M=4,5,6 targets. The weights used in DW-
OTD and DW-SOTD are G-WSE(2). It is concluded from the 
results that DW-OTD outperforms OTD by 0.3 dB (LSD), 
while the degradation caused by sub-optimality is as low as 
0.05-0.07 dB. 

Table 1: Spectral distortions, obtained for different TD 
models 

LSD Algorithm Ev./ sec Avg., dB 2-4dB,% >4dB,% 
OTD 1.77 31.48 4.02 

DW-OTD 1.43 21.28 1.36 
DW-SOTD 

11.85 
1.48 20.96 2.15 

OTD 1.49 22.57 1.93 
DW-OTD 1.20 13.33 0.64 

DW-SOTD 
14.81 

1.26 14.81 1.08 
OTD 1.25 16.13 0.79 

DW-OTD 0.99 7.49 0.25 
DW-SOTD 

17.78 
1.06 9.54 0.50 

In Table 2, the performance of the proposed DW-SOTD 
algorithm is presented for different bit rates and delays. The 
proposed algorithm was embedded into the MELP vocoder 
and the resultant speech perceptual quality was evaluated by 
the PESQ (ITU P.862) standard software. The last entry in the 
table includes standard MELP results. The triplets in the 2nd 
column of the table indicate target Split-VQ codebooks' (low 4 
LSFs, then high 6 LSFs) and event function shape VQ 
codebook's sizes in bits. Three additional bits for each event 
length are added in the rate calculation. It is observed, that the 
DW-SOTD algorithm reduced the bit rate for the spectral 
envelope parameters by about 70%, while causing a 1.1-1.25 
dB increase of the average LSD and a reduction of about 0.2 
in Mean Opinion Score estimation (PESQ). It is seen that the 
performance of the algorithm deteriorates when reducing the 
block size (N), but it is still acceptable for as low as 7 frame 
lengths (157.5 ms of delay). 

Table 2: DW-SOTD with quantization evaluation 

LSD M/N Codebook, 
Bits 

Rate,
Bps Avg., 

dB 
2-4dB, 

% 
>4dB,

% 
PESQ

12,12,4 367 2.09 38.30 6.56 2.82
12,12,2 343 2.16 38.98 7.70 2.814/15 
11,9,3 308 2.20 42.28 6.99 2.78

12,12,4 376 2.08 36.80 7.45 2.83
11,9,4 327 2.17 39.23 7.20 2.793/11 
10,8,4 303 2.24 41.28 8.56 2.78

12,12,3 381 2.14 35.99 9.57 2.77
11,9,4 343 2.19 38.03 8.96 2.762/7 
10,8,3 305 2.27 41.18 9.53 2.73

MELP-2400 1111 0.94 1.50 0.00 2.99

4. Summary 
An extension for the OTD technique, called DW-OTD, was 
proposed. When applied to Line Spectral Frequencies (LSF) 

speech envelope representation, it reduced the average 
modeling error (LSD) by 0.3 dB, compared to OTD. In 
addition, a computationally efficient (and suitable for real-time 
applications) sub-optimal modification of OTD/DW-OTD 
denoted DW-SOTD, was presented, featured by negligible 
degradation of performance (of only about 0.06 dB in LSD), 
compared to the optimal algorithms (OTD/DW-OTD).  

The DW-SOTD scheme, which exploits both 
modifications on OTD, was combined with quantization, 
resulting in an efficient constant rate algorithm for very low bit 
rate speech coding. It allows representation of the speech 
envelope by as low as 300 bps, still preserving acceptable 
speech quality and possesses moderate computational 
requirements, allowing its real-time implementation. 

To assess the spectral envelope coding subjective quality, 
the DW-SOTD was incorporated into MELP-2400 standard 
codec (thus presenting a 1.6 Kbps codec). Its objective quality 
was estimated with the PESQ standard software and a 
degradation of 0.18 – 0.25 of MOS score was reported, as 
compared to MELP-2400 spectral quantization. With the low 
rate needed for coding the spectral envelope (300bps), the 
technique has potential for developing a MELP-based coder 
operating at 600bps. 
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