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ABSTRACT

This paper presents a transrating (bit-rate reduction) algorithm
for H.264 intra-coded frames via requantization. Previous
works focused on adapting the input prediction modes to the
lower bit rate and hence performed requantization using a
one-pass algorithm. We propose a model-based algorithm for
uniform requantization of the transform coefficients in intra-
coded frames. The spatial prediction in such frames intro-
duces block dependencies. We suggest a novel statistical-
based closed-loop model for estimating the relation between
the rate and the requantization step that overcomes the de-
pendency problem. The performance of an overall transrat-
ing system for H.264 coded video, incorporating this work
for intra-coded frames and our previous work for inter-coded
frames is also examined.

Index Terms— Requantization, H.264, video coding

1. INTRODUCTION

H.264 is currently the state of the art video coding standard.
Its advanced coding features offer an improvement in the cod-
ing efficiency by a factor of about two over MPEG-2 [1], at
the expense of higher complexity. As the choices of quan-
tization step-size and coding modes are dependent, the rate
control becomes computationally expensive.

Transrating of coded video is the process of reducing the
bit rate of a high-quality pre-encoded video to match user-
specific bit rate requirements. Requantization of the trans-
form coefficients is a common approach for video transrating.
However, previous works on transrating in H.264 [2, 3, 4] fo-
cus on changing the input coding decisions (intra prediction
modes and motion) rather on the rate control, and the requan-
tization is addressed by a simple one-pass algorithm [2]. In
our previous work [5], we suggested a model-based optimal
requantization for H.264 inter-coded frames (P-frames).

In this paper, we focus on the requantization of H.264
intra-coded frames (I-frames). As the spatial prediction in I-
frames introduces dependencies between neighboring resid-
ual blocks, full decoding is required to avoid a drift error.
Moreover, due to these dependencies, the residual coefficients

to be requantized are not available in advance, when the re-
quantization step-size should be selected. We propose to se-
lect a uniform requantization step, using ρ domain models,
where ρ is the fraction of zero quantized coefficients [6]. Sec-
tion 2 reviews the open-loop approach for requantization step-
size determination. Section 3 proposes a closed-loop statisti-
cal estimator for the relation between ρ and the requantiza-
tion step-size. It overcomes the block dependency problem
by modeling the correction signal of the requantized residual.

2. OPEN-LOOP APPROACH FOR
REQUANTIZATION STEP-SIZE SELECTION

Different models in the literature suggest different relations
for rate vs. quantization step size. In [6], a robust linear
rate−ρ model is suggested: R(ρ) = θ ·(1−ρ), where ρ is the
fraction of zero coefficients among the quantized transformed
coefficients in a frame. This model is used to set a uniform
requantization step-size for an I-frame. The model parameter
θ is estimated using the input rate-ρ point, (ρin, Rin) and an
anchor point at (1, 0), see Fig. 1(a). Given the target rate for
that frame, Rtarget, we extract the expected fraction of zeros
by ρtarget = 1 − Rtarget/θ. The next step is to estimate the
relation between ρ and the requantization step-size Q2 as a
ρ = f(Q2) lookup table, to be discussed in section 3. Then,
the target step is found by Q2,target = f−1(ρtarget).
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Fig. 1. Uniform requantization using a rate−ρ model. (a): rate−ρ
relation. (b): ρ − Q2 relation, where black staircase: open-loop
estimator; blue: closed-loop estimator.

Due to spatial prediction, requantization of the prediction
residual at one block changes the residual in neighboring ca-



sual blocks. To avoid a drift error, I-frames are fully decoded
to pictures in the pixel domain, and then encoded. But, es-
timating the ρ − Q2 relation this way requires multiple en-
coding of the picture at different Q2 steps, which is not prac-
tical. Since the requantization is performed in the transform
domain, we seek for a transform domain ρ(Q2) estimator.

The simplest ρ−Q2 estimator is the open-loop estimator,
evaluated from the output of the scheme depicted in Fig. 2.
The input quantized indices, Zin, are dequantized using the
input quantization step size, Q1, to yield the residual trans-
form coefficients Y . When Y is requantized, using a quan-
tizer with step size Q2 and deadzone dz, the output indices
are derived by Zout = sign(Y ) · b |Y |Q2

+ dzc. Therefore, all
transform coefficients that fall in the interval [−t(Q2), t(Q2)]
are requantized to zero, where t(Q2) = (1− dz)Q2 = 2

3Q2.
This process is repeated for each Q2 step-size, to derive the
ρ−Q2 relation.
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Fig. 2. Open-loop requantization scheme.

This open-loop ρ(Q2) estimator cannot track the changes
in the residual and therefore it has two disadvantages. One is
that it is not accurate enough at moderate to coarse requanti-
zation, where large changes in residual intensity cause a large
drift error. The other is its staircase characteristic. Given a
target ρ value, the estimator may encounter an uncertainty as
to which requantization step-size to choose, see Fig. 1(b).

3. CLOSED-LOOP ESTIMATION OF ρ(Q2)

As noted earlier, since the residual coefficients to be requan-
tized are not available in advance of setting Q2, the estimation
of ρ(Q2) is not trivial and requires special attention.

3.1. Closed-loop residual modeling architecture

We propose to estimate ρ(Q2) using a closed-loop residual
modeling architecture in the transform domain, as depicted in
Fig. 3. The closed-loop estimator models the required cor-
rection of the requantized residual coefficients, thereby over-
coming the dependency problem. Instead of evaluating ρ(Q2)
based on Y , it estimates how many corrected transform coeffi-
cients W fall in the deadzone interval. The corrected residual
is defined as W , Y − C, where C is the correction signal.
This signal is formed by feeding the transrating error ε, into
the transform-domain spatial-predictor. Due to some non-
linearities (rounding and clipping operations), the transrating
error ε cannot be defined simply as the requantization error.
Rather, it is defined as the transform of the difference between
the decoded input and output images, where the output im-
age is decoded using the requantized indices Zout = Q2(W ).

This scheme is merely used in order to model the distribution
of W , from which ρ is estimated. During actual transrating,
we do not follow this scheme that calculates exactly the out-
put Zout for each step Q2.
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Fig. 3. A closed-loop modeling scheme for estimating ρ(Q2). The
transrating error ε is fed into the predictor to yield the correction
signal C. Then, ρ(Q2) is estimated based on W , Y − C.

In order to evaluate ρ(Q2) from W , we first characterize
the distributions of Y and C, and then find how W is dis-
tributed. Since the input transform coefficients Y have values
that are multiples of the input quantization step-size Q1, their
distribution is discrete, and given as:

pY (y) =
M∑

m=−M

pm · δ(y −mQ1) (1)

where δ(y) is the impulse fucntion and {pm}M
m=−M are ex-

tracted from the input coefficients.
The correction signal C is modeled as a continuous distri-

bution. Since this signal can not be explicitly extracted from
the input stream, most of the effort is aimed at its characteri-
zation (section 3.2) and its statistical modeling (section 3.3).
Once the distribution of C is obtained, the next step is to find
the distribution of W = Y − C = Y + (−C). A schematic
illustration of the distribution of W is depicted in Fig. 4. As
we cannot assume that C is independent of Y , we use the joint
probability of (Y,−C): pY,−C(y, c) = p−C|Y (c|y) ·pY (y) to
calculate the cumulative distribution of W :

Pr.(W ≤ w0) =
∫ ∞

−∞

∫ w0−y

−∞
pY,−C(y, c)dcdy = (2)

=
M∑

m=−M

pm ·
∫ w0−mQ1

−∞
p−C|Y (c|Y = mQ1)dc

Therefore, the closed-loop ρ(Q2) evaluation is given by:

ρ(Q2) = Pr.(|W | ≤ t(Q2)) =
M∑

m=−M

pm · φ(m|Y ) (3)

where

φ(m|Y ) =
∫ t(Q2)−mQ1

−t(Q2)−mQ1

p−C|Y (c|Y = mQ1)dc (4)
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Fig. 4. Schematic illustration of the probability distribution of W .

Lacking a known model for the correlation between Y and
C, we are left with the unfeasible task of modeling φ(m|Y ),
for every possible value of Y (corresponding to
−M ≤ m ≤ M ). From observations, we found that a rea-
sonable approximation can be obtained by distinguishing be-
tween zero and non-zero inputs. That is, to model φ(0|Y = 0)
and φ(m|Y 6= 0) separately. In that case, the model in (5)
for ρ(Q2) is simpler, as there are two possible input depen-
dencies instead of 2M + 1. To complete the evaluation of
ρ(Q2), the following two subsections address the evaluation
of φ(0|Y = 0) and φ(m|Y 6= 0), by characterizing the cor-
rection signal C and modeling its distribution.

ρ(Q2) = p0 · φ(0|Y = 0) +
M∑

m=−M,m 6=0

pm · φ(m|Y 6= 0)

(5)

3.2. Correction signal characterization

To ease its statistical modeling, the correction signal C is par-
titioned into homogenous data groups that share the same
characteristics, according to three partitioning criterions.

The first partition of the data is according to its spatial
prediction modes that spectrally shape the white error ε.

The second partition distinguishes the affected coefficients
from the unaffected coefficients. Affected coefficients are
those coefficients that are changed as a result of spatial predic-
tion; whereas unaffected coefficients have a zero correction
signal. For example, DC prediction affects just one transform
coefficient out of a 4x4 ICT block. This classification is pre-
defined for each prediction mode by an ”affected coefficients
mask” whose shape is characterized by the prediction mode
type, see Fig. 5. The advantage of the affected/unaffected co-
efficients classification is that the ρ(Q2) relation for the un-
affected coefficients can be evaluated as in the simple case of
an open-loop estimator, thereby reducing the complexity of
evaluating the ρ−Q2 relation.

The third partition distinguishes between the corrections
applied to zero/non-zero input coefficients, following the ap-
proximation we made in section 3.1. In the next subsection,
a probability distribution is fitted to each data group allowing
evaluation of its ρ−Q2 relation according to (5).
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Fig. 5. Affected/unaffected transform coefficients map denoted over
the ICT basis images. The classification is done according to the
prediction modes. Affected coefficients are encircled in red, and
their fraction is denoted in parenthesis.

3.3. Correction signal modeling using a Γ distribution

To evaluate (5) for each data group, a statistical description of
φ(0|Y = 0) and φ(m|Y 6= 0) is required. To study the issue,
we evaluated the correction signal C offline, according to the
scheme of Fig. 3, and performed the partitioning described
in subsection 3.2. We then found that the Γ distribution is
a good descriptor of each of the correction signal partitions.
The probability density function for the two-sided Γ distribu-
tion is defined as [7]:

pX(x; β) =
1

2
√

π

√
β

|x| · exp{−β|x|} (6)

where β > 0 is the scale parameter, whose decrease results in
a wider distribution. The Γ cumulative distribution function
is defined by (7), where Γ(a, 0.5) ,

∫ a

0
t−0.5exp(−t)dt.

Pr.(X ≤ x;β) =
1
2

+ sgn(x)
1

2
√

π
Γ(β|x|, 0.5) (7)

For each prediction mode, a ML estimator was applied
to find the scale parameter β for the affected correction co-
efficients, while distinguishing βC|Y =0 from βC|Y 6=0 for the
zero/non-zero input coefficients, respectively. Using (7) and
these estimated parameters, the functions φ(0|Y = 0) and
φ(m|Y 6= 0) take the form of (8), and ρ(Q2) can be evalu-
ated for each data-group by substituting (8) into (5). Then, all
data-groups ρ − Q2 relations are linearly weighted to obtain
the frame level relation.

φ(0|Y = 0) = Pr.(|C| ≤ t(Q2); βC|Y =0) (8)
φ(m|Y 6= 0) = Pr.(|C + mQ1| ≤ t(Q2); βC|Y 6=0)

In a real-time scenario, the scheme of Fig. 3 is not im-
plemented, therefore the correction signal C is not available
and the ML estimator for β cannot be used. Observations
show that the value of β monotonically decreases with Q2,
as coarser requantization generates a transrating error ε with
a wider dynamic range (here, measured by ||ε||1), which in
turn generates a correction signal with a wider dynamic range
when fed back to the predictor. However, the great variability
in the β −Q2 relation over different data-groups complicates
its modeling. Therefore, we suggest to decompose this rela-
tion into two separate models: β vs. ||ε||1 and ||ε||1 vs. Q2,



as illustrated in Fig. 6. The β vs. ||ε||1 relation is modeled by
β = β0/||ε||1. When the transrating error is zero, a correc-
tion signal is not generated, hence β →∞. The ||ε||1 vs. Q2

relation was fitted using the monotonically increasing func-
tion ||ε||1 = a1 ·(ln(Q2))2 +a2, whose parameters a1, a2 are
functions of the input ”initial conditions”, Q1 and ||Y ||2.
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Fig. 6. Decomposition of the β vs. Q2 relation, using ||ε||1.

4. RESULTS

Fig. 7 depicts an example for a ρ − Q2 relation at the frame
level. The open-loop estimator is biased as compared to the
true data relation and as noted earlier has a staircase charac-
teristic. The proposed estimators accurately follow the same
trend as the data and their average relative error is less than
1.7%. We examined the average rate deviation from the tar-
get, where the uniform requantization step-size was selected
using different ρ − Q2 estimators, as listed in Table 1. The
true data ρ−Q2 relation was used as a yardstick for the per-
formance, as it cannot be evaluated in a real-time scenario.
It shows some small rate estimation error, mainly because of
the rate − ρ model’s inaccuracy. Due to the inherent bias
of the open-loop estimator, it tends to choose finer steps than
required, at the cost of an increased rate. Therefore, it has a
large rate estimation error. The proposed ρ − Q2 estimator
outperforms the open-loop estimator, providing a smaller rate
estimation error, close to the estimation from the true data.

We incorporated the proposed uniform requantization for
I-frames with the non-uniform optimal requantization sug-
gested in [5] for P-frames. As compared to re-encoding (cas-
caded decoder-encoder), the proposed system reduces the com-
putational complexity by a factor of about 4, at a maximal cost
of 1.4[dB] in PSNR. In comparison with a simple one-pass
requantization, the proposed algorithm achieves better perfor-
mance (PSNR gain of up to 1.6[dB]), at the cost of twice the
complexity.

5. CONCLUSION

This paper suggests to solve the problem of H.264 I-frames
requantizaton. The spatial prediction in I-frames introduces
block dependencies, so that the residual coefficients to be re-
quantized are not available in advance, when the requantiza-
tion step-size should be selected. A uniform requantization
step-size is chosen using the rate − ρ model. To this end, a
novel closed-loop statistical estimator for the ρ−Q2 relation
was developed. Its average rate deviation from the target is
3%, as compared to 10.8% average deviation, obtained using
an open-loop ρ−Q2 estimator.
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Fig. 7. Frame level ρ − Q2 relation (from the ’flower garden’ se-
quence). Blue x: open-loop estimator. Black asterisk: data. Red
circles: proposed estimator (offline β evaluation using ML). Green
circles: proposed estimator (using estimated β values).

Table 1. Mean relative rate deviation from the target, measured for
the ’flower garden’, ’football’ and ’mobile & calendar’ sequences,
initially encoded at 2[Mbps], at intra transrating factors of 1.5 to 3.

ρ−Q2 estimator Mean relative rate deviation [%]
True data 2.5

Open-loop 10.8
Proposed (closed-loop) 3.0

6. REFERENCES

[1] I.E.G. Richardson, H.264 and MPEG-4 Video Compression,
John Wiley, 2003.

[2] P. Zhang, Q.M. Huang, and W. Gao, “Key techniques of bit rate
reduction for H.264 streams,” in Lecture Notes in Computer
Science - PCM 2004, pp. 985–992. Springer, Oct. 2004.

[3] H.M. Nam et al., “Low complexity h.264 transcoder for bi-
trate reduction,” in International Symposium on Communica-
tions and Information Technologies, ISCIT, Bangkok, Thailand,
Oct. 2006, pp. 679–682.

[4] D. Lefol, D. Bull, and N. Canagarajah, “An efficient complexity-
scalable video transcoder with mode refinement,” Signal Pro-
cessing: Image Communications, vol. 22, pp. 421–433, Apr.
2007.

[5] N. Hait and D. Malah, “Towards model-based transrating of
H.264 coded video,” in IEEE 24th Convention of Electrical
and Electronics Engineers in Israel, Eilat, Israel, Nov. 2006, pp.
133–137.

[6] Z. He and S.K. Mitra, “A linear source model and a unified rate
control algorithm for DCT video coding,” IEEE transactions on
Circuits and Systems for Video Technology, vol. 12, no. 11, pp.
970–982, Nov. 2002.

[7] A. Papoulis, Probability, random variables, and stochastic pro-
cesses, McGraw-Hill, 2nd edition, 1986.


