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ABSTRACT

In this work we propose a novel technique for channel re-
duction in hyperspectral images designed to improve perfor-
mance of local anomaly detection algorithms. The channel
reduction is performed by replacing subsets of adjacent hy-
perspectral bands by their means. An optimal partition of hy-
perspectral bands is obtained by minimizing the Maximum of
Mahalanobis Norms (MXMN) of errors, obtained due to mis-
srepresentation of hyperspectral bands by constants. By min-
imizing the MXMN of errors, one reduces the anomaly con-
tribution to the errors, which allows to retain more anomaly-
related information in the reduced channels. We demonstrate
that the proposed algorithm produces better results, in terms
of the ROC curve of a benchmark anomaly detection algo-
rithm (RX) - applied after the dimensionality reduction, as
compared to two other dimensionality reduction techniques,
including PCA.

1. INTRODUCTION

In this work we propose a novel unsupervised technique for
Designing Multispectral Filters that facilitates an improved
performance of local anomaly detection algorithms. The pro-
posed approach is based on processing a sample hyperspec-
tral image of a typical scene that is likely to be faced by
anomaly detection algorithms. Here, the problem of Mul-
tispectral Filters design is formulated as a problem of Re-
dundancyReduction in Hyperspectral channels, which is per-
formed by replacing adjacent spectral bands by their means.
This is a real-world Redundancy Reduction problem that re-
quires preservation of anomalies.

The wealth of spectral information in hyperspectral im-
ages provides plentiful amount of data for classification
tasks. One such task relates to anomaly detection, in which
hyperspectral pixels have to be classified into either back-
ground material spectra class or anomaly material spectra
class. Generally, anomalies are defined with reference to a
model of the background, i.e., the anomaly pixels are those
that are not well-described by the background model. Back-
ground models are developed using reference data from ei-
ther a local neighborhood of the test pixel or a large (global)
region of the image. Both approaches have their merits and
drawbacks [1].

A common problem of local anomaly detection algo-
rithms is so-called Hughes phenomenon [3], according to
which the perfomance of anomaly detection algorithms sig-
nificantly deteriorates when the number of pixels is severely
limited for an accurate learning of the local backgroundmod-
els. In order to alleviate the effect of this phenomenon, one
has to reduce the number of hyperspectral bands, since the

complexity of background models is proportional to the hy-
perspectral data dimensionality.

Linear Dimensionality Reduction (LDR) is a widely used
preprocessing technique for the alleviation of Hughes phe-
nomenon in classification problems [4], [5]. LDR also allows
to eliminate redundancies occuring due to high correlations
among adjacet bands. Of particular interest are techniques
that reduce the dimensionality of hyperspectral data by re-
placing subsets of adjacent bands by their means, since the
resulting features can be physically interpreted as responses
of multispectral filters, which may be tuned to aplication-
dependent needs. Thus, the authors of [6] propose top-down
and bottom-up algorithms designed to find subsets of bands
yielding high Fisher discrimination among classes. In [4] one
can find an approach that groups the channels into a partition
that increases interclass distance computed on a training set.
Another approach, based on dynamic programming, is pro-
posed in [5]. It minimizes the mean squared error of repre-
senting all hyperspectral pixels in the image by piece-wise
constant spectral segments.

Unfortunately, little attention has been drawn in the lit-
erature to channel reduction techniques designed to improve
the performance of local anomaly detection algorithms. This
problem is of high importance in applications that seek a
technology to construct high performance multispectral fil-
ters for anomaly detection. An appealing approach for this
purpose is proposed in [5], denoted as Fast Hyperspectral
Feature Reduction (FFR). It looks for a best piece-wise con-
stant represenation of the hypersectral data and does not as-
sume any prior knowledge about the data. However, FFR
is not well-taylored to data that contains anomalies, since
it uses the mean squared error based (�2-norm based) cri-
terion. As discussed in [7], this criterion is known to be in-
sensitive to anomaly contributions and, as a result, may lead
to a poor represention of anomalies. Moreover, the mean-
squared error based criterion is biased to represent better
background contributions, since they majorate the contribu-
tions of anomalies in the �2-sense. This may come in con-
tradiction to the goal of anomaly detection-oriented channel
reduction that should be designed to retain anomaly manifes-
tations in the data.

In this work we propose a novel approach based on the
Mahalanobis norm [2] which, unlike the �2-norm, is not de-
pendent on the scale and/or abundace of measurements. Ma-
halanobis norm is widely used in anomaly detection-related
literature [9]. It is also known as a good measure to as-
sess multivariate normality [2], [10]. Both these virtues
make the proposed approach to be better-taylored to data
that may contain anomalies. I.e., on one hand, the algo-
rithm should be aware of anomalies, if they are present in



the hyperspectral data on which the multispectral filters are
trained. Such “awareness” can be naturally supported by the
anomaly-detection ability of theMahalanobis norm.

On the other hand, if there are no anomalies in the train-
ing data, then one still needs to make an appropriate trade-
off during the allocation of spectral intervals based on the
background information only. In this case, it is desirable
to make a coarse partition in spectral regions in which the
background behavior is too noisy and is difficult to pre-
dict. Thus, these spectral regions should be suppressed, since
even if anomaly contributions were present there, they would
be likely to be masked by the background. Whereas spec-
tral regions, in which the background behavior is more pre-
dictable, should obtain a more dense partition. In these re-
gions anomaly contributions (if they are present) are easier to
be captured by anomaly detection algorithms. Therefore, we
empoy the ability of the Mahalanobis norm to assess multi-
variate normality in order to specify spectral regions in which
the background is more “Gaussian”, and, therefore, is less
predictable. In the sequel, we refer to these regions as back-
ground clutter.

More specifically, the optimal partition of the spectrum
is obtained by Minimizing the Maximal Mahalanobis Norm
of errors, obtained due to the misrepresentaion of spectral in-
tervals by constants. Therfore, we denote the proposed tech-
nique as Min-Max MN or, in short, MXMN.

We compareMXMNwith other dimensionality reduction
techniques, such as classical principal components analysis
(PCA) and FFR, by examining the results of the Reed-Xiaoli
(RX) algorithm [9], [12], a benchmark anomaly detector for
hyperspectral imagery, applied after the dimensionality re-
duction.

We demonstrate that the proposed approach results in a
better ROC curve, as compared to PCA and FFR, for a wide
range of false alarm rates, and even better than obtained by
applying RX on the original data (without the dimensionality
reduction) for the important range of low false-alarm rates.

This paper is orgainzed as follows: In section 2 we de-
velop the proposed MXMN algorithm. Then, in section 3,
we compare the results of the RX algorithm applied on mul-
tispectral data obtained by MXMN, FFR and Principal Com-
ponent Analysis (PCA) algorithms and discuss the obtained
results. Finally, in section 4, we draw conculsions about the
proposed method and the obtained results.

2. ANOMALY PRESERVING PIECEWISE
CONSTANT REPRESENTATION

2.1 Problem statement

Let xi, j denote the ith hyperspectral band of an observed hy-
perspectral pixel j, where i = 1, . . . ,M and j = 1, . . .N. The
piecewise constant representaion model consists of a vector
of K < M breakpoints,

bK � {b1, . . . ,bK}, (1)

corresponding to K−1 contiguous intervals

Ik = [bk,bk+1), k = 1, . . . ,K−1. (2)

Each observed hyperspectral pixel x j is approximated by a
set of constants {μk, j}K−1k=1 , obtained by averaging its values

in the spectral intervals Ik, as follows:

μk, j =
1
|Ik| ∑i∈Ik

xi, j, k = 1, . . . ,K−1 (3)

where |Ik| denotes the cardinality of the interval Ik. As a mat-
ter of fact, the constants {μk, j} minimize the mean squared
error Sk, j in each interval k, defined as follows:

Sk, j = ∑
i∈Ik

(xi, j− μk, j)
2. (4)

Thus, the partition of spectral bands into K− 1 intervals by
the breakpoints bK uniquely determines the piecewise con-
stant representation/approximation of each pixel. The goal is
to determine a partition that facilitates good performance of
anomaly detection algorithms when applied to the obtained
constants {μk, j}.

2.2 Objective function

The general idea of the proposed anomaly preserving chan-
nel reduction algorithm is to minimize an objective function
J(bK) that penalizes partitions which may potentially lead to
the loss of anomalies during the channel reduction process.
We choose the function J(bK) to be of the following form:

J(bK) = max K−1
k=1 Dk, (5)

where by Dk we denote the Potential Anomaly Loss (PAL)
measure correspoding to the interval Ik. Thus, by minimizing
J(bK), one minimizes the worst case PAL measure.

In order to properly define the PAL measure,Dk, let’s ex-
plore statistical properties of the errors ei, j,k obtained due to
the misrepresentation of hyperspectral pixel entries belong-
ing to the interval Ik:

ei, j,k = xi, j− μk, j, i ∈ Ik. (6)

Denoting all error entries that belong to the same pixel j
and correspond to an interval Ik, ordered in a vector form,
by e j,k, we assume that all random vectors e j,k correspond-
ing to the non-anomalous (background) vectors are i.i.d. At
this point, we observe that anomaly manifestations in an
interval k, which were not represented well by the corre-
sponding constants μk, j, are likely to produce anomalous er-
ror realizations. Eventually, anomalous error realizations are
those that do not agree well with the pdf of the background-
related errors e j,k. Therefore, Dk, as a PAL measure, should
measure the deviation of the obtained error statistics from
a background statistical model. Now, if one models the
background-related errors e j,k by a zero-mean Gaussian pdf,
then Dk can be obtained by measuring the deviation of error
realizations from the Gaussian model.

This approach is quite reasonable, since the larger is the
deviation of the error statistics from being Gaussian, the
more signal structure is absorbed by the error and the larger
is the likelihood that some important information is lost by
channel reduction. A widely used criterion for anomaly de-
tection is the Mahalanobis distance between a tested pixel
and the background mean vector [1], [9]. This criterion has
also been extensively used for assessing multivariate normal-
ity [10]. For a zero mean Gaussian random vector e, the Ma-
halanobis distance or, equivalently, the Mahalanobis norm is



defined as:
G(e) �

√
e�Σ−1e, (7)

where Σ is the covariance matrix of the random vector e.
Intuitively, the Mahalanobis norm of vectors e that con-

tain outlying signal contributions and, therefore, are not
properly normalized by Σ

−1 in (7), is expected to be larger
than obtained for vectors that obey the Gaussian paradigm.
Thus, in the Reed-Xiaoli (RX) algorithm [9], a bench-
mark anomaly detector for hyperspectral imagery, the Maha-
lanobis distance between a tested pixel and the background
mean vector is used to detect anomalies by comparing it to a
threshold.

It turns out that if the realizations e j are contaminated
by anomaly or other Non-Gaussian signal contributions, they
are likely to produce large Mahalanobis norms. Therefore,
we define Dk as follows:

Dk � max N
j=1 G(e j,k) (8)

This completes the definition of the objective function J(bK)
in (5) that penalizes partitions that may cause a PAL.

2.3 Minimizing the objective function

In order to minimize J(bK), over the set of breakpoints
{b1, . . . ,bK}, we apply a dynamic programming algorithm
based on [5] and [11]. Let’s redefineDk asD[g,h], where g and
h are interval boundaries which can be equivalently used to
specify intervals instead of using their corresponding indices
{k}. Throughout the minimization process, we iteratively
calculate J(k, p), where J(k, p) is the objective function de-
fined using only the first k breakpoints , {b1, . . . ,bk}, 1< k≤
K, and the first p spectral bands, (k−1)≤ p≤ (M−K+ k).

Initially, we set

J(2, p) = D[1,p], p = 1, . . . ,(M−K+2). (9)

I.e., in the first level of recursion we set an objective func-
tion value for all possible combinations of allocating only
one spectral interval corresponding to its all possible right
boundary positions denoted here by p.

Then, for an increasing number k = 3, . . . ,K, of break-
points {bk}, we define a recursion that calculates the corre-
spodingminimal objective function values J(k, p) as follows:

J(k, p) = min p−1
r=k−1 (D[r+1,p] + J(k−1,r)). (10)

I.e., {J(k, p)}Kk=3 minimize the sum of PAL measure D[r+1,p]
corresponding to all possible variants of allocating the last
interval Ik−1,k, and the minimal objective function value ob-
tained in a previous recursion level k−1.

At the end of the iterative process, the resulting J(K,M)
gives the minimal value of the objective function J(bK) de-
fined in (5). The optimal partition in terms of the breaks-
points {b1, . . . ,bK} is obtained by recursively backtracking
the minimizers r∗ for which the minimal objective functions
were obtained throughout the recursion sequence

{J(K,M),J(K−1,r∗K), . . . ,J(2,r∗3)}. (11)

3. EXPERIMENTS WITH REAL DATA

In this section we evaluate the performance of the RX al-
gorithm, which, as mentioned, is a benchmark anomaly de-

tector for Hyperspectral Imagery [9]. We applied it to Hy-
perspectral Data before and after the dimensionality reduc-
tion by PCA, FFR and the proposed MXMN algorithm. To
demonstrate the results, the RX algorithm was applied to 6
real hyperspectral image cubes, collected by an AISA air-
borne sensor configured to 65 spectral bands, uniformly cov-
ering VNIR range of 400nm - 1000nm wavelengths. At 4
km altitude, a pixel resolution corresponds to (0.8m)2. The
obtained image cubes are b× r× c = 65×300×479 hyper-
spectral images, where b,r and c denote the number of hy-
perspectral bands, the number of rows and the number of
columns in the image, respectively.

In Fig. 1, we show the 30th band of a typical hyperspec-
tral image cube. The image contains ground-truth anoma-
lies (vehicles and small agriculture facilities, which occupy
a few pixel segments marked in white and encircled by
red ellipses), manually identified using side information col-
lected from high resolution RGB images of the correspond-
ing scenes, as shown in Fig. 2. All 6 images are not shown
here just because of space limitations.

Figure 1: 30th band of a hyperspectral image cube with
anomalies marked in white and encircled by red ellipses.

Figure 2: An example of high resolution RGB image used
for manual target identification.

We applied FFR and the proposed MXMN algorithms to
an image cube (the 30th band of which is shown in Fig. 3)
that does not contain anomalies to reduce the hyperspectral
dimensionality from 65 to 10 by the corresponding piece-
wise constant spectral segments. We also applied PCA to



obtain an �2 optimal 10-dimensional basis.

Figure 3: 30th band of a hyperspectral image cube used for
training MXMN.

In Fig. 4, one can see the obtained piece-wise con-
stant approximations by FFR (cyan (bright) thick line) and
MXMN (blue (dark) thick line) for 3 selected hyperspectral
pixels (blue thin lines). The uppermost graph corresponds
to anomaly pixel, whereas the other two lower graphs corre-
spond to pixels that were selected from different background
regions. As can be seen from the figure, the partition ob-
tained by MXMN has a denser granularity in bands [1−35],
in which the anomaly is expressed. This is on the expense
of other bands, which, in spite of being energetically promi-
nent, are less important for anomaly detection, since, as it
turns out, they correspond to the background clutter. This
observation is also supported by ROC results, which follow
below. On the contrary, FFR adapts better to the energetical
bands and, as a result, assigns less channels to bands [1−35]
which makes it prone to loosing anomalies.

In Fig. 5, we compare FFR, MXMN and PCA in terms
of Receiver Operation Characteristic (ROC) curves obtained
by applying the RX algorithm on hyperspectral data after the
dimensionality reduction. For the purpose of ROC curves
generation, all 6 hyperspectral images were used, in which
the total number of anomaly segments count is 25. We as-
sume that it is appropriate to include the training image in the
evaluation of the anomaly detection performance in terms of
ROC, since no side information about anomalies was used
during the training. Moreover, the training image did not in-
clude any known anomalies.

It is clearly seen from the figure that the MXMN algo-
rithm corresponds to a better ROC curve (blue solid line)
compared to other dimensionality reduction techniques such
as FFR (cyan dashed line) or PCA (red solid line with solid
circles) for all tested parameters. It is important to note that
the performance of the RX algorithm applied to the data ob-
tained by the MXMN is even better than applying RX to the
full-dimensional (original) images (green dot-dashed line),
for the range of low false-alarm rates. This can be explained
as follows:

Since J(bK) of (5) is designed to favor partitions that
produce errors which are “more Gaussian”, its minimiza-
tion using typical data without anomalies, results in a coarse
partition in the spectral bands containing background clut-
ter. As was already noted above, the background clutter re-
lates to bands that produce “more Gaussian” piece-wise con-
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Figure 4: Piecewise constant approximation. (a) anomaly
pixel; (b) and (c) background pixels. Original spectrum is in
blue (dark) thin line, MXMN approximation is in blue (dark)
thick line, FFR approximation is in cyan (bright) thick line.

stant approximation errors. Generally, the behavior of such
bands is much more difficult to predict by a local statistical
model, since the “non-Gaussianity” primarily stems from a
non-organized process - neither globally, nor locally. As a
result, they may mask out subtle anomaly-related contribu-
tions that may appear in them and in other bands. Therefore,
background clutter bands are considered to have a lower dis-
criminative power.

The fine partition is obtained in the spectral bands that
are “less Gaussian”. Generally, it is easier to model such
bands using local statistical models and, therefore, anomaly
contributions in these bands may become more apparent to
anomaly detection algorithms. This may explain why the
proposed algorithm corresponds to a better ROC curve com-
pared to the other algorithms, although the optimal partition
was obtained using an image that does not contain anoma-
lies.

Nevertheless, it is important to note that for best perfor-



mance, one should consider training the multispectral filters
on an image that contains typical anomalies that are antici-
pated to be faced in a real situation (if such prior information
is available). In this case, the optimal partition will be pri-
marily driven by anomalies in the data. Still, the approach
is unsupervised, since, in any scenario, it does not require
any ancillary knowledge about anomaly location in the data
and/or anomaly spectrum.
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Figure 5: ROC curves.

4. CONCLUSION

In this work we proposed a novel multispectral filters design
that is tailored to improve the performance of local anomaly
detection algorithms. The filter design is based on process-
ing a hypespectral image that contains a typical spectral con-
tent to be faced by the multispectral anomaly detection algo-
rithms. The resulting multispectral filters are obtained by
replacing subsets of adjacent hyperspectral bands by their
means, producing piecewise constant pixel approximations.
The optimal partition of hyperspectral bands is obtained by
Minimizing the Maximum of Mahalanobis Norms (MXMN)
of missrepresentation errors. Hence, the proposed algo-
rithm is denoted as MXMN. The minimization of MXMN
allows filtering out backgound clutter contributions. At the
same time, it enables adaptation to spectral contributions of
anomalies (if they are present in the training image). The
minimization is performed by a dynamic programming tech-
nique, as used by the Fast Hyperspectral Feature Reduction
(FFR) algorithm proposed in [5]. MXMN was compared
with FFR and PCA by examining the results of the RX al-
gorithm [9] applied after the dimensionality reduction. It
was demonstrated that the proposed algorithm results in a
better ROC curve in the whole range of false alarm values,
and even better than applying RX on the original data with-
out the dimensionality reduction in the important range of
low false-alarm rates. The latter can be explained by the
MXMN ability to filter out background clutter-related chan-
nels, while preserving resolution in those spectral channels
in which anomalies are more easy to detect.
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