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1. [Intreduction

Audio watermarking systems for protecting ownership rights may need to withstand attacks that include passing the
watermarked audio signal through nonlinear systems, with or without memory [1]. In the considered verification scheme,
ownership verification requires the identification of the attacking system parameters, While linear filter parameters are
relatively casy to identify by applying LMS type adaptive algorithms, the identification of the parameters of an attack
system that includes a nonlinear component is usually difficult. A common approach for handling nonlinearities is to
perform a Volterra series expansion [2]). The method can be considered as a generalization of linear filtering theory, by
modeling the system as a linear system followed by a memoryless nonlinearity, However, the number of parameters
involved in the series expansion, describing the input-output relationship, grows polynomially with the nonlinearity order.
This may well be prohibitive in texms of computations, convergence time, and sometimes ¢ven in terms of the large amount
of input/output data samples needed for the identification process (particularly when the system varies in time). [4]
describes the FPET (Fixed Pole Expansion Technique) appreach, which employs orthogonal basis function derived from
fixed pole locations to expand the Volterra kernels and reduce the number of estimated parameters.

In this work we present an approach by which the memoryless nonlinearity is modeled by a piecewise approximation of the
nonlinear function using a relatively small number of linear segments. It is shown that the adaptive LMS framework can be
used to estimate the segments slopes. Furthermore, it is shown that the LMS-based identification processes of both the
linear system coefficients (modeled as an FIR filter) and the memoryless nonlinearity parameters (slopes) can be combined
into a simple and efficient sinple process, In addition to its ability to handle a cascade of linear (L) and nonlinear (N)
components (both L-N and N-L cascade arrangements) this approach can be extended it in a modular way to handle other
cascade arrangements like N-L-N, L-N-L, N-L-N-L, etc,

In the next section the Volterra series expansion is introduced and its limitations are discussed. Next, in section 3, we
described the proposed solution, which is followed by conclusions in the last section.

2. The Volterra series expansion

A Volterra-based nonlinear adaptive filter consists of a linear filter that is followed by a memoryless non-lincarity, The
Volterra series provides a method for describing the input-output relationship for a nonlinear device with memory. Let x,
denote the input signal samples. Then, we may combine these input samples to get the following discrete Volterra kernels:

Hy = zero-order (dc) term; Hi[x,]}= first-order (linear) term = Z h,. <X

Hj[x,}= second-order (quadratic) term = ZZh,j *X; X ; Hi[x,)= third-order (cubic) term =ZZZ hijt XXX,
i Pk

and so on - for higher order terms. The filter parameters, i.e., the /i coefficients, are determined analytically. Therefore, we

can separate the nonlinear adaptive filter into two parts, as follows:

Part 1: Expansion of the lincar space into a nonlinear space according to the selected order of the Volterra term. This part

USES X(,X],...,X, t0 built a larger set of signals: u,uy,...,u, where ¢g>n. For example, the vector expansion for a (3,2) system,

i.e., a system of order 2 and memory length 3, has the form: z=[1, Xo, X1, X2, X0's Xo¥1, X6¥2, X¥1X0, X%, X1X2, XaXo, X3%), X2 1.

Part II: A linear FIR filter — this filter uses the elements of u as samples for creating the required signal, resulting in an

adaptive filtering scheme as shown in Fig. 1, with di{) denoting the reference signal and e(n) - the error signal.

x{n} Non-lincar w{n) | Lincar cin)
——| Volterra state adaptive ‘—‘KD
cxpandor FIR fiter 1‘1\
di{n)
Fig. 1

1t is seen that a Volterra series of order 2 requires N+N? coefficients, compared to N coefficients only for a first order
expansion. Thus, the expansion complexity increases polynomially with the Volterra series order. Moreover, when dealing
with attacks on a watermarking system, a filter of high order (N in the hundreds) followed by a soft nonlinearity may be
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used. Thus, a Volterra series order of two will result in an expansion having thousands of coefficients. One should note that
besides complexity, a crucial issue could then be the prohibitive amount of data (input samples) needed for the estimation.
3. Proposed solution {x) a8 function of

3.1. tdeniification of a memoryless nonlinear system !
N —~&~ Approximated funcion
Problem formulation: Given: ¥, = £ (x,) 5 {X.7.}.,» %€[0l)y o = 7
where f{x;) is a non-linear function and f{0)=0. //
L =
Goal: Piecewise regression analysis for y=f{x) using {x,. WY }H . 2 05 Y
Method: Find a piecewise approximation for f{x) as described in Fig. 2. 0z . ’
Let L be the number of segments, of length £, each. ‘l‘_(,,--«—‘
. ",./“

Thus, with x&[0,1] = L-£=1 e |
Requirement: Continnity between segments. x -
For each segment, L;, we define a corresponding slope, 5,. . The approximation, f(x) , is therefore: Fig.2

£(x) 0gxs¢ Fi(xy=4,-x

5 f(z) Isxs2.¢ WHEIC (yed, (x=t)4 d, ¢

ORI e

fo(x) S (L-1)esSxs Lt j,(1)=ﬁj.(x_(i_1).[)+(.'Z-I i, (6o = 0)

k=l

¥ ayL . N .
Now, we can redefine the problem: Using {xi, yJH s find {ai}m that minimize the approximation error according to a

specific criterion.

Method A: Identification using an LS error criterion

In this method, the estimation of {&,}; is based on. using all the input-output pairs in the /-th segment:
{(x, y)},. = {(x, y): (i - l)-f Sx< i-ﬁ}. The idea is (o calculate the estimated slopes {51,-}‘.L=| sequentially, starting with
the first (i=1), Thus, the calculation of &4 uses the already computed ﬁ3, &2 ,and &1 . The s¢lected error criterion, for the

i-th sepment is D= ¥ [5.,(,_(;_1),[)4, ;zf ‘5‘_},)- « Hence, by requiring:
(xordef{r.v)}, k-1

an. ( . . -1 ) )
=2 a(x-(i-1))+e.Fa, -yl (x-(i-1)2)=09,
23, (el (= ) kz—l : ( )
il
[y—E~Z£k)-(x~(i—l)-€)
. - (v ey, k=1
one obtains: A, =

(x-(i-1)-£)
(xy)e{(x.¥)},
Method B: Identification using an adaptive system
In this method the signal samples are fed into an LMS (or a normalized LMS: NLMS) identification system, as shown in
Fig. 3.

Fig, 3

yin)

The error criterion is: & = E{e(n)z} = E{[y (n) Hj;(x) (x(n)):r}, where I(x) denotes the segment number that

contains incoming sample x, i.e., ; (x)=J if (j-1)esxx<j-¢-
The resulting update equation for each incoming sample is {3}:
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(x()-(1(=(m)-1)-¢) =1 (x(n))
dJ"”:d;.‘+A-e(n)- ¢ j<](x(n))

0 otherwise

where A is a constant [actor (for LMS), or is varied to track the input signal level (for NLMS).
3.2 Hdentification of a noniinear system with memory

To identify a nonlinear system with memory, constructed as a combination of a linear filter followed by a nonlinearity, we
propose to combine the conventional LMS (or NLMS) adaptive filtering methed with method B above, as shown in Fig, 4.

yd 7

x{n) Ii.ncnr z{n w(n)j\
The resulting update equations can be shown to be [3]: filter =+ - c(n)
L. For the linear filter coefficients: e
k,(n)=h, (n—1)+A‘e(n)-x(n—k)-ﬁ,(z(n)); k=0,1..,N-1
2. For the memoryless nonlinearity coefficients (slopes): Fig. 4
z(n)—(](z(n))—l)-i’ if j= I(z(n))
a,(ny=a,(n-1)+A-e(n)-1¢ if j<I(z(n))
0 otherwise

3.3 Hdentification o f other nonlinear systems with memory )

The above approach can easily be extended to other nonlinear systems with memory that are composed of a cascade of a
linear filter and a memoryless non-linearity. For example, an N-L combination, which means that the memoryless
nonlinearity precedes the linear filter (while above we considered an L-N combination) , as well as L-N-L and N-L-N, and
o0 on. For example, the update equations for an N-L system are [3]:

1. For the linear filter coefficients:

B =k +A-e(n)-z(n-j), k=0,),...N~1
2. For the memoryless nonlinearity coefficients:
x(n=k)-(I(x(n=k))-1)-£ if j=I(x(n-k))
Al .
at=a+A-e(n) Y h(n)-¢ if j<I(x(n-k))
= 0 otherwise

4. Conclusions

The proposed identification method has been examined in [3] for an audio watermarking system by simulating a wide range
of attacks of the above kind (as well as other attacks - like additive noise) and proved to dramatically increase the robustness
of the verification system. Method B is preferable over method A (LS) since it is fully adaptive and can also handle
nonlinear systems that vary slowly in time. The proposed methad can be applied to a variety of combinations of filters and
nolinearities, like N-L-N / N-L / L-N and can be useful also in modeling and estimating a variety of communication
channels that contain a memoryless nonlinearity either at the transmitting end or receiving end or in both,
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