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Abstrat

In this researh we address the problem of redundany-redution of

high-dimensional noisy signals, whih may ontain rare/anomaly ve-

tors that we wish to preserve. Sine, typially, anomalies ontribute

weakly to the ℓ2-norm of the signal as ompared to the noise, lassial

approahes based on the ℓ2 riterion are unsatisfatory for obtaining a

good representation of these vetors. Here we develop new tehniques

for signal subspae estimation that aim to represent well not only ℓ2-

signi�ant signal ontents, but also anomaly vetors, by optimizing

another riterion based on the ℓ∞-norm, whih is more sensitive to

these vetors.

In the �rst part of the researh, we propose a greedy algorithm for the

estimation of an anomaly-preserving signal-subspae and its rank. We

all this algorithm: Maximum Orthogonal-Complements Algorithm

(MOCA). MOCA ombines ℓ2 and ℓ∞ norms and onsiders two as-

pets: One aspet deals with signal-subspae estimation aiming to

minimize the maximum of data-residual ℓ2-norms, denoted as ℓ2,∞,

for a given rank onjeture. The other determines whether the rank

onjeture is valid for the obtained signal-subspae by applying Ex-

treme Value Theory results to model the distribution of the noise

ℓ2,∞-norm. These two operations are performed alternately using a

suboptimal greedy algorithm, whih makes the proposed approah

pratially plausible.

In the next part of the researh we propose to adapt MOCA for

anomaly detetion and disrimination, as well as for population es-

timation of anomalies, in hyperspetral image ubes. The proposed



approah is denoted as Anomaly Extration and Disrimination Al-

gorithm (AXDA). The main idea of AXDA is to iteratively redue

the anomaly vetor subspae-rank, found by MOCA, making the re-

lated anomalies to be poorly represented. This helps to detet them

by a statistial analysis of the ℓ2,∞-norm of data residuals. As a by-

produt, AXDA provides also a robust estimate of an anomaly-free

bakground subspae and its rank.

Although the proposed greedy signal-subspae estimation algorithm

makes MOCA and AXDA omputationly and pratially plausible, it

is still only approximately minimizes the proposed ℓ2,∞-norm of the

residuals. In the following part of the researh, we develop an optimal

algorithm for the minization of the ℓ2,∞-norm of data misrepresenta-

tion residuals, whih we all Maximum Orthogonal omplements Op-

timal Subspae Estimation (MOOSE). As any loal minimization of a

non-onvex objetive funtion, MOOSE is prone to getting trapped

in a loal minimum. Therefore, a proper initialization may be ruial

for obtaining a good solution. Sine MOCA �nds a suboptimal so-

lution using global priniples, it provides a good initial point, whih

is lose to the global minimum. The optimization is performed via a

natural onjugate gradient learning approah arried out on the set

of n dimensional subspaes in IRm
, m > n, whih is a Grassmann

manifold.

The wealth of spetral information in hyperspetral images provides

plentiful amount of data for anomaly detetion algorithms like AXDA.

However, hyperspetral imagers are still not versatile enough for anomaly

detetion appliations that seek mobile solutions, sine they are too

expensive, too heavy and onsume too muh power. Therefore, there

is a demand for multispetral imagers that are muh more versatile,

although they provide a limited number of spetral hannels. The

proper design of multispetral �lters may be ruial for anomaly dete-

tion algorithms. We onlude the researh by proposing a novel unsu-

pervised algorithm for hannel redution in hyperspetral images that



allows designing multispetral �lters that are tuned for loal anomaly

detetion algorithms. The proposed approah is based on proessing

a sample hyperspetral image of a typial sene that is likely to be

faed by anomaly detetion algorithms. Eventually, the problem of

designing Multispetral Filters may be formulated as a problem of

Channel Redution in Hyperspetral Images, whih is performed by

replaing subsets of adjaent spetral bands by their means. An op-

timal partition of hyperspetral bands is obtained by minimizing the

Maximum of Mahalanobis Norms (MXMN) of errors, obtained due

to missrepresentation of hyperspetral bands by onstants. By mini-

mizing the MXMN of errors, one redues the anomaly ontribution to

the errors, whih allows to retain more anomaly-related information

in the redued hannels.
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Chapter 1

Introdution

1.1 Anomaly Preserving Redundany Redution

Redundany redution is one of the entral problems faed when dealing with

high-dimensional noisy signals. In many sensor-array appliations, signal vetors

belong to a lower-dimensional subspae than the observed data. This signal-

subspae ould be estimated and used for redundany redution by projeting the

observed data vetors onto it. The estimated signal-subspae properties should

adequately re�et needs of the appliation that uses this low-dimensional sub-

spae. In this researh, we fous on appliations that analyze anomaly vetors,

suh as anomaly detetion in hyperspetral images. Therefore, the estimated

signal-subspae should ontain (preserve) suh vetors.

Reently, several di�erent algorithms have been developed to perform dimen-

sionality redution of low-dimensional nonlinear manifolds embedded in a high

dimensional spae [7℄. Perhaps the prinipal method amongst those that provide

a mapping from the high dimensional spae to the embedded spae is Kernel

Prinipal Component Analysis (KPCA) [8℄. KPCA �rst impliitly onstruts a

higher (sometimes in�nite) dimensional spae by applying the kernel trik. The

nonlinear manifold struture is subsequently aptured by applying traditional

Prinipal Cmponent Analysis (PCA) in the obtained higher-dimensional spae.

Prinipal urves and manifolds give the natural geometri framework for nonlin-

ear dimensionality redution and extend the geometri interpretation of PCA by

expliitly onstruting an embedded manifold, and by enoding using standard

1



1.1 Anomaly Preserving Redundany Redution

geometri projetion onto the manifold [9℄. Other nonlinear tehniques inlude

tehniques for loally linear embedding, suh as Loally Linear Embedding (LLE)

[10℄, Hessian LLE [12℄ and Laplaian Eigenmaps [11℄. These tehniques onstrut

a low-dimensional data representation using a ost funtion that retains loal

properties of the data. They an be also viewed upon as de�ning a graph-based

kernel for KPCA [13℄. In this way, the LLE-based tehniques above are apable

of unfolding datasets suh as the Swiss roll.

Unfortunately, none of the presented nonlinear dimensionality redution teh-

niques expliitely aims to preserve anomaly vetors. Moreover, sine anomaly

vetors usually do not follow the loal struture of the bakground data, they are

likely to be misrepresented by these tehniques. In this researh, we expliitely

deal with the problem of preserving the anomaly vetors withing the redued

dimensional subspae using linear dimensioanlity redution paradigm. We hope,

that in the furture, the developed ideas an be further extended to non-linear

problems as well.

The knowledge of signal-subspae implies also a knowledge of the orrespond-

ing signal-subspae rank. In a number of appliations in the literature the sig-

nal rank (order) is assumed to be known - suh as the number of independent

soure signals in Blind Soure Separation via Independent Components Analy-

sis [6℄; the order of the hannel FIR model in blind single-input/multiple-output

hannel identi�ation [14℄, [15℄, [16℄; the signal-subspae rank in linear system

identi�ation algorithms [17℄, [18℄, [19℄; the number of individual pure spetra

(endmembers) in hyperspetral image proessing [51℄, et.

In pratie, the signal-subspae and rank have to be estimated from observed

vetors {xi}Ni=1, assumed to satisfy the following linear model:

xi = Asi + zi, i = 1, . . . , N, (1.1)

where xi ∈ IRp
is the observed random vetor, zi ∈ IRp

is the data-aquisition

or/and model noise; si ∈ IRr
, and A ∈ IRp×r

, (r ≤ p). The observed dimension p

is obviously known, whereas the signal-intrinsi dimension (rank) r is not always

known.

2



1.1 Anomaly Preserving Redundany Redution

In some of the appliations above, si is a vetor of hidden soure signals,

A is some �mixing� matrix through whih the soures are observed; while in a

hyperspetral appliation 1 xi is an observed hyperspetral pixel, the olumns

of A are the pure materials spetra (endmembers) and si their orresponding

abundanes in xi [51℄. A shemati outline of the hyperspetral image model is

presented in Fig. 1.1. For the sake of onveniene, unlike in eqn. (1.1), where

the pixel index i is subsripted, we supersript the pixel index i in the �gure.

PSfrag replaements

squared residual norm

Figure 1.1: xi is an observed hyperspetral pixel, the olumns of A are the pure

materials spetra (endmembers) and si their orresponding abundanes in xi.

A number of approahes have been proposed in the literature for signal-

subspae and rank estimation under the assumption that si and zi are inde-

pendent, stationary, zero-mean and ergodi random Gaussian proesses. The use

of information theoreti riteria suh as minimum desription length,(MDL) and

Akaike's information riterion(AIC) [40℄, have beome a solid basis for many rank

1Hyperspetral remote sensors ollet image data simultaneously in dozens or hundreds of

narrow, adjaent spetral bands. These measurements make it possible to derive a ontinuous

spetrum for eah image pixel. After adjustments for sensor, atmospheri, and terrain e�ets are

applied, these image spetra an be used for reognition, mapping, detetion and lassi�ation

of surfae materials [5℄.

3



1.1 Anomaly Preserving Redundany Redution

estimation tehniques [20℄, [23℄, [24℄, [39℄. Aording to these riteria the signal

rank is determined as the value k, whih minimizes either one of:

AIC = −2 log f(x1, . . . ,xN |Θ̂(k)) + 2k (1.2)

MDL = − log f(x1, . . . ,xN |Θ̂(k)) +
1

2
k log N, (1.3)

where f(x1, . . . ,xN |Θ̂(k)) is a parameterized family of probability densities, Θ̂(k)

is the maximum likelihood estimate of a parameter vetorΘ(k), and k is a number

of free adjusted parameters in Θ(k). The resulting maximum likelihood estimate

Θ̂(k) relies on the struture of the eigenvalues of the noisy signal ovariane

matrix Rxi
= E{xix

∗
i }, where the index i ould be omitted due to the stationarity

assumption. Therefore, the subspae is optimal in the least-squares sense. The

ovariane matrix is assumed to satisfy Rx = Ψ + σ2I, where Ψ = AE{ssT}AT

and σ2 denotes the noise variane. It is shown in [40℄ that the MDL yields

a onsistent estimate of the rank, while AIC yields an inonsistent estimate,

whih tends, asymptotially, to overestimate the signal rank. The resulting signal

subspae estimate is obtained via Singular Value Deomposition (SVD) [48℄ of the

observed data matrix X. The signal subspae basis ontains maximum likelihood

estimates of the eigen-vetors of the matrix Ψ, and it minimizes the ℓ2-norm of

misrepresentation residuals belonging to the omplementary subspae.

It is ommonly known that least-squares tehniques are not robust in the

sense that outliers an arbitrarily skew the desired solution [50℄. By outliers we

mean measurements orresponding to deviations from the nominal signal and

noise harateristis for whih the sheme is designed.

We start this work by proposing a redundany redution approah for high-

dimensional noisy signals ontaining anomaly (rare) vetors that, typially, on-

tribute weakly to the ℓ2-norm of the signal as ompared to the noise. This makes

ℓ2-based riteria unsatisfatory for obtaining a good representation of rare ve-

tors, whih may be of high importane in denoising and dimensionality redution

appliations that aim to preserve all the signal-related information, inluding rare

vetors, within the estimated low-dimensional signal-subspae. For example, in

a problem of redundany redution in hyperspetral images, rare (anomalous)

endmembers that are present in just a few data pixels ontribute weakly to the
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1.1 Anomaly Preserving Redundany Redution

ℓ2-norm of the signal, ompared to the noise. Therefore, their ontribution to

the signal-subspae annot be reliably estimated using an ℓ2-based riterion, as

will be shown in more detail in the following setions. Yet, the representation

of the rare vetors an be ruial for anomaly detetion that might follow the

redundany redution stage.

The problem of representing well and ompatly all signal vetors, inlud-

ing rare ones, in a low-dimensional subspae didn't attain muh attention in the

literature. The opposite is true: there are appliations where the rare-vetors

are treated as outliers that may skew the nominal signal-subspae estimation.

The problem of dealing with outliers has been extensively studied in the litera-

ture. Related works ([50℄,[28℄,[29℄ and many others) propose robust parameter

estimation tehniques, whih are designed to exlude the outlying measurements.

In ontrast to robust parameter estimation tehniques, the proposed method

is designed to represent well both abundant and rare measurements, irrespetive

of their frequentness in the data. In other words, a good representation of all

measured vetors is equally important. For this purpose, we de�ne a deterministi

matrix Y ∈ IRp×N
that onsists of signal omponents only. Our goal is to �nd

the olumn spae and the rank of Y, given an observed matrix X ∈ IRp×N
with

olumns x1, . . . ,xN ,

X = Y + Z, (1.4)

where rank Y = r is unknown, r < p,N , and Z ∈ IRp×N
is a noise matrix with

i.i.d. zero-mean Gaussian entries.

Our approah ombines two norms, ℓ2 and ℓ∞ for both signal-subspae and

rank determination and onsiders two aspets: One aspet deals with the determi-

nation of the signal-subspae for a given rank onjeture. The other determines

whether the rank onjeture is valid, given the obtained signal-subspae. The

orresponding operations are performed alternately for an inreasing sequene of

tested subspae rank values, until the rank onjeture is a�rmed. The signal-

subspae is estimated by a greedy algorithm, whih aims to minimize the maxi-

mum of misrepresentation-residual ℓ2-norms denoted as ℓ2,∞-norm. Mathemati-
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1.1 Anomaly Preserving Redundany Redution

ally, the ℓ2,∞-norm of a matrix X is de�ned as follows:

‖X‖2,∞ , max
i=1,...,N

‖xi‖2, (1.5)

where xi denote olumns of X. It is easy to see that ℓ2,∞ is a norm on a vetor

spae V of p×N matries, sine for any X,X1,X2 ∈ V the following holds:

1. ‖αX‖2,∞ = |α|‖X‖2,∞,

2. ‖X1 + X2‖2,∞ ≤ max
i

(‖x1,i‖2 + ‖x2,i‖2) ≤ max
i
‖x1,i‖2 + max

i
‖x2,i‖2 =

‖X1‖2,∞ + ‖X2‖2,∞,

3. ‖X‖2,∞ ≥ 0,

4. ‖X‖2,∞ = 0 ⇐⇒ X = 0.

The proposed signal-subspae estimation proess o�ers an appropriate om-

promise between the following two approahes: The �rst approah is based on

seleting the signal-subspae basis vetors diretly from the data as presented

in [35℄. This approah is good for representing anomalies, sine it is apable of

seleting anomalies from the data. However, due to noise in the obtained basis

vetors, it may perform poorly in representing bakground pixels. The seond

approah is based on SVD, whih represents well the bakground pixels. Yet, it

may perform poorly in representing anomalies. Thus, the estimated admits the

following form:

Ŝk = range [Ψk−h|Ωh] , (1.6)

i.e., Ŝk is the spae linearly spanned by olumns of matries Ωh and Ψk−h, where

Ωh is a matrix omposed of h linearly independent olumns seleted from the

data, k is the estimated signal rank and Ψk−h is a matrix with k − h orthogonal

olumns, obtained via SVD of the data residuals PΩ⊥h
xi, i=1,. . . ,N, where PΩ⊥h

is a projetion onto (range Ωh)
⊥. This notation is equivalent to P⊥Ωh

used in

[35℄. The olumns in Ωh are data vetors that are, typially, rare and, therefore,

have a low ontribution to the ℓ2-norm of data that is not ample enough to be

aptured by SVD. They are seleted by applying the proposed ℓ2,∞-norm on the

data misrepresentation errors by SVD. This property proposes olumns of Ωh as
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1.2 Adapting MOCA for Anomaly Detetion

a good andidate for anomaly subspae basis. We use this observation later on

in order to develop an anomaly detetion algorithm.

The signal-subspae rank is determined by applying Extreme Value Theory

results [52℄ to model the distribution of the misrepresentation ℓ2,∞-norm. Sine

ℓ2,∞ penalizes individual data-vetor misrepresentations, it helps to represent well

not only abundant-vetors, but also rare-vetors. Sine we use the maximum-

orthogonal-omplements (residuals) for the determination of both signal-subspae

and rank, we all the proposed algorithm: Maximum Orthogonal-Complements

Algorithm (MOCA).

We present simulation results of omparing the performane of lassial MDL

with the proposed approah for signal-subspae rank determination. The om-

parison is performed on both synthetially simulated data and on a real hy-

perspetral image.

1.2 Adapting MOCA for Anomaly Detetion

The merits of ombining ℓ2-norm and ℓ2,∞-norm are not limited to the anomaly

preserving signal representation problem only. This ombination an be further

extended for developing an anomaly detetion algorithm. In the next part of our

researh we propose to adapt MOCA for anomaly detetion, disrimination and

population estimation of anomalies of the same type, in hyperspetral image ubes

(denoted in this researh as hyperspetral images). The onsidered seneries

are omposed of re�eted spetra of abundant natural ground materials suh as

vegetation, soil, minerals, et., along with anomalies suh as loalized man-made

objets. E.g., small buildings, vehiles, et. The wealth of spetral information

in hyperspetral images provides plentiful amount of data for lassi�ation tasks.

One suh task relates to anomaly detetion, in whih hyperspetral pixels have

to be lassi�ed into either bakground material spetra lass or anomaly material

spetra lass.

Sine most often, neither prior anomaly signatures nor their statistial model,

are known, anomaly detetion methods �rst model the bakground and then

detet anomalies by �nding pixels that are not well-desribed by the bakground

model. It turns out that the problem of bakground pixels modelling is a ritial
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1.2 Adapting MOCA for Anomaly Detetion

and a subtle task. As a matter of fat, it poses a two-fold problem: On one

hand, the model has to be general enough in order to aurately represent the

wealth of bakground material spetra, so as to avoid false alarms due bakground

pixel deviations from the model. On the other hand, the model has to be onise

enough (e.g., in terms of its order/rank), limiting its ability to adapt to anomalies,

and leaving anomalies to disagree with the model, whih is essential for a high

probability of detetion.

1.2.1 Bakground-modelling literature review

A variety of bakground modelling methods appears in the literature. One type

of these methods is based on estimating the underlying probability density fun-

tion (pdf) of the bakground signature, and applying a threshold to the likelihood

of tested pixels. The Reed-Xiaoli (RX) algorithm [32℄, is a benhmark anomaly

detetor for hyperspetral imagery. Aording to this algorithm, the bakground

pixels in a loal neighborhood of a tested pixel are assumed to be independent,

identially distributed, Gaussian random vetors. After estimating the bak-

ground mean vetor and ovariane matrix, the Mahalanobis distane between

the tested pixel and the bakground mean vetor is ompared to a threshold to

detet an anomaly [32℄. Unfortunately, in many environments, it has been shown

empirially that loal bakground modelling by a single Gaussian provides an in-

adequate representation of the underlying distribution [38℄, leading to poor false

alarm performane. This is espeially true when the loal bakground ontains

multiple lasses of terrain.

To properly haraterize nonhomogeneous bakgrounds, researhers have em-

ployed a Gaussian Mixture Model (GMM) [37℄, [38℄. This approah models the

bakground signature distribution as a linear ombination of Gaussian distribu-

tions. The Gaussian Mixture distribution is applied as a global model sine the

parameters are estimated over large regions. Anomaly detetion may be ahieved

by applying the generalized likelihood ratio test (GLRT) to the model. The

authors of [38℄ denote the related approah by GMRX.

While GMRX provides good performane, it is limited by the simpliity of

Gaussian omponents. GMRX is further limited by the need to know or estimate
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1.2 Adapting MOCA for Anomaly Detetion

a priori the number of terrain lasses in the image.

Some works, like [33℄, propose a nonlinear version - the Kernel-RX algorithm,

in whih RX is applied in an extended high-dimensional feature spae assoiated

with the original input via a ertain nonlinear mapping funtion. In [34℄, the au-

thors use anisotropi kernel reonstrution of the soure image using the referene

image as a way to robustly model pattern variations (that an be also viewed as

a bakground proess) in order to detet defets in patterned wafers. Another

approah to loal bakground modelling orresponds to the so-alled large-margin

tehniques, suh as support vetor mahines (SVMs), whih detet anomalies by

diretly estimating a deision boundary with maximal separability. The authors

of [36℄ propose to determine the minimal enlosing hypersurfae that ontains a

training set of bakground data pixels. A training set is sampled from a window

enlosing the tested pixel, exluding pixels belonging to its adjaent neighbor-

hood (whih makes this method loal) that is supposed to be large enough to

ontain a maximum-size anomaly. The anomaly is deteted by thresholding the

distane from the tested pixel to the obtained hypersurfae.

1.2.2 Anomaly detetion via MSD

At �rst glane, one MOCA estimates the anomaly and bakground subspaes,

one may apply to the result the lassial Mathed Subspae Detetion (MSD)

[30℄ for detetion of anomalies. This method is widely used in the literature

for anomaly detetion in hyperspetral images when anomaly and bakground

subspaes are known in advane (see for example referenes [43℄, [44℄, [45℄, [46℄,

and there exist many more).

Aording to the MSD method, two hypotheses are de�ned:

H0 : xi ∼ N[Bbi, σ
2I], (1.7)

H1 : xi ∼ N[Bbi + Tθi, σ
2I], (1.8)

where N denotes the normal distribution and σ orresponds to the noise std; B

and T are bakground and anomaly subspae bases with bi and θi bakground

and anomaly subspae expansion oe�ients of data vetor xi, respetively.
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1.2 Adapting MOCA for Anomaly Detetion

The matries B and T, omprising the signal-subspae basis, are not nees-

sarily orthogonal eah other (i.e. BTT 6= 0), but they are linearly independent,

meaning that there is no element in B that an be represented as a linear om-

bination of vetors in T. The hypothesis H0 orresponds to the ase in whih

the observed vetor is drawn from the interferene/bakground subspae, on-

taminated by white Gaussian noise. Whereas, the hypothesis H1 orresponds

to the ase in whih the observed vetor is a superposition of a vetor from the

interferene/bakground subspae and a vetor from the anomaly subspae, on-

taminated by white Gaussian noise.

The Generalized Log-Likelihood Ratio (GLR) is given by

L(x) =
1

σ2
xT PB⊥Tx, (1.9)

where PB⊥T is a projetion onto (range B)⊥
⋂

range T - a low-rank anomaly-

mathed subspae, suh that interferene ontribution ontained in range B,

and noise ontribution ontained in both range B and (range T)⊥, are removed.

This �lter is usually alled a mathed subspae �lter or a mathed �eld �lter. The

energy of the �lter output (orresponding to L(x)) is omputed and ompared

to a threshold. The problem with this approah is that it is not well-adapted

to the ℓ2,∞ optimality riterion of the signal-subspae basis [Ψk−h|Ωh] found by

MOCA. Although, aording to MOCA, the maximum of the data residual norms

η = ‖P[Ψk−h|Ωh]⊥X‖ℓ2,∞ is minimized, it may still leave large residuals (with norms

below η) belonging to (range [Ψk−h|Ωh])
⊥. Obviously, these residuals don't

ontribute to L(xi), whih measures the norms of data vetor projetions onto

(range Ψ)⊥
⋂

range Ω (see (1.9) above). This redues the probability of anomaly

detetion by MSD in ases of anomalies having residual norms below η. Note, that

the value of η is determined by statistis of the maximum-norm noise realization

that has a narrow distribution entered around a value that is not insigni�ant.

This value is a funtion of σ and the noise subspae rank.

Another disadvantage of using MSD in onjuntion with a subspae deter-

mination by MOCA, is that the anomaly subspae basis Ω found by MOCA

is omposed of vetors that were diretly seleted from the data, whereas the
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1.2 Adapting MOCA for Anomaly Detetion

bakground subspae basis satis�es range Ψ ⊂ null ΩT . Therefore, the esti-

mated anomaly subspae, as well as the bakground subspaes are de�eted by

noise. Sine in hyperspetral images the bakground subspae and anomaly sub-

spae are far from being orthogonal, even small deviations of the anomaly and

bakground subspae estimations may ause bakground vetors to have a strong

ontribution to L(xi) of (1.9), whih rapidly inreases false alarm rate by MSD.

This observation is experimentally substantiated in setion 5.2.

1.2.3 Combining ℓ2-norm and ℓ2,∞-norm for anomaly dete-

tion

The proposed algorithm, denoted here as Anomaly Extration and Disrimination

Algorithm (AXDA), is based on using the bakground and anomaly subspae

estimates by MOCA and is designed to ope with the above MSD drawbaks. The

key-point of the proposed algorithm is that it iteratively modi�es both Ω and Ψ.

The modi�ation is performed by removing olumns from the matrix Ω, one at

a time, and updating the matrix Ψ to math the modi�ed Ω. This signi�antly

redues the e�et of noise on the anomaly detetion proess. AXDA uses the

ℓ2,∞-optimality riterion of MOCA to extrat all anomaly pixels belonging to the

same anomaly endmember, where anomaly endmembers orrespond to olumns

of Ωh. Thus, AXDA ombined with MOCA, allows determination of the number

of anomalies and the extration of all pixels belonging to the same type in an

unsupervised way. It still applies Extreme Value Theory (EVT) [52℄ to model

the ℓ2,∞-norm to onstrut a sharp, robust and adaptive anomaly detetor, whih

doesn't rely on any prior knowledge about the dimensionality or statistial model

of the bakground, without the need for tuning a one-sided hypothesis threshold,

and without any prior knowledge about the number of anomaly lasses and/or

anomaly endmembers.

We demonstrate results of applying AXDA to real hyperspetral images. We

also show there a omparison of AXDA vs. GMRX [38℄ and MSD algorithms in

terms of Reeiver Operating Curves (ROC) obtained by applying the algorithms

on 5 hyperspetral images.
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1.3 ℓ2,∞-Optimal Subspae Estimation

On one hand, the greedy algorithm used by MOCA for signal-subspae estimation

for a given rank only approximately minimizes the ℓ2,∞-norm of misrepresentation

residuals. On the other hand, the speial form of the signal-subspae basis, used

in the greedy algorithm, i.e., [Ψk−h|Ωh] (see (1.6)), failitated developing AXDA-

an anomaly detetion algorithm.

In the next part of our researh, we propose an optimal algorithm for the

signal-subspae estimation that utilizes a natural onjugate gradient learning ap-

proah proposed in [62℄ to minimize ℓ2,∞-norm of the misrepresentation residuals.

During the minimization proess, the signal-subspae basis matrix is onstrained

to the Grassmann manifold de�ned as the set of all n dimensional subspaes

in IRm
, n ≤ m [62℄. Sine ℓ2,∞-norm of the misrepresentation residuals an be

also referened as the maximum orthogonal omplement norm, we denote the

proposed algorithm as Maximum of Orthogonal omplements Optimal Subspae

Estimation (MOOSE).

The optimal signal-subspae obtained by MOOSE, an be used to improve

the performane of MOCA in terms of signal-subspae estimation error. Unfor-

tunately, MOOSE does not produe a signal-subspae basis with a speial stru-

ture like MOCA, whih makes an adaptation of MOOSE for anomaly detetion

purposes muh more di�ult.

1.4 Multispetral Filters Design for Anomaly De-

tetion

We onlude this researh by proposing a novel unsupervised tehnique for De-

signing Multispetral Filters that failitates a better performane of loal anomaly

detetion algorithms. The proposed approah is based on proessing a sample

hyperspetral image of a typial sene that is likely to be faed by anomaly

detetion algorithms, where the sample image is not neessarily required to in-

lude anomalies. Eventually, the problem of Multispetral Filters design may be

formulated as a problem of Redundany Redution in Hyperspetral Channels,
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whih is performed by replaing adjaent spetral bands by their means. This is

a real-world Redundany Redution problem that requires preserving anomalies.

A ommon problem of loal anomaly detetion algorithms is so-alled Hughes

phenomenon [73℄, aording to whih the perfomane of anomaly detetion algo-

rithms signi�antly deteriorates when the number of pixels is severely limited for

an aurate learning of the loal bakground models. In order to alleviate the ef-

fet of Hughes phenomenon, one has to redue the number of hyperspetral bands,

sine the omplexity of bakground models is proportional to the hyperspetral

data dimensionality.

Linear Dimensionality Redution (LDR) is a widely used preproessing teh-

nique for the alleviation of Hughes phenomenon in lassi�ation problems [74℄,

[77℄, [75℄. LDR also allows to eliminate redundanies ouring due to high orrela-

tions among adjaet bands. Of partiular interest are tehniques that redue the

dimensionality of hyperspetral data by replaing subsets of adjaent bands by

their means, sine the resulting features an be physially interpreted as responses

of multispetral �lters, whih may be tuned to apliation-dependent needs. Thus,

the authors of [76℄ propose top-down and bottom-up algorithms designed to �nd

subsets of bands yielding high Fisher disrimination among lasses. In [74℄ one

an �nd an approah that groups the hannels into a partition that inreases

interlass distane omputed on a training set. Another approah, based on dy-

nami programming, is proposed in [77℄. It minimizes the mean squared error of

representing all hyperspetral pixels in the image by piee-wise onstant spetral

segments.

Unfortunately, little attention has been drawn in the literature to hannel

redution tehniques designed to improve the performane of loal anomaly de-

tetion algorithms. This problem is of high importane in appliations that seek a

tehnology to onstrut high performane multispetral �lters for anomaly dete-

tion. An appealing approah for this purpose is proposed in [77℄, denoted as Fast

Hyperspetral Feature Redution (FFR). It looks for a best piee-wise onstant

represenation of the hypersetral data and does not assume any prior knowledge

about the data. However, FFR is not well-taylored to data that ontains anoma-

lies, sine it uses the mean squared error based (ℓ2-norm based) riterion. As
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disussed earlier, this riterion is known to be insensitive to anomaly ontribu-

tions and, as a result, may lead to a poor represention of anomalies.

The novel approah proposed here is based on a new riterion that is designed

to retain spetral hannels ontaining valuable anomaly-related information for

anomaly detetion algorithms. The optimal partition of the spetrum is ob-

tained by Minimizing the Maximal Mahalanobis Norm of errors, obtained due to

the misrepresentaion of spetral intervals by onstants. Therfore, we denote the

proposed tehnique as Min-Max MN or, in short, MXMN. By minimizing the

MXMN of errors, one redues the anomaly ontribution to the errors, whih al-

lows to retain more anomaly-related information in the redued hannels, if there

are anomalies in the sample image. In the ase that the sample sene does not

ontain anomalies, minimizing the MXMN of errors allows smoothing out spe-

tral bands ontaining bakground lutter, whih are unfavorable for the anomaly

detetion sine they are likely to mask possible subtle anomaly ontributions to

other bands.

We ompare MXMN with other dimensionality redution tehniques, suh as

lassial prinipal omponents analysis (PCA) and FFR, by examining the results

of the Reed-Xiaoli (RX) algorithm [32℄, a benhmark anomaly detetor for hy-

perspetral imagery, applied after the dimensionality redution. We demonstrate

that the proposed approah orresponds to a better ROC urve, as ompared

to PCA and FFR, for a wide range of false alarm rates, and even better than

obtained by applying RX on the original data (without the dimensionality redu-

tion) for the important range of low false-alarm rates.

The thesis is organized as follows: In hapter 2 we present the proposed redun-

dany redution approah for high-dimensional noisy signals ontaining anomaly

(rare) vetors, named MOCA [1℄. In hapter 3 MOCA is used for developing

an anomaly detetions algorithm, named AXDA [3℄. Chapter 4 deals with an

ℓ2,∞-optimal signal subspae estimation via a natural learning on a Grassmann

manifold [2℄. Finally, in hapter 5 we develop a tehnique for Designing Multi-

spetral Filters that failitates a better performane of loal anomaly detetion

algorithms [4℄.
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Chapter 2

Anomaly Preserving Redundany

Redution

2.1 Optimality riterion for subspae estimation

Before getting into the development of an estimator of a subspae that may in-

lude rare vetors, we �rst haraterize the presene of rare-vetors. For demon-

strational purposes, we show in Fig. 2.1 a shemati plot of a subspae of abun-

dant vetors and rare-vetors. The abundant vetors (marked by dots) lie lose to

a subspae spanned by the vetor v0. As it is seen in the �gure, the rare vetors

(marked by irles and dashed arrows) v1,v2,v3,v4 don't belong to the abundant

vetor subspae spanned by v0. Obviously, rare-vetors are haraterized by their

low number ompared to the number of abundant vetors. Rare vetors are sup-

posed to lie far from the abundant vetor subspae. They, however, are allowed

to belong to a subspae of a dimension lower than their number. It is important

to stress that unlike in the example (for p = 2), the observed dimensionality p (in

the general ase) is expeted to exeed the dimension of the subspae spanned by

abundant and rare vetors ombined.

The example above an be generalized by the following property:

Rare vetor presene property: The p × N matrix Y is said to ontain rare-

vetors if there exists a deomposition Y = [Y1|Y2]Π, where Π is some permu-

tation matrix, Y1 and Y2 are p × N1 and p × N2 submatries of Y, suh that

N1 + N2 = N , N1 ≫ N2, and range Y1 ⊂ range Y.
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Figure 2.1: Shemati plot demonstrating rare vetors presene in data.

v0 spans abundant vetors (dots) subspae; v1,v2,v3 and v4 denote rare vetors

(irles).

This property states that the matrix Y is onsidered to ontain rare vetors

if the number of Y olumns that are linearly independent of all the other Y

olumns is relatively small.

In order to develop a rare-vetor preserving signal-subspae estimator, we

should de�ne an optimality riterion that is sensitive to the appearane of rare-

vetors in the data. First, we onsider an ℓ2-based optimality riterion, sine

it appears in Singular Value Deomposition (SVD) - a well-known tehnique for

the signal-subspae estimation [48℄. Then, we show that ℓ2-based riteria are

not appropriate for estimating a signal-subspae that ontains rare vetors, and

propose ombining ℓ2 and ℓ∞-based riteria as a remedy.

As noted above, at the signal-subspae determination stage, the rank is as-

sumed to be known, say rank Y = k.

2.1.1 Signal-subspae estimation via SVD

Aording to the SVD approah, the signal-subspae Sk = range Y is estimated

by minimizing the ℓ2 norm of the residuals:

Ŝk = argmin
L
‖X− PLX‖2Fb = argmin

L
‖PL⊥X‖2Fb (2.1)

s.t. rank L = k,

where ‖ · ‖F b denotes Frobenius norm, L ⊂ IRp
and PL denotes an orthogonal

projetion onto subspae L. It an also be shown that under a Gaussian as-
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2.1 Optimality riterion for subspae estimation

sumption on the olumns of Y, Ŝk oinides with the maximum-likelihood (ML)

estimation of Sk [41℄. The estimated signal-subspae Ŝk is obtained via SVD of

the observation matrix X as X = ÛŜV̂′, where Û and V̂ are p × p and N × p

matries with orthonormal olumns, respetively, and Ŝ = diag {ŝ1, . . . , ŝp},
ŝ1 ≥ ŝ2 ≥ . . . ≥ ŝp. The signal subspae Ŝk is equal to span of {û1, . . . , ûk} - the
�rst k olumns of Û (see [48℄ for details).

2.1.2 Drawbaks of minimizing the ℓ2 norm in the presene

of rare-vetors

Intuitively, it seems that minimizing the observation residuals PL⊥xi, i = 1, . . . N ,

as a funtion of L, ould be appropriate for estimating S. Indeed, for L = S,

PL⊥xi = PL⊥zi, i = 1, . . . , N, (2.2)

whih means that given a preise signal-subspae estimation, the data residuals

are equal to the orresponding noise residuals. Whereas, for L 6= S, one expets

to obtain signal ontributions in the residual subspae L⊥, whih are likely to

inrease the residual squared norm ‖PL⊥xi‖2. This an be seen from the fat

that sine z is statistially independent of y, so are their projetions onto the

null-spae of L. Moreover, sine zi are zero mean i.i.d., it is expeted that

‖PL⊥xi‖2 ≈ ‖PL⊥yi‖2 + ‖PL⊥zi‖2. (2.3)

Therefore, looking for Ŝ that minimizes residual norms is reasonable. However,

using an ℓ2 norm (like in (2.1)) an be inappropriate in the presene of rare-

vetors, sine the ontribution of rare-vetor residuals to the ℓ2-norm may be

muh weaker than the ontribution of noise-residuals. As a result, the estimated

subspae Ŝ may be skewed by noise in a way that ompletely misrepresents the

rare-vetors. In some pratial ases this miss-representation may our with

high probability, as demonstrated in simulations below.
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2.1 Optimality riterion for subspae estimation

First, we de�ne the Rare-vetor Signal-to-Noise Ratio as follows:

RSNR ,
s2

min(PY⊥abund
Yrare)

E{‖PY⊥abund
z‖22}

=
s2

min(PY⊥abund
Yrare)

(p− k)σ2
, (2.4)

where Yrare is a submatrix of Y omposed of all rare-vetors, Yabund is a subma-

trix of Y omposed of the remaining (abundant) vetors; PY⊥abund
is a projetion

onto the null-spae of Yabund; s2
min(D) is the squared minimal non-zero singular

value of the argument matrix D, and σ2 is the noise variane. The hoie of

the minimal non-zero singular value is essential, sine it re�ets the rare-vetors

subspae perturbation by additive noise [71℄, i.e., the error in rare-vetor sub-

spae estimation. That is, RSNR measures the ratio between the ontribution of

rare-vetors in the diretion of the least-signi�ant eigenvetor of the rare vetor-

residuals in the null-spae of bakground vetors, and the ontribution of noise

in that diretion. We also de�ne SNR as follows:

SNR , ‖Yabund‖2Fb

pNσ2
. (2.5)

Now, we desribe the setup of simulations that show a typial ase for whih

rare-vetors are misrepresented by SVD. A p × N = 102 × 105 signal matrix Y

(whih orresponds to a typial hyperspetral image ube onsisting of 105 pixel-

vetors of dimension 102, eah) was generated, suh that Y = [Yabund|yrare],

using a Gaussian distribution for the olumns of {Yabund with a ovariane ma-

trix CYabund
= 100σ2Ip,q, q = 5, and yrare ∈ null YT

abund, where Ip,q denotes a

diagonal p × p matrix with q ≤ p nonzero diagonal entries, all equal to 1. Sine

s2
min(yrare) = ‖yrare‖22, it follows that

RSNR =
‖yrare‖22

E{‖PCYabund
⊥z‖22}

=
‖yrare‖22
(p− k)σ2

, (2.6)

Then, the �measured� data-matrix X was obtained as X = Y + Z, where the Z

olumns are Gaussian with a ovariane matrix Cz = σ2Ip,p.

In our simulations, for eah RSNR value X was generated 100 times. We

onsider 50 RSNR values, sampled uniformly in the range [0, . . . , 170] for σ2 = 1,

as shown in Fig. 2.2 (a). In a dashed (dot-dashed) line we plot the minimum
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2.1 Optimality riterion for subspae estimation

(maximum) of 100 generated values (per RSNR value) of

νk , ‖PŜ⊥k
X‖22,∞ , max ‖PŜ⊥k

xj‖22
j=1,...,N

, (2.7)

where ℓ2,∞ is a norm de�ned by seleting the maximum ℓ2-norm of the data

vetor residuals (orresponding to the null-spae of Ŝk, k = q + 1 = 6 in (2.7)).

In a thin solid line we plot ‖yrare‖22 as a funtion of RSNR.

We repeated the simulation above for matries X with Y = Yrare (i.e., there

are no rare-vetors in the data). The horizontal heavy solid line shows the mean

value of νk, k = q = 5, orresponding to data without rare-vetors. In both ases

- with and without a rare-vetor, Ŝk was obtained via SVD.

The maximum residual norm νk = ‖PŜ⊥k
X‖22,∞ in data without rare-vetors

has a narrow distribution, sine it approximately equals to the maximum norm

of the noise residuals ‖PŜ⊥k
Z‖22,∞, whih has a narrow distribution, explained by

Extreme Value Theory results, as shown in Appendix A. Therefore, νk has nearly

a �deterministi� behavior in data without rare-vetors.

However, in the presene of rare-vetors (for k = q + 1), it is likely to obtain

νk values that are higher than ‖PŜ⊥k
Z‖22,∞. Thus, as it is seen from the �gure,

there is a range of RSNR values (0 < RSNR < 140, p = 102 and N = 105 in this

example), for whih the value of νk in the presene of a rare-vetor lies muh higher

(between the dot-dashed and dashed lines, representing the min and max values,

respetively) than the nearly deterministi value of νk in the absene of a rare-

vetor (heavy horizontal solid line). This phenomenon orresponds to the poor

representation of rare-vetors by SVD. This range of RSNR values, however, is

of high pratial importane in some appliations. For instane, in hyperspetral

that we examined, haraterized by SNR = 100, the observed RSNR satis�es

RSNR ≤ 30, whih means that SVD would most likely fail to appropriately

represent rare-vetors in this appliation. On the other hand, for high RSNR

values, the rare-vetor ontributions beomes stronger in the ℓ2-sense, ompared

to the noise ontributions. As a result, for high RSNR values, SVD represents

well the rare-vetors. This an be seen from the fat that the dot-dashed line in

Fig. 2.2 onverges to the heavy horizontal solid line.
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2.1 Optimality riterion for subspae estimation

For lari�ation, in Fig. 2.2 (b) we show results of the above simulation for an

assumed inorret dimensionality value of k − 1. As expeted, SVD �prefers� to

represent abundant vetors. This results in a maximum misrepresentation error

that is ditated solely by the norm of the rare-vetor for a muh wider range

of RSNR values. Note that the min and max values are not equal beause of

the noise added to the rare vetor. We also simulated the ase of a �wrong�

dimensionality of k +1 and notied, as expeted, that it produes results lose to

the ase of the orret dimensionality k in Fig. 2.2 (a).
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Figure 2.2: Monte-Carlo simulation of SVD-based signal-subspae esti-

mation in the presene of rare-vetors for p = 102 and N = 105. The rare-

vetor squared norm ‖yrare‖22 (solid thin line), the sample-minimum of maximum

data-residual squared-norms νk in the presene of rare-vetors (dashed line), the

sample-maximum of the maximum data-residual squared norm νk in the presene

of a rare-vetor (dot-dashed line), the sample-mean of maximum noise-residual

squared-norms νk in the absene of rare-vetors (heavy horizontal solid line); a)

for orret rank k b) for �wrong� rank k − 1.

In summary, the above example demonstrates that SVD may poorly represent

the rare-vetors for an important range of low RSNR values.
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2.1 Optimality riterion for subspae estimation

2.1.3 Signal-Subspae determination by ℓ2,∞-norm minimiza-

tion

In the last example we have seen that SVD, being ℓ2-optimal (2.1), may not be

sensitive to rare-vetors, leaving large rare-vetor residuals in Ŝ⊥k . In order to

takle this problem, we propose using ℓ2,∞ instead of ℓ2, whih transforms the

optimization problem (2.1) to the following form:

Ŝk = argmin
L
‖PL⊥X‖22,∞ (2.8)

s.t. rank L = k.

The objetive funtion of this optimization problem is not di�erentiable and,

therefore, is hard to optimize. In order to make the problem di�erentiable, anal-

ogously to the Chebyshev (minimax) approximation problem in [66℄, the problem

of (2.8) an be reast as follows:

Ŝk = argmin
L,γ

γ (2.9)

s.t. ‖PL⊥xj‖22 ≤ γ ∀j = 1, . . . , N,

rank L = k,

where the additional parameter γ was introdued to bound all residual squared

norms ‖PL⊥xj‖2 (inluding the maximal one) from above. Thus, by minimizing

this bound with respet to L, one minimizes the maximum residual norm orre-

sponding to ‖X‖2,∞ of (2.8), whih makes problems (2.8) and (2.9) equivalent.

Although the obtained equivalent optimization problem is di�erentiable, it

still seems to be pratially intratable beause of the large multipliity of on-

straints, whih is equal to N (the number of data vetors). Therefore, in the next

setion we propose a suboptimal greedy algorithm that is found to produe good

results.
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2.2 Signal-Subspae determination by ombining

SVD with min-max of residual norms (MX-SVD)

In order to make the minimization of (2.8) or (2.9) omputationally plausible, we

propose to onstrain the sought Ŝk basis to be of the following form:

Ŝk = range [Ψk−h|Ωh] , (2.10)

where Ωh is a matrix omposed of h olumns seleted from X, and Ψk−h is a

matrix with k − h orthogonal olumns, obtained via SVD of PΩ⊥h
X. As demon-

strated in the previous setion, the ℓ2,∞ norm of data-vetor residuals is governed

by the rare-vetor miss-representations via SVD (whih is ℓ2 - optimal), whereas

abundant vetors an be suessfully represented via SVD. Therefore, the main

idea of the proposed approah, whih we denote as MX-SVD, is to ollet rare-

vetors into Ωh in order to diretly represent the rare-vetors subspae. Sine

rare-vetors are not neessarily orthogonal to abundant vetors, matrix Ωh also

partially represents abundant vetors. The residual abundant vetor ontribution

to the null-spae of ΩT
h is represented by prinipal vetors found by applying SVD

on PΩ⊥h
X. As noted above, the olumns in Ωh are diretly seleted from {xi}N1 ,

the set of noisy data vetors. Although this makes rangeΩh a noisy estimation

of the pure rare-vetors subspae, it still represents well the noisy rare-vetors in

the data, whih is, atually, the main objetive of MOCA.

The determination of the basis vetors of Ŝk in terms of [Ψk−h|Ωh], for a given

value of k, is performed as follows: First, we initialize [Ψk|Ω0], suh that

Ψk = [u1, . . . ,uk] ; Ω0 = [], (2.11)

where u1, . . . ,uk are k prinipal left singular vetors of X.

Then, a series of matries {[Ψk−j|Ωj]}kj=0 is onstruted suh that

Ωi+1 = [Ωi|xωi
] (2.12)

Ψk−i−1 =
[
ψ1, . . . ,ψk−i−1

]
, (2.13)

where, for eah i = 0, . . . , k − 1, ωi is the index of a data vetor xωj
that has the
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2.3 MX-SVD vs. SVD - simulation results

maximal residual squared norm ri:

ωi , argmax
n=1,...,N

‖P[Ψk−i|Ωi]
⊥xn‖, (2.14)

ri , ‖P[Ψk−i|Ωi]
⊥xωi
‖2, (2.15)

and ψ1, . . . ,ψk−i−1 are k − i− 1 prinipal left singular vetors of PΩ⊥i+1
X. Thus,

the k olumns of [Ψk−j|Ωj], for eah j = 0, . . . , k, span k-dimensional subspaes,

respetively. Eah subspae is spanned by a number of data vetors olleted in

the matrix Ωj and by SVD-based vetors that best represent (in ℓ2 sense) the data

residuals in the null-subspae of Ωj. Moreover, eah subspae is haraterized

by it's maximum-norm data representation error rj. One of these subspaes is

to be seleted as Ŝk. In the light of our objetive to minimize the worst-ase

representation error, we hoose Ŝk = range [Ψk−h|Ωh], with the value of h that

minimizes the ℓ2,∞-norm of residuals, i.e.,

h = argmin
j=0,...,k

rj. (2.16)

This poliy ombines the ℓ2-based minimization of abundant vetor-residual

norms with ℓ∞-based minimization of rare vetor residual norms. As we have seen

earlier, the rare-vetors have large residuals with respet to prinipal subspaes

found by SVD. This property would ause them to be seleted among olumns

of Ωh, whereas the abundant vetor projetions onto the null-spae of Ωh would

lie in the range Ψk−h. A �owhart summarizing the MX-SVD proess is shown

in Fig. 2.3.

2.3 MX-SVD vs. SVD - simulation results

In Fig. 2.4, we show empirial pdfs of ‖PŜ⊥k
X‖22,∞, obtained via a Monte-Carlo

simulation for k = rabund +rrare = 5+3 = 8, where rabund is the rank of abundant-

vetors subspae and rrare is the number of rare-vetors, whih were generated

as in the previous example of setion 2.1.2 by appending orthogonal vetors of

equal norms {yj}rrare
j=1 , yj ∈ null YT

abund. A 102 × 105 matrix X was generated

1000 times for RSNR = 10, σ = 1. The pdfs of ‖PŜ⊥k
X‖22,∞ orresponding to
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2.3 MX-SVD vs. SVD - simulation results

Figure 2.3: MX-SVD �owhart. For a given signal subspae rank value k,
onstruts a signal-subspae basis of the form Ŝk = [Ψk−h|Ωh], h ∈ integers [0, k],
that minimizes ‖PŜ⊥k

X‖22,∞, where Ωh is responsible for representing rare-vetors

and Ψk−h is responsible for representing the remaining (abundant) vetors in the

data.

subspae estimation by MX-SVD (dashed line) and SVD (solid line) are shown

in Fig. 2.4(a).

It is learly seen from the �gure that max-norm residuals obtained via MX-

SVD have a lower value and have a muh narrower pdf, as ompared to residuals

obtained by SVD. As a matter of fat, the MX-SVD-related pdf is very lose to

the pdf of ‖PŜ⊥k
Z‖22,∞, whih equals to the squared norm of the maximum-norm

noise residual. This fat is supported by Fig. 2.4(b). Here, we plot the empirial

pdf of ‖PŜ⊥k
X‖22,∞ obtained via MX-SVD (dashed line) versus the exat pdf of

‖PŜ⊥k
Z‖22,∞ (solid line), obtained from a model (with the above parameters) that

is based on Extreme Value Theory results, presented in Appendix A.
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Figure 2.4: The pdfs of ‖PŜ⊥k
X‖22,∞, obtained via a Monte-Carlo simu-

lation. (a) The empirial pdfs of ‖PŜ⊥k
X‖22,∞ obtained by MX-SVD (dashed

line) and SVD (solid line) for RSNR = 10, σ = 1, p = 102, N = 105,

k = rabund + rrare = 5 + 3 = 8 (b) The empirial pdf of ‖PŜ⊥k
X‖22,∞ by MX-

SVD (dashed-line) versus the exat pdf of ‖PŜ⊥Z‖22,∞ (solid line).

In summary, MX-SVD was designed to yield ‖PŜ⊥k
X‖22,∞ ≈ ‖PŜ⊥k

Z‖22,∞ for

k ≥ r in the presene of rare vetors, as opposed to SVD, whih produes arbitrary

large residuals for a range of low RSNR values. The fat that for k ≥ r the

maximum-norm residuals are governed by the maximum-norm realization of the

noise will be used in the next setion for onstruting a signal-subspae rank

estimator, whih is based on statistial properties of ‖PŜ⊥k
Z‖22,∞.

2.4 Rank Determination

In this setion we onstrut a signal-subspae rank estimator r̂ (reall that the

signal-subspae basis may inlude rare-vetors). This rank estimator is based

on examining the maximal data residual norms ‖PŜ⊥k
X‖22,∞, for an inreasing

sequene of k values. The only thing we know about ‖PŜ⊥k
X‖22,∞ is that for k < r,

it ould be arbitrarily higher than ‖PŜ⊥k
Z‖22,∞; whereas for k ≥ r, due the signal-

subspae estimation approah, whih minimizes ℓ2,∞-norm of residuals, one may

assume that the maximum-norm data residual is governed by the maximum-norm

noise residual, i.e.,

‖PŜ⊥k
X‖22,∞ ≈ ‖PŜ⊥k

Z‖22,∞. (2.17)
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2.4 Rank Determination

Guided by (2.17), we onsider a test that determines the rank r as follows in the

next setion.

2.4.1 Signal and noise hypotheses assessment

We assume that for some k, rabund ≤ k ≤ r, the signal-subspae Ŝk, esti-

mated by MX-SVD desribed above, is lose to the subspae of abundant-vetors.

This assumption is plausible due to the SVD-part of the MX-SVD proess that

is designed to represent well the abundant-vetors subspae, whih is of rank

rabund ≤ r. As a result, the abundant-vetor residuals in the omplementary sub-

spae Ŝ⊥k are governed by the noise ontribution, whereas the rare-vetor residuals

may still inlude signi�ant signal ontributions. Thus, for k ≥ rabund, the set of

all data-vetor indies an hypothetially be divided into two subsets aording

to the properties of data-vetor residuals:

Γk , {indies γj of abundant-vetor residuals}
∆k , {the remaining data-vetor indies δi }, (2.18)

suh that j = 1, . . . , #Γk, i = 1, . . . , #∆k and #Γk ≫ #∆k, where # denotes

ardinality of a set.

Let ηk be the maximum data-residual squared-norm, ηk = max
j=1,...,N

‖PŜ⊥k
xj‖2.

Given ηk, we formulate the following two hypotheses:

H0 : ηk belongs to Γk, (2.19)

H1 : ηk belongs to ∆k. (2.20)

The following notation will help us to perform a statistial analysis of ηk:

νk , max
γj∈Γk

‖PŜ⊥k
xγj
‖2

ξk , max
δi∈∆k

‖PŜ⊥k
xδi
‖2. (2.21)

Now, ηk, an be expressed as:

ηk = max(νk, ξk). (2.22)
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2.4 Rank Determination

Due to the assumption leading to (2.18), and aording to (2.21), the value of

νk is governed by the extreme value statistis of maximum-norm noise realizations.

Now, we set the rank estimator r̂ to be equal to the minimal value of k for whih

the following ondition is satis�ed:

p(H0|ηk) ≥ p(H1|ηk), (2.23)

whih means that the optimal rank is reahed when there is a higher likelihood

that the maximum data-residual squared norm ηk is governed by the noise statis-

tis (i.e., it doesn't inlude signi�ant signal ontributions).

In order to evaluate the onditional probabilities p(H0|ηk) and p(H1|ηk), one

has to speify pdfs fνk
(·) and fξk

(·), or, equivalently, dfs Fνk
(·) and Fξk

(·). Whilst

the probability of maximum-norm noise realization νk an be determined by Ex-

treme Value Theory results, as shown in Appendix A, the pdf of ξk is generally

unknown. The only thing we know about ξk is that at eah iteration k, it has to

be less or equal ηk−1. A possible hoie for fξk
(·) is therefore,

ξk ∼ U [0, ηk−1], (2.24)

where U denotes a uniform distribution.

Now, it an be shown (see Appendix B for details) that posterior hypotheses

probabilities are given by:

p(H0|ηk) =
ηkfνk

(ηk)

ηkfνk
(ηk) + Fνk

(ηk)
, (2.25)

p(H1|ηk) =
Fνk

(ηk)

ηkfνk
(ηk) + Fνk

(ηk)
, (2.26)

where the expressions above are valid for 0 ≤ ηk ≤ ηk−1. It is important to

note, however, that the funtional form of the posterior onditional probabilities,

as given in (2.25) and (2.26), does not depend on ηk−1. Moreover, due to a

suessive appliation of MX-SVD for an inreasing sequene of k values, it is

guaranteed that 0 ≤ ηk ≤ ηk−1. Therefore, in the forthoming expressions, we

omit expliit mention of the argument boundaries.
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2.4 Rank Determination

Fig. 2.5(a) shows the orresponding graphs of these posterior probabilities

for a residual-subspae rank l = p − k = 102, where p is the dimensionality of

the data vetors x, the total number of data vetors N = 105, and the noise std

σ = 1. It is learly seen that the transition region between hypotheses is steep

and narrow. Atually, its width depends on the form of fνk
(see Fig. 2.5(b)),

whih is well-loalized, as explained in Appendix A.
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Figure 2.5: a) posterior onditional hypotheses probabilities p(H0|ηk)
and p(H1|ηk) b) distributions of maximum squared-norm of rare (solid

line) and abundant (dashed line) vetor residuals. For residual-subspae

rank l = 102, total number of data vetors N = 105, and the noise std σ = 1.

In summary, the signal-subspae rank is determined by applying MX-SVD

and examining ondition (2.23) for an inreasing sequene of k values. As the

maximum-norm residual beomes low and (2.23) beomes true, it an no longer

be on�dently assoiated with the signal ontribution, and the proedure is termi-

nated. The estimated rank is equal to the last-examined k value. As was already

noted above, this ombination of applying MX-SVD and examining ondition

(2.23) for an inreasing sequene of k values, de�nes what we alled Maximum

Orthogonal Complement Algorithm (MOCA), and is summarized next.

2.4.2 MOCA summary for ombined subspae and rank

determination

In this subsetion we summarize the proposed approah of signal-subspae and

rank determination via MOCA by presenting its major parts in the �owhart of

Fig. 2.6.
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The algorithm begins with an initial guess for the signal-subspae rank, suh

as k = 1. At eah rank value iteration, the signal-subspae basis Φk = [Ψk−h|Ωh]

is obtained via MX-SVD of setion 2.2, using the onjetured rank k. Then the

data maximum residual-norm is alulated in the null spae of Φk. This norm

is tested in order to deide if it belongs to the noise hypothesis (this deision is

performed by evaluating inequality (2.23)). If the noise hypothesis passes, the

algorithm is terminated, and the estimated signal-subspae and rank equals to the

span of the last obtained Φk, and to the last value of k, respetively. Otherwise,

the rank onjeture k is inremented and a new iteration is arried out.

Figure 2.6: Maximum Orthogonal Complement Algorithm (MOCA)

�owhart.
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2.5 Comparison of rank determination by MOCA

vs. MDL

In this setion we ompare the performane of MOCA with that of the Minimum

Desription Length (MDL) approah for signal-subspae rank determination.

2.5.1 MDL basis

MDL is a widely-used model-order determination riterion, based on oding ar-

guments and the minimum desription length priniples [25℄,[26℄. The same rule

has been also obtained via a rather di�erent approah, based on a Bayesian In-

formation Criterion (BIC) [39℄. Thus, in [40℄ it is proposed to apply the MDL

for determining the model-order of (1.1), with {si} being an ergodi Gaussian

proess with a positive de�nite ovariane matrix and the noise variane σ2 is

unknown.

The MDL was also proven in [40℄ to be onsistent in terms of yielding the true

signal-subspae rank, with probability one, as the sample size N inreases. It is

based on minimizing the following riterion with respet to k:

MDL(k) = − ln f(X|Θ̂(k)) +
1

2
η log N, (2.27)

where f(·) is a family of probability densities parameterized by Θ(k), and η

denotes the number of model degrees of freedom. In our ase, where σ2 is known,

manipulation of the results in [40℄ gives:

MDL(k) =
k∑

i=1

log(l̂i) + (p− k) log(σ2) + k +

p∑
i=k+1

l̂i
σ2

+ k(2p− k)
log(N)

N
, (2.28)

where {̂i}p1 denote eigenvetors of the data-ovariane matrix R , E{xxT}, and
σ2 is the known noise variane.
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2.5 Comparison of rank determination by MOCA vs. MDL

2.5.2 Simulation of rank determination by MOCA vs. MDL

In this subsetion we ompare the results of applying MOCA and MDL to sim-

ulated examples, in the presene of rare vetors, and assess their performane in

terms of rank errors expressed by rank-RMSE de�ned by erank ,
√

E(r − r̂)2.

Fig. 2.7 shows the performane of MOCA vs. MDL for r = rabund + rrare =

5 + 10 = 15, SNR = 100 (the rare vetors were generated as in the example

of setion 2.1.2); with Fig. 2.7 (a) and (b) orresponding to di�erent sizes of

N = 104 and N = 105, respetively. MOCA and MDL were tested 50 times

for eah value of RSNR . Then, the rank-determination errors were alulated

and plotted. The error erank obtained by MDL for a range of low RSNR values,

whih is a funtion of N , is equal to 10 (the rare-vetors subspae rank rrare). In

other words, the MDL ompletely fails to determine r at low RSNR values. The

dependene of erank on N is obvious - the larger the sample size N is, the more

�blind� beomes MDL to rare-vetors, whih have to be muh stronger in order to

beome apparent to MDL. Thus, the orret rank determination by MDL starts

only at very high values of RSNR. In ontrast to MDL, MOCA performs muh

better, with low values of erank obtained already at a very low RSNR value.

It turns out, that the probability of rank determination error by MOCA be-

omes small and approximately onstant already for RSNR as small as 2 (see

Appendix C for details). This turning point is marked by a heavy dot-dashed

vertial line in Fig. 2.7.

It is important to note that the simulations above were designed to re�et a

typial situation seen in hyperspetral images, in whih the bakground proess

is haraterized by SNR ≈ 100 (20dB), while anomalies are haraterized by

RSNR ≤ 30. Hene, the simulations above indiate that MDL is expeted to be

�blind� to the anomaly subspae rank in typial hyperspetral images, whereas

MOCA is expeted to sueed in estimating the rank.

A reasonable question that arises is how to identify the transition point, below

whih one should use MOCA due to its ability to reover the rank at low RSNR

values, and above whih one ould use MDL due to its omputational simpliity.

We turn to (2.28) and notie that MDL(k) has to aept its minimum at k. That

means that the inrease in penalty (the last term of (2.28)) has to be smaller than
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2.5 Comparison of rank determination by MOCA vs. MDL

the derease in minus log-likelihood (the �rst part of (2.28)) in the transition from

k − 1 to k and, respetively, larger in the transition from k to k + 1. Now, due

to onstrution of Y in simulations (see 2.1.2)), the eigenvalue l̂k stemming from

rare vetors is assumed to satisfy:

k̂ ≈ σ2 + ‖yrare‖2/N = σ2 + RSNR(p− k)/N. (2.29)

By negleting k with respet to p (sine k ≪ p) and approximating l̂i ≈ σ2

for i > k, then, with some straightforward manipulations, one obtains that the

equilibrium between the hange in penalty and hange in log-likelihood (when k

is hanged to k + 1) is reahed when:

− log(σ2 + RSNR
p

N
) + RSNR

p

Nσ2
= 2p

log(N)

N
. (2.30)

By numerially solving (2.30) with respet to RSNR, one obtains the turning point

in RSNR value below whih the MDL is expeted to be unreliable in determining

ontribution of rare-vetor to rank. This turning point is marked by a heavy

dashed vertial line in Fig. 2.7.
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Figure 2.7: MOCA vs MDL omparison via Monte Carlo simulations.

The rank estimation error erank =
√

E(r − r̂)2 in the presene of 10 rare-vetors

as a funtion of RSNR, for (a) N = 104, (b) N = 105. The heavy dashed and

dot-dashed vertial lines delimit a region in whih MOCA is reliable enough and

has better performane than MDL.
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2.5 Comparison of rank determination by MOCA vs. MDL

2.5.3 Comparing MOCA with MDL on real data

In this setion we ompare results of MOCA and MDL for signal-subspae and

rank determination of hyperspetral images. We then ompare MOCA and MDL-

SVD performanes in dimensionality redution of hyperspetral images by apply-

ing MDL and MOCA on a bank of about 50 hyperspetral ubes of size 400×450

with 65 spetral bands. Due to spae limitations, results for a typial ube are

demonstrated here.

One of hypespetral bands of this ube is shown in Fig. 4.4. Eah pixel in this

hyperspetral image orresponds to a 65× 1 vetor. MOCA assumes the noise to

be statistially independent between spetral bands. Therefore, in order to make

the noise i.i.d., the noise std in eah band was estimated and normalized to 1 by

saling the data.

First, MOCA was applied on the upper part of the image shown in Fig. 4.4

that is delimited by horizontal and vertial white lines. Aording to ground-truth

evidene, this part orresponds to a �pure bakground signal� stemming from

agriultural �elds radiane. Indeed, the signal-subspae determined by MOCA

is given by ŜI = Ψ7, whih orresponds to k = 7, h = 0; i.e., no rare-vetors

were seleted in order to represent best the signal-subspae in this subimage.

Then, MOCA was applied on the entire image produing ŜII = [Ψ6|Ω4], whih

orresponds to k = 10, h = 4. Suh a result an be explained by the presene of

anomaly pixels (marked by irles) loated at the bottom of the image. Aording

to the ground truth, these pixels belong to vehiles, whih are anomalous to the

natural surroundings in the image. Thus, there are 4 data vetor pixels omprising

Ω4 olumns, whih represent the anomaly pixels subspae in the data.

It should be stressed that the number of olumns in Ω4 may be less than

the number of anomaly pixels in the data, sine the olumns of Ω4 are intended

to span the anomaly pixels subspae, whih may be of a rank lower than the

number of anomaly pixels. Moreover, sine the rare-vetor subspae and the

bakground-subspae are not orthogonal to eah other, the olumns of Ω4 may

span a subspae lose to the bakground subspae Ψ7, found initially in ŜI, whih

may produe a ℓ2,∞-norm of residuals small enough in order to stop at an earlier
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2.5 Comparison of rank determination by MOCA vs. MDL

MOCA iteration. This explains why the bakground subspae rank is lower in

ŜII than in ŜI (the pure-bakground ase with no anomalies).

Figure 2.8: Signal-subspae and rank determination in a hyperspetral

image. MOCA was applied on (i) the subimage above the white lines produes

ŜI = ΨI, (ii) the entire image inludes anomalies marked by irles, produing

ŜII = [ΨII|ΩII]. The MDL-estimated rank in both ases is 7.

Turning to the examination of MDL performane, we note that MDL is known

to be sensitive to deviations from the white noise assumption [27℄. We have

found that the noise normalization preproessing that produed good results with

MOCA, isn't su�ient for a proper operation of MDL, sine it doesn't ompen-

sate for small orrelations between noise omponents in adjaent bands due to

a rosstalk between adjaent sensors, and still leaves noise omponent varianes

di�erent. We have applied, therefore, the Robust MDL (RMDL) algorithm of

[27℄ (whih assumes di�erent diagonal entries σ2
1, . . . , σ

2
p), but with a slight modi-

�ation, to aount for orrelations between the adjaent noise omponents. The

modi�ation we applied to RMDL is desribed in Appendix D.

We have applied the modi�ed RMDL algorithm for rank estimation on the

above mentioned hypespetral images: the pure-bakground subimage and the

anomaly-ontaining entire image. In the pure-bakground subimage ase, the

MDL has produed a rank of 7, whih is in aordane with the result of MOCA.
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2.6 Summary

However, in the ase of the entire image, whih ontains rare vetors, the MDL

algorithm misses the ontribution of rare-vetors to signal-subspae rank, leaving

the rank value at 7, whereas MOCA manages to detet the ontribution of anoma-

lies to the signal-subspae and rank produing a higher rank of 10 orresponding

to both the bakground and rare-vetor pixels.

Now, all hyperspetal pixels were projeted onto the subspae found by SVD,

of rank found by MDL, as well as onto the signal-subspae basis ŜII found by

MOCA. In Fig. 2.9 we show squared norms of residuals orresponding to (a)

MDL-SVD, and (b) MOCA based subspaes. It is learly seen that MOCA-

based dimensionality redution better represents all pixels in the image inluding

the anomalies, ompared to MDL-SVD based dimensionality redution, whih

misrepresents anomaly pixels produing high-intensity residuals (white blobs in

Fig. 2.9 (a)) at their loation.

PSfrag replaements PSfrag replaements

(a) (b)

Figure 2.9: Squared norms of residuals orresponding to (a) MDL-SVD,

and (b) MOCA based subspaes.

2.6 Summary

In onlusion, in this hapter we have proposed an algorithm for redundany

redution of high-dimensional noisy signals, named MOCA, whih is designed

for appliations where a good representation of both the abundant and the rare
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2.6 Summary

vetors is essential. The ombined subspae of rare and abundant vetors is ob-

tained by using the proposed ℓ2,∞-norm that penalizes individual data-vetor

miss-representations. Sine this riterion is hard to optimize, a sub-optimal

greedy algorithm is proposed. It uses a ombination of SVD and diret sele-

tion of vetors from the data to form the signal-subspae basis. The rank is

determined by applying Extreme Value Theory results to model the distribution

of the maximal noise-residual ℓ2-norms. In simulations, onduted for various

rare-vetors signal-to-noise onditions, the proposed approah is shown to yield

good results for pratially-signi�ant RSNR values (RSNR essentially measures

the SNR of rare-vetors with respet to noise), for whih the lassial methods of

SVD and MDL fail to determine orretly the signal-subspae and rank, respe-

tively, of high dimensional signals omposed of abundant and rare vetors.

The proposed approah was also applied for the signal-subspae and rank

determination of a hyperspetral image with and without anomaly pixels. The

results of MOCA were found to be equal to those of MDL (or when neessary

RMDL) for the pure-bakground subimage, whereas in the presene of anomalies,

MOCA has deteted a higher rank than MDL, while MDL produed the same

rank as in the pure-bakground ase. This indiates that MDL failed to determine

orretly the signal-subspae rank of a hyperspetral image omposed of both

abundant and rare vetors, whereas MOCA sueeded in representing it well.
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Chapter 3

Anomaly Extration and

Disrimination Algorithm (AXDA)

In this hapter we propose an Anomaly Extration and Disrimination Algorithm

(AXDA) that employs signal-subspae and rank estimation results obtained by

the above desribed MOCA.

Let's reall that the signal-subspae basis Φ produed by MOCA admits the

following form:

Φr̂ = [Ψr̂−h|Ωh] , (3.1)

where r̂ is the estimated signal-subspae rank, the sub-matrix Ωh onsists of h

linearly independent olumns seleted from the data matrix X and the sub-matrix

Ψr̂−h onsists of r̂ − h prinipal omponents of PΩ⊥X.

As it was already noted above, the matrix Ωh represents the anomaly ve-

tors subspae. First of all, given the matrix Ωh, one an mark anomaly vetors

by loating indies of Ωh olumns in the original data matrix X. However, this

straightforward method does not enable us to �nd all the pixels in the data that

belong to the anomaly subspae, sine not all anomalies are guaranteed to be

within the olumns of Ωh. For example, in a ase where there are number of ve-

hiles having the same anomalous re�eted spetrum, only one pixel representing

all vehile pixels would be olleted by MOCA into Ωh. Therefore, neither all ve-

hiles, nor all vehile pixels would be marked by this straightforward method. It

was experimentally observed that simple approahes suh as looking for data ve-
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tors lying lose enough to Ωh olumns (or, alternatively, to the subspae spanned

by Ωh olumns) are of a low pratial value due to the need for a threshold and

due to a high false-alarm rate aused by bakground interferene.

In order to detet and disriminate all anomaly pixels, we propose a new

algorithm that extrats all anomalies in the data and assoiates them with the

Ωh olumns found by MOCA. As stated earlier, the proposed algorithm is denoted

as Anomaly Extration and Disrimination Algorithm (AXDA). For the sake of

larity, we �rst present a onise outline of AXDA in Fig. 3.1.

3.1 Conise outline of AXDA

The main idea of the algorithm is to iteratively redue the anomaly vetor

subspae-rank by dropping olumns of Ωh, produing submatries {Ωj}h−1
j=0 . Sine

for a given rank r̂, the matrix [Ψr̂−h|Ωh] minimizes the ℓ2,∞ of data residuals in

the (range [Ψr̂−h|Ωh])
⊥ (as noted above), dropping olumns from Ωh inreases

the ℓ2,∞-norm of data residuals. Obviously, this hange in residual norms ours

in pixels that are well-represented by the dropped olumn, inluding the residual

norm of the dropped olumn itself. Therefore, this operation reveals anomaly

vetors in the data that belong to the dropped olumn by inreasing their resid-

ual norms. The inreased residual norms are ompared to the ℓ2,∞-norm of data

residuals from the previous iteration, whih are determined by the test in (2.23)

as stemming from noise. If the inreased norms exeed the ℓ2,∞-norm of data

residuals from the previous iteration, the orresponding pixels are marked as be-

longing to the dropped olumn and are depleted from data. Depletion of suh

pixels makes the ℓ2,∞-norm of data residuals in the urrent iteration to pass again

the noise hypothesis in (2.23). All operations in this paragraph are performed in

blok (2) of Fig. 3.1.

There are two indies, j and s that keep trak of anomaly subspae and total

signal subspae dimensionality, respetively, at eah iteration. The index j, whih

is initialized as j = h, denotes the anomaly subspae rank throughout the AXDA

iterations. It is deremented by one at eah iteration. The index s (initialized

as s = r̂), denotes the total signal-subspae rank throughout the AXDA itera-

tions. The initialization is depited in blok (1) of Fig. 3.1. Sine the depletion
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of anomaly vetors is supposed to derease the anomaly subspae dimensionality

in the data by one (see blok (3)), one expets the total signal-subspae rank s

to derease by one as well. However, this is not always the ase. For example,

in ases where the dropped anomaly vetor is highly orrelated with the bak-

ground subspae, dropping it from Ωh, impairs the ability of [Ψr̂−h|Ωh−1] (here

s = r̂ − 1) to represent well the bakground subspae. In order to sequentially

deplete anomaly vetors at eah iteration, one needs to maintain the ℓ2,∞-norm

of data residuals to be low enough to admit the noise hypothesis in (2.23) at

eah iteration (see blok (5)). Therefore, in this example, we need to inrease the

bakground dimensionality by one, whih is performed by retaining s unhanged.

Therefore, the deision to derement the total signal-subspae s rank (see blok

(7)) is taken only if the redued-rank subspae meets the maximum-norm noise

residual hypothesis (see blok (6)).

Figure 3.1: A onise outline of Anomaly Extration and Disrimination

Algorithm (AXDA). The notation in blok (2) is MATLABr notation.
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3.2 Detailed desription of AXDA

At this point, we are ready to desribe the AXDA algorithm in detail as shown

in Fig. 3.2, where we mainly introdue details of blok (2) in Fig. 3.1. The

numbering of the following items orrespond to the blok numbers in Fig. 3.2.

1. Initialization

The AXDA algorithm starts by initializing j = h, the number of anomaly

vetors inΩh and s = r̂, the determined rank of signal subspae range [Ψs−j|Ωj],

and the maximum-residual norm denoted by ηs (see (2.21)), all as obtained

from MOCA.

2. Redution of anomaly subspae basis

It is important to note that initially, the number j = h of anomaly vetors

in the partition Φr̂ = [Ψr̂−h|Ωh], obtained by MOCA, is optimal for the

given signal-subspae rank, i.e., a derease of h for a given r̂ would result in

an inreased maximum-residual norm and, possibly, of other residual norms

of data-vetors.

We intentionally alter this optimality by dropping the last olumn of Ωj,

providing Ωj−1 . This operation is designed to detet anomalies related to

the last olumn of Ωj.

3. Calulation of a new bakground vetor representation basis Ψs−j+1,

orresponding to the new anomaly subspae basis Ωj−1

In order to retain the total signal-subspae rank s, a new bakground vetor

representation basis Ψs−j+1 is alulated by applying SVD on PΩ⊥j−1
X that

mathes the redued-rank matrix Ωj−1.

4. Calulation of data residual-norms in the obtained residual-subspae

ri = ‖P[Ψs−j+1|Ωj−1]⊥xi‖2 (3.2)

5. Detetion of anomaly vetors belonging to the dropped olumn j
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In this blok we identify indies of all anomaly vetor residuals that exeeded

the noise level ηs, whih is equal to the maximum residual-norm initially

obtained from MOCA.

6. Deision about the next operation, based on previous blok results

In this blok we deide about the next operation based on whether anomaly

vetors were found in the previous blok. If there are suh indies, then we

perform the inner loop, in whih we deplete the found anomaly vetors,

realulate Ψs−j+1, and try to detet more anomaly vetors. Otherwise,

the depletion of anomaly vetors in this iteration is ompleted and other

operations of urrent iteration are performed.

7. Assoiation of found anomaly vetors to j-th olumn of Ωj

This blok belongs to the inner loop of anomaly vetors depletion. We

assoiate all data vetors indies (found in the blok (5)) to the dropped

olumn j and store them. Therefore, the orresponding anomaly vetors

are denoted as j-assoiated anomaly vetors.

8. Depletion of found j-assoiated anomaly vetors from input data

and realulation of Ψs−j+1

Sine (range Ωj−1)
⊥ ontains j-assoiated anomaly vetor ontributions,

the subspae orresponding to Ψs−j+1 (obtained earlier via SVD in Blok

(3)) is expeted to be diverted in a way that aims to redue these ontribu-

tions along with the bakground vetor residual-norms. As a result, not all

anomaly vetors orresponding to the dropped j-th olumn of Ωj may be

deteted via tresholding their orresponding norms by ηs in Blok (5). In

order to remedy this problem, we deplete the j-assoiated anomaly vetors

in the data (deteted in Blok (5)) and perform operations of bloks (3) -

(5) again in order to obtain a more preise estimation of the bakground

vetors subspae Ψs−j+1, whih is not diverted by the j-assoiated anomaly

vetors found in Blok (5).

9. Derementing of anomaly subspae rank
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One all j-assoiated anomaly vetors are depleted, the rank of the anomaly

subspae an be redued by one. However, this does not neessarily mean

that the total signal representation rank should also drop by one. This an

be explained as follows: As it was already noted earlier, the bakground

and anomaly subspaes in the hyperspetral images are not orthogonal.

Therefore, if one redues the rank of [Ψs−j|Ωj] by removing a olumn from

Ωj, one might transfer a signi�ant amount of bakground ontribution

to the omplementary subspae (range [Ψs−j|Ωj−1])
⊥, whih means that

the redued-rank subspae basis [Ψs−j|Ωj−1] might not represent well the

signal-subspae of the data after the j-assoiated anomaly-vetors depletion.

Therefore, the derementing of anomaly subspae rank j does not nees-

sarily entails derementing the total signal-basis rank s. Thus, to deide if

the total signal-basis rank s should be also deremented, we again employ,

in the next bloks, the maximum-norm hypothesis testing (2.23). Due to

the algorithm onstrution (see bloks (4),(5),(6)), it is guaranteed that at

the input to this blok, the subspae (range [Ψs−j+1|Ωj−1])
⊥ doesn't on-

tain signal ontributions. It is left to determine if the same holds true for

the subspae (range [Ψs−j|Ωj−1])
⊥, whih orresponds to the redued total

signal rank s− 1.

We start by setting j ← j−1. In the next bloks we perform steps neessary

for deiding if to derement also the total signal-subspae rank s.

10. Termination ondition blok

If the anomaly subspae rank has reahed 0, then terminate. Otherwise,

ontinue.

11. Calulation of Ψs−1−j orresponding to a redued-rank signal-subspae

In order to deide if derementing j should also entail the derementing of

the total signal-subspae s, one has to obtain the redued-rank subspae

[Ψs−1−j|Ωj] and test the orresponding data residuals. Therefore, in this

blok, we alulate Ψs−1−j by:

Ψs−1−j = SVD
s−1−j

PΩ⊥j
X. (3.3)
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12. Calulation of maximum data residual-norm ηs−1 in the obtained

residual-subspae

ηs−1 = max
x∈ols X

‖P[Ψs−1−j |Ωj ]
⊥x‖2 (3.4)

13. Performing noise-related hypothesis testing of ηs−1

In this blok we assess if ηs−1 ontains signal-ontribution. For this purpose

we apply the test of equation (2.23).

14. Deision if to redue the total signal-subspae rank s

If ηs−1 meets the noise-hypothesis, meaning that the subspae (range [Ψs−1−j|Ωj])
⊥

doesn't ontain signal ontributions (i.e., the basis [Ψs−1−j|Ωj] represents

well the signal-subspae), then s should be deremented. Otherwise, leave

s intat and ontinue to a new iteration.

15. Derementing the total signal-subspae rank s

s← s− 1, (3.5)

and ontinue to a new iteration at blok (2).

Comments

1. One the new value of s is determined, we approah a nominal state (at

blok (2)), where the anomaly vetors matrix rank is deremented by 1, and

the signal-subspae basis [Ψs−j|Ωj] (with the updated values of j and s)

is �MOCA-optimal� with respet to the modi�ed data-matrix X. In order

to extrat other anomaly vetors, orresponding to the rest of Ωj olumns,

until the omplete depletion of all anomaly vetors, steps 2 - 15 are repeated.

The iterations stop when there are no more olumns in the anomaly-basis

matrix Ωj, i.e., j = 0.

2. It is important to note that at the end of the AXDA proedure, the signal-

subspae basis is omposed solely of Ψs (s ≤ r̂), whih onstitutes the
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MOCA-optimal basis of the bakground vetors. So the AXDA algorithm

equips us also with a anomaly-free (in other words �robust�) estimated

bakground-subspae and rank.

Figure 3.2: Detailed desription of Anomaly Extration and Disrimina-

tion Algorithm (AXDA). The notation in blok (2) is MATLABr notation.

44



3.3 Experiments with Real Hyperspetral Data

3.3 Experiments with Real Hyperspetral Data

In this setion we evaluate performane of the MOCA algorithm followed by

AXDA postproessing applying them on real hyperspetral data. For an analysis

of the e�et of noise on MOCA, using self designed syntheti data experiments

with di�erent signal to noise ratios, the reader is referred to hapter 2.

To demonstrate the results, the proposed approah was applied to 6 real

hyperspetral image ubes olleted by an AISA airborne sensor on�gured to 65

spetral bands, uniformly overing VNIR range of 400nm - 1000nm wavelengths.

At 4 km altitude pixel resolution orresponds to (0.8m)2. The obtained image

ubes are b × r × c = 65 × 300 × 479 hyperspetral images, where b,r and c

denote the number of hyperspetral bands, the number of rows and the number

of olumns in the image, respetively.

In Fig. 5.2 one an see results of anomaly detetion and disrimination. Shown

are images ontaining the 30th-band of 4 di�erent hyperspetral ubes with dif-

ferent terrain types. The 5th and 6th images are not shown here just beause

of onveniene of plaing an even number of images in the �gure. The left 4

images ontain ground-truth anomalies (marked in white and enirled by red

ellipses), whih were manually identi�ed using side information olleted from

high resolution RGB images of the orresponding senes. In Fig. 3.4, we show

one of RGB images used for identifying the ground-truth anomalies. The right

4 images ontain anomalies (marked in olor) deteted by AXDA, overlayed on

the white ground-truth pixels. All anomaly pixels of the same type are marked

by the same olor. There are no missed anomalies in the presented 4 images.

The orresponding dimensionality results obtained by MOCA and AXDA are

separately summarized in Table. 3.1, where r̂ is the signal subspae rank de-

termined by MOCA, h is the anomaly dimensionality, s is the dimensionality of

anomaly-free bakground. Note, that aording to the disussion in step 9 of the

AXDA algorithm presented in the setion 3.2, it is possible that s ≥ r̂−h. Thus,

AXDA allows disrimination of anomalies aording to orresponding anomaly

endmembers (onstituent materials spetra) found by MOCA

As it was noted above, in Fig. 3.4, we show one of the RGB images used for

identifying the ground-truth anomalies. The sene under onsideration is shown
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3.3 Experiments with Real Hyperspetral Data

Table 3.1:

No. image r̂ h s
1 10 2 10

2 15 9 11

3 10 5 8
4 16 8 12
5 15 7 13
6 11 4 10

in a high-resolution (2672×4000) olor RGB-image. The ground-truth anomalies

are enirled by red ellipses. As it an be seen, the deteted anomalies orrespond

to vehiles and small agriulture failities, whih oupy a few pixel segments.

In Fig. 3.5, we ompare between GMRX [38℄, MSD [30℄ and the proposed

AXDA in terms of Reeiver Operation Charateristi (ROC) urves. For the

purpose of ROC urves generation, 6 hyperspetral images were used, in whih

the total number of anomaly segments ount is 25.

An anomaly is onsidered as deteted if at least one of the deteted pixels hits

the orresponding marked segment. All pixels deteted by the algorithms were

grouped into onneted objets using 8-onneted objet labelling. If an objet

doesn't interset a marked anomaly, it is onsidered a false alarm objet. This

kind of anomaly detetion/miss riteria is partiularly suitable for appliations

that aim to alert the user on all anomalies of all sizes. Therefore, it is more

important to detet at least one pixel on eah anomaly, rather than many pixels

on only some of the anomalies.

In order to obtain multiple operating points for AXDA, an additional param-

eter should be introdued to the proposed algorithm. A reasonable plae for suh

a parameter is in the noise hypothesis relation in (2.23). However, due to spe-

ial harateristis of maximum-norm noise distribution, whih is very narrow -

almost deterministi (see hapter 2), any fator introdued to this relation would

result in almost the same deision. Thus, AXDA has naturally a single(nominal)

operating point ditated by the noise statistial properties.

Yet, for the sake of omparison, we've introdued a rather ompelling param-
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eter γ to the equation of blok (5) in Fig. 3.2, whih now reads as:

{ωt} = I(ri > γηs). (3.6)

In words, the noise-related threshold value ηs (measured in a previous iteration)

is multiplied by the fator γ in order to produe a new threshold value. The lower

the fator γ is, the more data vetors will be treated as anomaly-vetors and be

assoiated to the dropped olumn j of Ωj. In our simulation, we have used 30

values of γ, whih were uniformly sampled from [0.8, 1.2]. The position of nominal

operating point of AXDA (for γ = 1) is pointed out by a red arrow. As an be

seen from the �gure, the nominal operating point provides a high detetion rate

(24 deteted anomalies) with a signi�antly low false alarm rate (6 false alarm

segments).

The GMRX algorithm was initialized by an exessive number of Gaussians

using the k-means algorithm for initializing the Gaussian parameters. During the

EM iterations of the GMRX, too small lusters, and hene unreliable, were elim-

inated. In Fig. 3.6 one an see results of the GMRX algorithm, applied to the

same 4 hyperspetral ubes as AXDA, with a GLR parameter produing the same

false alarm rate as AXDA at the nominal operating point (whih equals to 6 false

alarm segments). As in Fig. 5.2, The left 4 images ontain manually identi�ed

ground-truth anomalies (marked in white and enirled by red ellipses), whereas

the right 4 images ontain anomalies (marked in red), deteted by GMRX, over-

layed on the white ground-truth pixels. The missed targets are enirled by yan

ellipses.

The MSD algorithm was provided an anomaly-free estimation of the bak-

ground basis Ψs estimated by AXDA, whih uses the anomaly subspae basis Ωh

provided by MOCA, sine MOCA and AXDA ombined are unique in their abil-

ity to perform an unsupervised determination of both anomaly and bakground

subspaes and their ranks.

Fig. 3.5 learly shows that for the examined images AXDA has a better

performane than GMRX and MSD, in most of the range of the tested parameters.

It is also important to note, that in ontrast to MSD and GMRX, AXDA allows

an unsupervised determination of the nominal operating point, determined by
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maximum-norm noise statistial properties. Moreover, AXDA has an ability to

disriminate between di�erent types of anomalies.

3.4 Summary

In this hapter we have proposed an algorithm for anomaly detetion, disrimi-

nation and population estimation of anomalies of the same type, alled AXDA.

The algorithm is based on a signal-subspae and rank estimation provided by

MOCA hapter 2. By its onstrution, the signal basis onsists of two groups of

basis vetors. One group spans the subspae of anomalies. The seond group is

designed to represent bakground pixel residuals belonging to the subspae that is

omplementary to the subspae of the anomalies. The proposed AXDA extrats

anomaly pixels by removing an anomaly basis vetor from the anomaly vetors

group and ompensating for its removal by augmenting the bakground vetors

related subspae. This operation auses a violation of the noise hypothesis ondi-

tion in vetors that are highly orrelated with the removed anomaly basis vetor.

Suh vetors are deteted, assoiated with the removed basis vetor, and depleted

from the data. This way we obtain groups of data vetors assoiated with eah

one of the anomaly basis vetors.

In experiments with real hyperspetral image ubes AXDA was shown to

have a better performane than GMRX and MSD, in most of the range of the

tested parameters. Sine the anomaly and bakground subspaes are unknown

in advane, the MSD algorithm was provided the anomaly-free estimation of the

bakground basis Ψs obtained from AXDA and the anomaly subspae obtained

from MOCA. This provides MSD subspae-related information that is (at least)

as good as AXDA has for the detetion of anomalies. It is also important to note,

that in ontrast to MSD and GMRX, AXDA is equipped with an unsupervised

determination of the nominal operating point. AXDA also has a apability to

disriminate between di�erent types of anomalies, though the auray of this

disrimination, as well as the auray of population estimation of anomalies of

the same type, are not evaluated in this researh and may be a subjet for future

researh. Moreover, AXDA allows also an anomaly-free (robust) estimation of

the bakground-subspae and rank.

48



3.4 Summary

It turns out now that MOCA in ombination with AXDA provide means to

meet a wide range of signal-subspae estimation senarios:

1. Estimation of a signal-subspae that inludes anomaly-vetors.

2. Detetion of anomaly-vetors and determination of their subspae.

3. Providing a natural (nominal) operating point for anomaly detetion.

4. Estimation of a pure (free of outliers) bakground-subspae.
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3.4 Summary

Figure 3.3: AXDA results at the nominal operating point. The left 4
images ontain manually identi�ed ground-truth anomalies (marked in white and

enirled by red ellipses). The right 4 images ontain anomalies (marked in olor)

deteted by AXDA, overlayed on the white ground-truth pixels. There are no

missed anomalies in the presented 4 images. All anomaly pixels of the same type

are marked by the same olor.
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3.4 Summary

Figure 3.4: High resolution RGB image of the analyzed sene, used as a

ground-truth indiation for AXDA results veri�ation. The ground-truth anoma-

lies are enirled by red ellipses.
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Figure 3.5: ROC urves orresponding to GMRX, MSD and AXDA. The

nominal operating point of AXDA is marked in magenta olor and is pointed out

by the arrow. This point orresponds to 24 deteted anomalies and 6 false alarm

segments.
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3.4 Summary

Figure 3.6: GMRX Anomaly Detetion Results for GLRT parameter

produing the same false alarm rate as AXDA at its nominal operating

point. The left 4 images ontain manually identi�ed ground-truth anomalies

(marked in white and enirled by red ellipses). The right 4 images ontain

anomalies (marked in red) deteted by GMRX, overlayed on the white ground-

truth pixels. Missed anomalies are enirled by yan ellipses.
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Chapter 4

ℓ2,∞-Optimal Subspae Estimation

In this hapter we propose an optimal algorithm for the signal-subspae estima-

tion that utilizes a natural onjugate gradient learning approah proposed in [62℄

to minimize ℓ2,∞-norm of the misrepresentation residuals. During the minimiza-

tion proess, the signal-subspae basis matrix is onstrained to the Grassmann

manifold de�ned as the set of all n dimensional subspaes in IRm
, n ≤ m [62℄.

Sine ℓ2,∞-norm of the misrepresentation residuals an be also referened as the

maximum orthogonal omplement norm, we denote the proposed algorithm as

Maximum of Orthogonal omplements Optimal Subspae Estimation (MOOSE).

4.1 Minimizing ℓ2,∞-norm on the Grassmann man-

ifold

4.1.1 Problem formulation

Generally, the problem stated in (2.8) an be reast as

Ŝ = argmin
[W]

F ([W]), (4.1)

where the objetive funtion F ([W]) is de�nes as

F ([W]) , ‖W⊤X‖22,∞ (4.2)
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4.1 Minimizing ℓ2,∞-norm on the Grassmann manifold

and [W] is an equivalene lass of all p×(p−k) orthogonal matries whose olumns

span the same subspae in IRp
as W. Here [W] represents the orthogonal om-

plement subspae to the sought signal-subspae Sk. The set of all n-dimensional

subspaes in IRm
, denoted by Gm,n, is alled the Grassmann manifold [62℄. The

geometrial struture of the Grassmann manifold allows a ontinuous hoie of

subspaes, whih is essential for onstruting a loal minimization proedure.

Without loss of generality, by neessity, we must pik a representative of the

equivalene lass [W], say W, in order to be able to work with [W] on the om-

puter. Thus, by smoothly hanging W, suh that [W] ∈ Gp,p−k we would be able

to ontinuously move from one subspae to another and iteratively improve the

objetive funtion in a maner similar to well known unonstrained gradient-based

algorithms suh as steepest desent and onjugate gradient [66℄.

4.1.2 Grassmann manifold geometry

As stated in [62℄, the bene�ts of using gradient-based algorithms for the unon-

strained minimization of an objetive funtion an be arried over to a mini-

mization onstrained to the Grassmann manifold. The familiar operations em-

ployed by unonstrained minimization in the Eulidean spae (plain spae) suh

as omputing gradients, performing line searhes, et., an be traslated into their

ovariant versions on the Grassmann manifold (urved spae).

In the following we brie�y outline basi results from [62℄ used in this work for

alulating gradients of an objetive funtion and performing a line searh along

a searh diretion on the Grassmann manifold. Then, we develop a tehnique for

minimizing F ([W]) of (4.2).

4.1.2.1 Gradient on Grassmann

The gradient of the objetive funtion F ([W]) on the Grassmann manifold is

de�ned to be a matrix ∇F ∈ T[W], where T[W] is the tangent spae at [W], suh

that for all T ∈ T[W], the following holds:

〈FW,T〉 = 〈∇F,T〉 , (4.3)

55
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where FW is the p × (p − k) matrix of partial derivatives of F with respet to

the elements of W; 〈·, ·〉 denotes the standard inner produt in p × (p − k) -

dimensional Eulidean spae de�ned as

〈△1,△2〉 , tr(△⊤
1△2). (4.4)

In words, the relation in (4.3) states that the gradient of F ([W]) on the Grass-

mann manifold is the projetion of FW onto T[W]. Sine T[W] is the set of sub-

spaes spanned by the olumns of matries of the form

T = W⊥B, (4.5)

where B are arbitrary k × k matries and W⊥ is a p × k orthogonal matrix

satisfying

WW⊤ + W⊥W⊤
⊥ = I, (4.6)

one obtains

∇F = FW −WW⊤FW. (4.7)

A more rigorous treatment of these intuitive onepts is given in [62℄ where a solid

foundation framework for the optimization algorithms involving orthogonality

onstraints is developed.

4.1.2.2 Line searh

The line searh in the Grassmann manifold is de�ned to be the minimization of

F ([W]) along a geodesi, whih is the urve of shortest length between two points

in a manifold. By notiing that the geodesi equation is a seond-order ODE,

it follows from the loal existene and uniqueness theorem that for any point

p in a manifold and for any vetor v in the tangent spae at p, there exists a

unique geodesi urve passing through p in the diretion v [63℄. This observation

makes the generalization of loal optimization methods straightforward: given

a desent diretion H ∈ T[W] (for example, H = −∇F ), the objetive funtion

F ([W]) is minimized by the line searh along the geodesi passing through [W]

in the diretion H. An easy to ompute formula for geodesis on the Grassmann
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manifold proposed in [62] reads as:

W(t) = (WV U)

(
os (tΣ)
sin (tΣ)

)
V⊤, (4.8)

where t is a geodesi urve traversing parameter and UΣV⊤ is the ompat

singular value deomposition (SVD) of H. Compat SVD here means that the

zero singuar values are disarded along with the respetive olumns in U and V,

and the signalur values are set in a dereasing order in Σ. It an be easily veri�ed

that the diagonal elements of the matrix tΣ traverse Prinipal angles [69℄ between

the olumn spaes [W(t)] and [W]. Thus, for t = 0, one obtains the original

subspae [W] that is rotated by the angles tΣ when t inreases. Moreover, the

geodesi distane between [W(t)] and [W] on the Grassmann manifold denoted

by d([W(t)], [W]) satis�es [62℄:

d([W(t)], [W]) = t
√
tr(Σ2). (4.9)

It should be noted that for large t values, the distane d([W(t)], [W]) is not the

shortest one between [W] and [W(t)], sine for large t, [W(t)] may omplete one

or more full irles in terms of the angles on the diagonal of tΣ. However, it is

still true that loally, for small t inrements, [W(t)] is the shortest path on the

Grassmann manifold onneting points on it. Moreover, the relation (4.9) implies

that the rotation veloity, when one traverses the geodesi [W(t)] by hanging

t, equals to
√
tr(Σ2) and, therefore, may hange from iteration to iteration. In

order to make it onstant during the line searh for all iterations, the matrix Σ

is normalized:

Σ̃ , Σ�
√
tr(Σ2). (4.10)

Now, the line searh is perfomed by looking for t that orresponds to a �signif-

iant redution" of the objetive funtion along a geodesi [W(t)]. The notion of

�a signi�ant redution" means that, on one hand, t should be low enough to en-

sure redution of the objetive funtion value; on the other hand, the searh step

t should be large enough for fast algorithm onvergene. For this purpose, we use

the Baktraking-Armijo linesearh method [66℄, [64℄ summarized in Algorithm 1.
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Algorithm 1 Baktraking-Armijo line searh.

Given a geodesi [W(t)] in a desending diretion H, α ∈ (0, 0.5), β > 1,
t := t0
Baktraking:

while (F ([W(t)]) > F ([W]) + α t 〈∇F,H〉), t := t/β
Armijo:

while (F ([W(t)]) ≤ F ([W]) + α t 〈∇F,H〉) and

(F ([W(β t)]) < F ([W]) + α β t 〈∇F,H〉), t := βt

In words, if the value of t is too large, it is iteratively dereased by dividing

it by β in the Baktraking �while" stage, until the following ondition holds:

F ([W(t)]) ≤ F ([W]) + α t 〈∇F,H〉 . (4.11)

Sine H is a desent diretion and α < 1, we have 〈∇F,H〉 < 0, so for small

enough t, the following holds:

F ([W(t)]) ≈ F ([W]) + t 〈∇F,H〉 ≤
≤ F ([W]) + α t 〈∇F,H〉 ≤ (4.12)

≤ F ([W]),

whih shows that the Baktraking �while" expression eventually terminates and

that t is small enough to ause a derease of the objetive funtion value.

If the value of t is too small, it is iteratively inreased by mutiplying it by β

in the Armijo �while" stage, until the ondition (4.11) is onurrently satis�ed

with:

F ([W(β t)]) ≥ F ([W]) + α β t 〈∇F,H〉 . (4.13)

In words, t is inreased until it reahes a point in whih it is still small enough to

satisfy ondition (4.11), but already large enough so that it is no longer satis�ed

in the next iteration, i.e., when βt replaes t (see (4.13)).
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4.1.3 Minimization of F ([W]) on the Grassmann manifold.

In this subsetion we develop a tehnique for solving (4.1) for F ([W]) of (4.2) on

the Grassman manifold. A natural hoie for the searh diretion is the negative

gradient H = −∇F [65℄. The alulation of ∇F involves the alulation of FW

(see (4.7)). For the alulation of FW we onsider here two ases: One ase is

when the maximum is obtained for only one data vetor, while the other ase is

when the maximum is obtained for more than one data vetor.

Case 1. If the maximum is obtained for only one vetor at eah W througout

the minization, the alulation of FW beomes straightforward:

FW = xjx
⊤
j W, (4.14)

where xj is the vetor for whih max
i=1,...,N

‖W⊤xi‖2 is obtained.

Case 2. If the maximum is obtained for a set of indies J that ontaines more

than one index, then the gradient diretion Ĝ = FW�‖FW‖2 is given by solving

the following problem:

Ĝ = max
G

min
j∈J

〈
G,xjx

⊤
j W

〉
s.t.

〈
G,xjx

⊤
j W

〉
> 0 ∀j ∈ J (4.15)

〈G,G〉 = 1,

with 〈·, ·〉 being de�ned in (4.4). In words, it is a unit-norm matrix that maximizes

the minimal projetion norm onto gradients obtained individually for eah xj,

j ∈ J (as in (4.14)). If the problem (4.15) is feasible, then the diretion −Ĝ is

guaranteed to be a desent diretion for all maximal residual norms ‖W⊤xj‖, j ∈
J , sine all projetions are onstrained to be positive. Moreover, it is the steepest

desent diretion of the objetive funtion F ([W]), beause the desent rate of

F ([W]) is determined by the lowest desent rate of the maximal residual norm

‖W⊤xj‖, for some j ∈ J , whih is maximized (see the problem formulation in

(4.15)). If the problem is infeasible, then [W] is a loal minimum of the objetive

funtion F ([W]), sine there is no searh diretion that onurrently minimizes all

maximal residual norms. The problem (4.15) an be e�iently solved by Seond-

Order Cone Programming (SOCP) [66℄. The norm of the derivative matrix ‖FW‖
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is given by

‖FW‖ = min
j∈J

〈
Ĝ,xjx

⊤
j W

〉
, (4.16)

I.e., it equals to the lowest desent rate of the the maximal residual norms, or

equivalently, to the desent rate of F ([W]) in the diretion Ĝ.

Pratially, we have observed that in real data distributions the maximum is

obtained for only one vetor with probability lose to one. Therefore, using (4.14)

is good enough (pratially) for obtaining a steep desent diretion as we did in

our simulations.

In order to better ope with the omplex nature of the ost funtion F ([W]),

we propose to use the onjugate gradient method. Aording to this method, the

onjugate searh diretion is a ombination of the previous searh diretion and

the new gradient

Hs = −∇Fs + γsH̃s−1, (4.17)

where s denotes the iteration index, H̃s−1 is the parallel translation of the previous

searh diretion Hs−1 from the point [Ws−1] to [Ws] by removing its normal

omponent to the tangent spae TWs+1, as shematially shown in Fig. 4.1; and

γs is obtained via Polak Ribiére onjugay ondition formula [62℄

γs =
〈
∇Fs − ∇̃Fs−1,∇Fs

〉
� 〈∇Fs−1,∇Fs−1〉 , (4.18)

where ∇̃Fs−1 is the parallel translation of ∇Fs−1 obtained in the same way as

H̃s−1. The parallel translation is needed in order to keep all diretions within the

tangent spae at eah iteration. The formula for obtaining ∇̃Fs−1 and H̃s−1 is

[62℄:

H̃s−1 = (−Ws−1Vsin(tΣ̃) + Uos(tΣ̃))ΣV⊤
(4.19)

∇̃Fs−1 = ∇Fs−1 −
(Ws−1Vsin(tΣ̃) + U(I− os(tΣ̃))U⊤∇Fs−1.

The onjugate gradient onstrution o�ers a good ompromise between on-

vergene speed and omputational omplexity [67℄. If the objetive funtion is

nondegenerate, then the algorithm is guaranteed to onverge quadratially [68℄.
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Figure 4.1: Parallel transport on Grassman manifold.

In our problem, the ontribution of the previous searh diretion in eah itera-

tion, also helps the proedure to employ previous information arried in maximal

norms obtained earlier (for possibly di�erent data vetors). This prevents algo-

rithm slow down due to the alternation of the maximum-norm data vetors.

As any loal minimization of a non-onvex objetive funtion, the proposed

algorithm is prone to getting trapped in a loal minimum. Therefore, a proper

initialization may be ruial for obtaining a good solution. Sine MX-SVD �nds

a suboptimal solution using global priniples, it provides a good initial point,

whih is lose to the global minimum. Therefore, in our simulations we use the

subspae obtained by MX-SVD as an initial point for the proposed approah.

The proposed approah for minimizing F ([W]) is summarized in Algorithm

2.

4.2 Syntheti data simulation results

In this setion we ompare the results of applying SVD, MX-SVD and MOOSE

to simulated examples in the presene of anomaly vetors. For this purpose the

input data is onstruted as follows:

X = Y + Z, (4.20)

with

Y =
[√

SNRb BSb |
√

SNRa ASa

]
, (4.21)
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where B is a p × rb matrix with orthogonal unit-norm olumns spanning the

bakground subspae; A is a p × ra matrix with orthogonal unit-norm olumns

spanning the subspae of anomalies; Sb is a rb ×Nb matrix of bakground vetor

oe�ients with olumns drawn randomly from a Gaussian distribution with

ovariane matrix Cb = I�rb; Sa is a ra×Na matrix of anomaly vetor oe�ients

with olumns drawn randomly from a Gaussian distribution and normalized to

have unit-norm; and Z is a p× (Na +Nb) matrix ontaining white Gaussian noise

with variane equal to 1/p.

For SNR de�ned as

SNR , E{‖y‖2}�E{‖z‖2}, (4.22)

one an easily verify that bakground vetors have SNR = SNRb, whereas the

anomaly vetors have SNR = SNRa. Moreover, due to the struture of the

anomaly vetor oe�ient matrix Sa, the norms of noise-free anomaly vetors are

equal. This onstrution is designed to produe anomaly vetors that are equally

signi�ant.

Obviously, anomaly vetors are haraterized by their low number ompared

to the number of bakground vetors, i.e., Na ≪ Nb. However, their number

is allowed to be higher than the anomaly subspae dimension that they belong

to, i.e., Na ≥ ra. The extent of anomaly subspae population (loading) an be

haraterized by the loading ratio de�ned as follows:

Ra , Na�ra, (4.23)

Thus, the minimal loading ratio Ra = 1 orresponds to the ase where the number

of anomalies is equal to the anomaly subspae rank. The larger the value of Ra

is, the more anomaly vetors populate the anomaly subspae.

In our simulations we used the parameters shown in Table 4.1. It is important

Table 4.1: Maximum residual-norm simulation parameters

p rb ra Nb Na SNRb SNRa

100 5 5 105 10 100 10
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4.2 Syntheti data simulation results

to note that all parameters were seleted to re�et a typial situation in hyper-

spetral images. Thus, SNRa and SNRb were seleted to satisfy SNRa < SNRb

sine the anomaly and the bakground subspaes in hyperspetral images are not

orthogonal and, therefore, the anomaly vetors have weak orthogonal omponents

to the subspae of bakground vetors.

In Fig. 4.2 one an see empirial pdfs of the maximum-residual norm ‖W⊤X‖22,∞
obtained via a Monte-Carlo simulation, where X was generated 1000 times. As

mentioned in hapter 2, the estimated subspae by SVDmay be skewed by noise in

a way that ompletely misrepresents the anomaly vetors, sine SVD uses ℓ2 norm

for penalizing the data misrepresenation, whih is not sensitive to the anomaly-

vetor ontributions. Hene, as learly seen from the �gure, the max-norm data

residuals obtained by SVD (thik solid line) have high values whih orrespond to

a poor representation of the anomaly vetors. It is also demonstrated in hapter

2 that for Ra = 1 MX-SVD yields

‖W⊤X‖22,∞ ≈ ‖W⊤Z‖22,∞. (4.24)

In words, the empirial distribution of the maximum data residual norm ‖W⊤X‖22,∞
for Ra = 1 is very lose to the distribution of the maximum residual norm of noise

‖W⊤Z‖22,∞, whih has a limiting distribution known as the Gumbel distribution

[54℄ (plotted in thin solid line in Fig. 4.2). However, as seen in that �gure, for

Ra > 1 (in this simulation Ra = 2), MX-SVD produes max-norm data resid-

uals (whose pdf is plotted in dashed line) that are higher than the max-norm

noise residuals. This happens sine MX-SVD estimates the anomaly subspae by

diretly seleting rb anomalous vetors from the data that ontain noise, whih

skews the resulting subspae. The result is signi�antly improved by applying the

optimal approah whih produes max-norm data residuals (whose pdf is plotted

in dot-dashed line) with values that are even lower than one would obtain from

the Gumbel distribution.

The paradox of suh a �super-e�ieny" of the optimal approah is explained

as follows: On one hand, the Gumbel distribution approximation is valid for max-

norm realizations of data vetors drawn from Gaussian distribution. On the other

hand, the max-norm data residuals obtained by MOOSE stem no longer from a
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4.3 Real data simulation results

Gaussian distribution, sine they are minimized by MOOSE and, as a result,

beome lower than if the orresponding data vetors where randomly sampled

from a Gaussian distribution.

In Fig. 4.3 we ompare SVD, MX-SVD and the proposed MOOSE algorithm

in terms of subspae estimation error. The subspae error used here is de�ned to

be the largest prinipal angle ∠{Ŝ, S} de�ned as follows [70℄:

∠{Ŝ, S} = max
u∈Ŝ

min
v∈S

∠{u,v}, u 6= 0,v 6= 0, (4.25)

where Ŝ and S denote the estimated subspae and the original subspae used for

the data generation, respetively. In our simulations, for eah Ra value X was

generated 50 times. The onsidered Ra values were sampled logarithmially in

[1, 40] as shown in Fig. 4.3. For eah Ra value we plot the mean of the subspae

estimation error values obtained by SVD (line with star marks), MX-SVD (line

with irle marks) and the proposed approah (line with diamond marks). As

learly seen from the �gure, the proposed approah orresponds to the lowest

mean subspae estimation error for all Ra values. The MX-SVD and the proposed

approah perform muh better than SVD for a wide range of Ra values. For Ra

values high enough SVD manages to ath up with the other two ℓ2,∞-norm based

approahes, sine then the anomalies beome signi�ant in terms of the ℓ2-norm.

4.3 Real data simulation results

In this setion we ompare the performane of SVD, MX-SVD and MOOSE

when applied to 4 hyperspetral image ubes. The images were olleted by an

AISA airborne sensor [31℄ on�gured to 65 spetral bands, uniformly overing

VNIR range of 400nm - 1000nm wavelengths. The obtained image ubes are

b × r × c = 65 × 300 × 479 hyperspetral images, where b, r and c denote the

number of hyperspetral bands, the number of rows and the number of olumns

in the image ube, respetively.

The assumed signal-subspae rank is k = 10. The only ground-truth informa-

tion available for this evaluation were loations of man-made objets. In Fig. 4.4
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4.3 Real data simulation results

are shown images of the 30th-band of eah of the 4 image ubes used for the eval-

uation. The ground-truth anomalies, whih are marked in white and enirled by

red ellipses, were manually identi�ed using side information olleted from high

resolution RGB images of the orresponding senes. The ground truth anoma-

lies onsist of vehiles and small agriulture failities, whih oupy few-pixel

segments.

Sine the man-made objets are anomalous in these images, it is di�ult to

represent them with low error by employing the lassial ℓ2-norm based methods,

we evaluate the anomaly-preserving algorithm performanes in terms of the max-

imum residual norms obtained on the ground-truth anomalies. That is, the best

algorithm should have the following property: one applied on a whole image

ube, the ℓ2,∞-norm of the ground-truth anomaly residuals and the ℓ2,∞-norm of

the whole image should be the lowest ompared to the other algorithm results ob-

tained in all image ubes. In other words, the better algorithm represents better

not only all image pixels, but also the anomalous ones.

Thus, in Table 4.2 one an see that MOOSE has the lowest ℓ2,∞-norm of image

residuals and the lowest ℓ2,∞-norm of the ground-truth anomalies in all examined

images. SVD has the highest ℓ2,∞-norms of image residuals and anomaly residuals

that are equal in all images, whih means that it poorly represents anomalies and

that the worst-ase error obtained by SVD in the whole image is on anomalies.

The ℓ2,∞-norms of image residuals and anomaly residuals obtained by MOOSE

are di�erent, meaning that the ℓ2,∞-norms of image residuals are obtained on the

bakground, i.e., the anomalies were represented even better than the bakground.

The results of MX-SVD are muh better than those of SVD and omparable to

those of MOOSE meaning that pratially, the greedy MX-SVD algorithm is a

good hoie, sine it is more omputationally e�ient.

Table 4.2: Subspae estimation methods in terms of max. error norm

Global ℓ2,∞-norm of residuals Anomaly ℓ2,∞-norm of residuals

Cube SVD MX-SVD MOOSE SVD MX-SVD MOOSE

1 200.6 98.3 97.3 200.6 82.7 81.7

2 1880.8 312.5 282.0 1880.8 312.5 207.8

3 453.0 98.5 73.6 453.0 84.1 70.9

4 749.6 445.6 401.2 749.6 445.6 383.6
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4.4 Summary

In this hapter we have proposed an algorithm for dimensionality redution of

high-dimensional noisy data that preserves rare-vetors. The proposed algo-

rithm is optimal in the sense that the estimated subspae (loally) minimizes

the maximal-norm of misrepresentaion residuals. The optimization is performed

via a natural onjugate gradient learning approah arried out on the set of n

dimensional subspaes in IRm
, m > n, known as the Grassmann manifold. The

proposed algorithm is denoted as Maximum of Orthogonal omplements Optimal

Subspae Estimation (MOOSE) and is the optimal version of a reently proposed

greedy algorithm named Min-Max-SVD (MX-SVD). As any loal minimization

of a non-onvex objetive funtion, MOOSE is prone to getting trapped in a loal

minimum. Therefore, a proper initialization is ruial and is obtained by employ-

ing MX-SVD that uses global priniples to �nd a suboptimal solution that is lose

to the global minimum. The results of MOOSE were ompared to the results of

SVD and MX-SVD by applying them both on simulated data and on real hyper-

spetral images. It was demonstrated that the results of MOOSE and MX-SVD

are muh better than those of SVD in terms of max-norm residual error, obtained

in both simulated and real data, and in terms of the subspae estimation error

obtained for simulated data. Although MX-SVD exhibits results inferior to those

of MOOSE, the results of MX-SVD are quite omparable to those of MOOSE

meaning that pratially, the greedy MX-SVD algorithm is a good hoie, sine

it is more omputationally e�ient.
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Algorithm 2 Conjugate gradient algorithm for minimizing F ([W]) on the

Grassmann manifold.

1 Given W0, suh that W⊤
0 W0 = Ip−k and olumn spae that oinides

with the subspae obtained by MX-SVD, ompute

FW0 = xjx
⊤
j W0, with j satisfying ‖W⊤

0 xj‖2 = ‖W⊤
0 X‖22,∞

∇F0 = FW0 −W0W
⊤
0 FW0 and set H0 = −∇F0

2 For s = 0, 1, . . .,

2.1 Obtain the ompat deomposition of Hs, Hs = UΣV⊤

2.2 Normalize the prinipal angles Σ̃ = Σ�
√
trΣ2

2.3 Perform Baktraking-Armijo line searh (see Algorithm 1) along

the geodesi

W(t) = WsVos(tΣ̃)V⊤ + Usin(tΣ̃)V⊤

2.4 Update the subspae Ws+1 = W(t)

2.5 Parallel transport the tangent vetors Hs and ∇Fs to the point

[Ws+1]

H̃s =
(
−WsVsin(tΣ̃) + Uos(tΣ̃)

)
ΣV⊤

∇̃Fs = ∇Fs −
(
WsVsin(tΣ̃) + U(I− os(tΣ̃)

)
U⊤∇Fs

2.6 Compute the new gradients

Eulidean: FWs+1 = xjx
⊤
j Ws+1, with j satisfying ‖W⊤

s+1xj‖2 =
‖W⊤

s+1X‖22,∞
Grassmann: ∇Fs+1 = FWs+1 −Ws+1W

⊤
s+1FWs+1

2.7 Compute the new searh diretion via Polak Ribiére onjugay

ondition formula

Hs+1 = −∇Fs+1 + γsH̃s, where γs =〈
∇Fs+1 − ∇̃Fs,∇Fs+1

〉
� 〈∇Fs,∇Fs〉
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Figure 4.2: The pdfs of ‖W⊤X‖22,∞ obtained via Monte-Carlo simulation.

The empirial pdfs of ‖W⊤X‖22,∞ obtained by SVD (thik solid line), MX-SVD

(dashed line), MOOSE (dot-dashed line) and the limiting Gumbel distribution

approximating maximum residual norm of noise (thin solid line).
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Figure 4.3: Mean subspae error vs. anomaly loading ratio Ra for pa-

rameters of Table 4.1. Mean-sample of the subspae error as a funtion of

Ra obtained via a Monte-Carlo simulation using SVD (line with star marks),

MX-SVD (line with irle marks), and MOOSE approah (line with diamond

marks).
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4.4 Summary

Figure 4.4: Ground truth. A 30th-band of eah one of 4 image ubes used

for evaluation. The ground-truth anomalies were manually identi�ed, marked in

white and enirled in red.
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Chapter 5

Multispetral Filter Design for

Anomaly Detetion

In this hapter we propose a novel unsupervised tehnique for Designing Multi-

spetral Filters that failitates a better performane of loal anomaly detetion

algorithms. The proposed approah is based on proessing a sample hyperspe-

tral image of a typial sene that is likely to be faed by anomaly detetion

algorithms. The sample image is not neessarily required to inlude anomalies.

Eventually, the problem of Multispetral Filters design may be formulated as a

problem of Redundany Redution in Hyperspetral Channel hannels, whih is

performed by replaing adjaent spetral bands by their means. This is a real-

world Redundany Redution problem that requires preserving anomalies.

A ommon problem of loal anomaly detetion algorithms is so-alled Hughes

phenomenon [73℄, aording to whih the perfomane of anomaly detetion algo-

rithms signi�antly deteriorates when the number of pixels is severely limited for

an aurate learning of the loal bakground models. In order to alleviate the ef-

fet of Hughes phenomenon, one has to redue the number of hyperspetral bands,

sine the omplexity of bakground models is proportional to the hyperspetral

data dimensionality.

The novel approah proposed here is based on a new riterion that is designed

to retain spetral hannels ontaining valuable anomaly-related information for

anomaly detetion algorithms. The optimal partition of the spetrum is ob-

tained by Minimizing the Maximal Mahalanobis Norm of errors, obtained due to
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5.1 Anomaly Preserving Pieewise Constant Representation

the misrepresentaion of spetral intervals by onstants. Therfore, we denote the

proposed tehnique as Min-Max MN or, in short, MXMN. By minimizing the

MXMN of errors, one redues the anomaly ontribution to the errors, whih al-

lows to retain more anomaly-related information in the redued hannels, if there

are anomalies in the sample image. In the ase that the sample sene does not

ontain anomalies, minimizing the MXMN of errors allows smoothing out spe-

tral bands ontaining bakground lutter, whih are unfavorable for the anomaly

detetion sine they are likely to mask possible subtle anomaly ontributions to

other bands.

5.1 Anomaly Preserving Pieewise Constant Rep-

resentation

5.1.1 Problem statement

Let xi,j denote the ith hyperspetral band of an observed hyperspetral pixel j,

where i = 1, . . . ,M and j = 1, . . . N . The pieewise onstant representaion model

onsists of a vetor of K < M breakpoints,

bK , {b1, . . . , bK}, (5.1)

orresponding to K − 1 ontiguous intervals

Ik = [bk, bk+1), k = 1, . . . , K − 1. (5.2)

Eah observed hyperspetral pixel xj is approximated by a set of onstants

{µk,j}K−1
k=1 obtained by averaging its values in orresponding spetral intervals

as follows:

µk,j =
1

|Ik|
∑
i∈Ik

xi,j, (5.3)

where |Ik| denotes the ardinality of the interval Ik. As a matter of fat, the

onstants {µk,j} minimize the mean squared error Sk,j in eah interval k de�ned
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5.1 Anomaly Preserving Pieewise Constant Representation

as follows:

Sk,j =
∑
i∈Ik

(xi,j − µk)
2. (5.4)

Thus, the partition of spetral bands into K − 1 intervals by the breakpoints bK

uniquely determines the pieewise onstant representation/approximation of eah

pixel. The goal is to determine a partition that failitates good performane of

anomaly detetion algorithms when applied to the obtained onstants {µk,j}.

5.1.2 Objetive funtion

The general idea of the proposed anomaly preserving hannel redution algorithm

is to minimize an objetive funtion J(bK) that penalizes partitions whih may

potentially lead to the loss of anomalies during the hannel redution proess.

We hoose the funtion J(bK) to be of the following form:

J(bK) = max
K−1
k=1 Dk, (5.5)

where by Dk we denote the Potential Anomaly Loss (PAL) measure orrespoding

to the interval Ik. Thus, by minimizing J(bK), one minimizes the worst ase PAL

measure.

In order to properly de�ne the PAL measure, Dk, let's explore statistial prop-

erties of the errors ei,j,k obtained due to the misrepresentation of hyperspetral

pixel entries belonging to the interval Ik:

ei,j,k = xi,j − µk,j, i ∈ Ik. (5.6)

Denoting all error entries that belong to the same pixel j and orrespond to an

interval Ik, ordered in a vetor form, by ej,k, we assume that all random vetors

ej,k orresponding to the non-anomalous (bakground) vetors are i.i.d. At this

point, we observe that anomaly manifestations in an interval k, whih were not

represented well by the orresponding onstants µk,j, are likely to produe anoma-

lous error realizations. Eventually, anomalous error realizations are those that do

not agree well with the pdf of the bakground-related errors ej,k. Therefore, Dk,

as a PAL measure, should measure the deviation of the obtained error statistis
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5.1 Anomaly Preserving Pieewise Constant Representation

from a bakground statistial model. Now, if one models the bakground-related

errors ej,k by a zero-mean Gaussian pdf, then Dk an be obtained by measuring

the deviation of error realizations from the Gaussian model. This approah is

quite reasonable, sine the larger is the deviation of the error statistis from be-

ing Gaussian, the more signal struture is absorbed by the error and the larger

is the likelihood that some important information is lost by hannel redution.

A widely used riterion for anomaly detetion is the Mahalanobis distane be-

tween a tested pixel and the bakground mean vetor [72℄, [32℄. This riterion

has also been extensively used for assessing multivariate normality [78℄. For a

zero mean Gaussian random vetor e, the Mahalanobis distane or, equivalently,

the Mahalanobis norm is de�ned as:

G(e) ,
√

e⊤Σ−1e, (5.7)

where Σ is the ovariane matrix of the random vetor e. Intuitively, the Maha-

lanobis norm of vetors e that ontain outlying signal ontributions and, there-

fore, are not properly normalized by Σ−1 in (5.7), is expeted to be larger than

obtained for vetors that obey the Gaussian paradigm. Thus, in the Reed-Xiaoli

(RX) algorithm [32℄, a benhmark anomaly detetor for hyperspetral imagery,

the Mahalanobis distane is used to detet anomalies by omparing it to a thresh-

old. It turns out that if the realizations ej are ontaminated by anomaly or other

Non-Gaussian signal ontributions, they are likely to produe large Mahalanobis

norms. Therefore, we de�ne Dk as follows:

Dk , max
N
j=1 G(ej,k) (5.8)

This ompletes the de�nition of the objetive funtion J(bK) in (5.5) that penal-

izes partitions that may ause a PAL.

By evaluating the proposed approah with real data, we have observed that

for obtaining a good partition, one does not nessearily need to minimize J(bK)

over data ontaining anomalies. This important observation is further disussed

in the setion 5.2.
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5.1.3 Minimizing the objetive funtion

In order to minimize J(bK), over the set of breakpoints {b1, . . . , bK}, we apply

a dynami programming algorithm based on [77℄ and [79℄. Let's rede�ne Dk as

D[g,h], where g and h are interval boundaries whih an be equivalently used to

speify intervals instead of using their orresponding indies {k}. Throughout

the minimization proess, we iteratively alulate J(k, p), where J(k, p) is the

objetive funtion de�ned using only the �rst 1 < k ≤ K breakpoints {b1, . . . , bk}
and the �rst (k − 1) ≤ p ≤ (M −K + k) spetral bands.

Initially, we set

J(2, p) = D[1,p], p = 1, . . . , (M −K + 2). (5.9)

Then, for k = 3, . . . , K, we alulate J(k, p) as follows:

J(k, p) = min
p−1
r=k−1 (J(k − 1, r) + D[r+1,p]). (5.10)

At the end of the iterative proess, the resulting J(K,M) gives the optimal value

of the objetive funtion J(bK) de�ned in (5.5). The optimal partition in terms

of the breakspoints {b1, . . . , bK} is obtained by reursively baktraking the min-

imizers r∗ for whih the optimal sequene {J(K,M), J(K − 1, r∗K), . . . , J(2, r∗3)}
was obtained.

5.2 Experiments with Real Data

In this setion we evaluate the performane of the RX algorithm, whih, as men-

tioned, is a benhmark anomaly detetor for Hyperspetral Imagery [32℄. We

applied it to Hyperspetral Data before and after the dimensionality redution

by PCA, FFR and the proposed MXMN algorithm. To demonstrate the results,

the RX algorithm was applied to 6 real hyperspetral image ubes, olleted by an

AISA airborne sensor on�gured to 65 spetral bands, uniformly overing VNIR

range of 400nm - 1000nm wavelengths. At 4 km altitude, a pixel resolution or-

responds to (0.8m)2. The obtained image ubes are b × r × c = 65 × 300 × 479
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hyperspetral images, where b,r and c denote the number of hyperspetral bands,

the number of rows and the number of olumns in the image, respetively.

In Fig. 5.1, we show the 30th band of a typial hyperspetral image ube.

The image ontains ground-truth anomalies (vehiles and small agriulture fail-

ities, whih oupy a few pixel segments marked in white and enirled by red

ellipses), whih were manually identi�ed using side information olleted from

high resolution RGB images of the orresponding senes. All 6 images are not

shown here just beause of spae limitations.

Figure 5.1: 30th band of a hyperspetral image ube with anomalies marked in

white and enirled by red ellipses.

We applied FFR and the proposed MXMN algorithms to an image ube that

does not ontain anomalies to redue the hyperspetral dimensionality from 65 to

10 by the orresponding piee-wise onstant spetral segments. We also applied

PCA to obtain an ℓ2 optimal 10-dimensional basis. In Fig. 5.2, one an see

the obtained piee-wise onstant approximations by FFR (yan (bright) thik

line) and MXMN (blue (dark) thik line) for 3 seleted hyperspetral pixels (blue

thin lines). The leftmost pixel is an anomaly, whereas the other two pixels were

seleted from di�erent bakground regions. As an be seen from the �gure, the

partition obtained by MXMN has a denser granularity in bands [1−35], in whih

the anomaly is expressed. This is on the expense of other bands, whih, in spite

of being energetially prominent, are less important for anomaly detetion. On

the ontrary, FFR adapts better to the energetial bands and, as a result, assigns

less hannels to bands [1− 35] whih makes it prone to loosing anomalies.

In Fig. 5.3, we ompare FFR, MXMN and PCA in terms of Reeiver Op-

eration Charateristi (ROC) urves obtained by applying the RX algorithm on
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Figure 5.2: Pieewise onstant approximation. The leftmost graph is

anomaly pixel, whereas two right graphs are bakground pixels. Original spe-

trum is in blue (dark) thin line, MXMN approximation is in blue (dark) thik

line, FFR approximation is in yan (bright) thik line.

hyperspetral data after the dimensionality redution. For the purpose of ROC

urves generation, all 6 hyperspetral images were used, in whih the total number

of anomaly segments ount is 25. It is leraly seen from the �gure that the MXMN

algorithm orresponds to a better ROC urve (blue solid line) ompared to other

dimensionality redution tehniques suh as FFR (yan dashed line) or PCA (red

solid line with solid irles) for all tested parameters. It is important to note that

the performane of the RX algorithm applied to the data obtained by the MXMN

is even better than applying RX to the full-dimensional (original) images (green

dot-dashed line), for the range of low false-alarm rates. This an be explained by

the fat that MXMN performs averaging of hyperspetral bands orresponding

to the bakground lutter, whih alleviates the e�et of masking out anomaly

ontributions by bakground lutter. As a matter of fat, sine J(bK) of (5.5) is

designed to favor partitions that produe errors whih are �more Gaussian�, its

minimization using typial data without anomalies, results in a oarse partition in

the spetral bands ontainining bakground lutter. These bands are noisy, they

have less disriminative power and they may mask out subtle anomaly-related

ontributions that may appear in other bands. The �ne partition is obtained in

the spetral bands that are �less Gaussian�, they have more disriminative power

and, therefore, may potentially ontain anomaly-related information. This may

explain why the proposed algorithm orresponds to a better ROC urve ompared

to the other algorithms, although the optimal partition was obtained using an

image that does not ontain anomalies.
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Figure 5.3: ROC urves.

5.3 Summary

In this hapter we proposed a novel approah for hannel redution in hyper-

spetral images that allows designing multispetral �lters that failitate a good

performane of loal anomaly detetion algorithms. The hannel redution is

performed by replaing subsets of adjaent hyperspetral bands by their means,

produing a pieewise onstant pixel approximation. An optimal partition of hy-

perspetral bands is obtained byMinimizing the Maximum of Mahalanobis Norms

of errors, obtained due to missrepresentation of these bands by onstants. Hene,

the proposed algorithm is denoted as MXMN. The minimization is performed by

a dynami programming tehnique, as used by the Fast Hyperspetral Feature

Redution (FFR) algorithm proposed in [77℄. We ompared MXMN with FFR

and SVD by examining the results of the RX algorithm [32℄ applied after the

dimensionality redution. It was demonstrated that the proposed MXMN algo-

rithm results in a better ROC urve in the whole range of false alarm values, and

even better than applying RX on the original data without the dimensionality

redution in the important range of low false-alarm rates.
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Chapter 6

Conlusion

6.1 Summary

In this researh we have studied how to perform redundany redution of high-

dimensional noisy signals for appliations where a good representation of both

the abundant and the anomaly vetors is essential. The ombined subspae of

anomaly and abundant vetors is obtained by using the proposed ℓ2,∞-norm that

penalizes individual data-vetor miss-representations.

In the �rst part of the researh, a sub-optimal greedy algorithm is developed

that is designed to optimize the ℓ2,∞-based riterion. It uses a ombination of SVD

and diret seletion of vetors from the data to form the signal-subspae basis.

The rank is determined by applying Extreme Value Theory results to model the

distribution of the maximal noise-residual ℓ2-norms. In simulations, onduted for

various rare-vetors signal-to-noise onditions, the proposed approah is shown

to yield good results for pratially-signi�ant RSNR values (RSNR essentially

measures the SNR of rare-vetors with respet to noise), for whih the lassial

methods of SVD and MDL fail to determine orretly the signal-subspae and

rank, respetively, of high dimensional signals omposed of abundant and rare

vetors.

The proposed approah was also applied for the signal-subspae and rank

determination of a hyperspetral image with and without anomaly pixels. The

results of MOCA were found to be equal to those of MDL (or, when nees-

sary, robust MDL) for the pure-bakground subimage, whereas in the presene of
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6.1 Summary

anomalies, MOCA has deteted a higher rank than MDL, while MDL produed

the same rank as in the pure-bakground ase. This indiates that MDL failed to

determine orretly the signal-subspae rank of a hyperspetral image omposed

of both abundant and rare vetors, whereas MOCA sueeded in representing it

well.

In the next part of the researh, we have proposed an algorithm for anomaly

detetion, disrimination and population estimation of anomalies of the same

type, alled AXDA. The algorithm is based on a signal-subspae and rank es-

timation provided by MOCA. By its onstrution, the signal basis onsists of

two groups of basis vetors. One group spans the subspae of anomalies. The

seond group is designed to represent bakground pixel residuals belonging to

the subspae that is omplementary to the subspae of the anomalies. The pro-

posed AXDA extrats anomaly pixels by removing an anomaly basis vetor from

the anomaly vetors group and ompensating for its removal by augmenting the

bakground vetors related subspae. This operation auses a violation of the

noise hypothesis ondition in vetors that are highly orrelated with the removed

anomaly basis vetor. Suh vetors are deteted, assoiated with the removed

basis vetor, and depleted from the data. This way we obtain groups of data

vetors assoiated with eah one of the anomaly basis vetors.

In experiments with real hyperspetral image ubes AXDA was shown to

have a better performane than GMRX and MSD, in most of the range of the

tested parameters. Sine the anomaly and bakground subspaes are unknown

in advane, the MSD algorithm was provided the anomaly-free estimation of the

bakground basis Ψs obtained from AXDA and the anomaly subspae obtained

from MOCA. This provides MSD subspae-related information that is (at least)

as good as AXDA has for the detetion of anomalies. It is also important to note,

that in ontrast to MSD and GMRX, AXDA is equipped with an unsupervised

determination of the nominal operating point. AXDA also has a apability to

disriminate between di�erent types of anomalies, though the auray of this

disrimination, as well as the auray of population estimation of anomalies of

the same type, are topis for future researh. Moreover, AXDA allows also an

anomaly-free (robust) estimation of the bakground-subspae and rank.

79



6.1 Summary

It turns out now that MOCA in ombination with AXDA provide means to

meet a wide range of signal-subspae estimation senarios:

1. Estimation of a signal-subspae that inludes anomaly-vetors.

2. Detetion of anomaly-vetors and determination of their subspae.

3. Providing a natural (nominal) operating point for anomaly detetion.

4. Estimation of a pure (free of outliers) bakground-subspae.

Next, we propose an algorithm that is denoted as (MOOSE), whih is the

optimal version of the suboptimal greedy algorithm for anomaly preserving sig-

nal subspae estimation provided by MOCA. MOOSE is optimal in the sense

that the estimated subspae (loally) minimizes the proposed ℓ2,∞-norm of mis-

representaion residuals. The optimization is performed via a natural onjugate

gradient learning approah arried out on the set of n dimensional subspaes in

IRm
, m > n, known as the Grassmann manifold. As any loal minimization of

a non-onvex objetive funtion, MOOSE is prone to getting trapped in a loal

minimum. Therefore, a proper initialization is ruial and is obtained by employ-

ing MOCA that uses global priniples to �nd a suboptimal solution that is lose

to the global minimum. The results of MOOSE were ompared to the results of

SVD and MOCA by applying them both on simulated data and on real hyper-

spetral images. It was demonstrated that the results of MOOSE and MOCA are

muh better than those of SVD in terms of max-norm residual error, obtained

in both simulated and real data, and in terms of the subspae estimation error

obtained for simulated data. Although MOCA exhibits results inferior to those of

MOOSE, the results of MOCA are quite omparable to those of MOOSE meaning

that pratially, the greedy signal subspae estimation algorithm of MOCA is a

good hoie, sine it is more omputationally e�ient.

Finally, we have proposed a novel unsupervised tehnique for Designing Mul-

tispetral Filters that failitates a better performane of loal anomaly detetion

algorithms. We have shown that the problem of designing Multispetral Filters

an be onsidered as a speial ase of the problem of Channel Redution in Hyper-

spetral Images. Here, the hannel redution is performed by replaing subsets
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6.2 Future Diretions

of adjaent hyperspetral bands by their means, produing a pieewise onstant

pixel approximation. An optimal partition of hyperspetral bands is obtained

by Minimizing the Maximum of Mahalanobis Norms of errors, obtained due to

missrepresentation of these bands by onstants. Hene, the proposed algorithm

is denoted as MXMN. The minimization is performed by a dynami program-

ming tehnique, as used by the Fast Hyperspetral Feature Redution (FFR), a

similar hannel redution algorithm based on minimizing the ℓ2-norm of errors.

We ompared MXMN with FFR and SVD by examining the results of the RX

algorithm applied after the dimensionality redution. It was demonstrated that

the proposed MXMN algorithm results in a better ROC urve in the whole range

of false alarm values, and even better than applying RX on the original data

without the dimensionality redution in the important range of low false-alarm

rates.

6.2 Future Diretions

The proposed anomaly detetion algorithm AXDA exploits the greedy struture

of MX-SVD - a suboptimal anomaly preserving signal-subspae estimation algo-

rithm. Although the optimal signal-subspae obtained by MOOSE improves the

performane of MX-SVD in terms of signal-subspae estimation error, it does

not produe a signal-subspae basis with a speial struture like MX-SVD. This

makes the diret use of MOOSE in AXDA impossible. Therefore, in a future

researh, one may need to develop an anomaly detetion algorithm that diretly

uses the optimal signal-subspae produed by MOOSE.

As disussed in hapter 3, AXDA also has a apability to disriminate between

di�erent types of anomalies, and to estimate populations of anomalies of the

same type. However, the auray of this disrimination, as well as the auray

of population estimation of anomalies of the same type, are not evaluated. As

a matter of fat, we have observed that the results of the disrimination and

population estimation depend on the order of removing olumns from the matrix

Ω while applying AXDA. The seletion of a proper olumn removal order and a

more aurate lassi�ation of anomalies to their orresponding lass may be a

subjet for future researh.
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6.2 Future Diretions

In hapter 5, we have proposed the MXMN tehnique for hannel redution in

hyperspetral images, whih allows designing multispetral �lters that are tuned

for loal anomaly detetion algorithms. In simulations with real data, 65 hy-

perspetral hannels were redued by MXMN to 10 multispetral hannels. On

one hand, the hannel redution alleviates the distrating in�uene of noise or

the bakground lutter. On the other hand, the hannel redution redues the

amount of information needed for the anomaly detetion. In that simulation

we have demonstrated that MXMN results in a better ROC urve in the whole

range of false alarm values as ompared to FFR and SVD, and even better than

applying RX on the original data without the dimensionality redution in the

important range of low false-alarm rates. A reasonable question is whether there

is another dimensionality, other than 10, whih ould have produed even bet-

ter results. Therefore, a future researh subjet an be the development of an

unsupervised algorithm for the seletion of multispetral dimensionality, that is

optimal in terms of the performane of an anomaly detetion algorithm.
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Appendix A

Distribution of maximum-norm

noise realizations

In this appendix we haraterize the pdf fνk
(·) of setion 2.4.1. We assume that

the noise is a zero-mean white Gaussian proess, with known standard deviation

σ. Then, its residual squared norms

ζk,i , ‖PŜ⊥k
zi‖2, (A.1)

i = 1, . . . , N , have a Chi-squared distribution of order l , rank Ŝ⊥k = p − k,

denoted by χ2(l, σ2) with the following pdf [? ℄:

f(u) =
1

2l/2Γ(l/2)σ2

( u

σ2

)(l/2)−1

e−u/2σ2

. (A.2)

For large l, the Central Limit Theorem an be used to obtain the following ap-

proximation:

ζk,i ∼ χ2(l, σ2) ≈ N
(
lσ2, 2lσ4

)
. (A.3)

Now, the limiting distribution of νk, whih satis�es

νk = max
i=1,...,N

ζk,i, (A.4)

an be obtained using the following Extreme Value Theory result:

Theorem 1 [54℄

If {ζi}Ni=1 is i.i.d., with absolutely ontinuous distribution F (x) and density f(x),
and letting
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(i) h(x) = f(x)/(1− F (x))

(ii) bN = F−1(1− 1
N

)

(iii) aN = h(bN)

(vi) ω = limx→x∗
dh(x)

dx
,

where x∗ is the upper end-point of F ,

then, for MN = max{ζ1 . . . ζN},

P (aN(MN − bN) ≤ u) −→
N→∞{

exp(−e−u), if ω =∞
exp{−[1 + u

ω
]ω}, if ω <∞ , (A.5)

The proof is found in [54℄.

In words: Theorem 1 says that the maximum of N i.i.d random variables

has a limiting distribution that depends on ω - a parameter derived from their

individual distributions. For the purposes of the present work, we onsider normal

and hi-squared distributions, whih lead to ω =∞.

Therefore, from (A.5), the limiting distribution of interest is

G(u) , exp(−e−u), (A.6)

also known as the Gumbel distribution 1. The mean and std of a variable dis-

tributed as (A.6) are η = 0.5772 and γ = 1.6450, respetively. The normalizing

oe�ients aN and bN are also funtions of the ζi distribution. Theorem 1 also

desribes how to alulate the normalizing oe�ients given the distribution fun-

tion of ζi.

Unfortunately, there are no known analytial expressions for the normalizing

oe�ients aN and bN orresponding to {ζk,i} (de�ned in (A.1)) that are hi-

square distributed. In our evaluations of the asymptoti pdf of νk in Fig. 2.4(b)

1Extreme Value Distributions are the limiting distributions of the minimum or the maximum

of a very large olletion of random observations from the same arbitrary distribution. Gumbel

(1958), [55℄ showed that for any well-behaved initial distribution (i.e., F(x) is ontinuous and

has an inverse), only a few models of limiting distributions are needed, depending on whether

one is interested in the maximum or the minimum, and also if the observations are bounded

from above or below (see [52℄).
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above and in the sequel, we used the results of Theorem 1 to alulate aN and

bN numerially. Note, that aN and bN are also funtions of l and σ, sine they

depend on the χ2(l, σ2) distribution, whih is a funtion of l and σ.

However, in order to explain why the pdf of ‖PŜ⊥Z‖22,∞, shown in Fig. 2.4(a)

and Fig. 2.5(b), is so narrow; one an use the approximation in (A.3) to obtain

the following asymptoti analysis, whih an be onduted analytially. It an be

shown [52℄ that for {ζi} of Theorem 1, whih are Gaussian, MN is distributed as

follows:

P (MN ≤ u) −→
N→∞

G(aN(u− bN)), (A.7)

with

aN = (2 ln N)1/2

bN = (2 ln N)1/2 −
1

2
(2 ln N)−1/2(ln ln N + ln 4π).

Therefore,

P (νk ≤ x) ≈ G

(
aN

[
x− σ2l

σ2
√

2l
− bN

])
(A.8)

with mean and std:

µN = σ2

(√
2l

aN

η + bN

√
2l + l

)
(A.9)

σN =
σ2
√

2l

aN

γ (A.10)

While this approximation doesn't provide us with an aurate mean and std of

νk, it is instrutive to look at the following ratio that de�nes a relative width of

a pdf for N ≫ 1, l≫ 1:

µN

σN

∝ 2 ln N +
√

l ln N. (A.11)

It is observed that this ratio doesn't depend on σ2, and it is log-dependent on N .

Thus, the ratio µN/σN tends to in�nity as N → ∞ or l → ∞. For example, for

l = 100, N = 105 and white noise, µN/σN ≈ 23 orresponding to quite a small

relative width. The dominant fator in obtaining suh a high ratio is the high
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dimensionality of l = 100.
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Appendix B

Derivation of posterior hypothesis

probabilities

In the following, we derive the onditional probabilities p(H0|ηk) and p(H1|ηk) in

(2.25) and (2.26), based on pdfs fνk
and fξk

:

f(H0, ηk) = fνk
(y)p(ξk < ηk) =

fνk
(ηk)Fξk

(ηk) = fνk
(ηk)

ηk

ηk−1

,

f(H1, ηk) = fξk
(ηk)p(νk < ηk) =

fξk
(ηk)Fνk

(ηk) = Fνk
(ηk)

1

ηk−1

,

fηk
(ηk) = f(H0, ηk) + f(H1, ηk) =

1

ηk−1

[ηkfνk
(ηk) + Fνk

(ηk)] ,

p(H0|ηk) =
fνk

(ηk)Fξk
(ηk)

fηk
(ηk)

=
ηkfνk

(ηk)

ηkfνk
(ηk) + Fνk

(ηk)
,

p(H1|ηk) =
fξk

(ηk)Fνk
(ηk)

fηk
(ηk)

=
Fνk

(ηk)

ηkfνk
(ηk) + Fνk

(ηk)
,

whih are the expressions shown in (2.25) and (2.26).

87



Appendix C

Assessment of MOCA reliability in

terms of RSNR

In the following we assess the dependene of MOCA rank estimation error (see

hapter 2) on the value of RSNR.

Let's reall that the RSNR notion was introdued in the ontext of SVD

performane assessment in the presene of rare-vetors. It measures the ratio

between the ontribution of rare-vetors and the ontribution of noise to the sig-

nal ovariane matrix. Thus, being ℓ2-based, RSNR is an ambiguous measure

for MOCA performane assessment, whih is a�eted by individual data-vetor

ontributions. For example, two idential rare-vetors of the same ℓ2-norm value

l, have the same RSNR as that of a single rare-vetor of an ℓ2-norm value of

l
√

2, and thus have the same SVD performane. However, MOCA may behave

di�erently in eah of the two ases in this example. Thus, in some appliations,

there is typially only one rare-vetor out of 105 data-vetors, whereas in other

appliations, even 10 ollinear vetors out of 105 are onsidered to be rare. Dif-

ferent rare-vetor multipliities ause MOCA to depend di�erently on the RSNR.

In order to eliminate this ambiguity, we onstrain the rare-vetors in the follow-

ing analysis to be linearly independent. Otherwise, the RSNR value should be

orreted by an appropriate rare-vetors multipliity fator in order to obtain an

equivalent MOCA performane.

If the SNR of abundant vetors is high enough, then we an assume that for

k ≥ ra, where ra is the abundant vetors subspae rank, the SVD-part of MOCA

estimates well the abundant vetors subspae, and that MOCA iterations don't
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terminate before k = ra. Thus, in the omplementary subspae for ra ≤ k < r,

one would �nd only residuals of abundant vetors, omposed of noise only, and

residuals of rare-vetors. Let's denote

Ỹrare , PY⊥abund
Yrare, (C.1)

i.e., the projetion of the rare-vetors sub-matrix onto the abundant-vetors null-

spae. Our purpose here is to haraterize RSNR values for k values satisfying

ra ≤ k ≤ r, for whih there is a high probability that rare-vetors will be seleted

among Ωk−ra olumns (see (2.12)).

Let's assume that for some iteration k, ra < k ≤ r, the matrix Ωk−ra is

omposed of rare vetors. We are looking for onditions on RSNR that guarantee

seleting the next rare-vetor at iteration k as in (2.12), with probability lose

to 1. This RSNR value would also justify the assumption on the matrix Ωk−ra

above, sine (as we'll see later) it would guarantee the rare-vetors seletion for

all ra < k ≤ r, with probability lose to 1. If one neglets the e�et of noise

on the rare vetors seleted in Ωk−ra , then the ℓ2-norms of the remaining r − k

rare vetors an equivalently be obtained as the last r− k diagonal entries of the

upper triangular matrix R obtained via the following QR deomposition:

QR = ỸrareΠ, (C.2)

where Π is a permutation matrix that moves Ỹrare olumns of rare-vetors se-

leted in Ωk−ra to the leading positions. Now, we use the following lemma in

order to obtain a relation between the RSNR of Y and the diagonal entries of R.

Lemma 1 The minimal singular value smin of a full-rank m× n matrix M with

m > n, satis�es smin ≤ ρj, j = 1, . . . n, where ρj are the diagonal entries of a

triangular matrix in the QR deomposition of MΠ, with Π - any permutation

matrix.

Proof

Let ρj be a diagonal entry for some j = 1, . . . , n, and let Π̂ be another permutation

matrix that moves olumn j of MΠ to the last. Then, the orresponding ρ̂n of

MΠΠ̂ satis�es: ρ̂n ≤ ρj, sine it is a norm of a projetion onto a smaller

(ontained) subspae. Now, aording to [21℄, the following holds: ŝmin ≤ ρn.

Therefore, smin ≤ ρj.
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Using the lemma above and the de�nition of RSNR (2.4), one obtains:

ςk ≥ RSNRσ2(p− r), (C.3)

where ςk , ‖ỹmax‖2, and ỹmax is the maximum-norm rare-vetor residual in

Ŝ⊥k . Sine the termination ondition of MOCA is based on testing the maximum

squared norm of residuals ηk = ‖PŜ⊥k
X‖22,∞, it is important to alulate the pdf

of ηk, whih satis�es:

ηk = max (ξk, νk), (C.4)

where,

νk = ‖PŜ⊥k
Xabund‖22,∞ (C.5)

ξk = ‖ỹmax + n‖2, (C.6)

we also assume here that the RSNR value is large enough, so that:

argmax

ỹi∈olumns Ỹ

‖ỹi + n‖ = argmax

ỹi∈olumns Ỹ

‖ỹi‖, (C.7)

with probability lose to 1.

Now, the distribution funtion of ηk for ra ≤ k < r is given by:

Fηk
(·) = Gp−k(·)NCχ2

p−k,δ(·), (C.8)

where Gp−k(·) is the Gumbel distribution of the noise max-norm with p−k degrees

of freedom, as desribed in Appendix A, and NCχ2
p−k,δ(·) is the nonentral hi-

square distribution [22℄, with p− k degrees of freedom and δ is its non-entrality

parameter. The results of [22℄ and relation (C.3) an be used to obtain:

δ =
ςk
σ2
≥ RSNR (p− r). (C.9)

The pdf of ηr−1, fηr−1 , orresponding to a situation where ςr−1 = RSNRσ2(p−
r) (seleting the worst ase in (C.3)), RSNR = 2, p = 100, r = 10, ra = 5, σ = 1,

N = 104 is shown in Fig. C.1, solid line. The hoie of k = r − 1 is arbitrary

for numerial demonstration purpose only. Now, the distribution of ηr, Fηr(·),
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equals to the distribution of maximum-norm noise residual Gp−r(·), sine Ŝ⊥r is

supposed to inlude only noise. The pdf of ηr, fηr , is plotted in dashed line. The

rank-determination threshold τr−1 at iteration r − 1 (marked by a vertial line)

equals to ηr−1, satisfying:

p(H0|ηr−1) = p(H1|ηr−1), (C.10)

where H0, H1 are de�ned in subsetion 2.4.1.
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Figure C.1: Pdf of the maximum residual norm ηr−1 and ηr for k = r − 1,
ςr−1 = RSNRσ2(p − r), RSNR = 2, p = 100, r = 10, ra = 5, σ = 1, N = 104

at iteration r − 1 (solid line) and iteration r (dashed line), respetively. The

rank-determination threshold τr at iteration r is marked by a vertial line.

Now, the probability pu of rank underestimation, given that iteration r− 1 is

reahed, is given by pu = Fηr−1(τr−1), whih for the parameters above is of the

order of 10−6! It turns out that for the parameters above, the order of the rank

underestimation error is approximately the same for all k values ra ≤ k < r,

whih is small enough to be negleted.

It is important to note that typially, fηr−1 would lie farther from the threshold

τr−1, sine seleting equality in (C.3), in this example, orresponds to the worst

ase. This dereases the probability of the rank underestimation even further.

Due to properties of Gp−k(·), the distribution of ηk has a weak log N dependene

on the data sample size N (see (A.8)). Whereas NCχ2
p−k,δ(·) doesn't depend on

N at all. Therefore, the rank underestimation error is also negligible for N = 103

as well as for N = 105.

The probability of rank overestimation po at iteration k = r, is given by

pu = 1 − Fηr(τr) = 1 − Gp−r(τr), whih for the parameter values above gives
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po ≈ 0.027. This value is nearly onstant for all RSNR values above 2, whih, as

we have seen earlier, guarantee a negligible pu. It an be dereased by modifying

the hypotheses equality test of (C.10) to the following likelihood ratio test:

p(H0|ηr) ≤ γp(H1|ηr), γ < 1. (C.11)

This should produe a lower error-rate at the expense of a higher τr−1. Fortu-

nately, as it is learly seen in Fig. C.1, the pdf fηr−1 lies far from τr−1, whih

means that a lower po an be obtained by hoosing an appropriate γ < 1 leaving

pu still negligible.
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Appendix D

Robust MDL with a modi�ation

that aounts for noise dependene

between bands

In setion 4.3 we apply the RMDL approah [27℄ as an ℓ2-based alternative to the

lassial MDL approah for signal-subspae rank determination. The assumption

of RSNR that the noise ovariane matrix is diagonal, but with di�erent diagonal

entries σ2
1, . . . , σ

2
p, makes the algorithm robust to deviations of noise varianes

from being equal in all spetral bands. In order to model also the observed small

dependene of noise omponents between adjaent bands, we assume that the

seondary-diagonal noise ovariane matrix entries are all-equal to a parameter

βk. As in [27℄, let's de�ne σ2 , 1
p

∑p
i=1 σ2

i and wi , σ2
i − σ2. Now the model

parameters vetor of (2.27) an be expressed via:

Θ(k) = (λ1, . . . , λk,V1, . . . ,Vk, σ, w1, . . . , wp, βk). (D.1)

This modi�ation requires hanging steps 3 and 4 in [27℄ (p. 3547) as follows:

In Step 3: Adding the omputation of βk as follows:

βk = mean

(
o�diag

(
R̂−AkRs,k(Ak)

H − (σn,k)
2I
))

, (D.2)

where o�diag(R) returns a seond diagonal of the matrix R.

In step 4: Changing the omputation of E = R̂−wk to E = R̂−wk − βkIo�,

where Io� denotes a p × p matrix with ones on its seond diagonals and zeros
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everywhere else.
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Appendix E

Noise variane estimation proedure

AXDA and MOCA strongly rely on the assumption of additive white Gaussian

noise of known variane. The orret spei�ation of the noise variane is of

paramount importane sine it determines the signal subspae rank (see (2.23))

and, as a result, a�ets the detetion/false-alarm rates. In this appendix we de-

sribe a tehnique used for the estimation of noise variane in eah hyperspetral

hannel. The estimated noise variane is then used for a band-wise normalization

of the noise variane to 1.

It was observed in experiments with real hyperspetral data that overesti-

mation of the noise variane by about a half an order of magnitude has little

in�uene on AXDA performane. Although using an overestimated value of the

noise variane (ausing a poorer representation of the bakground) would result in

the underestimation of signal subspae rank, the false alarm rate remains mostly

unhanged. This happens sine bakground misrepresentations are tested by rule

(2.23) (used in steps 9 and 13 of AXDA), whih depends on the noise variane as

well. Thus, the overestimated noise variane raises the �e�etive threshold value�,

whih naturally leaves the bakground misrepresentations undeteted. Thus, an

overestimated noise level may just slightly impair detetion rate of anomalies that

aren't prominent enough.

Using an underestimated value of the noise variane is less favorable beause of

speial statistial properties of the maximal norm of noise. As shown in hapter

2, the maximal norm of noise has a narrow distribution, explained by Extreme

Value Theory results. Therefore, there is a high likelihood that the maximal norm
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of noise would obtain an almost deterministi value (see Figs. 4 and 5 in hapter

2). Thus, if the underestimated noise variane makes the �e�etive threshold

value� implied by (2.23) lower than the almost deterministi maximal norm of

noise, MOCA would never terminate its iterations (or will terminate too late).

This would result in a signi�ant signal-subspae rank overestimation, whih may

ause the bakground subspae of inreased-rank to inlude the anomalies and

to signi�antly impair the anomaly detetion rate. Therefore, the noise variane

estimation tehnique proposed below prefers noise variane overestimation.

In CCD-based hyperspetral systems, the noise is a ombination of dark ur-

rent noise, photon (shot) noise and �xed pattern noise (FPN) [49℄. The FPN is

due to di�erent sensor responsivities, whih is estimated and ompensated out by

alibrating the sensor. It turns out that even at mild light intensities, the photon

noise may be dominant [49℄. The photon noise problem arises from the statistial

nature of photon prodution. The probability distribution for n photons in an

observation window is known to be Poisson:

p(n) =
Mne−M

n!
, (E.1)

where M is the average number of photons within the given observation window.

For the linear part of the CCD response funtion, the image intensity I is linearly

proportional to n, i.e.,

I = gn, (E.2)

for some proportionality oe�ient g. Sine the Poisson distribution approahes a

normal distribution for large M , the photon noise in I an be modelled as having

a zero-mean normal distribution with std σe satisfying:

σe(I) =
√

gH, (E.3)

where H being the mean of I satisfying H = gM , is onsidered to be the lean

signal.

Thus, the photon noise variane is not onstant and, therefore, doesn't meet

the noise stationarity property assumed in MOCA. Nevertheless, in our real-data
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simulations, we have empirially found that using

σ0.98 =
√

gH0.98 (E.4)

in AXDA, as an estimate of the noise std in eah band (with H0.98 denoting the

0.98 quantile of image intensities in the band), dereases false alarm rate aused

by high image intensity pixels, while allowing a reasonably high anomaly detetion

rate. The 0.98 quantile orresponds to almost maximum image intensity, ignoring

2% of the most intense image values that may stem from anomalies.

The only thing left is to estimate g. Aording to (E.3), g satis�es:

g = var
( e

H

)
, (E.5)

where e denotes pixel noise and var denotes variane. Note, that random variables

{ei/Hi}, where i denotes pixel index, are identially distributed. If one assumes

that they are independent, then g an be estimated by:

ĝ =
1

N

N∑
i=1

(
êi

Ĥi

)2

, (E.6)

where êi is a noise estimation, and Ĥi is a lean image intensity estimation.

The estimation of {Hi} an be obtained via a 2D linear predition as follows:

Ĥi =
∑
j∈K

ajIi,j, (E.7)

where K denotes the set of a 2D neighborhood indies, Ii,j denotes the image

intensity at position j in the neighborhood of a pixel i, and {aj} denote the

linear predition oe�ients, obtained via least squares over the whole image. In

our simulations we used a 5× 5 neighborhood.

The estimation of {ei} is then given by

êi = Ii − Ĥi. (E.8)

Unfortunately, the estimation of {Hi} given in (E.7) is inaurate in non-smooth

image regions suh as edges and/or anomaly pixels. Therefore, the estimates êi

and Ĥi from these regions should not be aounted in (E.6) for the estimation of
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g. In order to �lter out the undesired ontributions of êi and Ĥi, we estimate
√

g

using median absolute deviation (MAD), proposed in [57℄, for a robust estimation

of the standard deviation of e/H as follows:√
ĝ = MAD

(
ê/Ĥ

)
= median

i=1,...,N

∣∣∣êi/Ĥi

∣∣∣ , (E.9)

where N is the total number of hyperspetral pixels.

Using the estimated values of g and Hi and substituting to (E.4), we obtain

an estimate of the e�etive noise std σ0.98 in eah band and normalize the noise

to unity variane in eah band of the hyperspetral ube for further proessing.
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 הכרת תודה

  

  

על הנחייתו האישית , דוד מלא ' פרופ, העבודהברצוני להודות מקרב לב למנחה 

הייתה לי . תרומתו הגדולה למחקר ותמיכתו במש  כל שנות המחקר, הבנתו, והמסורה

  .זכות גדולה לעבוד לצידו של חוקר ברמתו ושל אד� ח� ותומ  כמוהו

  

על הערותיו , זוהר� מאיר בר' דר, תודות רבות נתונות ג� למנחה הנוס#

והדייקניות ועל ניסיונו המעשי שתר� רבות לניסוח ופיתרו� בעיות הקונסטרוקטיביות 

  .לי מאוד לאור  כל המחקר תמיכתו הייתה חשובה. ברמה הנדסית גבוהה

  

במש  המחקר עבדתי לציד� של עמיתי� רבי� והנני רוצה להביע הערכה רבה 

דה לעיבוד אבי ויאיר אשר עזרו לי בעבודתי במעב, זיוה, תודות חמות לנמרוד. לתמיכת�

, הנני רוצה לציי� במיוחד את רמתו המקצועית של נמרוד. (SIPL)אותות ותמונות 

שלדעתי מצליח להדביק את כול� בשאיפתו למצויינות  , המהנדס הראשי של המעבדה

  .ועמידה בסטנדרטי� גבוהי�

  

תמיכה וסובלנות שליוו אותי בתקופה , על הרבה אהבה, אלונה, תודותיי באהבה לאשתי

  .תזא

  

   .אני מודה לטכניו� על התמיכה הכספית הנדיבה בהשתלמותי



 

  תקציר

ישנ� לא מעט . מימדיי��שמטפלות באותות רב המקצועיות נושא מרכזי בקהילות הואת יתירות פחתה

 מדיותיממהיא נמוכה בהרבה  מידעהאמיתית של ה מדיותיהמשבה� , שני�ימערכי חיב משתמשי�ה �יישומי

מבנה הפיסיקלי של מקורות האות החשוב על  מידעמרחב של האות האמיתי נושא ה�תת. וקטורי האות הנקלט

האות הנקלט שמכיוו� . מרחב של האות האמיתיהישנה חשיבות רבה לשער  את תת  ,בהרבה יישומי� ,ולכ�

מימדי� שלא מאפשרת ג� הורדת תרומת הרעש במרחב המשוער  ה תת הטלתו על, כולל בדר  כלל ג� רעש

  . חשוב מידע� נושאי

  

, או ,ייצוגהשגיאת  תמזעור אנרגי מבוססות עלשל האות  הפיסיקלי מרחבה לשערו  תתגישות קלאסיות 

 נורמת מזעור, במילי� אחרות
2
מרחב אשר יכלול בתוכו �גישה זאת מאפשרת למצוא תת .של שגיאת הייצוג �

מזעור של נורמת  ה שלישהג, למרבה הצער. את רוב אנרגיית האות
2
 טוב גוייצמציאת ללהביא  האינו יכול �

במוב� של נורמת  ,יי�להאנוממכיוו� שהתרומה האנרגטית של הוקטורי� , ופעות אנומליות באות הפיסיקליתל

2
�תת תטהסגרו� ליכולה לתרומה זו . שרעהשל  האנרגטיתנמוכה בהשוואה לתרומה  בדר  כלל היא ,�

הגישות הקלאסיות שמבוססות על , לכ�. כ  שיחמי$ את האנומליות וישאיר� מחוצה לו  ,ער והמרחב המש

 נורמת
2
בבעיית גילוי אנומליות בתמונות , למשל, כ  .אנומליי�מוגבלות ביכולת� לייצג וקטורי�   �

מצד שני רוצי� ו, כדי לנקות את האות מרעשבמימדי� ה את לצמצ� ,מצד אחד, ייני�מעונ פרטרליותהיפרס

 .לשמר את האנומליות בתו  המרחב המשוער  כדי לגלות� בהמש 

 

שיכולי� להכיל וקטורי�  ממדיי��יתירות באותות רבה הפחתת תבעייע�  אנו מתמודדי�מחקר זה ב

הראשו� של  ובחלק. אנומליות לאחר הורדת היתירותהמור שי ,לפיכ , הנושא המרכזי במחקר הוא .אנומליי�

 Maximum Orthogonal Complements Analysis אנו מציעי� גישה חדשנית שנקראת, המחקר

)MOCA( , אשר משלבת נורמות
2
�ו �

∞
 .יותכולל האנומל ,מימד של האותהמרחב וה� שערו  תתש� ל �

בהנחת מימד  האות מרחב�הפעולה הראשונה מטפלת בשערו  של תת: עיקריות י פעולותתהגישה מורכבת מש

ת ונורמ מכסימו� שלהאת  אשר ממזער, נתו�
2
 �לאחר הטלת ,וקטורי האות הנקלט של ייצוגהשל שגיאת  �



נורמת  � קרי , מכסימו� תפעולו מכיוו� שהמדד החדש משלב. מרחב המשוער ה�לתת
∞
נורמת  ע�, �

2
הוא , �

 נורמת מכונה
2,∞
�. 

2,∞
 ההשנייהפעולה  . נורמה ג� היאוו� שמכסימו� של נורמות יכמנורמה  אכ�הוא  �

המימד נקבע על ידי הפעלת תוצאות של . מרחבה�שעבורו נתקבל תת ,המימד תזתהיפו נכונות תמטפלת בקביע

על מודל פילוג של נורמת   (Extreme Value Theory) קיצוניי�הערכי� התורת 
2,∞
שתי . של הרעש �

מרחב אשר �תלמציאת ת אופטימלי� תת תו  כדי שימוש באלגורית� חמדני פעולות אלה מבוצעות לסירוגי�

של  המשוערכי� מימדהמרחב וה�בסו# התהלי  מתקבלי� תת .בעיות מעשיותהופ  את הגישה לבת מימוש ב

בסימולציות שערכנו עבור . בנפרד אנומליותהמרחב ומימד של �תתכ� ו ,שכולל אנומליות ,האות הפיסיקלי

הגישה המוצעת , אנומליי� של וקטורי�) חשובי� מבחינה מעשיתבתחו� ערכי� ה(יחסי אות לרעש שוני� 

לשערו   MDLועל מרחב ה�לשערו  תת SVD ת עלוהמבוסס ,הגישות הקלסיות בעוד, תוצאות טובותלביאה ה

  .שכולל אנומליות ותרומת תהלי  הרקע ,מרחב והמימד של האותה�תת במציאתנכשלו  ,המימד

  

היתרונות של שילוב נורמות 
2
�ו �

∞
. אינ� מסתכמות רק באלגורית� להורדת יתירות תו  שימור אנומליות �

כולל (האות  מרחב�למציאת תת MOCAהמבנה של אלגורית� ואת להתאי� שילוב זה  נית�אנו מראי� ג� ש

 .ותת אנומליות בתמונות היפרספקטרליוהפרדה ושערו  אוכלוסי, לגילויפיתוח אלגורית� לש� ) אנומליות

אלגורית� זה שיי  למשפחה של אלגוריתמי גילוי אנומליות גלובליי� מכיוו� שהוא משתמש בכל התמונה 

לגלות אנומליות כוקטורי� אשר אינ�  כ  אפשרומההיפרספקטרלית כדי לשער  מודל תהלי  הרקע 

 Anomaly, "אלגורית� למיצוי והפרדה של אנומליות"קרוי בעבודה  הז תהלי  .מסכימי� ע� מודל זה

Detection and Discrimination Algorithm )AXDA .( הרעיו� המרכזי שלAXDA  מבוסס על הקטנה

ייצוג של גורמת לשגיאה בפעולה זאת . MOCAאיטרטיבית של מימד מרחב האנומליות שנמצא על ידי 

 נורמת בעזרת אנליזה שלהופחת ומאפשרת גילוי האנומליות רי� האנומליי� הקשורי� למימד שוהוקט
2,∞
� 

הרקע  מרחב�תת של שערו  היא שבתו� התהלי  מתקבל ג� AXDA של תוויתוצאה נל. ות הייצוגאשל שגי

נות� תוצאות טובות  AXDAראינו כי , ליות אמיתיותאבסימולציות ע� תמונות היפרספקטר .נקי מאנומליותה

   .בספרות שקיימי� הקלאסיי� גלובליי� לוי אנומליותלגיהאלגוריתמי�  – �MSDו GMRXיותר מאלה של 

  



על ידי פיתוח אלגורית�  MOCA נו אתרחבה, מרחב שמשמר אנומליות�שערו  תתל הכדי להשלי� את הגיש

 נורמת למזעור אופטימלי
2,∞
במוב�  ימרחב אופטימאל�שערו  תת" מכונה אלגורית� זה. של שגיאות הייצוג �

 Maximum of Orthogonal Complements Optimal"מזעור המשלי� האורתוגונאלי המכסימלי של

Subspace Estimation )(MOOSE .האופטימיזציה מבוצעת על ידי גישת natural conjugate 

gradient learning מרחבי� �שפועלת על קבוצת תתnשייכי� לש ממדיי��,
m

m n>�. מהווה   קבוצה זו

רגיש לבעיית  MOOSE, מקומיתהלי  אופטימיזציה  בהיותו ).Grassmann manifold(יריעה של גרסמ� 

כתנאי  MOCAאנו משתמשי� בתוצאות של . טוב הוא חיוני ביותרלכ� אתחול . מקומיהתכנסות למינימו� 

כדי למצוא בשיקולי� גלובליי�  משתמש MOCAמכיוו� שהאלגורית� החמדני של  MOOSEהתחלה של 

מניבי�  �MOOSEו MOCAאנחנו מראי� כי  . מרחב האופטימליה�אופטימלי שקרוב לתת�מרחב תת�תת

 נורמתמזעור  של במוב� ,SVDתוצאות טובות משמעותית מאלה של 
2,∞
שהוכנו באותות  של שגיאת הייצוג�

� מניב תוצאות פחות טובות מ �MOCAשת למרו .וג� בתמונות היפרספקטרליות אמיתיותבסימולציות 

MOOSE , לתוצאות של  קרובותה�MOOSE .האלגורית� החמדני לשערו  , שבאופ� מעשי, זאת אומרת

  .מהווה בחירה טובה מכיוו� שהוא הרבה יותר פשוט מבחינה חישובית, MOCAמרחב של �תת

  

ל ביצועי� טובי� בהפעלת מאפשר לקב ליותאלי המצוי בתמונות היפרספקטראהעושר של מידע ספקטר

מערכות היפרספקטראליות עדיי� אינ� נוחות לשימוש , אול�. AXDAאלגוריתמי� לגילוי אנומליות כגו� 

ישנה דרישה למערכות , לכ�. הספקוצורכות הרבה , כבדות, מכיוו� שה� יקרות ביישומי� שדורשי� ניידות

שה� מספקות מספר מוגבל של ערוצי�  למרות, במידה רבה יותר קומפקטיות שה�מולטיספקטראליות 

תכנו� נכו� של המסנני� המולטיספקטראליי� יכול להיות חיוני לפיתוח אלגוריתמי� לגילוי . ספקטראליי�

גישה חדשנית לתכנו� מסנני� בהצעת  מסתכ� מחקרה. בתמונות מולטיספקראליות אנומליות

גישה זאת מבוססת על עיבוד . לוי אנומליותי� של אלגוריתמי� לגיעלשפר ביצו מטרת�ליי� שאמולטיספקטר

בעיית תכנו� , למעשה. לית אופיינית שמשמשת כקלט לאלגוריתמי� לגילוי אנומליותאתמונה היפרספקטר

מספר הורדת . ליותאתמונות היפרספקטרב הפחתת ערוצי�ליי� ניתנת לניסוח כבעיית אמסנני� מולטיספקטר

. ממוצע שלה�הליי� סמוכי� על ידי אערוצי� היפרספקטר קבוצות של מבוצעת על ידי החלפת הערוצי�



לנוביס אמרחק מה ליי� מתקבלת על ידי מזעוראפקטרסהחלוקה האופטימלית של ערוצי� היפר

(Mahalanobis)  ב נועל ידי שמסומ�(מכסימלי�MXMN � minimizing Maximum of Mahalanobis 

Norms(   האופטימיזציה . קבועי� ערכי� ליי� על ידיאספקטרייצוג ערוצי� היפרהמתקבלות משגיאות השל

 Fast Hyperspectral הקרוייה גישהמבוצעת על ידי אלגורית� תכנות דינאמי בדומה לאלגורית� שהוצע ב

Feature Reduction (FFR) . לפי גישת ג�FFR  ליי� מצומצמי� על ידי החלפתאהיפרספקטרההערוצי� 

רוצי� הוא ה אופטימלית של העהקריטריו� לחלוק אול�. שלה�הערוצי� הסמוכי� בממוצע  קבוצות של

אנומליות ולכ� עלול לפגוע בייצוג� על ידי ל קריטריו� זה אינו רגיש, כמו שהזכרנו לעיל. אנרגיית שגיאת הייצוג

אנומליות ה תגור� להקטנת תרומ הייצוג של שגיאות MXMN מטיפוס מזעור. הערוצי� המצומצמי�

ישנ� אנומליות בתמונה כש ,מאפשר שימור מאפייני� אנומליי� בערוצי� המצומצמי� הדבר. אלהות אלשגי

, במקרה שתהלי  צמצו� הערוצי� מופעל על תמונה שאינה כוללת אנומליות. שעליה מבצעי� את התהלי 

  clutterחלקת הערוצי� הספקטראליי� שכוללי�הל עדיי� מביאההייצוג  של שגיאות MXMN מטיפוסמזעור 

הערוצי� האלה אינ� רצויי� למטרת גילויי אנומליות מכיוו� שה� עלולי� למס  . לתהלי  הרקעשיי  ה

תוצאות . של תהלי  הרקע מתבטא פחות  �clutterהתרומות עדינות של אנומליות בערוצי� אחרי� שבה� 

י האלגורית� הקלאסי לגילו – RXאלגורית�  תלמטרת צמצו� הערוצי� והפעל �SVDו MXMN ,FFR הרצת

מניב  �MXMNמראות ש ,על התמונות לאחר צמצו� הערוצי�, ליותאאנומליות בתמונות מולטיספקטר

בתחו�  על האות המקורי ללא צמצו� הערוצי� RXוא# מהפעלת  �SVDו �FFRתוצאות יותר טובות מ

 Receiver Operatingהביצועי� נמדדו על ידי בחינת עקומות . חשוב של ערכי גילוי שווא נמוכי�ה

Characteristic (ROC)  שלRX שהופעל על האות לאחר צמצו� הערוצי�.  

  


