Transrating of Coded Video Signals

via Optimized Requantization

Michael Lavrentiev



TRANSRATING OF CODED VIDEO SIGNALS

VIA OPTIMIZED REQUANTIZATION

RESEARCH THESIS

Submitted in Partial Fulfillment of the Requirements
For the Degree of Master of Science

in Electrical Engineering

Michael Lavrentiev

SUBMITTED TO THE SENATE OF THE TECHNION — ISRAEL INSTITUTE OF TECHNOLOGY
IYAR, 5764 HAIFA APRIL, 2004



The Research Thesis was done under the supervision of
Prof. David Malah in the department of Electrical Engineering.

It was supported in part by STRIMM consortium under the
MAGNET program of the Ministry of Trade and Industry via the
Samuel Neaman Institute.

The generous financial help of the Technion is gratefully acknowledged.

I would like to convey my deepest gratitude to Prof. David Malah for
his extremely devoted guidance and support throughout the research.

I would like to thank all the staff of Signal and Image Processing Lab
and especially to Nimrod Peleg, Itai Segall, Ziv Rabizanovich and Arik
Yavilevich for their help in developing video analysis tool. T am also
thankfull to Optibase and particularly to Ilan Daniel, for their help in
carrying out the perceptual evaluation tests on their Perceptual Quality
Assesment system.



Contents

1 Introduction 5
1.1 Transrating goals . . . . . . . . . ... oL o 6
1.2 Transrating approaches . . . . . . . . . . . ... ... L. 6

1.2.1 DCT coefficients modification . . . . . . ... ... ... ... 7
1.2.2  Open-loop vs. closed-loop transrating . . . . . . .. ... ... 9
1.2.3 HVS-based Adaptive Transrating . . . . .. ... .. .. ... 10
1.24 Ratecontrol . . . . . . .. .. 11
1.2.5  Relation between reconstruction error and bit-rate . . . . . . . 12
1.3 Organization of the Thesis . . . . . . .. .. ... .. ... ... ... 12

2 Reference Transrating scheme 15
2.1 Transrating architectures . . . . . . . . . .. ... oL 15
2.2 Dynamic Rate-Control for Transrating . . . . . ... ... ... ... 19
2.3 Simple complexity-based transrating . . . . ... ... ... .. ... 23
2.4  Experimental results . . . . ... ..o 25

3 Requantization based on DCT coefficients distribution 29
3.1 Cascading-error problem . . . . . . .. ... ..o 29
3.2 MAP and MSE requantization . . . . . . .. .. ... ... ... 33
3.3 Estimation of pdf parameters . . . . . . . ... ... ... ... ... 36
3.4 PDF Estimation based on Linear Interpolation . . . . . . .. ... .. 39
3.5 Experimental results . . . . . ... .00 40

4 Requantization via Lagrangian optimization 45
4.1 MPEG-2 AC coefficients encoding procedure . . . . . . . .. .. ... 46
4.2 Lagrangian optimization . . . . . . . .. ... .. ... .. 46

4.3 Experimental results . . . . . . .. ... L 50

il



v

5 Extended Lagrangian optimization

5.1 Quantized DCT indices modification . . . ... . . ..
5.2 Trellis-based implementation . . . . . . .. .. .. ...
5.3 Complexity Considerations . . . . . . . ... ... ...

5.3.1 Complexity Reduction Means . . . . .. .. ..

5.4 Experimental results . . . .. ... ... ... ... ..

6 HVS-based segmentation and tracking

6.1 Existing Compressed Domain

Segmentation Methods . . . . . . ... ... ... ..
6.1.1 Methods based on local properties . . . . . . ..
6.1.2 Object oriented Methods . . . . . . . ... ...
6.2 Proposed Scheme . . . . ... ... ... ........
6.2.1 AC-based segmentation . . . . .. .. ... ...
6.2.2 Tracking . . . . ... ... .. L.
6.2.3 Perceptual weighting . . . . .. ... ... ...

6.3 Simulation results . . . . . . .. ...

7 Conclusions and Future Directions

7.1 Summary and Conclusions . . . . . .. ... ... ...

7.2 Future Directions . . . . . . . . . . . .. ... .. ...

A Results for MAP/MSE
B Results for Lagrangian optimization
C Results for Extended Lagrangian optimization

Bibliography

CONTENTS

103

110

117



List of Tables

2.1 Streams used for comparison . . . . . ... ...

5.1 Optimal quantized vector change for different values of A . . . . . . .

5.2  Complexity comparison



2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3

5.1
5.2
5.3
5.4
9.5

6.1
6.2

List of Figures

Cascaded Pixel-domain Transrating scheme. . . . . . . . .. ... .. 16
Open-loop DCT-domain Transrating scheme. . . . . . . . ... .. .. 17
Fast Pixel-domain Transrating scheme. . . . . . . . .. .. ... ... 18
DCT-domain Transrating scheme. . . . . . . ... .. ... ... ... 18
Simple transrating (a) . . . . ... Lo 27
Simple transrating (b) . . . ... L 28
Requantization error . . . . . . . . . ... 30
Avoiding cascading error . . . . .. ... 31
MAP requantization . . . . . .. ... ... ... 33
MSE requantization . . . . . . . .. ..o 35
Quantizer types . . . . . .. 36
MSE simple transcoding (a) . . . . . .. .. ... 42
MAP simple transcoding (a) . . . . . ... ... L 43
MAP vs. MSE simple transcoding (a) . . . . . . ... ... ... ... 44
Constraints of Lagrangian optimization . . . . . . . .. . .. ... .. 48
Lagrangian vs. Simple transcoding (a) . . . . . . ... ... ... .. 52
Lagrangian vs. Simple transcoding (b) . . . . .. ... ... .. ... 53
Block-level Trellis . . . . . . . . ... .. . 58
Macroblock-level Trellis . . . . . . . . . . ... ... ... 60
VLC table . . . . . . . . . 62
Best MSE transrating for all methods(a) . . . . ... ... ... ... 67
Best MSE transrating for all methods(b) . . . . . ... ... .. ... 68
[-frame segmentation procedure . . . . . . ... ... 80
Block tracking over time . . . . .. .. ... Lo 82

vi



LIST OF FIGURES vii

6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1

Al
A2
A3
A4
A5
A6

B.1
B.2
B.3
B.4
B.5
B.6

C.1
C.2
C.3
C4
C.5
C.6

PQAresults (a) . . . . . .. . 86
PQAresults (b) . . . . . .. 87
PQA results (¢) . . . . . . 87
Subjective Quality Comparison (a) . . . . . .. ... ... ... ... 89
Subjective Quality Comparison (b) . . . . ... ... ... ... ... 89
Subjective Quality Comparison (¢) . . . . . . . . ... ... ... .. 90
Subjective Quality Comparison (d) . . . .. ... ... ... ... .. 90
Proposed Transrating scheme . . . . . ... ... ... ... ..... 92
MSE simple transcoding (b) . . . . .. ... oo oL 97
MSE simple transcoding (¢) . . . . . .. .. .. L 98
MAP simple transcoding (b) . . . . . .. . ... 99
MAP simple transcoding (¢) . . . . . . ... ... 100
MAP vs. MSE simple transcoding (b) . . . . . .. ... ... ... .. 101
MAP vs. MSE simple transcoding (¢) . . . . . . . ... ... ... .. 102
MSE Lagrangian transcoding (a) . . . . . . . ... ... ... .... 104
MSE Lagrangian transcoding (b) . . . . . . ... ... ... ... .. 105
MSE Lagrangian transcoding (¢) . . . . .. ... ... ... .. ... 106
MAP Lagrangian transcoding (a) . . . . . . . . .. ... ... .... 107
MAP Lagrangian transcoding (b) . . . . .. .. ... ... ... ... 108
MAP Lagrangian transcoding (¢) . . . . . . .. ... ... ... ... 109
Extended Lagrangian transcoding (a) . . . . . . . .. ... ... ... 111
Extended Lagrangian transcoding (b) . . . . .. . ... ... ... .. 112
Extended Lagrangian transcoding (¢) . . . . . . . .. ... ... ... 113
Sub-optimal Extended Lagrangian transcoding (a) . . . . . . . . . .. 114
Sub-optimal Extended Lagrangian transcoding (b) . . . . . . . . . .. 115

Sub-optimal Extended Lagrangian transcoding (c) . . . . .. . . . .. 116



Abstract

Multimedia content provides rich information to consumers, but also poses challenging
problems of management, delivery, access, and retrieval because of data volume and
complexity. Digital video needs to be compressed for the purpose of efficient storage
and transmission. The common solution is to produce or retrieve from storage a single
high quality bitstream, and to match it to each end-user bandwidth constraints by

transrating.

The goal of transrating is to reduce the bit-rate of the encoded stream, while
preserving the highest possible quality of the rate-reduced video. Many transrating
techniques have been developed recently. The naive solution of simple cascading of
decoder and encoder is put aside because of its high computational complexity, which
is mainly due to the need to re-estimate motion parameters, and quality degrada-
tion, caused by imprecise DCT/IDCT matching, additional quantization errors and
improper motion estimation in the second generation encoder. Motion estimation
errors are caused by working on lossy compressed video instead of the original source.
Most of the transrating schemes are operating in the DCT domain and utilize the de-
cisions made by the initial encoder to improve the output video quality. Lagrangian
optimization of quantization step-size of each Macro-block has provided the best

quality in terms of PSNR over previously developed requantization schemes.

In this research work, different MPEG-2 transrating approaches, based on requan-
tization, are implemented and tested. Lagrangian optimization of the quantization
step-size of each Macro-block is compared with a ”simple” complexity-based transrat-
ing scheme; with cascaded decoding and encoding, and with the direct encoding of the
original video sequence at the desired final bit-rate, using a standard TM5 encoder.
To reduce requantization errors, MSE and MAP requantization decision approaches

are added to the previously developed algorithms.

A novel extension of the Lagrangian optimization method, which optimally mod-

ifies quantized DCT indices, is developed and compared to existing methods. The
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proposed method outperforms all currently known requantization-based transrating
approaches. To reduce the complexity of the proposed algorithm, we provide a low
complexity trellis-based optimization scheme, and discuss other complexity reduction
means as well.

Finally, we propose a simple approach for taking into consideration Human Visual
System properties in the transrating process. The input pictures are segmented into
areas of textures, smooth areas and boundaries, and the distortion of each block is
weighted according to its type. This way the Lagrangian optimization allocates bits
to the different segments according to their perceptual importance. Perceptual obser-
vations, as well as measurements made by Tektronix’s Perceptual Quality Assessment

(PQA) tool, show an improvement of output video quality by the proposed schemes.
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Chapter 1

Introduction

Multimedia telecommunication services use a great deal of video material, compressed
in different formats for storage and transmission. As of today, MPEG-2 is the main
standard for video coding. The flexibility of this standard enables its use in a large
variety of applications, including video on demand, digital TV, distance learning,
and many others. In coding of video data for transmission, the channel character-
istics should be provided to the encoder. Yet, the network today consists of a wide
set of heterogeneous interconnected networks. So, transmission parameters, such as
supported video formats and available bandwidth, may vary greatly in time and from
one end-point to another. This is especially pronounced when the same bit- stream
is distributed to several decoders. One of the most common solutions is to produce
a single high quality encoded bit stream, which can be either produced by an on-
line encoder or retrieved from storage media, and to adapt it to current demands by

transrating.

Transcoding, in general, is the process of converting a compressed video format

into another compressed format at a possibly different rate. Since our research aims
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at transrating to the same video format, with particular emphasis on MPEG-2, we

limit our discussion here to this case, i.e., to what is known as transrating.

1.1 Transrating goals

Transrating to the same video format is usually done in order to reduce the bit-rate of
the encoded stream, while preserving the highest possible quality of the rate-reduced
video. This goal can be set as to achieve the same subjective quality in the entire
frame or mostly in regions that can be defined as more informative.

If we are talking about simultaneous transrating of several or many channels that
have to be transmitted over the same Constant Bit Rate (CBR) channel, the goal
can be set as to increase the mean quality of every sub-channel by taking advantage

of non-constant sub-channel usage by other programs [1].

1.2 Transrating approaches

For a specific bit-stream, bit-rate reduction can be achieved by:

1. Frame-rate reduction [2]. Video is usually encoded using temporal prediction
techniques, so that not all types of frames can have their rates reduced with-
out introducing additional errors in other frames. The problems of prediction
re-estimation and total error minimization over all frames have to be taken
into account.However, if talking about B-frames dropping only, no motion re-

estimation problem appear.

2. Requantization (increasing quantization step) or/and by discarding Discrete

Cosine Transform (DCT) coefficients [3, 4, 5, 6, 7, 8, 9, 10]. This issue will be
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discussed in detail in the sequel.

3. Spatial resolution reduction using frame size rescaling (via decimation) [11, 12,
13]. Spatial resolution reduction can be applied in the DCT domain. Still,

prediction re-estimation and error propagation are to be faced.

4. Some other means like picture cropping [14]. If one can define the importance
of each part of the image, picture cropping that leaves the most important parts
with total bit-rate under a given constraint can be provided. However, these
methods need side information about different parts of the video sequence and

their relative importance.

In this work we consider only methods of requantization or elimination of DCT coeffi-
cients without frame dropping, cropping or re-scaling. These methods can be applied
without any additional information about picture content and may be done without

prediction re-estimation, which is the most computational intensive operation.

1.2.1 DCT coefficients modification

Several transrating methods were recently discussed in the literature [3, 8, 15, 16,
17]. The straightforward approach is to fully decode the sequence, and to encode it
by the same encoder but with more severe constraints. However, this approach is
computational expensive, and also introduces requantization errors to the full extent.
This is because re-encoding depends on the initial encoding, but does not take it
into account in any way. Alternatively, using decisions made in the initial encoding
process may help in minimizing the computational load, as well in error reduction. As

discussed by [8],[15] transrating approaches can be coarsely classified by the methods
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used for building the transrating architectures. At the upper level they can be divided

as follows:

1. Re-encoding using the original motion vectors and coding decisions such as
Macro Block (MB) types, quantization weighting matrix, Group Of Pictures

(GOP) and slice (group of MBs) structures, motion vectors, etc. [3], [8].

2. Re-encoding using the original motion vectors information but new coding de-
cisions [8]. For example, in B-pictures the prediction type can be changed from
bi-directional to forward or backward only, with a proper update of the mo-
tion vectors, but the information about the original prediction area can help in

reducing the motion estimation complexity.

Bit-rate reduction in each of the above classes is achieved by one of the following

means:

1. Discarding high frequency DCT coefficients [8, 16, 17]. In this method, de-
coding up to the point (inclusive) of inverse Variable Length Coding (VLC) is
performed. At this point the transcoder has exact information about MB bit
allocation, and can easily calculate the bit-rate produced after it changes the
bit-stream. In the case of discarding of the last coefficients in zig-zag scan, the
transcoder can calculate the gain in bit-rate reduction by simply reducing the
length of the corresponding VLC words from the input MB bit-rate occupation.
In the case of dropping non-zero coefficients from the middle of the zig-zag
scan, the VLC lookup tables need to be used to find the change in bit-rate. The
rate-distortion optimization problem can be solved as described in the sequel
in section 4.2. One more aspect of this method is that the introduced distor-

tion is directly obtained from the discarded coefficients and hence simplifies the
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calculations.

2. Requantization by just increasing the quantization step [8]. This is actually
a more complex scheme than the previous one. After inverse VLC, the DCT
coefficients need to be recovered, using inverse quantization. Bit-rate reduction
is achieved by quantizing the coefficients with a larger quantizer step. The
assumption is that this will produce an error that is more equally distributed
among all DCT coefficients than by discarding some of them. In such a case

there is no easy way to predict the introduced error and the resulting bit-rate.

1.2.2 Open-loop vs. closed-loop transrating

When talking about transrating complexity and robustness, open-loop and closed-
loop transrating have to be considered. Open-loop transrating refers to transrating
of the bit-stream on a frame-by-frame basis, without taking into account the changes
done to previously transcoded frames. It is the fastest approach, but it leads to a
continuously decreasing quality in each Group Of Pictures (GOP), because in MPEG,
as well as in many others video encoding techniques, frame prediction is used, and
only frame residuals with prediction parameters are actually sent. As an alternative,
closed-loop transrating was proposed in [3], [9]. The idea is to add the information re-
moved by the transrating process in a given frame to the data of the next dependent
frames. Alternatively, it can be seen as compensating the error introduced during
transrating. The reduction in error propagation is of utmost importance because
differential encoding is used in most video encoding systems due to its efficiency.
However, there is the problem that the error propagation depends on motion predic-

tion. After intensive research in this area, it was found that if the only change one
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wants to introduce is in the quantization step, all the computations for closed-loop
error compensation can also be done in the DCT domain [10],[18]. Of course, this
bring up a whole new set of problems: How to produce motion compensation in the
DCT domain [11]; what to do with skipped MBs; what additional changes in bit
stream structure have to be done if a change in the GOP structure is necessary (for
example, if the rate control provides no bits for the transmission of particular frame).
But the most important one is how to obtain the best possible quality at the required

output bit-rate.

1.2.3 HVS-based Adaptive Transrating

The quantification of the introduced distortion is typically done via the Mean-Squared-
Error (MSE). The problem with the MSE metric is that it is not always a good
indicator of picture quality. There is a general agreement that the Human Visual
System (HVS) properties have to be taken into account while encoding/transrating
of video sequences. The idea behind adaptive requantization is that distortion in a
macroblock may be masked in proportion to macroblock activity. Current encoders
apply adaptive quantization through video sequence analysis accounting for the HVS
characteristics. A standard simulation model known as TM (”Video Codec Test
Model”) is described in [7]. In this model the quantization steps are obtained by
multiplying a base quantization step by a weighting factor determined during the
encoding process. Since, according to [7], MB activities cannot be obtained from the
bit-stream, unless it is fully decoded to recover the picture, it is necessary to estimate

appropriate requantization parameters from the coded information.
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1.2.4 Rate control

The main task of the transcoder is to achieve a certain bit-rate reduction. So, one of
the most important components of adaptive quantization schemes is a model for the
number of bits needed to code a macroblock for different values of the quantization
step. Such a model reduces the need to check all the possible quantization steps,
hence decreases the computational complexity of the transcoder.

The bit allocation and buffer control processes at the encoder produce base quan-
tization steps for each of the GOP, picture, slice and macroblock layers. Local quan-
tization step on slice or MB level and average quantization step over the picture,
obtained from coded data, well reflect the local activity and average activity, respec-
tively [1]. Methods proposed in [1],[19] are based on the idea of providing a ratio
between quantization steps at the different layers that are as close as possible to
those in the originally encoded stream. The idea of adaptive quantization is also used
in [20] to develop transrating in the DCT domain, based on analyzing a range of
macroblock coefficients values.

It is also a task of transcoding rate control to define the bit-allocation for every
frame in the GOP. Some algorithm also try to preserve the ratio of bit-allocations
provided by encoding procedure [21]. Other schemes are using the picture complexity,
which is defined as the product of the average quantizer step-size and the number
of bits generated, divided by some empirical constant [22, 23, 24, 25]. They provide
bit allocation according to frame complexities for the frames of the same type. The
results of those schemes have to be further changed to withstand the virtual buffer
constraints. In [26] an algorithm based on tracking virtual buffer fullness is proposed.
Those methods use the complexity instead of the variance of the block used by stan-

dard MPEG-2 TM5 rate control. The above frame-level rate-control schemes will be
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described in details in section 2.2.

1.2.5 Relation between reconstruction error and bit-rate

According to [16], the DCT coefficients of difference frames are assumed to have a
Laplacian pdf (eq. 3.3). It is shown in [3] that if one assumes that the encoding bit-
rate is close to the entropy H of the quantized coefficients, then the bit-rate obtained
after requantization, by applying de-quantization (with quantization step ¢;) and
quantization with a new quantization step, ¢, has a step-like decreasing behavior as
function of ¢a/q1. At the same time the Peak Signal to Noise Ratio (PSNR) for a
given "entropy step” is varying over the corresponding range of ¢»/q;, with a more
pronounced variation for small ratio values. Similar results were reported by [27] for
a Gaussian pdf. The work in [27] also provides the optimal requantization steps as
function of the initial quantization steps that achieve in simulations the best PSNR
for a given bit-rate reduction factor. In [27] no comparison with theoretical results
is provided. Those results were further extended by [23] for complexity reduction of
Lagrangian optimization in open-loop transrating. In [28] it is proposed to disable
requantization in the range up to twice the original quantization step, because it was
shown there that in this range there is the biggest degradation in PSNR, per bit. For
larger quantizer step sizes, the optimization problem was solved using a Lagrangian

optimization, as presented in section 4.2.

1.3 Organization of the Thesis

This thesis is organized as follows:

Chapter 2 covers existing transrating architectures, GOP-level bit-rate control
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schemes, and also presents a simple complexity-based transcoding scheme that we
are using as reference to compare the performance of more complex transrating ap-

proaches.

In chapter 3, MAP and MSE transrating methods based of DCT coefficients sta-
tistical properties are presented. Since in transrating, only quantized coefficients
information is available, there is a need to estimate the original distribution param-
eters. The most commonly used PDF model is the Laplacian distribution model.
However, a number of works show that it is not the best one in many cases. We
propose to estimate the PDF by linear interpolation of the quantized coefficients dis-
tribution. This solution can utilize all the MBs in the frame, even though they are
quantized by different quantization step-sizes, and is found to provide better results
for MAP transrating and in most of the cases for MSE transrating.

Lagrangian optimization of quantization step-sizes for transrating is presented in
chapter 4. This method provides the highest PSNR under given bit-rate constraints as
compared with other previously developed requantization algorithms. In this chapter
we also report the results obtained when we added to it the MSE and MAP estimation
methods introduced in chapter 3.

Chapter 5 proposes a novel extension of the Lagrangian optimization method by
applying modifications to the quantized DCT indices. The proposed method outper-
forms all currently known transrating approaches. To reduce the algorithm complex-
ity, we provide a low complexity trellis-based optimization scheme, and discuss other
complexity reduction means as well.

Chapter 6 overviews different methods for image segmentation. An extension of
the Lagrangian-based methods of chapters 4, 5, which takes HVS properties into

account during transrating, is proposed and tested.
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Chapter 7 concludes the thesis, summarizes results and discusses future research

directions for transrating.



Chapter 2

Reference Transrating scheme

When building a transrating system, it is necessary to decide on its architecture, and
to develop a rate-control scheme. The merit of the final system is judged on the basis
of how good it meets the rate constraints, and how good is the video quality of the
transrated stream. However, the system complexity is also an important issue when
choosing a particular solution. Section 2.1 presents existing transrating architectures.
In section 2.2 different rate control schemes are described. In section 2.3 we propose a
simple complexity-based transrating scheme that will be used as a reference, to which

more advanced methods will be compared.

2.1 Transrating architectures

Following [3],the first, and the most straightforward transrating approach is Cascaded
Pixel Domain (CPD) transrating. It consist of a standard decoder and encoder, which
are applied one after another, as shown in Fig.2.1. The video is fully decoded and

then encoded to a new rate as if working on a source sequence. This scheme has the

15
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Figure 2.1: Cascaded Pixel-domain Transrating scheme.

following disadvantages:

1. Using the decoded video as a source sequence that is re-encoded compounds the
encoding errors and the quality degrades more than with most other compressed-

domain schemes.

2. Motion estimation is the most computationally expensive part of the encoding
procedure. Since motion estimation was done already during initial encoding,

it could be re-used. However, in this scheme this information is not used at all.

3. Since the encoder includes a decoder in its feedback loop, there is doubling of
some functional blocks. It increases therefore the overall implementation cost

of this scheme.

The most simple scheme is known as Open-Loop (OL) DCT Domain Transrating
and is shown in Fig.2.2. It preserves initial encoding decisions as much as possible,

and only changes the encoded DCT coefficients by requantization [8] or coefficients
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VLD Q! Q2 VLC

Figure 2.2: Open-loop DCT-domain Transrating scheme.

cropping [16, 17]. This scheme is much simpler and thus very fast. Its main dis-

advantage is an error drift from reference frames to frames that depend on them.

A Fast Pixel Domain (FPD) [8] Transrating scheme is shown in Fig.2.3. It comes
to improve the CPD scheme. It reuses the MB type’s decisions as well as initial
Motion Vectors (MVs), and thus greatly reduces the encoding complexity. It also
utilizes the linearity of motion compensation and of DCT/IDCT to reduce the mul-
tiple blocks in the CPD scheme. It is important to mention that while CPD Memory
buffers are saving pixel domain predicted frames, FPD Memory buffer (MEM) con-
tent is reconstructed requantization error that has to be added to DCT dequantized
coefficients to avoid error drift.

FPD transrating needs to return to the pixel domain in order to apply motion com-
pensation on the requantization error. However, Motion compensated DCT blocks
can be calculated directly in the DCT Domain as the sum of up to four source DCT
blocks multiplied by appropriate DCT-domain shift-matrices [10]. Hence, a DCT
Domain (DD) Transrating scheme can be built as shown in Fig.2.4. It was shown in
[10] that the number of calculations needed in this case is lower than when applying
IDCT, motion compensation and then DCT. However, existing DCT/IDCT acceler-

ators make this solution attractive only for strong hardware development companies.
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Figure 2.3: Fast Pixel-domain Transrating scheme.
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Figure 2.4: DCT-domain Transrating scheme.
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2.2 Dynamic Rate-Control for Transrating

There are several methods for dynamic bit-rate control. All of them are based on
tracking the available bit-rate status and updating the quantization scale accordingly.
Rate control can be separated into two steps: Picture layer bit-allocation, which
determines the target bit-budget for each picture, and macroblock layer rate-control
that determines the quantization parameters for coding the macroblocks. Sometimes
picture level bit-budget allocation can be downscaled to slice level. The simplest
frame-level scheme [21] proposes to divide the new bit-budget among frames using

the same ratio that they get in the input stream:

R. _ B. = const (2.1)
where:
Ryt - desired output average bit-rate
R;, - input sequence average bit-rate
B;, - bits spent on current frame in input stream

T, - target bit allocation for the transrated frame
This approach is straight-forward. It does not provide any problem with virtual
buffer fullness - the buffer size can be simply decreased by the same ratio the stream
rate goes down. But the output stream quality is not the best possible one because
quality reduction of the I-pictures and the P-pictures impacts total video quality more
than it does for the B-frames. So another approach [21] proposes to provide the same
reduction ratio for all frames as in Eq.( 2.1), but to use for I-frames the square root

of the ratio of output/input bit-rates; for P-frames - the above ratio itself, and for
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B-frames the ratio that will adjust the GOP bit-budget to the desired rate:

T %(1 + NP + NB) - Sout,l(i - 1) - SOUtaB(i - 1) - ]T\lf_;)sout’P(i B 1) (2 2)
B N T o) S 1) Sl 1) N Srli T

where:
T - bit-budget for current B-frame
Np, Np - number of P- B- frames in GOP
np - number of already transrated P- frames in GOP
Roui, Rin - designated output or input bit rates
Ry - frame-rate

Sout fin, I /p/B(i — 1) - bit-budget allocated by already transrated
I-,P- ,B-frames in input/output bitstreams

Picture layer bit-budget allocation in a GOP based on picture complexity is pro-
posed in [22]. Picture complexity is defined as the product of the average quantizer
step-size and the number of bits generated, divided by some empirical constant. To
estimate the current picture complexity, the ratio of output/input complexities in
the previously transrated frame is multiplied by input complexity of the currently
transrated frame:
SpQp ~ SBUsB

Xp = 2.3
KP Y B KB ( )

X =851Q1,Xp=

where
Sr,Sp,Sp - number of bits generated by encoding
of I-,P- and B-frames, respectively
Qr,Qp,Qp - average quantization step sizes used in encoding
Kp,Kp - universal constants (1.0 and 1.4)

The allocation of the current frame-budget in the GOP is proportional to its
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complexity, for example, for I-frames:

Xéut,[ X
X;n I ZTL?I
T[ = . TGO P (24)
X(’)'u,t,l out P NB X(’)ut B -
Xz{n,l in,l + Z o p in,P( ) + Z B in,B(Z)
where
Ty - bit-budget for I-frame.
Tcop - bit-budget for the whole GOP

X (’)ut’[l /p/p - average output complexity of transrated I/P/B frames

in previous GOP

X i,n,[l )p/p - average input complexity of transrated I/P/B frames
in previous GOP
Xin1/p/B] - input complexity of frames in current GOP

Bit-budgets for P- and B-frames are calculated in a similar way. For open-loop
schemes, it was proposed to add a weighting factor to the ratio of averaged in-
put/output complexities which is the square root of relative picture depth [23]. There
is no clear explanation about how that depth is defined. Another simplification to

Eq.( 2.4) is proposed in [24],[25]:

Xout n— typeX
X7 m,n

T, = O ~— Lcop (2.5)

/ outP outB
XoutI+N +N " Kp

where
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T, - bit-budget for n-th frame
Tcop - bit-budget for the whole GOP
Xouir/p/p - average output complexity of transrated I/P/B frames
that are transrated already
Xiryp/p - average input complexity of transrated I/P/B frames
that are transrated already
Xinm - input complexity of the current frame
Nip/p - Number of P/B frames in current GOP

In case the transrating mechanism does not provide the exact number of bits for

the particular frame, the same work [25] proposes to modify the bit-rate control to

allocate the bits left in the current GOP between the frames left according to there

complexities similar to Eq.( 2.4). The main drawback of complexity-based methods

is the lack of virtual buffer status verification. To take care of it, a buffer-controlled

scheme is proposed in [26]:

where

max{ Ry, 0.9B, — B,} if B, +Ti, > 0.9B,
T, = Bits, — B, +0.1B, if B, + T, — Bits, < 0.1B,
T, otherwise (2.6)
T = 2220520 max{ Row, 0.95 22 +0.058, 1}

Bn = Bn—l + Bitsn_l - Bitsr
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T, - final bit allocation for current frame corrected
to avoid buffer underflow or overflow

T, - initial bit allocation according to GOP bit - budget left
vs. number of frames left to transrate

B, - buffer size

B, - buffer fullness

Bits,, - bits spend to transrate n - th frame

Bits, - bits removed from the buffer during current frame
supposed decoding

Bits; - bits left for current GOP encoding

N, - frames left to encode in current GOP

R, - Current frame proposed output bit allocation

(bps divided by number of frames per second)

This scheme of bit-allocation according to current buffer fullness helps to avoid
overflow or underflow of the buffer. But basically it assumes that the bit allocation
for every frame is the same, which is not true for MPEG where I-frames need more

bits than P-and B-frames.

2.3 Simple complexity-based transrating

The goal of the current research is to develop a high-quality transrating algorithm.
Hence, we have decided to implement a closed-loop transrater. Theoretically, the
best choice is to use a DCT-domain transrater. However, although a Fast Pixel-
Domain scheme needs slightly more calculations, it is simpler to implement. As

we see no place for our contribution in this part of the system, we decided to use
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the FPD transrating architecture. GOP-level rate-control takes a lot of attention in
recent works, but providing the best quality with matching rate and virtual buffer
constraints at the same time is still an open issue. We choose therefore a simple
solution that doesn’t provide problems with virtual buffer fullness: the bit-budget
reduction is according to Eq. (2.1). The last thing we have to decide on is how to
implement the frame-level bit-rate control. This is what we are going to present in
this section. It is possible to see that Eq.(2.4),(2.5) provide a bit budget to every
frame of the same type according to its input complexity X;,,. To further simplify
the problem, we assume that complexity reduction is the same for all kinds of MBs
in the same frame. In this case the ratio of input complexities must remain the same,
and we can estimate the output bit-rate of MBs left to encode by bit-allocation of

the last encoded MB, and update the quantization step-size accordingly:

in 1 ; N
1 i B> B > X,
ind ind _ ~ ; Bout = - 2.7
42 pn11 q2.n 1 Zf Bout < Bout 5 Dout q-tab[qg,zr(zj] - By ( )

ind ; » —
qQ,n Zf Bout - Bout

where
B, - bit allocation of the last transrated n-th MB
l%out - estimated bit number needed to encode MBs left
B - bits left to encode the rest of the frame
qéf‘ff - index of last quantization step-size used
g-tab]] - quantization step-size table used to get

appropriate quantization step-size value
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2.4 Experimental results

In section 2.3 we proposed a very simple complexity-based transrating scheme that
will be used as a reference for comparing the performance of other, more complex,
transrating schemes that will be considered in this work. We use 45 frames of 8

standard video sequences for our analysis and comparisons:

Sequence format comments
container | CIF(352x288
foreman CIF(352x288
hall monitor | CIF(352x288
tennis SIF(352x240
coastguard | CIF(352x288
(

(

(

very low motion
moving face
very stable with small motion
zoom, motion
medium motion
panning, scene depth
fast motion, panning
synthetic scene, medium motion, panning

garden SIF (352x240
football SIF (352x240
mobile SIF (352x240

~— | — | — [~ [ || —

Table 2.1: Description of video streams used for comparison

Each sequence was encoded into a 4Mbps MPEG-2 stream, using a standard
TM5 encoder, and further transrated by each of the methods considered in current
work. The sequence rate was reduced to 3Mbps, 2.5Mbps, 2Mbps, 1.5Mbps, 1Mbps,
which provides rate reduction factors from 1.33 to 4. Additionally, each stream was
re-encoded by full decoding and encoding using a standard encoder to the reduced
rates, and each original sequence was also directly encoded to these rates.

Figures 2.5 and 2.6 present PSNR results as a function of rate for the reference
simple transrating scheme (Sim) , original sequence encoding (Enc), and cascading of
decoder and encoder (Re) for each one of the above sequences. It is possible to divide

the sequences into two classes:

a) Container, HallMonitor, Foreman.

b) Mobile, Football, Tennis, Garden, CoastGuard.
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In the first class all graphs have higher PSNR values than those of the second class.
Simple transrating outperforms cascading up to nearly 4 times rate reduction, and
can even outperform direct encoding for rate-reduction factors close to 2. Encoding
and cascading graphs do not preserve convexity, possibly because those sequences do
not match TM5 rate-control assumptions.

In the second class, although all sequences have lower PSNR values, they remain
convex. Simple transrating is always worse than encoding of the original sequence,
but outperforms re-encoding up to rate reduction factors close to 2.7 (1.5 Mbps).

Both classes show the importance of utilizing of original encoding decisions as
long as the rate reduction factor is not too high. For high rate reduction factors, old
motion information is not good any more because the change in reference frames is
too big, and re-estimation of motion provides better results.

As for other transrating approaches, we observed the same two classes as men-
tioned above, so we will show in the sequel only the results for the FOREMAN
sequence - from the first class, and for GARDEN and TENNIS sequences - from the

second class.
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Figure 2.5: Simple transrating compared with TM5 encoded and Re-encoded.
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Figure 2.6: Simple transrating compared with TM5 encoded and Re-encoded.



Chapter 3

Requantization based on DCT

coeflicients distribution

3.1 Cascading-error problem

MPEG-2 defines the set of representation levels for a given quantization step and a
DCT coefficients weighting matrix, which coarsely accounts for non-uniform sensitiv-
ity of the HVS to different spatial frequencies. Still there is a possibility for every
encoder or transcoder to choose the particular decision interval for every represen-
tation level. It is obvious that for efficient encoding the decision intervals should be
set to minimize the average or maximum distortion. Thus, the partitioning depends
on the probability distribution function of each DCT coefficient (except DC, which
is treated separately). In a transrating application, we get the set of values of DCT
coefficients distributed discretely over representation levels of particular quantization
steps. Because of the error introduced in the initial quantization, requantization may

produce a cascading error that is larger than the error obtained by direct encoding

29
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Figure 3.1: (a) no cascading error introduced (b) cascading error due to requantization
is greater than error of direct quantization.

with the same quantization step, as described in [4] and shown in Fig. 3.1.

A method for reducing the cascading error is proposed in [29]. It is based on the
assumption that all decision regions are uniformly distributed and symmetric. Two
terms are proposed. The first is termed the critical requantization ratio, between
initial and final quantization steps, that may result in the biggest possible cascading
error, like Q2/@Q; = 2 in the example below. The second is termed the optimal ratio
as it is a ratio that doesn’t cause cascading errors at all, like Q2/Q1 = 3 in the
following example. The idea is, of course, to avoid critical ratios and, furthermore,
if the ratio proposed by the bit-rate control mechanism is near the optimal one, the
proposed quantization step size is changed to yield an optimal ratio. Fig. 3.2 gives
examples of optimal and critical requantization ratios, assuming a uniform midstep
quantizer with no dead zone (also known as midtread quantizer - see Fig. 3.5(a)).

For the critical ratio, ()2 = 2Q); , where )1, (2 denote the original and transrating
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Figure 3.2: (a) range supporting cascading error is maximal (b) no cascading error
introduced.

quantization step-sizes, respectively, every decision level defined by ()5 will always be
equal to one of the representation levels defined by );. Thus, the range of values that
will be requantized to a different value than that of direct quantization will be equal
to Q1/2 for every representation level produced by @2, as shown in Fig. 3.2(a). For
an optimal ratio, Qo = 3Q); , every decision level defined by ) will always be equal
to one of decision levels defined by Q1 and no cascading error will be introduced,
as seen in Fig. 3.2(b). One of the first approaches that take the distribution of
transform coefficients into account is proposed in [6]. A parametric rate-quantization
model, based on traditional rate-distortion theory, is applied to MPEG encoders.

Given the bit-rate budget for a picture, this model calculates a baseline quantization
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scale factor. For a rate-distortion analysis, the coefficients are assumed in [6] to be
Gaussian random variables, and the distortion to be proportional to the square of the

quantization step.

The variance of every transform coefficient in intra-frames was estimated and so

the distortion and rate for every quantization step is calculated by:

N N
1 o?
R:TI_}_ZilOgQZ’D:dl_}_ZdZ (31)
=2 =2
where,

N - number of transform coefficients

o? - estimated variance of i-th coefficient

d; - quantization distortion (proportional to Q% )

di,m - distortion and bit-rate of DC coefficient
R - bit-rate estimation

D - estimated distortion

MPEG-2 provides different encoding of DC coefficients in intra-blocks than for
the rest of DCT coefficients, so the bit-rate and distortion for DC have to be cal-
culated separately. Assuming that the distortion is proportional to the square of
the quantization step-size and of the appropriate factor from quantization matrix, [6]
uses eq.(3.1) to estimate the output bitrate. One step-size for the whole frame, which
provides the closest rate to the bitrate constraint, is chosen. In a similar way the
procedure is applied for non-intra-frames and is used for optimal quantization step

estimation at the picture-level.
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px) ,

Figure 3.3: MAP requantization decision is taken based on probabities p; and ps.
3.2 MAP and MSE requantization

To address the problem of cascading error described in section 3.1, it is necessary to
take into account the probability distribution of input values. The idea of Maximum
A-Posteriori (MAP) requantization was introduced by Werner in [30]. Instead of
checking quantization ratios without questioning the optimality of the decision inter-
vals, as in section 3.1, the MAP approach minimizes the average cascading error by
an optimal mapping from a given set of initial encoding representation levels to the
defined requantization representation levels. The problem can be seen as changing the
decision intervals on requantization scale for each pair of initial and requantization
step sizes. The quantization step-size selection defines particular representation levels
for initial quantization and requantization. The MAP requantization method aims at
minimizing the probability of representing original input values by a representation
value different from the value that would be assigned to it by direct quantization.

Fig. 3.3 presents an initial pdf function p(x) and initial quantization and requanti-
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zation decision and representation levels. rl is the representation level of decision
interval [dy, d2). The initial quantization scale is defined by quantization step-size Q1
and the lower boundary of the decision interval d;. The requantization scale (without
MAP) is defined by Q2 and the corresponding boundary D. This scale is denoted as
‘reference’. The decision to be taken by MAP quantization is whether the values in
[dy, d3) should be mapped to R; or to Rs. For this purpose the probability that the
values that are mapped to R; come from the interval [dy, D) is compared with the
probability that they come from the interval [D, dy). If the first probability is bigger,
than interval will be mapped to Ry, otherwise to Rs.

The MAP decision rule minimizes the cost function that represents how much

MAP quantization is different from the direct encoding decisions:

E [(yQ,ref - 92)2 |y1,7‘ef:| (32)

Assuming that the transform coefficients pdf is Laplacian with parameter «:

plx) = s, (3.3)

where a is related to the standard deviation o via ¢ = ¥2. It is claimed in [16] that

this is an appropriate pdf for DCT coefficients of Intra frames. The MAP rule in this

case becomes:

Rl 7D_d1 >
Yo = Qa(yr =7l) = “

R, ,Didl <
q1

oS

(3.4)

NI

_ 1 2
v = aQ1 In <1+€—(aQ1))
This mapping can be calculated offline with some assumptions on the initial pdf, or

estimated online from particular video stream statistics, as will be described in the
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Figure 3.4: MSE requantization decision is taken based on centroid position.

following section.

Another approach is known as MSE minimization. Assuming p(z) and boundaries
of the initial decision region are known, the centroid of that area is the best choice for
the representation level that can be further quantized by a new quantization scale as
shown in Fig. 3.4. The MSE decision rule minimizes the cost function that represents

how much MSE quantization is different from the direct encoding decisions:

E [(.T - y2)2’y1,ref:| (35)

The main disadvantage of the methods described above is that they are developed for
Intra frames transrating or open-loop transrating, since they do not consider error
compensation that should be done if error propagation in a GOP is to be avoided.
The above methods are all assuming that values for requantization lie on the initial

quantization scale, which is not true in the case of closed-loop error compensation.
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Figure 3.5: (a) midstep quantizer with no dead zone (b) midrise quantizer.

One of the possible extensions of the above results is to analyze the distribution of
coefficients in a closed-loop transcoder before requantization and to use it for the

optimal definition of decision intervals /representation values.

3.3 Estimation of pdf parameters

MAP and MSE requantization, as any method based on the statistical distribution
of the initial DCT wvalues, requires knowledge of the pdf, usually determined by its
parameters. In [31] a method for estimating the Laplacian parameter a of the DCT
coefficients (see eq. (3.3)) from the encoded coefficients distribution is proposed. It
can be estimated for each pdf of every DCT coefficient, in every block of each MB,
from the statistics of the current frame, or for each DCT coefficient in the entire
frame, while tracking its statistics over time. It is shown in [31] that for a uniform
midstep quantizer with no dead zone (Fig. 3.5(a)), the Laplacian parameter a could

be estimated by solving the following quadratic equation for z:

(A+B+0C)z*+Bz—A=0 (3.6)
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where,
N
= > (y- g) ,with N - number of coeff.,
I=1,y:#0
B = % ,with Ny - number of zero coeff.,
C= (N - NO)qa

Then, for from the relation z = e~(@3) the estimated parameter is

2
a=——1Inz
q

37

For a uniform midrise quantizer, shown in Fig. 3.5(b), the equation becomes:

(A+B)z—A=0

where,

Mz

(i —2),

T
I

A=
B

oz

And the estimation for « is again @ = —= ln z. These results were obtaine
by using Maximum-Likelihood (ML) estimation.
Another work [32] proposes a method for estimating the Laplacian para

from the variance of the quantized coefficients:

aq/2 —aq/2
B s o €M7 +te
Vg = Z (TLQ) Pn =( (6aq/2 - efaq/2)27

where,
ng+3

Pn = / p(x)dx

nqg—

(SIS

is the probability of the original coefficient value to fall into n-th decision

(3.8)

d in [31]

meter «

(3.9)

(3.10)

interval.
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The Laplacian parameter is estimated as follows: From eq.( 3.9):

24 /gt + 1602
e&q/2+€_04q/2:q + \/q* + vq:

3.11
5o, u (3.11)
hence,
fi2
"2 = %“4 — ¢, (3.12)
resulting in,
2
&= —logt (3.13)
4q

It predicts the quantization error, for the ideal case of infinite number of representa-

tion levels, to be:

a/2 oo Tata/2 5
2 2 —ax o 2 —ox = _ @q
e, = oz/x e~ “dx —|—ozzl / (x —ng)e”“dx —&2(1 ol eiaq/Q) (3.14)
0 " ng—q/2

The estimation of « from (3.9) is not optimal in any sense, and the assumption of
an infinite number of possible quantization levels is not true for real implementations.
Still it provides a simple way for estimating « that typically supplies a good result.
Yet another method for estimating « is proposed by [33]. It is based on the empirical
number of zero valued coefficients and +q and -q valued coefficients. It is worse than
the previous method because it does not use all the statistics available for estimation,

but at this price it is less expensive computationally.
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3.4 PDF Estimation based on Linear Interpolation

All the methods described above have the same common disadvantage: they do not
support the case when different quantization step-sizes are applied for different MBs.
It was also questioned by a number of recent works if DCT coefficients fit the Laplacian
distribution model. As we will see in section 3.5, the estimation results are not very
good for real coded sequences. To solve this problem, we developed another method
to estimate the PDF distribution from quantized coefficients.

The proposed solution is coming from the class of kernel-based methods, which

assume that the pdf p(z) can be represented as:

p(z) = ch - ¢(x — si, Or) (3.15)

k

¢(z) is called kernel function, and can be any appropriate positive function such
as Gaussian, spline, etc. The preceding model tries to represent the unknown pdf by
a linear combination of shifted copies of of the fixed function ¢(z). The shift factor sy
and function parameter 6, are typically fixed, and the weighting factor ¢, is adjusted
based on the measurements of the random parameter z.

We used splines as kernel functions. The problem with high order splines is that
they don’t preserve positivity. The splines we chose to use are zero-order, more known
as zero-order hold interpolation, and first-order, which are no more than well-known
linear interpolation. As first-order splines gave better results in simulations, only
their results will be presented here. In order to simplify the calculations, we decided
to work with discrete pdf that is defined for integer points on the positive real axis.

The proposed pdf estimation algorithm for a particular DCT coefficient is very

simple:
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1. Reset final discrete pdf prediction vector to zero.
2. Get the first quantization step-size used.

3. Build histogram of quantized coefficients (it will be populated only in multiples

of quantization step-size).

4. Estimate pdf values at each discrete point by linear interpolation between values

of closest quantization step-size multiples.
5. Add resulting pdf estimation to final pdf prediction vector.
6. If quantization step-size checked is the biggest one, exit.
7. Get next used quantization step-size.
8. Goto 3.

In spite of its simplicity, this estimation method outperforms estimations made by

Laplacian-based methods as we will see in the following section.

3.5 Experimental results

In this section different MSE and MAP approaches are compared. We implemented
Laplacian pdf parameter estimation using ML (exp-ML) and variance (exp-var) meth-
ods, as well as Linear interpolation (linear) method proposed in the previous section.

Fig. 3.6 shows that for MSE method Linear interpolation (Simpge 1inear) OUtper-
forms Laplacian model based methods for rates above 2Mpbs (rate reduction factor
up to 2). For higher rate reduction factors, variance estimated Laplacian model

(Simmse_exp_ML) gives better performance over other MSE approaches. This is true for
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MOBILE, FOOTBALL, TENNIS, GARDEN and COASTGUARD sequences. For
other sequences, Linear interpolation is good for high bitrates, but below 2.5 bps ML
Laplacian parameter estimation (Simyse_exp—var)is the best method.

As for the MAP approach, Laplacian model based methods only reduce the PSNR,
while results of linear interpolation (Simpap_1inear) are always above the transrating,
which does not use any estimation at all (Simpee), and become better for higher
compression factors, as it is shown on Fig. 3.7.

For GARDEN sequence (and other sequences in the same class) it is better to use
MSE for higher rates and MAP for greater compression ratios, with Linear interpola-
tion for pdf estimation in both cases (Simyge_1inear ANd SiMyap_1inear), 8 We can see on
Fig. 3.8. The best performance for FOREMAN and others in his class is provided by
MSE with linear interpolation pdf estimation (Simgge_1inear) - fOr rates above 2Mbps,
and MSE with variance Laplacian model pdf estimation (Simpge_exp—var) - for higher
compression.

MAP method with Linear interpolation can be good for high compression ratios
for sequences with relatively high motion. MSE with Linear interpolation seems to
work better than Laplacian model if the compression factor is relatively small. The
benefit in using the best of MAP or MSE reaches 0.1 dB.

Additional examples can be found in Appendix A.
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Chapter 4

Requantization via Lagrangian

optimization

MPEG-2 encoding provides output bit-rate control by changing the quantization step
size. The change in quantization step-size enables to achieve bit-rate reduction at
the cost of perceptual video quality. There are many questions that arise during

transrating, the most important of which are these:
1. How to achieve the desired bit-rate after transrating?
2. How to provide the best perceptual quality for the same rate?

In this chapter we review and examine optimal requantization via Lagrangian opti-
mization. Section 4.1 describes the standard MPEG-2 encoding procedure. Section
4.2 presents the Lagrangian optimization method proposed in [4, 5, 9, 10] to get opti-
mal requantization step-sizes for transrating. Experimental results and their analysis

are provided in section 4.3.

45
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4.1 MPEG-2 AC coefficients encoding procedure

Following the application of the DCT to each of 4 luminance 8 x8 blocks and to 2 up
to 8 chrominance blocks (depending on video format), which form a MB, the DCT
coefficients, except for the DC coefficient, are quantized. For each MB, a value from
one of two possible tables, each having 32 quantization step-size values, is selected
(a different table can be chosen for each frame). The actual quantization step-size
used for each coefficient is the product of the selected step-size from the table and
a value defined by a suitable quantization matrix that depends on the MB type.
The 63 quantized AC coefficients are concatenated in an order defined by one of two
possible zig-zag scans. The resulting 6 to 12 vectors, of 63 quantized coefficients each,
constituting a MB, are entropy coded by a variable-length-coding (VLC) table. Each
coefficient vector is divided into several parts, with each part consisting of a run of
consecutive zeros followed by a non-zero level value, defining a run-level pair. In case
of adjacent non-zero level values, the run length is defined to be zero. The MPEG-2
standard defines for every run-level pair a variable-length codeword. There are two
VLC tables that can be used. It is possible to use the same table for all types of MBs,

or to use a different one for Intra MBs [34].

4.2 Lagrangian optimization

The requantization problem can be formulated as an optimization problem of de-
termining a set of quantization step-sizes that minimize the total distortion in each

frame, under a given bit-rate constraint:

r{nir}lD, under the constraint R < Rp (4.1)
dk
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with |

where,

N - number of MBs in the frame;
qr - quantization step-size for the k-th MB;
dp - distortion caused to the k-th MB;
rr - number of bits produced by the k-th requantized MB.
An analysis for the conventional MSE distortion metric is presented in [5]. The
problem can be converted into an unconstrained one by merging rate and distortion

through a Lagrange multiplier A > 0 into the cost function:

Jtotal =D + AR (43)

A defines the relative importance of rate against distortion in the optimization pro-

cedure.

This constrains the set of possible solutions to a lower boundary of Convex Hull of
all possible solutions. Fig.4.1 shows the constraints of the Lagrangian solution. Points
show achievable rate-distortion states. The dotted blue line shows the boundary of
the Convex Hull of all possible solutions. Only states on the Convex Hull boundary
(blue points on blue dotted line) can be found by Lagrangian optimization. Red states
(connected by solid red line), which are optimal for particular rates, can’t be reached
using Lagrangian optimization. Lagrangian multiplier defines the rotation of the rate-
distortion axes before minimization. Under all possible rotations red state will never
be the minimum over all possible states. It reduces a bit from the optimality of the

solution, but assuming the set of all solutions is dense it should be good enough.
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Figure 4.1: Constraints of Lagrangian optimization: only rate-distorion states on
Convex Hull boundary (dotted blue line) of all possible states (blue points) can be
reached. Optimal states marked by red points, which are connected by solid red line,
won’t be found.

The Lagrangian cost can be independently calculated for each MB. Thus, for the
k-th MB:

Let {ri()\),dr(N\)}_, be the set of solutions for a particular A that achieves the

minimum Lagrangian cost for every MB. If for a particular value A = A, the total
N

rate R(\s) = Y ri(\s) = Ry , than the set {qi(\s)}2_, is the optimal set of quantizer
k=1

step sizes to be used for transrating. A has to be found by some kind of search for

every frame if the problem is solved on a picture level, or for every slice, if bit-rate

allocation is provided on that level. The proposed transrating distortion measure in
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5] is
ni i 4 \]2 :
T [ (ar) — i (qp)] (intra)
di(qr) = Iz Z [Cr (qr) — CP(qp,) + X2 (forward,backward) — (4.5)
(CFi(a) — O () + “57=] - (interpolated)
where,

Cl(qx) - i-th inverse quantized DCT coeff. of block n in MB k
Cl(q,) - same as C7"(qy), but after requantization

X7y - error drift from reference pictures (forward and/or backward)

L.n - number of blocks in MB and block index
k - index of MB
i - DCT coeff. index (64 DCT coeff in every block)

It is shown in [5], by simulations, that by using the same set of coding decisions
as produced by the initial encoder, optimal requantization can achieve higher PSNR
than that achieved by direct encoding of the original video sequence to the final lower
bit-rate by the usual encoder. This is possible because common encoders do not
perform this kind of optimization, for finding the best possible quantization steps, to

avoid an increase in the encoding complexity.

Lagrangian optimization is a general and very powerful method. It can also be
applied as in [35] to obtain the optimal discarding of DCT coefficients in I-frames. In

[17] it is applied to the discarding of high-frequency DCT coefficients only.
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4.3 Experimental results

In this section Lagrangian optimization performance and the addition of different
statistical methods are presented. As in section 2.4, MSE and MAP approaches
based on different pdf estimation methods, which are described in chapter 3, are
compared. The additional value of those methods is compared with the improvement

provided by the Lagrangian optimization approach.

A simple bi-section search algorithm, which iteratively updates the Lagrangian
parameter A\ to achieve the target rate, was implemented and tested. In our experi-
ments, the average number of iteration needed was 4. It appeared to be good enough

for our needs, so no other approach was implemented.

Fig. 4.2 and Fig. 4.3 show that addition of MAP and MSE to the PSNR provided
by using Lagrangian optimization is very small. Lagyse_1inear adds from 0.05 to 0.1dB

to the base increase of 0.6-0.9 dB that Lagyon. provides over Simyse 1inear-

More examples about relative performance of different MAP and MSE methods

can be found in Appendix B.

For Lagrangian optimization, MSE and MAP methods give results different from
those we got for Simple transcoding. Fig. B.1 shows that MSE based on Linear
interpolation is the best till a much higher rate reduction factor, and the advantage
of lagnse—exp—var at factors close to 4 is very small. Lagpse—1inear iS above Lagnone
by 0.1dB for 3Mbps and by 0.05dB for 1Mbps. In Fig. B.2 and Fig. B.3 Linear
interpolation based MSE approach is always the best one, but it gains only from 0.1

to 0.05 dB, depending on particular sequence.

MAP based on Linear interpolation pdf estimation still becomes better for lower

rates, as we can see in Fig. B.4, Fig. B.5 and Fig. B.6, but it does not succeed to
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be better than MSE. Lagnap_1inear i about 0.1 dB above Lagpone is the best case (for

1Mbps). So for most of the cases Lagpse_1inear iS the best solution.
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Figure 4.2: Comparison of Lagrangian vs. Simple transcoding for different sequences.
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Chapter 5

Extended Lagrangian optimization

In this chapter we propose a novel extension of the Lagrangian optimization method
by applying modifications to the quantized DCT indices. The proposed method
outperforms (in terms of PSNR) all currently known requantization-based transrating
approaches. To reduce the algorithm’s complexity, we provide a low complexity trellis-
based optimization scheme, and discuss other complexity reduction means as well.
In section 5.1 we introduce the quantized DCT indices modification method and
define an extended Lagrangian minimization problem. Section 5.2 presents an effec-
tive solution based on a modification of the Viterbi trellis-search algorithm. Com-
plexity considerations and means for its reduction are discussed in section 5.3. Ex-

perimental results are presented and discussed in section 5.4.

5.1 Quantized DCT indices modification

The idea of modifying the levels of quantized DCT coefficients, before applying VLC,

for bit-rate reduction was proposed in [35, 17]. However, [35] discusses only methods

o4
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for excluding AC coefficients in I-frames, and [17] considers only discarding several
last non-zero coefficients in the zig-zag scan. We propose to extend the Lagrangian
optimization presented in the previous section to include the possible modification
of the values of all quantized DCT coefficients in an efficient way. The suggested
optimization procedure aims at choosing quantized AC coefficient vectors values, as
well as optimal quantization step sizes, that will provide a bit-rate that is as close as

possible to the desired one with minimal distortion possible for the same rate.

Direct encoding of requantized coefficients using a given fixed run-level coding
table does not necessarily provide the minimum possible distortion for a given total
rate. It is possible to reduce the bit-rate needed for encoding by changing the values of
the quantized vectors before run-level coding. To preserve the best possible quality at
a given bit-rate, the selection algorithm uses a distortion penalty, caused by selecting
reconstructed values away from the optimal one. An improvement, compared to
selecting optimal quantization step sizes only, is expected due to the following reasons.
For a particular quantization step size, it is possible sometimes to reduce the distortion
if the cascaded quantization value can be changed to a value that provides a better
approximation to the optimal reconstructed value. It is also possible to reduce the
total bit-rate by breaking VLC pairs with long runs into several smaller ones that
give a smaller total bit-rate than that of the initial pair. Of course, it increases the
distortion most of the time. The goal is to reduce the bit-rate needed to encode some

of the coeflicients so that the distortion in other coefficients can be reduced.

Table 5.1 gives an example of possible quantized run-level pair changes. Let
0000004 be the quantized run-level pair to be encoded by the MPEG-2 VLC table.
Suppose that we can choose if to encode it as is (i.e. without introducing any addi-

tional distortion D); to enter a 1 instead of the last 0, or to change the value 4 into
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1. D here is the standard Squared Error. The number of bits needed to encode every
sequence is defined by the vic entry of the table. Because changing 0 to 1 splits the
original run-level pair into two, for this case the total column in the table summarizes
the cost of each pair to be used for making the final decision. Cost function J(\)
for each case is shown for A = 0, 1,3. Minimal cost for every A is in bold face. The
Lagrangian multiplier A defines the relative importance of rate vs. distortion intro-
duced by changing the initial sequence. For small A\ there is no reason to introduce
distortion, as shown for A = 0. If the weight of distortion and rate in the total cost
function J is the same ( A = 1), it is better to split the run-level pair. In case A is

big enough, like A = 3, a bigger distortion can be afforded to reduce the bit-rate.

The suggested optimization procedure aims at selecting quantized DCT coefficient
values, as well as optimal quantization step sizes, that will provide a bit-rate that is

as close as possible to the desired one, with minimal distortion.

As in the optimization problem stated in section 4.2, we may select a different
quantization step-size for each MB, but here we also allow changing the quantized
DCT coefficient value by modifying its level (quantization index) value after a par-

ticular quantization step-size has been applied. The minimization problem stated in

0000014
sequence 0000004 | 0000001 | 000001 | 4 | total
run 6 6 5} 0 -
level 4 1 1 4 -
vic 24 8 7 6 13
D=J\=0) 0 9 1 0 1
JA=1) 24 17 8 6 14
J(A=3) 72 35 22 18 | 40

Table 5.1: Optimal quantized vector change for different values of A
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Eq. (4.1) remains the same, but now (4.2) is replaced by:

N

D = de(qk,vk), R = ZTk(qk,Vk), (51)

k=1 k=1

where v, denotes the index vector obtained by rounding the result of dividing the
value of each DCT coefficient by the quantization step-size. All other parameters
remain the same as in Eq. (4.2). Note that this formulation can be also applied to
the initial encoding of the original data. The problem is still separable at the MB
level - like in (4.4). But now, for every gy, an additional minimization over all possible

vy values must be performed.

The same problem statement can be used for direct encoding of the original image,
except for the fact that in transcoding we use an approximation of the original signal
from previously encoded data. Distortion is usually measured by Squared Error from
the source video sequence in the pixel domain, but it is possible to use linearity of
the DCT and calculate the distortion directly from the DCT coefficients, without
performing full decoding. Again, for every ¢, an additional minimization over all
possible v; values must be performed. Thus, for the k-th MB, Eq. (4.4) takes the
form of:

Je(N) = Ir;]icn H‘lliﬂ{dk(%y Vi) + Are(vi) }, (5.2)

and the set {vi(A\s)}, is the optimal set of quantized vectors that provides the
minimum distortion for a given total rate constraint, Ry. Here r; depends explicitly
only on the index vector vy, and not on the initial DCT values. Since the algorithm
modifies vy directly, and not via q, 7 is not a function of ¢, any more. An efficient

solution for the stated problem is proposed in the next section.
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5.2 Trellis-based implementation

In this section a Trellis-based implementation of the above Lagrangian optimization
procedure is discussed.

Let’s define each location in the zig-zag scanned quantized DCT coefficients vector
as a different stage in a trellis (Fig. 5.1). The cost value of a path is the sum of the
costs of run-level pairs defined by this path. The optimal path up to a particular stage
is the path that has the minimal cost value over all possible paths ending at that stage.
The essence of a trellis-based algorithm is the fact that minimization of the cost value
at each state of the current stage is the minimization of the sum of the current stage
local-cost at each state and the minimal path cost already calculated at the previous
stages of the trellis. It turns out that for the current problem, where different run-
lengths need to be considered, the conventional trellis needs to be modified, so that
every decision in a given stage does depend on previous stages, but luckily only on a

single, already determined, state in each previous stage, as described below.

v_max(i)

J_min(i-run-1) J(v,i)

D,(i-run) D,(i-1)

i 63

Figure 5.1: Trellis diagram for i-th AC coefficient in zig-zag ordered quantized coef-
ficients vector.

Fig. 5.1 shows how the cost function is evaluated for a particular stage in the
trellis. For trellis stage i (corresponding to the i-th coefficient) we have states from

zero to v_max(i). v_max(i) is determined by multiplying the original index value by
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the initial quantization step-size, and dividing by the new one, followed by rounding
upwards. In general, every possible v, 0 < v < v_max(i), should be examined to see
if it minimizes the total cost function J(v,7) in Eq. (5.3) below. This cost depends
not only on the value of v, but also on the number of zeros, i.e., the run leading to

it, which defines the run-level pair for the VLC:

J(v,1) = min{J_min(i —run — 1) +

run

+ Zil Do(j) + AR(run,v) + D(v,i)} (5.3)

j=i—run

where,

J_min(i —run — 1) - the cost of the minimal path up to the stage (i — run — 1)

Dy(j) - the distortion caused by zeroing the j-th DCT coefficient

D(v,1) - the distortion introduced by choosing v to be the value of
the i-th quantized coefficient

R(run,v) - the number of bits needed to encode the run-level

pair (run,v) using the VLC

The dotted thin line on the left of Fig. 5.1 shows the minimal path till stage
i — run — 1, which has the minimal cost J_min(i — run — 1). Thin arrows connect
the last values of optimal paths in the previous stages to zero; or, in the case of stage
1 — 1, directly to the value v in stage ¢ that is being examined. Different run-lengths
need to be examined, but for a particular run the optimal state in the preceding stage
is already known. The heavy line indicates the optimal path for the particular value
of v. To determine the optimal value of v, the minimum over all its possible values

of v has to be found:

J_min(i) = min  J(v,17) (5.4)

0<v<v_maz(i)
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Figure 5.2: Trellis algorithm on Macroblock level.

Fig. 5.2 shows the schematic view of the proposed trellis diagram to be used
in the optimization algorithm on a Macro-block level. The trellis is built for every
requantization step-size, that is presented as rows in Fig. 5.2. Corresponding step-
sizes are denoted by multiples of the initial quantization step-size q. Trellis in each row
is divided into sub-trellises on a block level. For a particular block and ¢ - k; step-size
the range of quantized AC coefficient values is built (dotted columns). The optimal
path (thin lines) throughout a block is calculated for a particular A\ as was described
above. For fixed A\ and ¢ - k;, the cost function J; ; can be calculated independently
for each block j in the particular MB. At the end of each block the best quantized
vector is chosen in every row. For the next block the optimal path pointer of the
previous block trellis is provided, as shown by a block connecting line. At the end of

each macro-block the optimal quantization step size is chosen:

Qropt(N) = ?r% ;nlnz Jii(Aq- ki) (5.5)
q max
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Yet, even when the above trellis is used, the number of calculations needed to perform
the optimization is rather high. Hence, in the next section we consider ways to speed

up the algorithm.

5.3 Complexity Considerations

The proposed method needs, in principle, many iterations over a large number of

parameter values because:

1. The number of examined runs for every level in a particular stage increases

with the index value of the DCT coefficient being processed.

2. All stages, till the stage corresponding to the last non-zero coefficient, in every

block, need to be examined.

3. A separate trellis has to be constructed for every requantization step-size that

we wish to examine.
4. There are several values of v at each stage that need to be examined.

5. Several values of A need to be tried (in a directed way) before the total rate will

match the constraint

Note, however, that while the number of index values (levels) to be examined
at each stage seems to be large at first sight, it is no so in reality. This is because
the mean value of the AC coefficients is typically in the range of 30-50. Hence, for
example, if the initial quantization step-size is 6, then even on the finest scale there
are on average only about 5+10 values to choose from. When the quantization step

is increased, we reach a single value very quickly.
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level

5 10 15 20 25 30
run

Figure 5.3: one of two possible MPEG-2 VLC tables.

As for quantization step-sizes, there were a number of works that propose to re-
strict the range of requantization step-sizes based on the initial MB quantization
step-size [27, 28, 23].The most recent [23] shows that for open-loop transcoding La-
grangian optimization [4] can be restricted to check even and odd multiples of the
initial quantization step-size for I and P-B frames, respectively. At those ratios many
quantized coefficients are zeroed out after rounding. The optimal multiples of the
initial quantization step-size are changing according to different quantizers used for I
and P,B-frames, as shown in Fig. 3.5. The results reported for the closed-loop scheme
were very close to those of full Lagrangian search. As for searching over different val-
ues of A, applying a simple bi-section search, as in [5], requires on average about 3

iterations only.
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5.3.1 Complexity Reduction Means

As mentioned above, the number of examined runs for every level in a particular
stage increases with the index value of DCT coefficient being processed. Let’s have
a look on one of the MPEG-2 VLC tables presented on Fig. 5.3. We can observe
that, practically, the number of level values that should be considered for obtaining
a rate reduction is actually not that large. Moreover, if we consider choosing a run
for a particular level v, the number of options to examine - run,,q.(v), before getting
to the maximum no. of bits in the VLC table, R,,., = 24, is very small for most
levels (the exceptions are levels 1 and 2, for which there are 31 and 16 possible runs,

respectively).Thus, Eq. 5.3 can be rewritten as follows:

J(v,7) = min { (J% (v, 1), Jopt (runmaz(v),7) + ARpmaz) } + D(v, ) (5.6)

where,
i—1
JP (v, 1) = min ( ){J_min(i —run —1) + Z Do(j) + AR(run,v)} (5.7)
run<ruNmaz (V .
j=i—run

is the part that depends on exact (run, level) values chosen and thus needs to be

evaluated for every run, and

1—2

Jopt (TUN a0 (V), 1) = min  {Jomin(i —run — 1) + Z Do(5)} + Do(i — 1)

TUN>TUNMmaz (U) j=i—run

(5.8)

= Jopt (PN mar(v) — 1,4 — 1) + Do(i — 1)

is the part we know prom previous calculations.

To calculate JP! (v, 1), Tunmq: (V) iterations are needed, while 7un,,q, (v) is usually
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a small number. Jo (runmqe,(v) — 1,7 — 1) is known from the last stage, so no search
needs to be done to find Jopt(runme: (v),7). So, to get J(v,i), only runm..(v) + 1
calculations need to be performed. Using Eq. (5.6), (5.7), (5.8) instead of Eq. (5.3)
does not affect the optimality of the solution, but reduces the number of calculations
needed by up to 40% - in our simulations.

Another simplification that is proposed here results in a sub-optimal solution.
As was mentioned above, sometimes it may be useful to split a run-level pair into
two smaller ones. It is reasonable to insert the minimum possible non-zero value
because it provides minimum distortion, and also possibly the minimum rate because
the run-level pair bit cost is an increasing function of level. It is difficult to say
which will be the optimal one because of the usage of a quantization matrix that
changes the distortion weight for every AC coefficient. In case someone wants to use
a distortion metric different from MSE, things will become even more complicated.
If no splitting is allowed, the trellis needs to go through stages defined by non-zero
coefficients only. In common MPEG-2 encoded block there are in about 70-90 % of

zeros, so the computational complexity reduction is very pronounced.

5.4 Experimental results

As the proposed extension to Lagrangian optimization minimizes the error over quan-
tized DCT indices, the MAP approach, which minimizes the error probability, is not
applicable in this case. Still, MSE estimation can be used here. MSE that is based on
Linear interpolation (Tryse_1inear) becomes the best method for all the sequences. As
in sections 3.5 and 4.3, the gain in using the MSE gets smaller for higher compression

factors. For FOREMAN sequence, TTrpge_1inear 1S from 0.02 to 0.05 dB above the
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Trnone, While for GARDEN and TENNIS sequences the revenue is from 0.05 to 0.1
dB.

For the sub-optimal Trellis search, the gain in using the MSE is slightly bigger -
up to 0.15 dB for 3Mbps.

Fig. 5.4 and Fig. 5.5 summarize the best results of the previous chapters. We com-
pare the performance of original encoding (Enc) and cascaded decoding and encoding
(Re) using a standard TM5 encoder, with the Simple complexity-based transrating
(Sim), Lagrangian (Lag), Full Extended Lagrangian optimization using a Trellis di-
agram (Tr) and the sub-optimal Extended Lagrangian optimization (Trs). As MSE
using Linear interpolation for pdf estimation is the best method in most of the cases
(which is also true for Simple transrating, see sec. 3.5), only Linear interpolation
MSE approaches are compared.

In our simulations, the proposed Extension of Lagrangian Optimization by DCT
coefficient index modification is always the best (in terms of PSNR), and it in-
creases significantly the improvement provided by the previous Lagrangian optimiza-
tion scheme. For the FOREMAN sequence, Lagyse—1inear increases from 0.25 to 0.7 dB
above the PSNR of the originally encoded sequence, while Tryge 1inear gets from 0.6
to 1 dB above it. For other sequences Tryge_1inear can double the gain of Lagyse—1inear-
For the TENNIS sequence, for rates below 1.6 Mbps, regular Lagrangian optimiza-
tion can’t become better than Enc, while Trpge_1inear 1S about 0.4 dB above it. At
the same time the performance reduction by using the proposed sub-optimal Trellis
search is very small for all sequences (less than 0.05 dB), except TENNIS, where it
reached 0.09 dB.

Additional examples can be found in Appendix C.

Another issue we wish to present here is computational complexity. In the table



66 CHAPTER 5. EXTENDED LAGRANGIAN OPTIMIZATION

below we summarize the running time information achieved by using Microsoft Visual

Studio profiler under Windows. To use the profiler, compiler code optimization was

disabled.
method run-time(msec) | ratio
Simple 50 0.15
Run-time optimized Lagrangian 330 1
Extended Lagrangian 7150 21.7

Extended Lagrangian

with optimized search

Sub-Optimal Extended
Lagrangian

2600 7.9

1100 3.3

Table 5.2: Run-time of different transrating approaches. For ”Simple” method run-
time is measured over one frame. For other algorithms the time is for one iteration
with particular A.

The proposed Extended Lagrangian optimization is 8 times slower than the fastest
regular Lagrangian method. However, using the proposed sub-optimal solution re-
duces only slightly the PSNR, and is only 3.3 times slower than the regular Lagrangian

optimization.
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Chapter 6

HV S-based segmentation and

tracking

In video production and editing, there is common agreement that not all of the video
picture parts are of the same importance to a human observer. There is no need to
encode the entire scene at the same quality. The solution is to segment the picture and
to process it according to its perceptual importance. There is a lot of effort to define
HVS models and to implement encoding, editing and display based on those models.
Most of the works are done in the pixel domain framework, in spite of the fact that
HVS models show the importance of neighboring pixel interaction, both in space and
time, for perceptual quality of particular area of video sequence. Spatial correlation of
pixels is utilized by frequency transformations used by modern encoding systems like
Fourier Transform (FT), DCT, Wavelet Transform (WT), and others. Pixel based
methods looks like the most popular for encoding because it is relatively easy to
extract boundary and object information. At the same time, transform information

of already compressed data for video editing and post-processing before displaying

69
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the decoded video seems to be a better solution. The following section aims at video
segmentation for transrating applications. Transrating input is compressed-domain
data, and so is the output. More precisely, the current research deals with MPEG-
2 transrating, i.e. reducing the bitrate of already block-based DCT encoded video.
Section 6.2 describes the segmentation scheme we used in this work for transrating.

Results of the proposed scheme are shown in section 6.3.

6.1 Existing Compressed Domain
Segmentation Methods
Following [36], features used by compression domain segmentation schemes are:

1. DC value of DCT, which is the mean luminance value of the block, known as

in pixel-based methods.

2. Sum of squared AC coefficients, which corresponds to the variance in pixel

domain.

3. Sums of amplitudes of AC coefficients in the first row and first column of the
DCT coefficient matrix was proposed as a measure for vertical and horizontal
edge presence in a block by [37]. More complex DCT domain edge detection

method are proposed in [38].

4. Color: DC values of Y, Cb and Cr color component blocks can be used to form

a block’s color vector[39).

5. Motion Vectors (MV) presented in Inter-coded pictures and blocks.
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6. MB bit-count information multiplied by quantization step size can provide in-
formation about coding complexity of the particular MB that shows how hard

it is to reduce the MB bit-count by increasing the quantization step-size.

7. MB coding type must be taken into account while making decisions about spe-

cific block classification.
Segmentation approaches can be divided into two main groups:

1. Local-properties-based methods. These methods assume that what is important
for a human observer looking on a particular region of a picture are the local
region properties themselves, with some minor correlation to the adjacent areas

features, like mean luminance.

2. Object-based methods. These methods presume that a human observer identi-
fies different objects in a video sequence, and what is important to him is the

better quality of the important video objects in the scene.

6.1.1 Methods based on local properties

These methods are based on extracting local features from compressed domain data,
like blockiness [40] or boundaries [38], which can be used to define the perceptual
importance of a particular image block. It is also important to remind here works
that aim to define perceptual quality based on the DCT domain information. Some
of those works still need the original picture for comparison [41], which is not the case
we have in transrating.

In [42] it is proposed to calculate perceptual activity of every block based on the

DCT coefficients weighted by a correlation matrix computed in a bigger neighboring
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area centered at the same block. The ratio of a particular block and neighboring areas
DC values is supposed to take into account Weber’s law. This ratio is appropriately
combined with the sum of absolute values of weighted DCT AC coefficients to measure

the perceptual activity of that block.

Considering implementations for transrating, it turns out that there are not so
many works published that are based on local properties as there are about object-

oriented methods. The methods utilized are also much simpler.

In [43] a Hybrid Transrating method that switches between requantization, re-
sizing and frame skipping was proposed. The decision is made at frame level, so
the measures proposed were Motion Activity, which is the average magnitude of the
motion vectors of all the macroblocks in each frame, and Spatial Activity, which is de-
fined as the mean quantization step-size, or the actual number of bits used to encode

the frame if the first the mean quantization step-size exceeds its maximum value.

Another frame-based MPEG properties extraction that aims at transrating was
proposed in [44]. Quantization step-size is called Region Perceptibility and the num-
ber of zero DCT coefficients in the block is defined as Spatial Complexity. As Tem-
poral Similarity features, it is proposed to gather MB coding type, the direction of
MVs (forward, backward or bi-directional), prediction type (frame or field), and the
number of actual MVs used for a particular MB (from one up 4 in bi-directional
field predicted MB). The work deals mainly with MPEG-2 to MPEG-4 transrating
and does not target requantization, i.e. transrating problem. So the major aspect
analyzed was which properties can be re-used, and which has to be modified and how

to meet MPEG-4 standard specifications.

Some encoding techniques can be adapted to transrating. It is mentioned in [45]

that objectionable artifacts that occur when pictures are encoded at low bit rates
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are: blockiness, blurriness, ringing and color bleeding. Blockiness is related to high
quantization of smooth regions, while ringing and color bleeding occur at edges on flat
background where high frequencies are poorly quantized. Blurriness is the result of
loss of spatial detail in moderate- and high-detailed regions. To avoid producing those
artifacts, the MBs are classified into either homogeneous or edge-including, based on
a comparison of MB block’s variances. Homogeneous MBs are further sorted into
several classes from flat to coarse-textured. At the same time edge-including MBs
are arranged into sub-classes as weak edge, normal edge, strong edge and structured
edge. A similar approach can be implemented for transrating, with a further bit-rate
allocation that is proportional to each class perceptual importance, as it is done in

encoding.

6.1.2 Object oriented Methods

There are many efforts to perform object segmentation of a video stream. Most of the
works were motivated by the MPEG-4 standard that enables Video Object Planes
(VOP) encoding. To prepare tools for MPEG-2 to MPEG-4 conversion, many authors
propose segmentation algorithms working in the compressed domain.

Several researches try to segment the video on the basis of MV information. MVs
can be accumulated over time to build dense motion information for every pixel in the
frame and to use it for pixel-domain segmentation. Such segmentation can maximize
the probability that all pixels in a particular segment share the same affine trans-
formation [46]. The pooling of MVs from multiple frames is also used for building a
more robust data set for clustering [47]. To withstand MV estimation errors, the data
set includes all MBs with MV close enough to currently estimated affine models, and

after that the data is re-clustered, and the affine models are updated. Segmentation
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tracking needed in transrating is usually exploited in background freezing approaches
that can be used for fixed camera scenes. If an initial block-based segmentation is
known, the tracking can utilize MV information of encoded MPEG stream to detect
what new blocks are covered by projections of the initial object MBs [48]. The MBs
are divided into Active (predicted objects), Monitored (MBs that are close enough
to the objects) and Inactive. A set of rules define how some objects MBs can be
transferred either to Monitored or Inactive clusters, and how MBs from Active or

Monitored partitions can be transferred to an Active set.

DCT coefficients similarity can be defined and used for image segmentation in
many different ways. For example, it is possible to calculate the DCT of a block cen-
tered at every pixel in the picture, and by PCA to define the number of dominant re-
gions in the scene. By using appropriate filters it is possible to fit the DCT coefficients
to frequency characteristics of HVS, and so get perceptually adapted segmentation

after K-means clustering on what is called Situational DCT Descriptors[49].

The combination of DCT and MV information for moving objects extraction was
also tested in a number of works. Region Growing methods often use a spatial feature
vector that consists of mean block luminance, vertical edge, horizontal edge and
texture (see section 6.1 features 1,2 and 4). Following segmentation, the region is
set to be a moving region if more than a half of its MBs have non-zero MVs [50].
This approach is sensitive to MV estimation errors, so the possibility of false motion
has to be minimized by comparing coded motion residual with no motion residual,
which has to be calculated additionally by the proposed scheme. A somewhat more
complex classification of false motion blocks was proposed in [51]. It checks if blocks
adjacent to a particular block in the direction of its motion are also dynamic. A

possible combination is assigned using the ratio of probabilities of the realization
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of this combination assuming ”real moving block” to that assuming ”false moving

block”.

Another way to segment Intra frames is to employ the Watershed method [52],
which is widely used in the pixel domain, to a simplified image consisting of the DC
values only or DC plus 2 AC coefficients picture [53]. The Watershed method is used
to produce closed smooth areas coverage of the initial image, based on a gradient
image. One of the method drawbacks is that it usually over-segments the image
due to local noise in the picture. To avoid over-segmentation, leveling that uses as
a marker the DC image and the DC+2AC image as reference is employed. Markers
mark some of the initial zones as areas of interest, and the segmentation is constructed
starting from these zones, so better segmentation can be achieved. The largest flat
zones in the resulting image are chosen as markers for a final watershed segmentation,
which is based on morphological gradient of the leveled image. To find the moving
regions, the MVs of neighboring Inter frames are summed for every MB, and the
Manhattan distance is calculated on resulting MVs to represent the displacement,
which is further uniformly quantized into eight levels. This information can be used

for final segmentation, or for global motion estimation of the scene.

A more complex spatiotemporal segmentation scheme is proposed in [54]. The ini-
tial segmentation is generated by Sequential Leader Clustering of vectors combined
from DC of all three image color components and AC energy information. Sequen-
tial Leader Clustering algorithm uses pre-defined threshold and distance measure to
decide if new point has to be added to the closest of the existing clusters, or, if the
distance is above the threshold, has to start a new cluster. After a number of clusters
is defined, adaptive K-mean clustering is applied to adjust the initial segmentation.

The small regions are merged with their neighbors using luminance and AC energy
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distances. Entropy values of ac energy for every region is calculated, and modeled
as a Gaussian distribution with mean g and standard deviation o, over all regions
in the picture. Then, spatial similarity is calculated for every pair of adjacent blocks
based on assumption that entropy difference must be of zero mean and of variance
v20. The temporal similarity is derived based on the Kolmogorov-Smirnov hypoth-
esis test of the distribution of the temporal gradient. Kolmogorov-Smirnov statistic
is defined as the maximum value of the absolute difference between two cumulative
distribution functions. Temporal gradient is calculated by applying a 3-D Sobel filter.
It is not described in the letter [54] on which data in compressed domain, if at all,
it was applied. Finally, two similarity measures, one for merging spatiotemporally
similar regions (a modification of similarity measure proposed in [55]), and one for
merging regions with high average temporal change within the region, are calculated.
After Region Adjacency Graph (RAG) merging based on those similarity values, the
regions are classified as foreground or background based on average temporal change

of regions.

Another approach for clustering is Maximum Entropy Fuzzy Clustering (MEFC)
in the compressed domain. The idea of fuzzy clustering is to iteratively calculate
the region centers and to update each image sample membership based on some dis-
tance measure. In MEFC the distance from a pixel to every cluster is defined by the
squared difference of the pixel value from each cluster center value that is weighted
by a membership function. The membership function derivation is based on the prin-
ciple of maximum entropy to yield a least biased clustering. It is possible to use
MEFC on DC coefficients, and further to refine the membership of blocks surround-
ing the current object to be either foreground or background based on a Maximum

A Posteriori (MAP) approach applied to those block’s AC coefficients [56]. For video
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it was proposed to use MEFC for segmentation of MV data projections on I-frame
from two P-frames surrounding the I-frame. To achieve finer VO’s boundary seg-
mentation, MEFC is further applied to DC coefficients of I-frames [57]. To avoid
problems caused by non-perfect MV information, it is assumed to be of impulse noise
nature, and is filtered by Noise Adaptive Soft-switching Median (NASM) filter [58].
The filtered MVs are then clustered by the MEFC algorithm. Validated regions are
tracked using Kalman filtering, which update second order motion model. Segmented
regions projection according to that motion data is used to make robust temporal seg-
mentation, which tests motion homogeneity and overlapping area of the segmented
masks, such that a recursive merging and splitting process could be performed in the
temporal domain [59]. DC coefficients of three color components are then clustered
into an optimum number of homogeneous regions, also by applying MEFC. To com-
plete the classification of the small homogeneous regions that are usually produced by
the proposed algorithm, MAP processing to classify those regions into either moving

foreground or stationary background is proposed.

6.2 Proposed Scheme

In the current research, segmentation is used to provide different perceptual impor-
tance to different parts of the picture so as to match the MSE distortion in those
areas to perceptual criteria. The algorithm described below uses the information
available in the encoded stream, like AC coefficients and motion vectors, to perform
a local-based segmentation. Each block in the picture gets a relative weight that car-
ries information on the extent the rate can be reduced in the particular block during

transrating.
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The proposed segmentation scheme uses a somewhat simpler approach than [45].

It consists of two main units:

1. Encoded data segmentation unit, which partitions the picture into segments

based on the coded AC coefficients.

2. Tracking unit, which utilizes motion information to track the segments varia-

tions over time.

The segmentation technique developed suits both open-loop and closed-loop transrat-
ing schemes. So, only the information available in the DCT domain and the motion
vectors are used. As follows from the original goal of this scheme, the segmentation is
done at a resolution of 8x8 blocks. It is possible to replace the proposed segmentation
scheme by another one, and still utilize the tracking scheme to improve results over

time.

6.2.1 AC-based segmentation

Following [45], we assume that the amount of information in smooth areas is small,
hence so is its bit-budget. However, even a small reduction in their bit-rate typically
results in a visible degradation in picture quality. On the other hand, textured regions
in the picture demand many bits, but their rate can usually be significantly reduced,
before a human observer will notice the difference. Boundaries (edges) are known
to be the most perceptually important part of the scene, but in terms of rate vs.
noticeable distortion, they fall, on average, between smooth areas and textures. Thus,
the proposed scheme classifies blocks as being either smooth, textured or boundary.

It is possible to define a textured block as block that is surrounded by other boundary
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blocks from almost all directions. It can either include boundary by itself, or not.

The segmentation algorithm thus consists of the following steps:

1. Block activity evaluation. The sum of absolute values of AC coefficients can be
a good measure for edge presence in a particular block [36]. DC and two first
AC coefficients are omitted, as not to take into account slow luminance changes

over flat areas.

2. Binarization. The block activity picture is converted into a binary picture
that classifies each block as either a high-activity block or low-activity block.
Binarization is done using adaptive thresholding. The Otsu method [60] uses
an interclass variance criterion for bilevel thresholding. It is simple and usually
gives very good results. This technique yields a threshold resulting in minimal

intra-class variance and maximal inter-class variance.

3. Texture detection. Morphological operations are used to remove from the set of
high-activity blocks the blocks that are close to relatively big low-activity areas.
The size and the form of these areas are defined via a particular selection of
structuring element. During these operations the edge between textured and flat
areas is removed, as well as small isolated blocks and thin boundaries between
smooth areas. Other operators are used to fill in small holes in the remaining

set of high-activity blocks to form textured areas.

4. Forming segmented picture. At this point, textured regions are already formed.
All the blocks that pass the threshold but were not included into the texture
class are classified as boundaries. It includes isolated active blocks in low-

activity areas, and boundaries between textured and smooth regions as well.
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Figure 6.1: Flow-chart of the I-frame segmentation procedure. Morphological opera-
tions are used to decide if close to smooth area or inside texture.

Every low-activity block that is not included in the texture class is considered

smooth.

Fig.6.1 presents flow-chart of the segmentation process. Decisions about low-

activity blocks are taken after high-activity blocks are proceeded.

6.2.2 Tracking

MPEG video encoding uses differential encoding and motion estimation to reduce

the amount of information to be encoded in each frame. While I-frames can provide
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reasonable segmentation results, P- and B-frames don’t contain enough information
by themselves. They do provide essential information about changes in the scene
that can not be predicted from the reference frames, but it is impossible to get good

segmentation of these frames without tracking.

The idea of the proposed scheme is to use motion vectors information to track the
segmentation changes due to motion is the video sequence, and to update the tracking
results by new information available in difference pictures. For each block type we
define the grade that will be used to weight the distortion function during Lagrangian
optimization procedure. This grade defines perceptual importance of a particular
region type. More importance will be given to smooth areas than to boundaries
and textures. Textured areas will be weighted so that the highest distortion can be

introduced in them. In [-frames the grade will be given based on the block type only.

The segmentation scheme described above is performed at block level, while mo-
tion vectors have pixel or even sub-pixel resolution, so each tracked block usually
depends on more than one reference block in reference picture. Because of partial
covering of reference blocks, it is difficult to classify the block type exactly. The dis-
tortion level allowed in boundary blocks is between the distortion allowed in textured
blocks, which is the highest one, and the distortion allowed in smooth areas, which is

the lowest one.

There are several options to determine tracked block grade based on reference
block classification. Consider the situation shown in Fig.6.2. Tracked block P has
motion vector MV that points to reference area R. This area cover blocks 1,2, 3,4,
which are graded as ry,ry,73,74. The covered areas of each block are wq, ws, w3, wy,

respectively. It is possible to produce a classification that is based on the maximally
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Figure 6.2: Block tracking over time. As tracked block P is in current frame, and
reference area R is in reference frame, their projections to reference/current frames
are shown by dotted squares.

covered reference block:

TP = Targmaz{w ,wa,w3,w4}> (61)

or to classify it to the class of the reference block that is the most distortion-sensitive

of the four reference blocks:
rp =min {ry,ro, 73,74}, (6.2)

Another option is to use the sum of reference-blocks grades, weighted each by their

covering area of reference blocks:

4
rp = Zwi X T4, (6.3)
i=1
We implemented the tracking as follows:

1. Reference-blocks determination. In the case of field-encoding, a B-field can
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have up to four reference field-pictures. In every picture the reference area of
a particular block consists of one to a maximum of 4 blocks. If field-encoding
for blocks in a frame-coded picture is used, things are even more complicated.
Reference block type and covered area used for constructing the reference have
to be accurately tracked. I-MBs in P-,B-pictures have no reference, and this

has to be taken into account on later stages.

2. Block classification. Based on reference segmentation pictures and block-cover
information, tracked blocks are classified. The proposed scheme gives tracked
blocks a grade according to its probability of being a particular type. The
classification grades of all reference blocks are weighted according to reference

area covering of each block and their sum is assigned to the tracked block.

3. New data segmentation. To account for changes that can’t be fully tracked on
the basis of information from previously segmented frames, the same segmen-
tation scheme used for I-frames is applied. This segmentation can’t provide a
final segmentation, but can detect new boundaries and textures. The result-
ing boundary and texture segments are merged with the tracking results from
step 2, based on the assumption that merging 'edge’ and ’texture’ types gives

‘texture’, but a new edge may appear in a previously smooth area.

6.2.3 Perceptual weighting

To take into account the different perceptual sensitivities at smooth, textured and
boundary areas, we propose to modify the distortion cost function by multiplying the
SE of each block by a weight function. After a number of experiments we found that

reasonable weight-ratios for the different area types are 4:2:1 for smooth, boundary
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and texture, respectively. A larger weight gives more importance to a particular area,

so less distortion will be introduced there.

Up to this point the proposed system uses the same features that are usually used
for still images, i.e. no consideration was given to motion. The following enhancement
utilizes temporal domain characteristics of the HVS when viewing video.

It is known that HVS is less sensitive to distortion in quickly changing areas. We
decided to measure temporal changes in the video signal by means of the available
motion vectors. We observed in experiments that motion up to 8 pixels in consecutive
frames, in any direction, should not result in a modification in the initial weights, since
the observer can track those changes easily. The faster the motion is, the change in
the same region becomes larger, and thus there is less sense in preserving the same

quality in every frame there. The weight modifier that we propose is:

1% 1 if ©<8
W = gy 1@ = (6.4)
f( T y) 1+ kx*(z—28) r>8
where,
Wi - motion modified perceptual weight
|44 - initial block weight determined by segmentation and tracking

MV, - motion vectors x/y components of current MB

k - a constant (set to k = 1/24)

6.3 Simulation results

Evaluation of perceptual-based coding methods, as well as optimal parameter selec-

tion, is an ill-posed problem because there is still no standard objective video quality
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metric. The I'TU-T Recommendation P.910 standardize methods for multimedia sub-
jective quality assessment. Because the premise behind subjective assessment is the
use of human observers to rank video sequences, it is impractical and impossible to
use these methods for HVS model parameter adjustment, and it is very hard even for

the evaluation of very limited sets of data.

In spite of the fact there is no standardization yet in this area, there are some
Perceptual Quality Assessment (PQA) tools provided by different companies. We got
an opportunity to run some tests of our scheme with a commercial Tektrnix/Sarnoff
PQA200 tool, access to which was kindly provided by Optibase. The PQA200 mea-
sures a 2-second portion of a 5-second video test sequence. The measurement results
in a single numeric value of picture quality called Picture Quality Rating (PQR).
Utilizing a human vision system model, the PQA200 claims to analyze the three
necessary dimensions for evaluation of dynamic and complex motion test sequences:

spatial analysis, temporal analysis and full-color analysis.

For carrying out the tests, we got from Optibase three video sequences - MOBILE,
FOOTBALL and CHEERS - in 720x480, 4:2:0 resolution. Those sequences were
encoded at 6Mpbs and 4Mbps with a standard TM5 encoder. The 6Mbps video
was transrated to 4Mbps using different transrating methods, described in previous
chapters of the thesis, as well as Lagrangian optimization based transrating methods,
which are perceptually weighted as it was proposed in this chapter. Evaluation of a
particular video sequence took about 7 minutes. We also tried to evaluate transrating
from 6Mbps to 3Mbps, but faced problems because the distortion introduced in the
special marks used by PQA200 for synchronization, so only the results of transrating
to 4Mbps will be shown here. The results are probably lower than could be achieved

because our transrating system is working with frame-encoded MPEG-2 video, while
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Figure 6.3: Perceptual Evaluation Results: FOOTBALL sequence transrated from
6Mbps to 4Mbps.

the sequences we got for evaluation are interlaced videos, which are better suited
for field encoding. No HVS model parameter adjustments were done because of the

limited PQA200 access time we had.

Figs. 6.3, 6.4, 6.5 present the PQA measurement results. The smaller the JND
value, the better is its perceptual quality. To understand the scale, it is possible
to compare results of Source Encoding to 6Mbps ("Input”) and Source Encoding
to 4dMbps ("Encoded”). Re-encoding always provides the lowest quality measured.
Encoding of the source sequence is always better than ”Simple” transrating, and can
outperform ”Simple with MSE” and even ”Lagrangian” in some cases. In our tests
the trellis-based methods always provided better results than the encoding of the

original sequence to the same rate.

It is also seen that adding HVS weighting always improves PQA results. Of course,
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Figure 6.4: Perceptual Evaluation Results: CHEERS sequence transrated from
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Figure 6.5: Perceptual Evaluation Results: MOBILE sequence transrated from 6 Mbps
to 4Mbps.



88 CHAPTER 6. HVS-BASED SEGMENTATION AND TRACKING

it does not say that true subjective perceptual evaluation results will be the same,
but it shows that our assumed HVS model is possibly similar to the model used by
the PQA200 tool. We are quite sure that it is possible to improve the results by a
better parameter selection, even in the current model, which was not done because
of the reasons mentioned above.

Figures 6.6-6.9 show that using perceptual weighting indeed improves the subjec-
tive quality of transrated video. As can be seen from the difference pictures presented
in Fig.6.8,6.9, the use of perceptual weighting allows the introduction of greater dis-
tortion in areas where we can’t see it, like the flower field. It thus allows us to provide
more bits to areas that affect more our subjective evaluation, like the buildings roofs
and the tree trunk, as well as sky details. It is observed that Fig. 6.7 has superior
perceptual quality than that of Fig. 6.6, despite of the fact that Fig. 6.6 has a higher
PSNR.
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Figure 6.6: Subjective Evaluation: GARDEN sequence transrated from 6Mbps to
1.7Mbps without applying HVS weighting (Sub-optimal Trellis method).
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Figure 6.7: Subjective Evaluation: GARDEN sequence transrated from 6Mbps to
1.7Mbps with HVS weighting (Sub-optimal Trellis method).
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Figure 6.8: Subjective Evaluation: GARDEN sequence transrated from 6Mbps to
1.7Mbps without HVS weighting (Sub-optimal Trellis method), difference from source.

Figure 6.9: Subjective Evaluation: GARDEN sequence transrated from 6Mbps to
1.7Mbps with HVS weighting (Sub-optimal Trellis method), difference from source.



Chapter 7

Conclusions and Future Directions

7.1 Summary and Conclusions

With the wide spread of multimedia services that provide video over heterogeneous
networks, transrating becomes an important part of transmission. Transrating allows
matching pre-encoded video parameters with bandwidth constraints of each end-user

connection.

In this thesis different issues related to transrating have been investigated. The
goal of the current research is to present the state of the art transrating techniques,
and to develop a high quality video transrating system. In order to clarify the con-
tributed work, we provide here the block diagram of the final scheme and will sum-

marize our contribution in its relevant parts.

On Fig. 7.1 the block diagram of the proposed transrating system is presented.

The following notations are used:
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The proposed system is an extension of Fast Pixel Domain transcoder (see Fig.2.3).

Dashed boxes shows the functional blocks we contributed to.

The first and the most important part of this work is the development and evalua-
tion of different requantization algorithms. This thesis focuses on frame-level requan-
tization. In chapter 2 a fast complexity-based transrating algorithm is presented. For
this and all the following algorithms any GOP-level rate controlling scheme can be
applied.

Chapter 4 introduces Lagrangian optimization for quantization step-size selection
developed in [5]. This algorithm has provided the best PSNR for given bit-rate

constraints over all previously developed transrating algorithms.

We propose in this work to extend the Lagrangian optimization procedure by
allowing the modification of quantized DCT indices, including setting their val-
ues to zero, in addition to quantization step-size selection. Quantized DCT index-
modification and quantization step-size selection are optimally done using a low
complexity trellis-based procedure. The proposed requantization algorithm provides
higher PSNR values than the original Lagrangian-based optimization method that
only handles the selection of quantization steps, and still, practically, does not exceed
considerably its complexity.

The main problem of transrating is that the input video is already degraded by
lossy compression. In chapter 3 DCT coefficient PDF-based methods for requanti-
zation error minimization are discussed (see dashed box A, Fig.7.1), and the MSE
and MAP estimation methods are compared. It is commonly assumed that Lapla-
cian distribution is a good model for DCT coefficients distribution, and a number of
methods to estimate Laplacian distribution parameter were proposed in the literature.

However, we found that those methods do not provide good results, and developed
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another method for PDF estimation, from quantized data, by linear interpolation.
Our method has another advantage over Laplacian parameter estimation. In our
method, all the input coded coefficients are utilized, while Laplacian estimators can
work only with one quantization step-size in the input data set. Using the proposed
method results, on average, in superior performance to Laplacian distribution-based
estimation.

To take into account HVS properties, chapter 6 provides an extension to the
Lagrangian-based methods (see dashed box B, Fig.7.1). We developed a segmentation
algorithm that uses quantized DCT coefficients values to classify each block as either
smooth, textured or boundary. Because the difference pictures do not have sufficient
information for segmentation, we implemented a block tracking system to utilize the
segmentation information from previously processed frames. Temporal masking is
used by applying additional weighting to fast moving blocks.

The proposed system is an efficient transrating scheme that provides the best
documented results todate, in term of PSNR, and demonstrates a way to further

improve it by taking into consideration HVS properties.

7.2 Future Directions

This thesis shows that it is possible to achieve improved performance (in terms of
PSNR) by changing quantized coefficient indices, and not only the quantization step-
sizes, at a tolerable complexity cost. In this work we focused on frame-level rate
reduction schemes, mainly for MPEG-2 transrating. However, the proposed trellis-
based algorithm can be applied to other coding standards that imply run-level VLC.

It is an open issue for further examination if it can be used for the H.264 standard
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uses a different coefficients encoding scheme.

The proposed optimization can be applied not only for transcoding, but also to
encoding of the initial video sequence, to improve the encoding results.

We also did not address the optimization of GOP-level transcoding schemes, which
is an important issue for building transrating systems.

There are many other rate reduction techniques such as spatial resolution reduc-
tion, frame dropping and others that can be combined with the solutions proposed
in the current work, and need to be studied.

We propose in this work a simple approach for taking in consideration HVS charac-
teristics in existing PSNR-based transrating algorithms. However, parameter values
(weights) need to be determined on the basis of subjective studies, as well as more
complex HVS models need to be utilized in order to further improve perceptual qual-

ity of transrating systems, as well as of encoding algorithms.



Appendix A

Results for MAP/MSE

Additional simulation results for chapter 3 are presented here.
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Appendix B

Results for Lagrangian

optimization

Additional simulation results for chapter 4 are presented here.
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Appendix C

Results for Extended Lagrangian

optimization

Additional simulation results for chapter 5 are presented here.
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Figure C.5: Sub-optimal Extended Lagrangian transcoding, GARDEN sequence.
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