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Abstract We present a new tree-based framework for producing self-dual
morphological operators. For any given tree representation of im-
ages, one can associate a complete inf-semilattice (CISL) in the
corresponding tree-representation domain, where the operators can
then be derived. We also present a particular case of this gen-
eral framework, involving a new tree representation, the Extrema-
Watershed Tree (EWT). The operators obtained by using the EWT
in the above framework behave like classical morphological oper-
ators, but in addition are self-dual. Some application examples
are provided: pre-processing for OCR and dust & scratch removal
algorithms, and image denoising.

Keywords: complete inf-semilattices, self-dual operators, tree representation of
images.

1. Introduction

One of the main approaches for producing self-dual1 morphological oper-
ators is by means of a tree representation. For instance, Salembier and
Garrido proposed a Binary Partition Tree for hierarchical segmentation in
[12, 15]. A tree of shapes was proposed by Monasse and Guichard [10, 11]
(see also [1, 2]). These tree representations are usually used for performing
connected �ltering operations on an image; however, they do not yield non-
connected operators, such as erosions, dilations or openings by a structuring
element.

In [7] (see also [8]) a new complete inf-semilattice (CISL), called the
shape-tree semilattice, was introduced. This semilattice provides non-con-
nected morphological operations, based on the above-mentioned �tree of
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of Techlonogy.
1An operator ψ is self-dual when ψ(−f) = −ψ(f) for all input f .
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shapes�. As a consequence, self-dual erosions and openings were obtained.
Similar operators had been developed earlier on the so-called Reference
Semilattices (introduced in [6], and further studied by Heijmans and Keshet
in [4]); however, they require a reference image, which somewhat limits
the usage of these operators. The self-dual operators in the shape-tree
semilattice provide erosions and openings without the need for a reference
image.

In this paper, we present a general framework for tree-based morpho-
logical image processing, which generalizes the shape-tree operators. This
framework yields a set of new morphological operators (erosion, dilation,
opening, etc.), for each given tree representation of images. The heart of
the proposed approach is a novel complete inf-semilattice of tree represen-
tations of images. Because many of the properties of the tree are inherited
by the corresponding operators, the choice of the tree representation is of
high importance. We focus mostly on self-dual trees, which represent dark
and bright elements equally.

A particular case of the proposed framework is also presented, based on
a novel tree representation, the Extrema-Watershed Tree (EWT). Following
the general framework, we derive self-dual morphological operators from the
EWT. Examples of applications discussed here are pre-processing for OCR
(Optical Character Recognition) algorithms, de-noising of images, and pre-
processing for dust and scratch removal.

2. Theoretical background

2.1 Complete inf-semilattices

A complete inf-semilattice (CISL) is a partially-ordered set S, where the
in�mum operation (∧) is always well-de�ned (but the supremum ∨ is not
necessarily so). The theory of mathematical morphology on complete semi-
lattices was introduced in [5], and is an almost-straightforward extension
of the traditional morphology on complete lattices. It mathematically sup-
ports intuitive observations, such as the fact that erosions are naturally
extended from complete lattices to CISLs, whereas dilations are not univer-
sally well-de�ned on CISLs.

On the other hand, some results may not be necessarily intuitive. The
main ones are as follows: (a) it is always possible to associate an opening
γ to a given erosion ε by means of γ(x) =

∧{y | ε(y) = ε(x)}, (b) even
though the adjoint dilation δ is not universally well-de�ned, it is always
well de�ned for elements on the image of S by ε, and (c) γ = δε.

2.2 Rooted trees and their corresponding CISL

This section reviews basic graph theory notions (given in [3, chapter 1]),
including the natural partial ordering on rooted trees, which provide them
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with a CISL structure.
A graph is a pair of sets G = (V,E) satisfying E ⊆ [V ]2. A path is

a non-empty graph P = (V,E) of the form: V = {x0, x1, ..., xk}, E =
{x0x1, x1x2, ..., xk−1xk}, where the xi are all distinct. A cycle is a path
where k ≥ 2 and (x0, xk) ∈ E. A graph not containing any cycles, is called
a forest. A connected forest is called a tree (thus, a forest is a graph whose
components are trees).

Sometimes it is convenient to consider one vertex of a tree as special;
such a vertex is then called the root of this tree. A tree with a �xed root
is a rooted tree. Choosing a root r in a tree t imposes the following partial
ordering on V(t): x �t y ⇐⇒ x ∈ rty, where rty is the unique path in
t that connects y to the root. Note that (V,�t) is a CISL, where r is the
least element, and the maximal elements are the leafs of t. The in�mum
between vertices is the nearest common ancestor vertex.

We say that a tree t1 is smaller than another tree t2 if t1 ⊆ t2.

3. Tree semilattices

This section presents the proposed general framework for tree-based mor-
phological image processing (introduced in [16]). This framework enables
the de�nition of new morphological operators that are based on tree rep-
resentations. The proposed image processing scheme is shown is Figure 1.

Figure 1. Tree-based morphology.

3.1 CISL of tree representations

The heart of the proposed approach is a novel complete inf-semilattice of
tree representations of images. Let L be an arbitrary set of �labels�, and let
t = (V,E) be a rooted tree, with root r, such that V ⊆ L. Therefore t is a
tree of labels. Moreover, let M : E 7→ V be an image of vertices, mapping
each point in E to a vertex of t. As usual, E may be an Euclidean space or
a discrete rectangular grid within the image area.

De�nition 1. (Tree representation) The structure T = (t,M) shall be
called a tree representation. The set of all tree representations associated
with the label set L and with the root r shall be denoted by T Lr .
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Consider the following relation between tree representations: For all
T1 = (t1,M1) and T2 = (t2,M2) in T Lr ,

T1 ≤ T2 ⇐⇒
{
t1 ⊆ t2 and
M1(x) �t2 M2(x),∀x ∈ E, (1)

where ⊆ is the usual graph inclusion, and �t2 is the partial ordering of
vertices within the tree t2 (see Subsection 2.2).

Proposition 1. The above tree relation ≤ is a partial ordering on T Lr , and(T Lr ,≤) is a CISL. The least element is T0
4
= (({r}, {}),M0(x) ≡ r)).

The proof is given in [16]. The general format of the corresponding
in�mum and supremum operators are also derived in [16]. Here, however,
we focus on the particular case where all tree presentations involved in an
in�mum or supremum operation have a common tree associated with them:

Proposition 2. Let {Ti = (t,Mi)} be a collection of tree representations
with a common tree t. In this case,∧

i

Ti = (t,ft {Mi}) , (2)

and ∨
i

Ti = (t,gt {Mi}) , (3)

where ft and gt are the point-wise in�mum and supremum associated to
vertex order �t, respectively. Notice that gt {Mi} may not always exist.

The situation where the set of tree representations share the same tree
is what one encounters when de�ning �at erosions and dilations on the
complete inf-semilattice of tree representations. The �at erosion can be
de�ned as the operator ε given by:

εB(T )
4
=
∧
b∈B

T−b =
∧
b∈B

(t,M−b), (4)

where B is a structuring element. It is easy to verify that the above operator
is indeed an erosion on T Lr .

Using Proposition 2, one obtains that

εB(T ) = (t,ft {M−b|b ∈ B}) . (5)

As reminded in Section 2.1, on a complete inf-semilattice, one can asso-
ciate to any given erosion ε an opening γ (and, in fact, any morphological
operator that is derived from compositions of erosions and openings, such as
the internal gradient, dark top-hat transform, and skeletons). Furthermore,
the adjoint dilation δ exists, and, even though it is not well de�ned for all
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complete inf-semilattice elements, it is always well-de�ned for elements that
are mapped by the erosion, and γ = δε.

In the case of the above tree-representation �at erosion, the adjoint
dilation is given by:

δB(T ) = (t,gt {Mb|b ∈ B}) . (6)

We also de�ne the tree-representation reconstruction of T from a marker
T = (t,M) ≤ T as the in�nite iteration of the conditional dilation

δB(T |T )
4
=
(
t,gt

{
Mb ftM |b ∈ B

})
. (7)

Notice that δB(T |T ) is always well de�ned, since it consists of a supre-
mum of bounded elements.

3.2 Image processing on tree semilattices

Now that morphology on the tree representation domain has been estab-
lished, we can turn to our ultimate goal, which is to process a given grayscale
image f . Let us assume that f is an integer-valued function on E, i.e.,
f ∈ Fun(E,Z). Moreover, let τ by an operator that transforms f into a pair
(T, `) , where T = (t,M) ∈ T Lr is a tree representation, and ` : L 7→ Z is a
function that maps labels into graylevels. The tree transformation τ should
be invertible, and the inversion be given by: τ−1(`,M(x)) = ` (M(x)). We
propose the following approach for processing f , using the CISL of tree
representations:

1. Compute τ(f) = (T, `),

2. Perform one or more morphological operations on T to obtain a pro-
cessed tree representation T̂ = (t, M̂).

3. Transform (T̂ , `) back into a new image f̂ ∈ Fun(E,Z), using:

f̂(x) = τ−1(`, M̂(x)) = `
(
M̂(x)

)
. (8)

If the morphological operation in Step 2 above is the erosion εB , then
all three steps can be collapsed into the following equation:

f̂(x) = ` (ft {M−b(x)|b ∈ B}) . (9)

Proposition 3. For any vertex v in V , let R(v)
4
= {x ∈ E|M(x) �t v} and

R̂(v)
4
= {x ∈ E|M̂(x) �t v}, where M̂ is again the mapping function after

the erosion εB. Then, for all v:

R̂(v) = R(v)	B, (10)

where (.)	B is the traditional binary erosion by the s.e. B.
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Proposition 3 (which is proven in [16]) suggests an alternative algorithm
for computing the erosion. For any v, (a) compute R(v), (b) compute
R̂(v) = R(v)	B, and (c) assign `(v) to all points within R̂(v)\⋃v≺v′ R̂(v′).

3.3 Particular cases and examples

In order for the tree transform to be invertible, τ should be such that it
assigns a common label to each �at zone of f . This is because τ−1 maps
each label to a single graylevel. This suggests that special attention should
be paid to the �at zones of f .

One way of addressing the �at zones of a given image is by considering
its Regional Adjacency Graph (RAG). The RAG is a graph, where V is the
set of all �at zones of the image, and E contains all pairs of �at zones that
are adjacent to each other.

A spanning tree is a subgraph of a RAG that should, obviously, be a
tree, and have the same vertex set V as the RAG. A spanning tree creates
a hierarchy in the RAG, de�ning father/son relationships between adjacent
�at zones.

The proposed morphological scheme is of particular interest when t is
a spanning tree of the RAG. In this case, the associated morphological
operators do not create new grey/color values.

One particular group of trees are the Max- and Min-Trees [13]. When a
tree vertex is always brighter (resp., darker) then its sons, as in the Max-Tree
(resp., Min-Tree), the in�mum operation always changes the gray level to
the local minimum (resp., maximum), which is precisely what the traditional
grayscale erosion (resp., dilation) does. In other words, for these trees,
the proposed tree approach becomes the traditional grayscale mathematical
morphology (resp., its dual version).

More interesting particular cases are the Boundary Topographic Varia-
tion (BTV) Tree (see [16]), which is built from the RAG using a minimal
topographic distance criterion. Another one is the shape-tree de�ned in
[9] and the resulting semilattice de�ned in [7, 8]. Both provide self-dual
morphological operators, based on some inclusion criterion.

3.4 Image semilattice

What we would really like is the CISL of tree representation (using a tree τ)
to induce a CISL in the image domain. That is, we would like, for instance,
the composite operation of τ−1ετ to be an erosion in the image domain.
However, that is not guaranteed. In fact, the partial ordering in the tree-
representation domain does induce a partial ordering for images, for any τ ;
however, the in�mum operation is not guaranteed to be well de�ned. This
issue is still under study.
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4. Extrema-watershed tree

Based on the general framework of Section 3, all that is needed in order to
obtain a new set of morphological operators is a given tree representation. In
this section, we explore a particular case of the proposed framework, using
a novel self-dual tree representation, which we call the Extrema-Watershed
Tree (EWT). The EWT is a particular case of �Binary Partitioning Tree�
[12]; in particular, the proposed representation is built using a particular
case of the iterative merging process presented by Salembier, Garrido and
Garcia in [14], as follows:

Input all the extrema of a given image (i.e., all regions associated to a
local minimum or maximum) into a list, sorted by increasing area2. Also,
initiate the EWT by setting each �at zone as a leaf vertex. The main loop
for the computation of the EWT is as follows: Take the �rst extremum from
the ordered list (the one with smallest area), and merge it with the adjacent
neighbor that is the closest one in terms of graylevels. Then, set the merged
region as the parent vertex of the above two regions (the extremum and its
neighbor) in the EWT. Select the graylevel of the non-extremum region
to be the graylevel of the new merged region. Finally, check whether the
newly merged region and all its neighbors are extrema, and insert those
that are into the sorted list (in their corresponding place, according to the
listing order). This loop runs until the list has just one element, which then
becomes the EWT root.

Figure 2 illustrates the computation of the EWT. Consider the image
in Figure 2(a), which contains two extrema with the same area: v1 and v3.
The �rst step of the procedure, shown in Figure 2(b), consists of merging
v1 with v2, since the di�erence in graylevel between v1 and v2 is smaller
than the one between v3 and v4. This merger produces a new �at zone �
v5, with the same graylevel as v2 � which is a new extremum in the image.
In the next step, shown in Figure 2(c), the extremum v3 is merged with v4

to create v6. The procedure continues until all extrema (old and new) are
merged. Figure 2(d) shows the �nal EWT.

As described in Section 3, once a tree transform is de�ned, morphological
operations (such as erosion and opening) in the tree-domain can be derived.
The new operators typically inherit some of the properties of the tree, such
as self-duality, for instance. Figure 3 shows the result of the EWT erosion
and EWT opening. Notice that very small features are removed, whereas
the larger ones shrunk, in a self-dual manner. The average gray level of the
picture does not change; in particular, the picture does not become darker,
which is what usually happens after a standard erosion or opening.

2If two extrema have the same area, input �rst the one who has the smallest grayscale
distance to its closest neighbor.
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(a) (b)

(c) (d)

Figure 2. Example of the EWT computation. (a) Input image, (b) �rst merging
step, (c) second merging step, (d) the �nal EWT.

5. Application examples

The EWT has many potential applications; in this section we list just a few.
One application that requires image simpli�cation is pre-processing for

OCR (Optical Character Recognition). We have chosen a speci�c OCR al-
gorithm, used for recognition of license plate numbers, that was developed
in [17]. This algorithm uses a mask for each digit and looks for the best
correlation among these masks with an image. The algorithm also outputs
a con�dence grade, which can be used for comparing algorithms. Any noise
that exists in the image degrades the correlation value and interferes with
the recognition. Consider the example license plate shown in Figure 4(a),
which has been arti�cially corrupted with blobs of di�erent sizes. With-
out pre-processing the algorithm fails to read the correct number. Several
di�erent algorithms (including linear �ltering and traditional grayscale mor-
phology) has been applied to this image. In order to compensate for the
lack of duality in classical morphology, we have also compared the EWT
with the �quasi-self-dual� Opening-Closing by reconstruction operator. The
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(a) (b) (c)

Figure 3. (a) Original image, (b) EWT erosion by square SE 5 × 5, (c) EWT
opening by square SE 5× 5.

(a) (b)

(c) (d)

Figure 4. (a) Input image, arti�cially corrupted, (b) �ltered with a median �lter,
(c) �ltered with regular self dual opening by reconstruction, and (d) �ltered by
the EWT-based opening by reconstruction, using circle SE of radius 4.

only algorithms that cause the algorithm to correctly read the number were
the median �lter, quasi-self-dual �lter and the EWT opening by reconstruc-
tion (see Figure 4(b), 4(c) and 4(d), respectively). The con�dence grades
associated with the EWT pre-processed image were higher than those for
the median �lter and the quasi-self-dual �lter. Further details on this ex-
periment can be found in [16].

Another example uses opening by reconstruction as an initial step for
an application that removes dust and scratches from images. The elements
�ltered by the opening by reconstruction are completely extracted, including
their edges. This enables one to extract candidates for dust and scratch
removal, without corrupting their shapes. The proposed operation is a
EWT top-hat �lter. Figure 5 shows an example. Later steps (not considered
here) can then make further analysis of the image in order to decide which
candidates should be removed. We have compared the proposed approach
to linear and median �lters. Subjective and objective criteria were used.



58 MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS

(a) (b)

Figure 5. Top hat, using cross SE 3 × 3, as a pre-processing stage for dust and
scratch removal. (a) Original image (b) Top hat by reconstruction based on EWT.

The subjective criterion is the overall corruption of the candidate shapes.
The objective criterion is the measured energy of the �ltered images. The
EWT performed better in both criteria. On one hand, for the relevant
structuring elements, the energy of the EWT �ltered image was lower than
for the linear and median �lters. On the other hand, the linear and median
�lters do not completely extract the artifacts, as can be seen in Figure 6 for
the �cross� structuring element.

6. Conclusion

We have presented a general framework for producing new morphological
operators that are compatible to given tree representations. Furthermore,
a useful particular case is provided, based on a new tree representation, the
Extrema Watershed Tree. The resulting morphological erosion and opening
operators were applied to a number of application examples, giving better
results in comparison to other �ltering techniques, including classical mor-
phological �ltering. In general, EWT-based �ltering performs well in tasks
suitable for classical morphological �ltering, especially when self-duality is
required.
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(a) (b)

(c) (d)

Figure 6. Zoom in. Top hat, using cross SE 3 × 3, as a pre-processing stage for
dust and scratch removal. (a) Original image (b) Top hat by reconstruction based
on EWT (c) Top hat using median (d) Top hat using an averaging �lter.
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