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ABSTRACT

This work considers the efficient coding of hyperspectral images.
The shape-adaptive DCT is extended to the three-dimensional case.
Both the 3D-SA-DCT and the conventional 3D-DCT are combined
with either of two alternative techniques for coding the transform
coefficients. The proposed schemes are compared with two state
of the art coding algorithms, which serve as benchmarks, and are
found to have better performance (in terms of PSNR). Particularly
good performance is shown by the coder based on the 3D-SA-DCT
in a classification task applied to the coded images.

1. INTRODUCTION

A hyperspectral image cube (HIC) is a set of hundreds of images,
where each image in the set is the result of sensing the same scene
at a different spectral band (i.e., at different wavelengths). It can be
also defined as a 2D array of “spectral voxels”. Color images are
a particular case of this type of images, where only three spectral
regions are analyzed. Modern remote sensing systems are able to
collect more than 200 visible and near-infrared wavebands. Such
images cover in great detail a wide spectral window and can pro-
vide valuable information about the land cover of the area under in-
vestigation. Applications dealing with hyperspectral imagery usu-
ally relate to spatial and spectral information by means of image
analysis (classification, material detection etc.).

A major issue in hyperspectral imaging is the huge amount of
data to be transmitted and/or stored. Such images usually have
both high spatial resolution and high spectral resolution (a large
number of bands). For example, a hyperspectral image cube of
size 2000x2000 pixels containing 200 spectral bands, with 8 bits
per pixel, occupies 763Mbytes! To address this problem data com-
pression must be applied.

Hyperspectral image compression algorithms must cope with
high compression ratios and sufficient reconstruction fidelity in
terms of the subsequent analysis needed for a given application
(for example, material classification). It is obvious that employ-
ment of standard methods for still images compression, like JPEG,
would not meet such demands. Abousleman et al. in [1] applied
hybrid DPCM/DCT and a three-dimensional DCT (3D-DCT) fol-
lowed by entropy-constrained trellis-coded quantizaion (ECTCQ)
schemes, while Canta and Poggi in [2] proposed a Kronecker prod-
uct Gain-Shape VQ (KP-GS-VQ) algorithm for hyperspectral im-
age compression. These techniques take advantage of both spatial
(intraband) and spectral (interband) redundancies, inherently ex-
isting in hyperspectral imagery, thus achieving good results, while
requiring only a moderate coding complexity.

In an attempt to improve on those schemes results, we exam-
ined a coding scheme which is based on the 3D-DCT but employs
a shape-adaptive coding approach to high activity blocks. The
new scheme is termed 3D-SA-DCT and is described in Section 2.
Two different algorithms for quantizing and efficient coding of the
resulting transform coefficients are introduced in Section 3. Sim-
ulation results of the proposed scheme, in comparison to those
obtained by the two benchmark algorithms: KP-GS-VQ and the
hybrid DPCM/DCT coder with TCQ, are presented in Section 4.
Section 5 concludes the paper.

2. PROPOSED 3D-SHAPE-ADAPTIVE DCT-BASED
SCHEME

Transform coding techniques, and in particular the DCT, are very
attractive for image coding, mainly due to their good energy com-
paction characteristics. Since in a HIC both spatial and spectral
redundancies are present, a 3D-DCT is a natural choice. In the fol-
lowing discussion a block refers to a 8x8x8 spatio-spectral cube of
pixels from the original HIC.

Although the 3D-DCT has good energy compaction charac-
teristics and the encoding of the transformed blocks is usually effi-
cient, it still fails in compacting the energy of high activity blocks.
This is mainly due to the fact that high activity in a spatio-spectral
block (because, for example, an edge in the block) results in rela-
tively high AC coefficients - even at high frequencies. These coef-
ficients either decrease the compression ratio that can be achieved
or, if quantized coarser, reduce the quality of the reconstructed
bands. The main idea in the proposed scheme is to determine
these high activity blocks and encode them separately in an effi-
cient manner, while the remaining blocks are to be encoded using
the conventional 3D-DCT. The following subsections describe the
building blocks of the proposed scheme.

2.1. Determination of High Activity Blocks

High block-activity may result from two sources. Either the partic-
ular block contains an edge or it contains coarse texture. Since we
are dealing with three-dimensional blocks, the variations in pixel
values may occur in all three dimensions. We have chosen the
value of the block variance as a measure of its activity level. Thus,
high activity blocks are determined by comparing the variance of
each block to a threshold value. This approach, although simple,
was found in simulations to provide better results than gradient-
based criteria. Since we do not have a model for the variance of
blocks in HICs, threshold values are set empirically.
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2.2. Block Splitting Algorithm

The main idea in the proposed scheme is to split each high activity
block into a number of low activity regions with smaller variations
in pixel values. Applying the shape-adaptive DCT to each one
of such regions is expected to result in more efficient coding of
transform coefficients. In order to decrease the amount of encoded
information (one SA block of transform coefficients is produced
for each region) and to reduce the partitioning side-information,
each high activity block was split just into 2 lower activity regions.

Since hyperspectral imagery has high spectral resolution, the
variance along the spectral axis in a block (just 8 bands) is not ex-
pected to be high. On the other hand, if two adjacent voxels are
from different materials (i.e., having different spectral signatures),
they typically will have quite different intensity values, thus caus-
ing large spatial variations. The problem of clustering the 64 vox-
els (of length 8, each) in a block into two clusters, is solved by
applying a 2-class Vector Quantization (VQ) clustering algorithm,
using the well known LBG algorithm. Each class corresponds to a
different spectral signature in the highly active block. The result-
ing partition provides for each block a 8x8 segmentation bitmap
in which entries corresponding to the voxels belonging to one of
groups are assigned ’0’ and the others are assigned ’1’. Such a
segmentation and its effect on the way the shape-adaptive DCT is
performed, are illustrated in Figure 1.
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Fig. 1. Block of size 8x8x8 is split by a 2-class VQ: segmentation
bitmap and cube splitting (left) and 2 sets of 3D-SA-DCTs (right).

2.3. Lossless Coding of Side Information

To reduce the amount of side information, each 8x8 segmentation
bitmap has to be encoded. Lossless compression is required since
the decoder needs the exact partition map of voxels in order to
reconstruct correctly the data and to perform the corresponding
3D-SA-IDCT for the two regions.

We examined in our work four techniques for encoding the
binary data: Fixed and variable run-length coding, followed by
Huffman encoding tables; Elias coding, and block-based Huffman
coding. In addition, different scanning techniques were used to
convert each 8x8 binary bitmap to a 64 element vector of zeros
and ones: Hilbert scan and 2 different “snake” scans (horizon-
tal/vertical) as depicted in Figure 2, allowing also block-adaptive
scan direction.

In our experiments, the preferred technique for lossless bitmap
coding was found to be the variable run-length Huffman coding
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Fig. 2. Hilbert, horizontal and vertical Snake scans.

method preceded by a horizontal snake scan. It achieved an aver-
age bitmap compression ratio of 2 (i.e., 32 code bits per block).
More details can be found in [3]. Note that the segmentation
bitmap describes the partition of the 8x8x8 block into two classes,
hence the side-information rate is 32/512=1/16 bit/pixel.

2.4. Applying a 3D Shape-Adaptive DCT to Split Cubes

Shape-adaptive 2D-DCT has been proposed for image coding as a
way to improve the coding efficiency of blocks on object bound-
aries [4]. Here we extended this technique for coding 3D data of
cube partitions of arbitrary 3D shapes. In our particular case, the
partition is defined by a 2D bitmap and hence is uniform along the
spectral axis (see Figure 1), simplifying the SA-DCT in the last
stage to just a 1D-DCT of fixed size (8). In the other stages, the
2D-SA-DCT is implemented via 1D-DCT’s of variable lengths, as
explained in [3]. The following important features of the 3D-SA-
DCT are worth mentioning:

� Denoting the discrete transform coordinates by
� � � � � � �

(each in the range of 0 to 7), the DC coefficient is located
at the upper left corner (

� � � � � � $
).

� The 3D-SA-DCT is performed twice on each high activity
block - once for each of the two cube partitions. The total
number of transform coefficients remains 512 (as the num-
ber of pixels in the original cube) and they are concentrated
in the top left corner of each transformed cube (depicted
by the shadowed region in each cube in the right side of
Figure 1). The remaining coefficients have a value of zero.

� A very important feature of the SA-DCT is its ability to
handle non-contiguous regions. This means that it can han-
dle non-connected regions, like in the situation shown in
Figure 1 or when a block is textured.

3. TRANSFORM COEFFICIENTS CODING

The last stage of the proposed scheme is the encoding of transform
coefficients. In this work we examined two alternative algorithms:

3.1. Quantization Table (QT) Algorithm

In this scheme each of the 8x8x8 DCT coefficient-cubes is first
quantized using a 3D quantization table. Then, the quantized cube-
coefficients are rearranged into a vector which is losslessly en-
coded as in JPEG.

The 3D quantization table generation, as well as the coeffi-
cients rearrangement (differently from the zigzag scan of JPEG),
are based on [5] where they were introduced for the compression
of image sequences (video). We were able to use the model pro-
posed in [5] for coding HICs by adjusting the parameters of the
quantization function [3].
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According to the model, the shifted hyperboloid defined by
the curved surface

� � % & � � � % & � � � % & � - /
, where

/
is a pa-

rameter, captures the less significant coefficients, while the shifted
complement hyperboloid defined by the curved surface

� � % & � � � %& � � � % & � 4 /
captures the most dominant coefficients, as shown

in Figure 3. The following exponential function was utilized to
generate the quantization table:
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where
Y � � � � � � � � � � % & � � � % & � � � % & �

, and u v x and u y g z
are parameters controlling the exponential decay in the dominant
(inside) and less significant (outside) regions, respectively.

/
con-

trols the border between the regions and
� � � � �

are in the range 0
to 7, each (for an 8x8x8 quantization table). The parameters were
fitted as explained in [5] to give a good overall performance (in
terms of peak-SNR (PSNR) and compression-ratio (CR)).

Shifted Complement Hyperboloid Shifted Hyperboloid

DC

w

v

u

Fig. 3. The 3D-DCT dominant coefficients are concentrated along
the major axes and captured by a shifted complement hyperboloid.

As mentioned above, the quantized coefficients are rearranged
into a vector according to the scan order proposed in [5] - for the
pursuant lossless coding. This ordering was chosen since it was
found in our simulations to give better results than a 3D zigzag-
scan or a 3D Hilbert-scan. Each vector of quantized coefficients
is of length 512 (two vectors for each split active block in SA
approach). The first element of the vector is the quantized DC
coefficient and the remaining 511 quantized AC coefficients are
located afterwards, with the dominant coefficients closer to DC,
while most of the coefficients in the tail of the vector are usu-
ally zero valued. The lossless encoding scheme is based on the
JPEG entropy coding scheme. The Huffman tables for the AC and
DC coefficients were adjusted to the statistics of hyperspectral im-
agery. The complete lossless coding scheme is detailed in [3].

3.2. Quantization with a Set of Vector Quantizers (VQ)

We introduce here an alternative algorithm for encoding the 3D-
DCT/3D-SA-DCT coefficients. It is based on using a set of vector
quantizers. The main idea is to partition the vector of quantized co-
efficients, discussed in the previous section, into sub-vectors and
code each sub-vector by a separate codebook. The size of each
codebook is determined by the number of bits allocated to each
sub-vector. Since the ordering process (of cube-coefficients into
a vector) groups high energy coefficients at the head of the vec-
tor, both the partitioning of the vector into sub-vectors and the bit
allocation are based on coefficient variances, as measured from
training data. To simplify matters the full vector is partitioned into

8 sub-vectors of lengths: 4,4,8,16,32,64,128,256. The sizes of the
codebooks, { v , are then determined by the number of bits, } v , al-
located to each sub vector through { v �

=
� I � � � & � � � � � �

. The
bit allocation was determined for different rates on the basis of the
sub-vector variances in the training data. The codebook design
was done by the LBG algorithm.

4. SIMULATION RESULTS

The simulations where conducted on the coding scheme described
in the previous sections. Four HICs were used in our study, three
for training and one for testing. The HICs consist of 120 spectral
bands (with spatial resolutions of 128x256 and 256x256), covering
the visible and near-infrared spectral window (wavelengths from
400[nm] to 1000[nm]). Each pixel in each band has 8 bits of ra-
diometric information. As a quality measure we used the average
PSNR over all 120 spectral bands, but also examined the results of
a classification test.

For comparison purposes, the Kronecker-product gain-shape
VQ (KP-GS-VQ) and the hybrid DPCM/DCT/TCQ (slightly mod-
ified) coders were also implemented and served as benchmarks.

The proposed scheme was tested for five different values of the
variance threshold parameter � : 500, 700, 1000, 1500 and 2000
and, in addition, with a very high threshold value - thus applying
the conventional 3D-DCT to all the blocks. Since split blocks are
encoded twice, more bits were allocated to these blocks.

We applied the shape-adaptive approach to active blocks and
compared its results with those obtained when no block is split.
The results obtained for 3D-SA-DCT with either the VQ or QT
techniques are shown in Figure 4. The compression ratios include
the side-information overhead. The performance of the conven-
tional 3D-DCT (without SA) scheme for the same encoding rates
(or CRs) is given by the dotted lines - for both algorithms.
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Fig. 4. Performance of the 3D-SA-DCT approach with QT/VQ
quantization algorithms.

As we hoped, when the VQ scheme follows the 3D-SA-DCT
of high activity blocks, it performs better than when it follows
a conventional 3D-DCT, with a suitable choice of the threshold
value. In Figure 4 this value is � y � z � & $ $ $

. For this threshold
value, 14% of blocks are split and transformed by 3D-SA-DCT.
The reason for the relatively small advantage is the high overhead
which is characteristic to this approach, stemming from the need to
code two sets of transform coefficients and the bitmap. While the
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encoding of two lower energy regions of a split block is typically
more efficient than using the conventional 3D-DCT for coding a
high activity block, the bitmap side-information which consists of
32 bits per each split block (on average) almost cancels the advan-
tage achieved by the splitting.

For the QT coding technique the above advantage disappears
and at present there is no advantage in using the shape-adaptive
approach with QT. Nevertheless, there is, in principle, a case for
studying further this approach, because of the evidence to its su-
periority over direct 3D-DCT encoding of high activity blocks. In
particular, improvements in the splitting criterion and reduction
of the side-information overhead of the segmentation bitmap are
needed.

A performance comparison of the two benchmark coders with
the 3D-DCT, followed by VQ or QT, is presented in Figure 5.
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Fig. 5. Comparative performance summary without SA coding.

The figure shows the average PSNR obtained for each algo-
rithm versus the average bit-rate in bits per pixel. The rate axis
corresponds to compression ratios (CR) between 60:1 (0.13[bpp])
and 130:1 (0.06[bpp]), with 0.1[bpp] corresponding to CR = 80.

It is seen from the figure that both the VQ and the QT tech-
niques achieve better average PSNR, for the same bit-rate, than
KP-GS-VQ and DPCM/DCT with TCQ algorithms, in almost all
the range of bit-rate values examined. It should be noted that only
in the QT scheme lossless compression was applied, since it is
a built-in feature of the QT approach. But even the VQ method,
which does not apply lossless coding (only little gain was achieved
by applying it), achieves better results than the benchmarks.

It is interesting to note that the application of a standard H.261
video coder to the set of hyperspectral images, resulted, at best,
in a lower PSNR (by 0.5 to 1.5 dB) than the 3D-DCT with the
VQ scheme. This, in a way, justifies the development of a specific
coder for this type of images.

Table 1 summarizes the classification error rates of a simple 3-
class Maximum Likelihood (ML) classifier [6], implemented as a
subsequent image analysis operation and applied to both the orig-
inal and the coded images (see [3] for details). The error rate of
the classifier applied to the original test HIC is 10.3%. It can be
observed that the SA scheme achieved lower error rates than other
algorithms and even lower than the classification error obtained
for the original image. This result gives additional motivation for
utilizing and further studying the shape-adaptive approach.

R [1] [2] 3D-DCT 3D-SA-DCT� � � � �
scheme scheme � � � � � � � �

0.13 12.6% 11.5% 12.1% 10.5% 11.1% 10.3%
0.1 13.2% 14% 14.2% 11.1% 9.1% 9.5%

0.08 15.7% 14.9% 16% 15% 10.2% 10.6%

Table 1. Classification error summary for different coders.

5. CONCLUSION

The attractive features of the shape-adaptive DCT and the rele-
vance of its three-dimensional extension to efficient encoding of
high activity blocks in hyperspectral images encouraged us to ap-
ply this technique. Due to its ability to code arbitrary shaped re-
gions, the 3D-SA-DCT enables the encoder to overcome the inef-
ficient coding by conventional 3D-DCT of high activity blocks -
due to both edges and coarse texture. To code the transform co-
efficients (resulting from either a 3D-DCT or a 3D-SA-DCT), two
techniques - QT and VQ, along with a special coefficient reorder-
ing, were adopted and found to give better coding performance (in
PSNR) than two benchmark algorithms examined.

Because of the added side-information, of the segmentation
bitmap needed by the shape-adaptive (SA) approach, it failed to
improve the results obtained by the conventional 3D-DCT when
both are followed by the QT scheme. Yet, in a classification task
the 3D-SA-DCT provided better results than the conventional 3D-
DCT when both were followed by either the QT or VQ schemes.
Thus, there is room for further study of the 3D-SA-DCT approach
for hyperspectral image coding, in particular with respect to the
splitting criterion and efficient coding of the segmentation bitmap.

6. REFERENCES

[1] G. P. Abousleman, M. W. Marcellin and B. R. Hunt, “Com-
pression of hyperspectral imagery using 3-d DCT and hy-
brid DPCM/DCT”, IEEE Trans. Geosci. Remote Sensing,
Vol. 33, pp. 26-34, Jan. 1995.

[2] G. R. Canta and G. Poggi, “Kronecker-product gain-shape
vector quantization for multispectral and hyperspectral im-
age coding”, IEEE Trans. on Image Processing, Vol. 7, No.
5, pp. 668-678, May 1998.

[3] D. Markman, “Hyperspectral Image Coding Using 3D
Transforms”, M.Sc. Research Thesis, Technion - Israel In-
stitute of Technology, Haifa, Israel, July. 2000, http://www-
sipl.technion.ac.il/Dima thesis.ps

[4] T. Sikora and B. Makai, “Shape-Adaptive DCT for generic
coding of video”, IEEE Trans. Circuits Syst. Video Tech-
nol., Vol. 5, No. 1, pp. 59-62, Feb. 1995.

[5] M. C. Lee, R. K. W. Chan and D. A. Adjeroh, “Quanti-
zation of 3D-DCT Coefficients and Scan Order for Video
Compression”, Journal of Visual Communication and Im-
age Representation, Vol. 8, No. 4, pp. 405-422, 1997.

[6] D. Landgrebe, “Some Fundamentals and Methods for Hy-
perspectral Image Data Analysis”, SPIE Photonics West,
San Jose CA, Jan. 1999.

117


