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ABSTRACT

In Distributed Video Coding (DVC) systems the rate control
is usually performed at the decoder through a feedback chan-
nel. However, a feedback channel incurs a delay and might be
impractical for real-time applications. Typically, systems that
suppress feedback use a fixed uniform quantization across the
entire frame, regardless of its local characteristics. In this
work a framework for intraframe rate allocation at the en-
coder side is suggested as a way to both suppress the feedback
channel and adapt the quantization to the frame characteris-
tics. The rate allocation utilizes an approximation model to
the rate-distortion function for Laplacian data and correlation
channel distributions. This model replaces an analytical solu-
tion given in integral form that can be evaluated only numer-
ically. A practical DVC system that is based on this scheme
is proposed. The use of intraframe rate allocation is indeed
found to improve the performance of the feedback-less sys-
tem.

Index Terms— Distributed video coding, Wyner–Ziv
Rate–Distortion, Rate allocation

1. INTRODUCTION

Distributed Video Coding (DVC) is a novel coding scheme
which employs principles of lossy source coding with Side
Information (SI) at the decoder, also known as Wyner-Ziv
(WZ) coding [1]. The DVC framework enables to shift the
computational load of motion estimation from the encoder to
the decoder resulting in reversed encoder-decoder complexity.
This reversed complexity distribution could be appealing for
applications in which the encoder is power and/or complexity
constrained. Similar to standard video coding systems, per-
formance enhancement of a DVC system can be obtained by
classifying frame regions into different types and allocating
the limited bitrate among these regions according to their cod-
ing complexity and perceptual importance. However, adopt-
ing these ideas for DVC is quite complex, since both the rate
and the reconstruction fidelity depend on the quality of the SI,
which is known only at the decoder.

This work was partly supported by Elbit Systems Ltd.

In the baseline DVC system [1], the video sequence is
split into Key frames and WZ frames. The Key frames are
encoded by standard intra coding techniques while the WZ
frames are coded using syndromes (channel code) and de-
coded by combining these syndromes with SI. Actually, SI
is a prediction of the WZ frame generated at the decoder by
motion compensated interpolation or extrapolation of the pre-
viously decoded Key and/or WZ frames. Due to the lack of
stationarity and evolving dynamics in video the joint statistics
(or the correlation model) between WZ frames and SI frames
should be monitored online. As a consequence, the rate con-
trol, in the baseline system, is performed by the SI aware de-
coder through a feedback channel. However, the feedback
channel incurs additional delay and might be impractical for
real-time applications.

In order to suppress the feedback channel and allow the
encoder to perform rate control and bit allocation SI, or its
joint statistics with the WZ frame, is needed at the encoder.
However, implementing a closed-loop like system and con-
structing SI at the encoder will eliminate the desired low com-
plexity. Therefore, a ’low cost’ estimate of the SI, or its joint
statistics with the WZ frame, should be obtained by the en-
coder for rate management purposes.

Despite the fact that feedback channel suppression and
rate allocation are closely related problems most of the works
focus only on the first one. In [2] it is proposed to estimate the
SI frame by averaging adjacent frames. Furthermore, the rate
to be allocated was estimated by calculating the conditional
entropy of WZ frame given the estimated SI. The system op-
erates in the pixel domain, advocated by lower complexity
in comparison to a transform based one. However, the spa-
tial redundancy is not exploited in any manner and results in
inefficient coding. A similar approach, but for a transform
domain system is presented in [3]. In addition, in order to
obtain a more accurate SI estimate, it is proposed there to
perform a fast motion estimation at the encoder for 7% of the
blocks having the largest displaced frame difference energy.
Nevertheless, optimal selection of quantization modes is not
addressed there and, actually, the allocation is performed for
some fixed quantizer. A pixel domain rate allocation method
is discussed in [4]. The different image regions are treated as
independent Gaussian random variables and the correlation
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channel is also modeled by a Gaussian PDF. A closed form
Rate-Distortion (RD) function for a quadratic Gaussian case
is used in the rate allocation module. However, empirical ex-
periments [5] have shown that modeling the data and ’corre-
lation channel’ by Laplacian PDFs results in a more accurate
representation of the real data relatively to the one obtained
by a quadratic Gaussian model.

In this work we describe a transform domain DVC sys-
tem that performs rate allocation and suppresses the feedback
channel by using an empirical WZ RD model. The rate al-
location is performed for non-overlapping rectangular slices
in each WZ frame. Local statistics of these slices are used
to obtain the expected distortion and coding rate for a set of
available qunantizers. Since SI frames are unavailable at the
encoder, a coarse estimation of SI frame parameters is per-
formed based on adjacent Key frames. A configuration of
quantizers giving the minimal overall distortion for a given
rate is selected. Additionally, the presented WZ RD model
assumes a uniformly quantized source, a Laplacian SI and a
Laplacian ’correlation channel’. The model defines the de-
pendencies of rate and distortion on the quantization step size
for given parameters of the correlation channel and SI. In Sec-
tion 2 we show that the empirical model closely approximates
the integral expressions in [6] that can be evaluated only nu-
merically. In the case of bitplane by bitplane encoding, the
established rate-quantization step dependency is used to split
the total allocated rate for a specific subband into a set of rates,
one for each of the bitplanes. The DVC system itself is de-
scribed in Section 3 and the experimental results are presented
in Section 4.

2. RATE DISTORTION MODEL

2.1. Analytical Model

Performance of lossy source coding with side information at
the decoder can be characterized by the WZ rate-distortion
function. LetX and Y denote the source and side information
respectively then the RD function is given below:

R (d) = inf
M (d)

[I (X;Z)− I (Y ;Z)] (1)

where Z is an auxiliary random variable and the minimiza-
tion is carried over, M (d), a set of joint probability density
functions p(x, y, z) such that Z ↔ X ↔ Y form a Markov
chain, i.e., p(x, y, z) = p(z|x)p(x, y) and there exists a fixed
reconstruction function x̂ = f(z, y) for which the average
distortion is smaller or equals to d.

E [D (X, f (Z, Y ))] ≤ d (2)

Given the joint density function of the source and the side
information p(x, y) and a fidelity criterionD(x, x̂) the goal of
the minimization process is to find the ’test channel’ density
function p(z|x) and a reconstruction function x̂ = f(z, y)

which satisfy equations (1) and (2). Generally the minimiza-
tion process is very complex and a closed form analytical ex-
pression for the RD function was found only for the quadratic
Gaussian case. In the general case, the RD function can be
evaluated numerically by extended Arimoto-Blahut algorithm
[7].

Development of the RD function can be simplified by ex-
amining only a subset of the minimization domain, M (d).
Of course, at the cost of loosing some optimality. Let M q(d)
denote all joint density functions p(z|x)p(x, y) for which the
’test channel’ is a simple uniform scalar quantizer with quan-
tization step ∆. Let i denote the quantization index of the
bin ((i− ε)∆, (i+ 1− ε)∆] where ε ∈ [0, 1) is the quan-
tizer’s offset relatively to the origin (ε = 0.5 corresponds to
a midtread quantizer, while ε = 0 corresponds to a midrise
quantizer). Then, the ’test channel’ is defined as follows

p (Z = i|x) =
{

1 x ∈ ((i− ε)∆, (i+ 1− ε)∆]
0 otherwise

(3)

Furthermore, if the fidelity criterion is defined as the mean
squared error D(x, x̂) = (x− x̂)2, the optimal reconstruction
function is given by

x̂ = f (z, y) = E [X|Y,Z] =
∫ (z+1−ε)∆

(z−ε)∆

xp (x|y) dx (4)

Based on (4) the overall expected distortion can be calculated
for any quantization step ∆ (and offset ε). In addition, for a
given ∆ (which satisfies the distortion constraint (2)), the rate
is given by

R (d) = R (∆, ε)

= I
(
X;Z(∆,ε)

)
− I

(
Y ;Z(∆,ε)

)
= H(Z(∆,ε))−H(Z(∆,ε)|X) (5)
−H(Z(∆,ε)) +H(Z(∆,ε)|Y ) = H(Z(∆,ε)|Y )

The last expression can be recognized as the minimal rate
needed to losslessly encode Z given side information Y at
the encoder. Thus, WZ encoding can be thought of as quanti-
zation followed by Slepian Wolf [8] encoding.

2.2. Lapacian Case and Practical Issues

A special case, in which X = Y + N , where Y and N are
independent zero mean Laplace random variables with scale
parameters αy and αn respectively, is analyzed in [6]. This
special case is of great interest since, as it is known [9], both
the AC coefficients of the DCT transformed natural images
and video sequences and the difference between side infor-
mation and the source, in DVC, can be modeled by Laplacian
distributions. Integral form expressions for the rate R (∆, ε)
and distortion d(∆, ε) functions were presented. However,
perfect Slepian Wolf (channel) coding was assumed and the
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Fig. 1. Example of index assignment enabling evaluation of the
number of bitplanes and the coding rate of these bitplanes

conditional entropy H(Z|Y ) was used to measure the coding
rate, which do not apply to practical systems.

In addition to its primary goal, the RD function can be
utilized to determine the number of bits to be used to represent
the quantization index. Also, if a binary channel code is used
in Slepian Wolf coding it can be used to determine the rate
of each bitplane. Assume that µx = 0, X is quantized by
a midtread quantizer (ε = 0.5), with a quantization step ∆
and a quantization index that is represented by k bits, Z =
zk−1zk−2 . . . z1z0 (z0 is LSB). Using the chain rule, the total
rate can be expressed as follows:

R(∆, ε) = H(Z|Y ) =
0∑

i=k−1

H(zi|zk−1 . . . zi+1, Y )

=
0∑

i=k−1

[H(zk−1 . . . zi|Y )−H(zk−1 . . . zi+1|Y )] (6)

Each term of the form H(zk−1 . . . zi|Y ) represents the
minimum rate needed to transmit the bitplanes k − 1 through
i. In case that the binary index representation is such that
removal of each of the lower significance bitplanes merges
pairs of adjacent bins than each such removal results in a uni-
form scalar quantizer with doubled quantization step size and
twice smaller offset (see Figure 1). Thus, equation (6) can be
rewritten in the following form:

R(∆, ε) =
0∑

i=k−1

[
R(2i∆, ε/2i)−R(2i+1∆, ε/2i+1)

]
(7)

Hence, in practice, the number of bits to represent the indices
might be obtained by setting some small threshold ς > 0 and
evaluating the sum at the righthand side of (7) for increas-
ing values of k till it converges to the lefthand side within ς .
Moreover, each term of the sum represents the number of bits
needed to encode bitplane i given the preceding bitplnanes
k − 1 . . . i+ 1.

Another important issue is the implementation of an infi-
nite quantizer using a finite number of indices. Fortunately,
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Fig. 2. Rate distortion (top) and cSNR (bottom) performance of a
practical WZ encoder using LDPC code compared to an analytical
bound derived in [6], derived assuming perfect SW (Pf. SW) encod-
ing (obtained for σ2

y = 1000)

this problem can be resolved by index reuse as it is done in
nested quantization [10]. All bins of the infinite quantizer are
labeled by one of the 2k indices in a cyclic fashion by using
a modulo function. Concatenation of these 2k bins form a
coarse infinite quantizer with a step size of 2k∆. Index of the
’coarse’ quantizer, ic, in combination with the modulo rela-
tive index , im, uniquely identifies the bin of the infinite ’fine’
quantizer, if = ic2k + im. In distributed source coding only
the modulo relative index is transmitted while the index of the
’coarse’ and consequently of the ’fine’ quantizer is recovered
at the decoder by using the side information and the posterior
distribution.

îc = arg max
ic

∫ (ic2
k+im+1−ε)∆

(ic2k+im−ε)∆

p(x|y)dx (8)

Rate distortion performance of a practical system in
comparison with the analytical bounds is presented in Fig-
ure 2. The implemented system consists of the nested
scalar quantizer described above and a binary rate-adaptive
LDPC encoder [11]. Synthetic Laplacian signals Y and
N were generated for combination of σ2

y = 1000 and
σ2

n = {200, 400, 600}. The resulting source signal X was
quantized by a uniform scalar quantizer with varying quanti-
zation step. As it can be seen, there is a gap in performance
which is due to the gap between the channel rate and chan-
nel capacity. In addition, as it can been seen from Figure 2,
both analytical and practical correlation Signal to Noise Ratio
(cSNR) curves can be considered invariant to the ’correlation’
noise variance, σ2

n. This interesting observation can become
handy when modeling the RD function.
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2.3. Simple RD Model for Laplacian Case

As mentioned earlier, the RD expressions presented in [6] for
the Laplacian case are given in integral form. These expres-
sions can be evaluated numerically for given values of αy ,
αn, ∆ and ε. However, if rate control is performed by the
encoder, and preserving encoder’s complexity as low as pos-
sible is one of the goals, then numerical integral evaluations
are not appropriate. A possible solution is to approximate the
RD curves by a computationally less expensive model. Em-
pirically, it was found that equations (9) and (10) give a good
approximation to the real rate and distortion as a function of
the quantization step ∆.

R(∆) = exp
[
are

−( ∆
br

)γr +mr∆ + nr

]
(9)

D(∆) = exp
[
ade

−
(

∆
bd

)γd
+ nd

]
, (10)

where the parameters {ar, br, γr,mr, nr} and {ad, bd, γd, nd}
depend on αy , αn and ε. For each of the parameters, a table
defining their dependency on a range of αy , αn and ε values
is stored. The performance of the proposed approximation to
the RD function, compared to the analytical one, which was
evaluated numerically, are presented in Figure 3. The set of
parameters was obtained offline by fitting the approximation
model to the numerical one for all combinations of the fol-
lowing values: ε = 0.5, σ2

y = {1000, 2000, . . . , 10000} and
σ2

n = {100, 200, . . . , 900}. The approximation model and
the parameter tables were used to evaluate the RD function
for arbitrary pairs of σ2

y and σ2
n. In case that the tables do

not contain an entry for some pair σ2
y and σ2

n (as is the case
in Figure 3), the needed parameters are obtained online using
simple linear interpolation between existing entries.

Another option is to utilize the nearly linear slope ob-
served in Figure 2, for rates higher than 1 bit/sample . In
this case the distortion (rate) can be deduced from the given
rate (distortion) value. Adopting the latter approach may save
a significant amount of storage space.

3. RATE ALLOCATION IN DVC SYSTEMS

The system for source coding, with side information at the de-
coder and the RD model for the Laplacian case, which were
discussed in the previous section, can be utilized in a rate al-
location module of a DCT domain DVC system. As men-
tioned earlier, working in the DCT domain enables quite ac-
curate modeling of the transform coefficients and correlation
channel by a Laplacian distribution. In addition, similarly
to standard video coding, the DCT transform is an efficient
tool for exploiting spatial redundancy. Moreover, an integer
DCT transform, as used in H.264, can be applied to reduce
the transform’s computational complexity.

In a practical DVC system, contrary to the synthetic case,
the joint PDF parameters αy and αn vary temporally and spa-
tially and are not known at the encoder. Their variation de-
pends on the spatio-temporal dynamics of the video sequence
and the accuracy of WZ frame prediction at the decoder, i.e.,
the SI construction. Recalling that the assumed correlation
model is such that X = Y +N , and X is readily available at
the encoder, it remains to obtain Y or its statistics (parameter-
ized by αy) in order to enable encoder side rate control. Im-
itating the decoder at the encoder and constructing the SI by
using motion estimation will result in a high complexity en-
coder, similar to the one used in standard hybrid video coders.

A low complexity estimate of the SI can be obtained by
averaging the adjacent Key or WZ frames. This method can
give a good estimate for low motion sequences where large
parts of the imaged scene remain static. However, for se-
quences with medium to high motion activity this method
will produce a ’pessimistic’ estimate corresponding to a very
noisy ’correlation channel’. This will result in a rate overesti-
mation by the encoder. Unfortunately, the over-allocated bits
can not be used at the decoder to improve the quality of the
reconstructed image. Consequently, overestimation should be
minimized, possibly by using fast motion estimation at the en-
coder for SI estimation or by employing some model which
can describe the relationship between the encoder’s SI esti-
mate and the real SI at the decoder.

Once the encoder has obtained an SI estimate, the joint
statistics can be evaluated. Partitioning the frame into non-
overlapping slices and evaluating this statistics separately for
each slice enables capturing, to some extent, the spatial varia-
tions. This partitioning facilitates the allocation of a different
amount of bits to each slice, according to its statistics. Thus,
for example, slices with higher motion activity will get more
bits which will assist the decoder to overcome the usually less
accurate prediction for such slices. On the other hand, regions
with light motion, or with no motion at all, are usually char-
acterized by a high fidelity prediction. Consequently, a rela-
tively small amount of bits will suffice for their decoding and
reconstruction.

The rate allocation among different slices, can actually be
formulated as an optimization problem in which the goal is to
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Fig. 4. Performance of a DVC system with proposed rate allocation
method (Rate Alloc.) vs. fixed quantization (Fixed Q.) for Hall
Monitor (top) and Mother and Daughter (bottom) sequences

minimize the overall distortion subject to some constraint on
the total rate. In practice, the rate of each slice is controlled
by its quantizer quality factor, which is selected from a finite
predefined set. For each quality factor the cumulative rate and
distortion over all bands in each one of the slices are calcu-
lated. The goal is to choose for each slice a quality factor
such that the total rate is not higher than the maximum allow-
able rate and the total distortion is as small as possible. An
efficient algorithm for solving this problem is given in [12].

4. SIMULATION RESULTS

A DVC system based on the principles described in the pre-
vious sections was implemented and tested on Hall Monitor
and Mother and Daughter CIF sequences. The system key
settings are as follows: The GOP size is 2 (Key–WZ–Key).
The Key frames are assumed to be losslessly recovered at
the decoder and all the presented results refer only to WZ
frames. At the encoder, the SI estimate is obtained by av-
eraging the adjacent Key frames. Each frame is partitioned
into 16 slices such that each slice contains 396 4 × 4 blocks.
Channel (syndrome) coding is implemented by using a binary
LDPC code. In case of unsuccessful decoding, due to bitrate
under-allocation, the entire band from SI is adopted. Simu-
lation results are presented in Figure 4 and as it can be seen
a gain over feedback-less system with fixed quantization is
obtained.

5. CONCLUSION

A DVC system with encoder side rate control and rate al-
location is proposed. Practical aspects of WZ coders based

on scalar quantizer and channel encoding are discussed. An
empirical model approximating the RD function for the La-
palacian case is presented as an alternative to the analytical
model, which can be evaluated only numerically. Integration
of the RD function with rate control and bitrate allocation is
demonstrated.

Frame partitioning can be further utilized for perceptual
quality enhancement by weighting the different regions ac-
cording to their perceptual importance. This issue will be
examined in the future work along with integration of non-
binary LDPC codes in order to reduce the practical-theoretical
performance gap. Issues arising from coding of video se-
quences with high motion activity will be treated as well.
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