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ABSTRACT

In this paper we address the problem of global unsuper-
vised detection, discrimination, and population estimation
of anomalies in hyperspectral images. The proposed ap-
proach, denoted as Anomaly Extraction and Discrimina-
tion Algorithm (AXDA), detects anomalies via analysis of
a signal-subspace obtained by the recently developed Max-
imum Orthogonal-Complement Algorithm (MOCA). MOCA
is unique in providing an unsupervised combined estimation
of signal-subspace that includes anomalies, and its rank. The
main idea of AXDA is to iteratively reduce the anomaly vec-
tor subspace-rank, making the related anomalies to be poorly
represented. This helps to detect them by a statistical anal-
ysis of the �2,∞-norm of data residuals. As a by-product,
AXDA provides also an anomaly-free robust background sub-
space and rank estimation.

1. INTRODUCTION

In this work we address the problem of anomaly detection,
as well as anomaly discrimination and population estima-
tion of anomalies of the same type, in hyperspectral image
cubes. The wealth of spectral information in hyperspectral
images provides plentiful amount of data for classification
tasks. One such task relates to anomaly detection, in which
hyperspectral pixels have to be classified into either back-
ground material spectra class or anomaly material spectra
class. Since most often, neither prior anomaly signatures nor
their statistical model, are known, anomaly detection meth-
ods first model the background and then detect anomalies by
finding pixels that are not well-described by the background
model. It turns out that the problem of background pixels
modelling is a critical and a subtle task. As a matter of fact, it
poses a two-fold problem: On one hand, the model has to be
general enough in order to accurately represent the wealth of
background material spectra, so as to avoid false alarms due
background pixel deviations from the model. On the other
hand, the model has to be concise enough (e.g., in terms of
its order/rank), limiting its ability to adapt to anomalies, and
leaving anomalies to disagree with the model, which is es-
sential for a high probability of detection.

A variety of background modelling methods appears in
the literature. One type of these methods is based on esti-
mating the underlying probability density function (pdf) of
the background signature, and applying a threshold to the
likelihood of tested pixels. The Reed-Xiaoli (RX) algorithm
[3], is a benchmark anomaly detector for hyperspectral im-
agery. RX models the background distribution by a single
Gaussian and requires to apply a threshold to the Maha-
lanobis distance to detect an anomaly [3]. Unfortunately,

in many environments, it has been shown empirically that
a single Gaussian modelling provides an inadequate repre-
sentation of the underlying background distribution [6]. This
is especially true when the local background contains mul-
tiple classes of terrain. Furthermore, the need to specify
a rather arbitrary threshold value poses additional difficul-
ties for applying RX. To properly characterize nonhomoge-
neous backgrounds, researchers have employed a Gaussian
Mixture Model (GMM) [5], [6], which constitutes a global
background model. Anomaly detection may be achieved by
applying the generalized likelihood ratio test (GLRT) to the
model. The authors of [6] denote the related approach by
GMRX. While GMRX provides good performance, it is lim-
ited by the simplicity of Gaussian components. GMRX is
further limited by the need to know or estimate a priori the
number of terrain classes in the image.

In this paper we adopt the following linear mixing model:

xi = Asi +zi, i = 1, . . . ,N, (1)

where, xi ∈ IRp is the observed pixel, zi ∈ IRp is additive
noise, columns of A are the pure materials spectra (endmem-
bers) and si ∈ IRr, r ≤ p, their corresponding abundances.
Using this model, a class of Generalized Likelihood Ratio
Test (GLRT) - based algorithms to detect anomalies is pro-
posed in [7]. The authors of [7] assume a priori known tar-
get signatures, whereas the the background subspace is es-
timated via SVD for a priori known background subspace
rank. Using Orthogonal Subspace Projection, the authors of
[4] propose first to select target pixels from the data, then to
detect the presence of anomaly signatures in the data pixels.
Unfortunately, the approaches of [4] and [7] lack a systematic
way to estimate the anomaly and the background subspace
dimensionality. Moreover, they require ancillary information
to identify signatures belonging to anomalies.

A recent rank-estimation approach, named MOCA [2],
was shown to be a signal-subspace and rank estimation ap-
proach that preserves anomalies. The reason to this is that
MOCA is based on a norm (denoted as �2,∞-norm), which is
much more sensitive to individual pixel contributions. The
proposed approach for anomaly detection, being based on
MOCA, inherits this property.

2. MAXIMUM ORTHOGONAL-COMPLEMENT
ALGORITHM (MOCA) PRINCIPLES

Originally, MOCA was developed for signal-subspace and
rank estimation in high-dimensional noisy signals that may
contain anomaly vectors, which MOCA intends to preserve.
It is important to note that MOCA assumes zi to be Gaus-
sian and spectrally white with a known variance. In hyper-



spectral data we assume the noise to be statistically indepen-
dent between spectral bands. Therefore, in order to make
the noise i.i.d., the noise std in each band was estimated
and normalized to 1 by scaling the data. As a matter of
fact, MOCA proposes an appropriate compromise between
the following two approaches: The first approach is based
on selecting the signal-subspace basis vectors directly from
the data as presented in [4]. This approach is good for repre-
senting anomalies, since it is capable of selecting anomalies
from the data. However, due to noise in the obtained basis
vectors, it may perform poorly in representing background
pixels. The second approach is based on SVD, which, as
shown in [2], represents well the background pixels. Yet, it
may perform poorly in representing anomalies [2]. Thus, the
signal-subspace estimated by MOCA admits the following
form: Ŝk = range [Ψk−h|Ωh]. I.e., Ŝk is the space linearly
spanned by columns of matrices Ωh and Ψk−h, where Ωh
is a matrix composed of h linearly independent columns se-
lected from the data, k is the estimated signal rank and Ψk−h
is a matrix with k − h orthogonal columns. This matrix is
obtained via SVD of the data residuals P

Ω⊥

h
xi, i=1,. . . ,N,

where P
Ω⊥

h
is a projection onto (range Ωh)

⊥. The matrix Ωh

provides a natural way to identify an anomaly subspace and
to discriminate anomalies, since it collects individual data
pixels that are poorly represented by the PCA-based sub-
space and, therefore, compose a good basis for anomaly sub-
space (see [2] for details). Whereas, columns of Ψk−h span
the background pixels projections lying in the (range Ωh)

⊥.
The signal-subspace rank estimator is based on examining
the maximal data residual norms for an increasing sequence
of rank values k. It is assumed that for k large enough [2],
the set of all data-vector residual norms can hypothetically
be divided into two subsets as follows:

Γk � {squared norms of background vector residuals}

Δk � {squared norms of the remaining data-vectors}.

Once the value of the maximum data-residual squared-norm
ηk = max

j=1,...,N
‖PŜ⊥

k
x j‖

2 becomes available (with N denoting

the number of pixels), the following two hypotheses are for-
mulated:

H0 : ηk belongs to Γk, (2)
H1 : ηk belongs to Δk. (3)

The rank estimator r̂ is set to be equal to the minimal value
of k for which the following condition is satisfied:

p(H0|ηk) ≥ p(H1|ηk), (4)

which means that the optimal rank is reached when there is
a higher likelihood that the maximum data-residual squared
norm ηk is governed by the noise statistics (i.e., it doesn’t
include significant signal contributions). The details of how
to calculate p(H0|ηk) and p(H1|ηk) are found in [2].

3. ANOMALY EXTRACTION AND
DISCRIMINATION ALGORITHM (AXDA)

In this section we propose an Anomaly Extraction and
Discrimination Algorithm (AXDA) that employs signal-
subspace and rank estimation results obtained by the above

described MOCA. Let’s recall that the signal-subspace basis
Φ produced by MOCA admits the following form:

Φr̂ = [Ψr̂−h|Ωh] , (5)

where r̂ is the estimated signal-subspace rank, the sub-matrix
Ωh consists of h linearly independent columns selected from
the data matrix X and the sub-matrix Ψr̂−h consists of r̂−h
principal components of P

Ω⊥X. It is important to note that
the matrix Ωh doesn’t contain all anomaly vectors among
its columns, but can be used to represent the anomaly vec-
tors subspace. Since the background and anomaly subspaces
are often non-orthogonal in hyperspectral images, the direct
projection of the data onto range Ωh could lead to a high
false-alarm rate due to background contributions. Therefore,
in order to detect and discriminate all anomaly pixels, we
propose a new algorithm that extracts all anomalies in the
data and associates them with Ωh columns (depending on
their contribution as described below). As stated earlier, the
proposed algorithm is denoted as Anomaly Extraction and
Discrimination Algorithm (AXDA).

3.1 AXDA

At this point, we are ready to describe AXDA in detail, as
shown in Fig. 1.

1. Initialization
AXDA starts by initializing j = h, the number of
anomaly vectors in Ωh and s = r̂, the determined rank of
the signal subspace range [Ψs− j|Ω j], and the maximum-
residual norm denoted by ηs, all as obtained from
MOCA.

2. Reduction of anomaly subspace basis
It is important to note that initially, the number j = h
of anomaly vectors in the partition Φr̂ = [Ψr̂−h|Ωh],
obtained by MOCA, is optimal for the given signal-
subspace rank. That is, a decrease of h for a given
r̂ would result in an increased maximum-residual norm
and, possibly, of other residual norms of data-vectors.
We intentionally alter this optimality by dropping the last
column of Ω j, providing Ω j−1. This operation is de-
signed to detect anomalies related to the last column of
Ω j.

3. Calculation of a new background vector representa-
tion basis Ψs− j+1, corresponding to the new anomaly
subspace basis Ω j−1
In the previous step, we reduced the rank of Ω j. How-
ever, at this point, we still keep the total signal-subspace
rank s intact. The decision whether to update s, which is
carried out in the block (14), is based on the next steps.
In order to retain s now, a new background vector repre-
sentation basis Ψs− j+1 is calculated by applying SVD on
P

Ω⊥
j−1

X that matches the reduced-rank matrix Ω j−1.

4. Calculation of data residual-norms in the obtained
residual-subspace: ri = ‖P

[Ψs− j+1|Ω j−1]
⊥xi‖

2.

5. Detection of anomaly vectors belonging to the
dropped column j
In this block we identify indices of all anomaly vector
residuals that exceed the noise level ηs, which is equal
to the maximum residual-norm initially obtained from
MOCA.

6. Decision about the next operation, based on previous



Figure 1: Detailed description of Anomaly Extraction and Discrimination Algorithm (AXDA). The notation in block (2) is a
MATLAB� notation.

block results
In this block we decide about the next operation based
on whether anomaly vectors were found in the previous
block. If there are such indices, then we perform the in-
ner loop, in which we deplete the found anomaly vectors,
recalculate Ψs− j+1, and try to detect more anomaly vec-
tors. Otherwise, the depletion of anomaly vectors in this
iteration is completed and other operations (blocks (9) -
(17)) of the current iteration are performed.

7. Association of found anomaly vectors to j-th column
of Ω j
This block belongs to the inner loop of anomaly vectors
depletion. We associate all data vectors indices (found in
the block (5)) to the dropped column j and store them.
Therefore, the corresponding anomaly vectors are de-
noted as j-associated anomaly vectors.

8. Depletion of found j-associated anomaly vectors from
input data and recalculation of Ψs− j+1

Since (range Ω j−1)
⊥ contains j-associated anomaly

vector contributions, the subspace corresponding to
Ψs− j+1 (obtained earlier via SVD in Block (3)) is ex-
pected to be diverted in a way that aims to reduce these
contributions along with the background vector residual-
norms. As a result, not all anomaly vectors correspond-

ing to the dropped j-th column of Ω j may be detected
via tresholding their corresponding norms by ηs in Block
(5). In order to remedy this situation, we deplete the j-
associated anomaly vectors in the data (detected in Block
(5)) and perform operations of blocks (3) - (5) again in
order to obtain a more precise estimation of the back-
ground vectors subspace Ψs− j+1, which is not diverted
by the j-associated anomaly vectors found in Block (5).

9. Decrementing of anomaly subspace rank
Once all j-associated anomaly vectors are depleted,
the rank of the anomaly subspace can be reduced by
one. However, this does not necessarily mean that
the total signal representation rank should also drop
by one. This can be explained as follows: The
background and anomaly subspaces in the hyperspec-
tral images are not orthogonal. Therefore, if one re-
duces the rank of [Ψs− j|Ω j] by removing a column
from Ω j, one might transfer a significant amount of
background contribution to the complementary subspace
(range [Ψs− j|Ω j−1])

⊥, which means that the reduced-
rank subspace basis [Ψs− j|Ω j−1] might not represent
well the signal-subspace of the data after the j-associated
anomaly-vectors depletion. Therefore, the decrement-
ing of anomaly subspace rank j does not necessarily en-



tails decrementing the total signal-basis rank s. Thus,
to decide if the total signal-basis rank s should be also
decremented, we again employ, in the next blocks, the
maximum-norm hypothesis testing (4). Due to the al-
gorithm construction (see blocks (4),(5),(6)), it is guar-
anteed that at the input to this block, the subspace
(range [Ψs− j+1|Ω j−1])

⊥ doesn’t contain signal contri-
butions. It is left to determine if the same holds true for
the subspace (range [Ψs− j|Ω j−1])

⊥, which corresponds
to the reduced total signal rank s−1. We start by setting
j ← j−1. In the next blocks we perform steps necessary
for deciding if to decrement also the total signal-subspace
rank s.

10. Termination condition block
If the anomaly subspace rank has reached 0, then termi-
nate (block (18)). Otherwise, continue to block (11).

11. Calculation of Ψs−1− j corresponding to a reduced-
rank signal-subspace
In order to decide if decrementing j should also entail
the decrementing of the total signal-subspace s, one has
to obtain the reduced-rank subspace [Ψs−1− j|Ω j] and
test the corresponding data residuals. Therefore, in this
block, we calculate Ψs−1− j by: Ψs−1− j = SVD

s−1− j
P

Ω⊥
j
X.

12. Calculation of maximum data residual-norm ηs−1 in
the obtained residual-subspace
ηs−1 = max

x∈cols X

‖P
[Ψs−1− j|Ω j]

⊥x‖2

13. Performing noise-related hypothesis testing of ηs−1
In this block we assess if ηs−1 contains signal-
contribution. For this purpose we apply the test of equa-
tion (4).

14. Decision if to reduce the total signal-subspace rank s
If ηs−1 meets the noise-hypothesis, meaning that the sub-
space (range [Ψs−1− j|Ω j])

⊥ doesn’t contain signal con-
tributions (i.e., the basis [Ψs−1− j|Ω j] represents well the
signal-subspace), then s should be decremented. Other-
wise, leave s intact and continue to a new iteration via
blocks (16) and (17).

15. Decrementing the total signal-subspace rank s
s ← s−1, and continue to a new iteration starting at
block (2).

Comments

1. Once the new value of s is determined, we approach
a nominal state (at block (2)), where the anomaly vec-
tors matrix rank is decremented by 1, and the signal-
subspace basis [Ψs− j|Ω j] (with the updated values of j
and s) is “MOCA-optimal” with respect to the modified
data-matrix X. In order to extract other anomaly vec-
tors, corresponding to the rest of Ω j columns, until the
complete depletion of all anomaly vectors, steps 2 - 15
are repeated. The iterations stop when there are no more
columns in the anomaly-basis matrix Ω j, i.e., j = 0.

2. It is important to note that at the end of the AXDA pro-
cedure, the signal-subspace basis is composed solely of
Ψs (s ≤ r̂), which constitutes the MOCA-optimal basis
of the background vectors. Hence AXDA equips us also
with an anomaly-free (in other words “robust”) estimate
of the background-subspace and rank.

4. EXPERIMENTS WITH REAL HYPERSPECTRAL
DATA

In this section we evaluate the performance of MOCA, fol-
lowed by AXDA postprocessing, by applying them on real
hyperspectral data. For an analysis of the effect of noise on
MOCA, using self designed synthetic data experiments with
different signal to noise ratios, the reader is referred to [2]. To
demonstrate the results, the proposed approach was applied
to 6 real hyperspectral image cubes collected by an AISA
airborne sensor configured to 65 spectral bands, uniformly
covering VNIR range of 400nm - 1000nm wavelengths. At
4 km altitude pixel resolution corresponds to (0.8m)2. The
obtained image cubes are b× r× c = 65×300×479 hyper-
spectral images, where b,r and c denote the number of hy-
perspectral bands, the number of rows and the number of
columns in the image, respectively.

In Fig. 2 one can see results of anomaly detection and
discrimination. Shown are images containing the 30th-band
of the first hyperspectral cube out of 6 used for the evalua-
tion. All 6 images are not shown here just because of space
limitations. The top image contains ground-truth anomalies
(marked in white and encircled by red ellipses), which were
manually identified using side information collected from
high resolution RGB images of the corresponding scenes.
The bottom image contains anomalies (marked in color) de-
tected by AXDA, overlayed on the white ground-truth pix-
els. All anomaly pixels of the same type are marked by the
same color. There are no missed anomalies in the presented
image. The corresponding obtained signal subspace ranks
determined by MOCA are r̂ = 15,10,10,16,15,11, anomaly
dimensionalities determined by AXDA are h = 9,2,5,8,7,4,
and the dimensionalities of anomaly-free background are
s = 11,10,8,12,13,10, respectively for all 6 examined im-
ages. Note, that according to the discussion in step 9 of
AXDA, presented in section 3, it is possible that s ≥ r̂ − h.
Thus, AXDA allows discrimination of anomalies according
to corresponding anomaly endmembers (constituent materi-
als spectra) found by MOCA, although the accuracy of this
discrimination is not evaluated in this paper and is under in-
vestigation.

In Fig. 3, we compare between GMRX [6], MSD [1] and
the proposed AXDA in terms of Receiver Operation Charac-
teristic (ROC) curves. For the purpose of ROC curves gen-
eration, all 6 hyperspectral images were used, in which the
total number of anomaly segments count is 25. An anomaly
is considered as detected if at least one of the detected pix-
els hits the corresponding marked segment. All pixels de-
tected by the algorithms were grouped into connected ob-
jects using 8-connected object labelling. If an object doesn’t
intersect a marked anomaly, it is considered a false alarm
object. Although AXDA has naturally a single (nominal) op-
erating point dictated by the noise statistical properties, we
introduced a rather compelling parameter γ to the equation
of block (5) in Fig. 1, in order to obtain multiple operating
points for AXDA, which now reads as: {ωt} = I(ri > γηs).
In words, the noise-related threshold value ηs (measured in
a previous iteration) is multiplied by the factor γ in order to
produce a new threshold value. The lower the factor γ is,
the more data vectors will be treated as anomaly-vectors and
be associated to the dropped column j of Ω j. In our simu-
lation, we have used 30 values of γ , which were uniformly
sampled from [0.8,1.2]. The position of nominal operating



Figure 2: AXDA results at the nominal operating point; top
image - manually identified ground-truth anomalies (marked
in white and encircled in red); bottom image - anomalies
(marked in color), overlayed on the white ground-truth pix-
els.

point of AXDA (for γ = 1) is pointed out by a red arrow.
As can be seen from the figure, the nominal operating point
provides a high detection rate (24 detected anomalies) with
a significantly low false alarm rate (see Fig. 3). The GMRX
algorithm was initialized by an excessive number of Gaus-
sians using the k-means algorithm for initializing the Gaus-
sian parameters. During the EM iterations of the GMRX, too
small clusters, and hence unreliable, were eliminated. The
MSD algorithm was provided an anomaly-free estimation of
the background basis Ψs estimated by AXDA, which uses
the anomaly subspace basis Ωh provided by MOCA, since
MOCA and AXDA combined are unique in their ability to
perform an unsupervised determination of both anomaly and
background subspaces and their ranks. Fig. 3 clearly shows
that for the examined images AXDA has a better perfor-
mance than GMRX and MSD, in most of the range of the
tested parameters.

5. SUMMARY AND CONCLUSION

In this work we have proposed an algorithm for anomaly de-
tection, discrimination and population estimation of anoma-
lies of the same type, called AXDA. The algorithm is based
on a signal-subspace and rank that are estimated by MOCA
[2]. By its construction, the signal basis consists of two
groups of basis vectors. One group spans the subspace of
anomalies. The second group is designed to represent back-
ground pixel residuals belonging to the subspace that is com-
plementary to the subspace of the anomalies. The proposed
AXDA identifies anomaly pixels that belong to the sub-
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Figure 3: ROC curves corresponding to GMRX, MSD and
AXDA. The nominal operating point of AXDA is marked in
magenta color and is pointed out by the arrow. This point
corresponds to 24 detected anomalies and 6 false alarm seg-
ments.

space spanned by the first group of the basis vectors. In ex-
periments with real hyperspectral image cubes AXDA was
shown to have a better performance than GMRX and MSD,
in most of the range of the tested parameters. It is also im-
portant to note, that in contrast to MSD and GMRX, AXDA
is equipped with an unsupervised determination of the nom-
inal operating point. AXDA also has a capability to dis-
criminate between different types of anomalies, though the
accuracy of this discrimination, as well as the accuracy of
population estimation of anomalies of the same type, are not
evaluated in this paper and are under investigation. More-
over, AXDA also allows an anomaly-free (robust) estimation
of the background-subspace and rank.
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