
3D OBJECTS DESCRIPTION

AND CLASSIFICATION BY

IMPLICIT POLYNOMIALS

HILLA BEN-YAACOV

3D OBJECTS DESCRIPTION AND CLASSIFICATION

BY IMPLICIT POLYNOMIALS

RESEARCH THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE IN ELECTRICAL

ENGINEERING

HILLA BEN-YAACOV

SUBMITTED TO THE SENATE OF THE TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY

ELUL, 5768 HAIFA SEPTEMBER, 2008

a

a

THE RESEARCH THESIS WAS DONE UNDER THE SUPERVISION OF PROF. DAVID

MALAH AND DR. MEIR BARZOHAR IN THE FACULTY OF ELECTRICAL

ENGINEERING

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

THE GENEROUS FINANCIAL HELP OF THE TECHNION IS GRATEFULLY

ACKNOWLEDGED

Contents

1 Introduction 6

2 3D Object Description by Implicit Polynomials 9

2.1 Background . 9

2.2 Problem De�nition . 10

2.3 Overview of Existing Fitting Algorithms 12

2.3.1 Least Squares Approach 12

2.3.2 Gradient1 Fitting Algorithm 14

2.3.3 Min-Max and Min-Var Fitting Algorithms 17

2.4 Rotation Invariant Fitting Algorithms 23

2.4.1 Rotation Invariant Gradient1 Fitting Algorithm 25

2.4.2 Rotation Invariant Min-Max Fitting Algorithm 25

2.4.3 Rotation Invariant Min-Var Fitting Algorithm 27

3 3D Pose Estimation Algorithms - An Overview 31

3.1 Problem De�nition . 31

3.2 Translation . 32

3.3 Rotation Estimation Approaches 33

i

3.4 Intrinsic Orientation Methods 34

3.4.1 Principal Component Analysis (PCA) 34

3.4.2 Implicit Polynomials Pose Estimation (Tensorial Ap-

proach) . 39

3.5 Methods that Use Point Matching 51

3.5.1 Quaternion Rotation 51

3.5.2 Iterative Closest Point (ICP) 56

4 Rotation Invariant Representation 59

4.1 Overview of 2D Implicit Polynomials Rotation Invariants . . . 60

4.1.1 Derivation of 2D Invariants Using the Rotation Matrix 60

4.1.2 Derivation of 2D Invariants Using a Complex Repre-

sentation . 62

4.2 3D Implicit Polynomials Rotation Invariants 64

4.2.1 Derivation of 3D Invariants Using the Rotation Matrix 64

4.2.2 Derivation of 3D Invariants Using Quaternion Repre-

sentation . 68

4.2.3 Derivation of 3D Invariants Using Tensor Representation 70

5 Feature Extraction 74

5.1 Background . 74

5.2 Rigid Objects Database Creation 75

5.3 Faces Database . 77

5.4 Noise Analysis . 78

5.5 Data Preprossessing . 83

5.5.1 Translation . 83

ii

5.5.2 Scaling . 84

5.5.3 Normal Direction Calculation 85

5.5.4 Mirroring of the Faces 85

5.5.5 2D Projections . 90

5.6 Classi�cation features . 94

5.6.1 Rotation Invariants Derivation 94

5.6.2 Additional features . 96

5.6.3 The Classi�cation feature Vector 97

6 Classi�cation Process 99

6.1 Objects Database . 99

6.1.1 Learning Positions . 100

6.1.2 Testing Positions . 102

6.2 Faces Database . 105

6.2.1 Learning Frames . 105

6.2.2 Testing Frames . 106

7 Experimental Results 108

7.1 Objects Database Classi�cation Results 108

7.1.1 Comparison with Pose Estimation Results 109

7.1.2 Comparison with Shape Spectrum Descriptor (SSD) . 111

7.1.3 Comparison of Computational Complexity 112

7.2 Faces Database Classi�cation Results 112

7.2.1 Comparison with Pose Estimation Results 113

7.2.2 Comparison with Shape Spectrum Descriptor (SSD) . 114

iii

8 Summary and Future Work 115

8.1 Summary . 115

8.2 Main Original Contributions 116

8.3 Future Work . 117

A Description of 3D Objects Using High Degree Implicit Poly-

nomials 119

B Tensors and Implicit Polynomials Representation 122

C Quaternions Properties 125

C.1 Vector Rotation Using Unit Quaternions 125

C.2 Quaternions Dot-Products . 126

D Proof for the Expressions of the 3D Quadratic Invariants 127

D.1 2D Quadratic Invariants . 127

D.2 Derivation of 3D Quadratic Invariants 127

D.2.1 Representation of Rotation 128

D.2.2 Proof for the First 3D Quadratic Invariant 129

D.2.3 Proof for the Second 3D Quadratic Invariant 130

E Shape Spectrum Descriptor (SSD) 134

F Rigid Objects Database 140

G Faces Database 142

iv

List of Figures

2.1 �The Stanford Bunny� object (taken from �The Stanford 3D Scanning

Repository� [9]) : (a) the original data points (b) the zero-sets of a 4th

degree polynomial attempting to �t the object. Note that several zero-

sets appear in the image, but only the central one describes the original

object. 11

2.2 An example for �tting artifacts: (a1,a2) the original data points (b1,b2)

the zero-set of a 4th degree polynomial �t. The left column and the right

column describe di�erent points of view 14

2.3 Estimation of the gradient direction at a certain data point, using a

tangent plane �tted to the the point and its 24 closest neighboring data

points . 15

2.4 Gradient1 �tting using polynomial of 6th degree applied to �The Stanford

Bunny�: (a) original data points (b) 6th degree polynomial �t 17

2.5 Fit of a 6th degree polynomial to �The Stanford Bunny�: (a) original data

points (b) Gradient1 �tting (c) Min-Var �tting (d) Min-Max �tting . . . 22

2.6 Fit of a 6th degree polynomial to �lion� (taken from the �Suggestive Con-

tour Gallery� [10]) (a) original data points (b) Gradient1 �tting (c) Min-

Var �tting (d) Min-Max �tting. 23

v

2.7 Fit of an 8th degree polynomial to �The Stanford Bunny� object: (a1,a2)

Min-Max �tting (b1,b2) RI-Min-Max �tting. The left column and the

right column describe di�erent points of view 27

2.8 Fit of an 8th degree polynomial to �The Stanford Bunny� object: (a1,a2)

Min-Var �tting (b1,b2) RI-Min-Var �tting. The left column and the right

column describe di�erent points of view 30

3.1 2 instances of �The Stanford Bunny� with relation of translation and

rotation . 32

3.2 2 instances of �The Stanford Bunny� after translation, with relation of

rotation only . 33

3.3 An example for the 8 PCA intrinsic rotations of 2 di�erent poses of �The

Stanford Bunny�: (a) the original data points (b) the data points after

rotation (c) the 8 PCA intrinsic rotations of the original data points (d)

the 8 PCA intrinsic rotations of the data points after rotation 37

3.4 An example for the 8 PCA intrinsic rotations of 2 di�erent scans of

the same face: (a) neutral expression (b) smiling expression (c) the 8

PCA intrinsic rotations of the neutral expression (d) the 8 PCA intrinsic

rotations of the smiling expression 38

3.5 An example for the 8 intrinsic rotations of a 2nd degree tensor (Gradient1

IP �tting) of 2 di�erent poses of �The Stanford Bunny�: (a) the original

data points (b) the data points after rotation (c) a 2nd degree IP �t to

the original data points (d) a 2nd degree IP �t to the rotated data points

(e) the 8 tensor intrinsic rotations of the original data points (f) the 8

tensor intrinsic rotations of the data points after rotation 46

vi

3.6 An example for the 8 intrinsic rotations of a 2nd degree tensor (Gradient1

IP �tting) of 2 di�erent scans of the same face: (a) neutral expression

(b) smiling expression (c) a 2nd degree IP �t to the neutral face (side

view, in green) (d) a 2nd degree IP �t to the smiling face (side view, in

green) (e) the 8 tensor intrinsic rotations of the neutral expression (f)

the 8 tensor intrinsic rotations of the smiling expression 47

3.7 An example for the 8 intrinsic rotations of a 2nd degree tensor (RI-Min-

Max IP �tting) of 2 di�erent scans of the same face: (a) neutral expression

(b) smiling expression (c) a 2nd degree IP �t to the neutral face (side view,

in green) (d) a 2nd degree IP �t to the smiling face (side view, in green)

(e) the 8 tensor intrinsic rotations of the neutral expression (f) the 8

tensor intrinsic rotations of the smiling expression 48

3.8 An example for the 8 intrinsic rotations of a 2nd degree tensor (RI-Min-

Var IP �tting) of 2 di�erent scans of the same face: (a) neutral expression

(b) smiling expression (c) a 2nd degree IP �t to the neutral face (side view,

in green) (d) a 2nd degree IP �t to the smiling face (side view, in green)

(e) the 8 tensor intrinsic rotations of the neutral expression (f) the 8

tensor intrinsic rotations of the smiling expression 49

3.9 An example for the 8 intrinsic rotations of a 4th degree tensor (Gradient1

IP �tting) of 2 di�erent scans of the same face: (a) neutral expression (b)

smiling expression (c) a 4th degree IP �t to the neutral face (side view, in

green) (d) a 4th degree IP �t to the smiling face (side view, in green) (e)

the 8 tensor intrinsic rotations of the neutral expression (f) the 8 tensor

intrinsic rotations of the smiling expression 50

vii

3.10 An example of ICP pose estimation after PCA using 2 instances of the

same face (a) neutral expression after PCA (b) smiling expression after

PCA (c) smiling face after PCA and ICP 58

5.1 9 di�erent positions of the object 'fox' 77

5.2 6 di�erent frames of the same face 78

5.3 2 consecutive frames of the object 'mule' 79

5.4 Acquisition noise patterns and histograms for each of the coordi-

nates: (a) noise in coordinate x (b) noise in coordinate y and (c)

noise in coordinate z . 81

5.5 Acquisition noise auto-correlations and cross-correlations: (a) auto-

correlation of n1 (b) auto-correlation of n2 (c) auto-correlation of

n3 (d) cross-correlation between n1 and n2 (e) cross-correlation

between n2 and n3 (f) cross-correlation between n1 and n3 82

5.6 An example for di�erent 2nd degree IP �tting (using Gradient1) of 2

di�erent scans of the same face: (a) neutral expression (b) smiling ex-

pression (c) a 2nd degree IP �t to the neutral face (side view, in green)

(d) a 2nd degree IP �t to the smiling face (side view, in green) 86

5.7 Mirroring of a point p1 with respect to an arbitrary plane 87

5.8 An example for the similar 2nd degree IP �tting (using Gradient1) of

2 di�erent scans of the same face when using mirroring: (a) neutral

expression (b) smiling expression (c) mirroring of the neutral face (d)

mirroring of the smiling face (e) a 2nd degree IP �t to the mirrored

neutral face (in green) (f) a 2nd degree IP �t to the mirrored smiling face

(in green) . 89

viii

5.9 (a) xy projections of 3 di�erent positions of the object 'fox' and (b) their

2D contours . 91

5.10 An example for projections of 'fox' that have noisy contours (a) xz pro-

jections of 3 di�erent positions (b) yz projections of 3 di�erent posi-

tions. These projections were excluded from our rigid objects classi�ca-

tion scheme due to their noisy contours. 91

5.11 (a) a face after mirroring (b) 3 projections (on xy , xz and yz) of this

mirrored face and (c) their 2D contours. The xy projection was excluded

from our faces classi�cation scheme due to its high similarity between

di�erent faces. 93

A.1 An example to various degree polynomials �tting (using Gradient1) to a

3D face: (a) the original data points (b) IP �t of 6th degree (c) IP �t of

10th degree (d) IP �t of 14th degree (e) IP �t of 18th degree (f) IP �t of

22th degree . 121

E.1 'Fox' triangulation (a) before and (b) after disposing of large triangles . . 135

E.2 'Binocular' triangulation (a) before and (b) after disposing of large tri-

angles . 135

E.3 'Fox' Shape Spectrum Descriptor 139

E.4 'Binocular' Shape Spectrum Descriptor 139

F.1 one position of each of the �rst 20 rigid objects 140

F.2 one position of each of the last 20 rigid objects 141

G.1 one frame of each of the �rst 20 faces 142

G.2 one frame of each of the last 21 faces 143

ix

List of Tables

5.1 Classi�cation features for the objects database and the faces

database . 98

7.1 Results of objects recognition using di�erent learning approaches 109

7.2 Results of objects recognition using the 4th learning approach and only

the classi�cation features based on 3D implicit polynomials (invariants

and �tting errors) . 109

7.3 Results of objects recognition using pose estimation 111

7.4 Comparison between our method and the SSD method for object recognition111

7.5 Average running times of classi�cation of a single object 112

7.6 Results of faces recognition . 112

7.7 Results of faces recognition using only the classi�cation features based

on 3D implicit polynomials (invariants) 113

7.8 Results of faces recognition using pose estimation 114

7.9 Comparison between our method and the SSD method for faces recognition114

x

Abstract

Implicit polynomials (IP) are used for the representation of 2D curves and

3D surfaces speci�ed by discrete data. We explore the description abilities

of existing 3D implicit polynomials �tting algorithms, Gradient1, Min-Max

and Min-Var, and suggest a modi�cation for the Min-Max and Min-Var al-

gorithms, so that they will be rotation invariant. We develop a set of 3D

rotation invariants that are linear combinations of the IP coe�cients, using

a tensor representation of the IP, and two 3D quadratic rotation invariants

using trigonometric identities. We explore the quaternion representation as

an alternative method for rotation invariants derivation, in a similar way to

the complex representation used in 2D. We describe the pre-processing stages

required in order to improve the classi�cation performance: locating the cen-

ter of mass at the origin, scaling, mirroring and selecting 2D projections. We

then present a 3D classi�cation method which is based on the Multi Order

and Fitting Errors Technique (MOFET) proposed earlier for 2D object clas-

si�cation. This classi�cation approach is based on �tting several polynomials

to the object surface, each having a di�erent degree, and on their �tting er-

rors. The advantage of this approach, is that it does not require the use of

high computational registration (pose estimation) between the new object

1

representation we would like to classify and the representations of di�erent

objects in the dictionary. Instead, it uses a rotation invariant features vector

for classi�cation. The classi�cation features we use are the 3D IP rotation

invariants and �tting errors, as well as 2D IP rotation invariants and �tting

errors, derived from the most informative 2D projections of the 3D objects,

and 3D PCA eigenvalues. We demonstrate the classi�cation results on both

a rigid objects database and a faces database (acquired in a cooperative sit-

uation). Simulation results show that our method outperforms classi�cation

based on an IP �tting after pose estimation as well as the Shape Spectrum

Descriptor (SSD) classi�cation, which was adopted by the MPEG-7 standard.

2

List of Symbols

aklm- implicit polynomial coe�cient

a - implicit polynomial coe�cients vector

pn (x, y, z) - monomials vector (of implicit polynomial of degree n)

P n (x, y, z) - implicit polynomial of degree n

P n
a (x, y, z)- implicit polynomial of degree n and coe�cients vector a

∇P n
a (x, y, z) - gradient vector of the polynomial P n

a (x, y, z)

ea (i) - �tting error of the implicit polynomial P n
a (x, y, z) at the ith data-point

pn
x

(x, y, z) - the monomial vector derivative with respect to x

pn
y

(x, y, z)- the monomial vector derivative with respect to y

pn
z

(x, y, z)- the monomial vector derivative with respect to z

pn
k

(x, y, z) - the kth element of the monomials vector

Sa - sensitivity function with respect to the polynomial coe�cients

ε (x, y, z) - the change in the location of a zero-set point

δa - the change in the polynomial coe�cients

Hr (x, y, z) - a form of degree r (a homogeneous polynomial of degree r)

Sn - the tensor representation of a form of degree n (Hn)

V (Hn) - the 3x3 matrix created by contractions of a tensor of order n = 2p

L2D,k - a 2D linear rotation invariant, derived from a kth degree form

3

Q2D,k - a 2D quadratic rotation invariant, derived from a kth degree form

L3D,k - a 3D linear rotation invariant, derived from a kth degree form

Q3D,k - a 3D quadratic rotation invariant, derived from a kth degree form

S75% - scaling factor (the 75th percentile of the distances from the origin)

E75%,3D,n - 3D IP (degree n) �tting error (the 75th percentile of ea (i))

E75%,2D,n - 2D IP (degree n) �tting error (the 75th percentile of ea (i))

4

List of Abbreviations

Gradient1 - Gradient-One Fitting Algorithm

IP - Implicit Polynomial

ICP - Iterative Closest Point

LS - Least Squares

Min-Max - Min-Max Fitting Algorithm

Min-Var - Min-Var Fitting Algorithm

MOFET - Multi Order and Fitting Errors Technique

MPEG - Moving Picture Experts Group

PDF - Probability Density Function

PCA - Principal Component Analysis

SSD - Shape Spectrum Descriptor

5

Chapter 1

Introduction

Implicit polynomials (IP) are used for the representation of 2D curves and

3D surfaces speci�ed by discrete data [1, 2, 6, 7, 8]. Over time, di�erent algo-

rithms for �tting Implicit Polynomials to the data were developed. The state

of the art �tting algorithms are Gradient1 [1], Min-Max and Min-Var [2], all

of them apply a linear Least Squares (LS) solution to the �tting problem.

Compared with older nonlinear iterative algorithms [5], the Least Squares

algorithms have a much better performance in both representation and clas-

si�cation tasks, with lower complexity. These abilities were previously tested

mainly for 2D implicit polynomials [3]. In this work we �rst explore the

description abilities of existing 3D polynomial �tting algorithms for both

low and high degree �tting. We then use a tensor representation of implicit

polynomials in order to derive a set of rotation invariants which are linear

combinations of the IP coe�cients. Using the 3D coordinate system rotation

matrix and trigonometric identities, we derive two rotation invariants which

are quadratic combinations of the IP coe�cients.

6

The IP based 3D rotation invariants are well suited for the Gradient1

�tting algorithm which is rotation invariant (i.e., the relation between poly-

nomials �tted to di�erent orientations of the same data is characterized by

rotation only). In order to apply them for classi�cation using other �tting

algorithms, we suggest a modi�cation of Min-Max and Min-Var �tting algo-

rithms so that they will be rotation invariant as well. This modi�cation is

based on the 2D rotation invariant Min-Max and rotation invariant Min-Var

[3].

Following the 2D IP classi�cation method Multi Order and Fitting Error

Technique (MOFET) [3], we propose a classi�er based on 3D IP rotation in-

variants and �tting errors, 2D IP rotation invariants and �tting errors (from

the most descriptive 2D projections) and the eigenvalues of a PCA decom-

position. The suggested classi�er uses various IP degrees (both for 2D and

3D) in order to utilize both the stability of low degree polynomials and the

descriptiveness of high degree polynomials. We explore the results of our clas-

si�er using Gradient1, Rotation-Invariant Min-Max and Rotation-Invariant

Min-Var �tting algorithms. We apply our method to both a rigid objects

database and a faces database (in a cooperative situation) and compare our

classi�cation results with pose estimation methods followed by IP �tting and

with the Shape Spectrum Descriptor (SSD) technique, which was adopted

by the MPEG-7 standard for 3D descriptors.

The rest of the thesis is organized as follows:

Chapter 2 provides background information on Implicit Polynomials �t-

ting algorithms, and presents a rotation invariant modi�cation of Min-Max

and Min-Var algorithms.

7

Chapter 3 reviews existing pose estimation approaches, one of them is

based on implicit polynomials.

Chapter 4 describes the process of rotation invariants derivation using

various approaches.

Chapter 5 deals with feature extraction for 3D object recognition. We

describe the classi�cation problem and the objects and faces databases. We

discuss the pre-processing stages and the classi�cation features selection.

Chapter 6 describes the classi�er design (learning and testing) for both

the objects and the faces databases.

Chapter 7 describes our classi�cation results and compares them with

other classi�cation methods.

Chapter 8 summarizes the work, emphasizes its main contributions and

suggests research directions for future study.

8

Chapter 2

3D Object Description by Implicit

Polynomials

2.1 Background

Implicit polynomials (IP) are used for e�cient representation of 2D curves

and 3D surfaces speci�ed by discrete data. The ability to e�ciently describe

complicated boundaries using the coe�cients of implicit polynomials is at-

tractive for applications in the �elds of object recognition, and might also be

used as a basis for pose estimation.

Over time, di�erent algorithms for �tting implicit polynomials to the data

were developed.

The technique assumes that the data points are part of a zero set of a

polynomial of degree n (i.e., P n (x, y, z) = 0, where P n (x, y, z) is a polyno-

mial of degree n). Therefore, the �rst and most intuitive requirement that

the polynomial should satisfy is that its value should be zero at the location

9

of the data points.

Note that a polynomial may contain several zero-sets, where a zero-set

is de�ned as a continuous surface satisfying P n (x, y, z) = 0. Actually, a

polynomial of degree n may have up to n zero sets.

2.2 Problem De�nition

The input is a 3D object, described by a set of discrete data (a cloud of data

points {(xi, yi, zi)}i=1,...,N).

The output of the �tting process is a 3D implicit polynomial P n
a (x, y, z):

P n
a (x, y, z) = a000 + a100x+ a010y + a001z + a200x

2 + a110xy+

+a020y
2 + a101xz + a011yz + a002z

2 + ...+

+an00x
n + ...+ a0n0y

n + ...+ a00nz
n

(2.1)

Where aklm is the coe�cient of the monomial with x to the power of k, y

to the power of l and z to the power of m.

The IP is de�ned by its coe�cients vector a:

a = [a000 a100 a010 a001 a200 a110 a020 a101 a011 a002 ... an00 ... a0n0 ... a00n]T

(2.2)

and its monomials vector pn (x, y, z):

pn (x, y, z) =
[
1 x y z x2 xy y2 xz yz z2 ... xn ... yn ... zn

]T
(2.3)

10

and can be also written as:

P n (x, y, z) = aTpn (x, y, z) (2.4)

The dimension of a , as well as the dimension of pn (x, y, z), is (n+1)(n+2)(n+3)
2·3 .

The �tting problem de�nition is therefore to �nd a coe�cients vector a

that describes the polynomial which best �ts the data under certain criteria.

An example of a 3D object and an implicit polynomial describing it is

shown in Fig. 2.1. In this �gure (as well as in all the �gures to follow), the

lighter the shade of the point - the higher z value it has (i.e., it is closer to

the reader).

(a) (b)

Figure 2.1: �The Stanford Bunny� object (taken from �The Stanford 3D Scanning Repos-

itory� [9]) : (a) the original data points (b) the zero-sets of a 4th degree polynomial at-

tempting to �t the object. Note that several zero-sets appear in the image, but only the

central one describes the original object.

11

2.3 Overview of Existing Fitting Algorithms

2.3.1 Least Squares Approach

The classical and simplest way to �t an algebraic surface to a data set, is to

minimize the algebraic distance over a set of given data points.

Let us denote by ea (i) the minimum Euclidean distance (i.e., the �tting

error) between the ith point of the data set and the zero sets of the polynomial

P n
a (x, y, z).

If we use the l2 norm, we would like to minimize the sum of squares of

the �tting errors:

min
a

N∑
i=1

(ea (i))2 (2.5)

This problem formulation leads to an iterative approach with high computa-

tional cost [4], since in each iteration one has to go over all the data points,

and for each point - to look for the closest zero-set point.

A less accurate but easier to solve minimization problem is:

min
a

N∑
i=1

(
P n
a (xi, yi, zi)

)2
(2.6)

Here we don't minimize the distance between the data points and the zero

sets of the polynomial. Instead, we wish to minimize the values of the IP at

the locations of the data points, thus forcing the zero set to lie nearby.

This is actually the �rst requirement we mentioned earlier - the polyno-

mial value should be zero at the location of the data points.

12

We de�ne the matrix of monomials as:

M0 =

[
pn (x1, y1, z1) pn (x2, y2, z2) pn (x3, y3, z3) ... pn (xN , yN , zN)

]T
(2.7)

since for each data point P n
a (xi, yi, zi) = aTpn (xi, yi, zi), the minimization

problem can be written as:

min
a
‖M0a‖2 (2.8)

Where ‖·‖ is l2 norm.

The optimization problem became a linear least squares problem. The

trivial solution to this minimization problem is a = 0 (where 0 is a vector

of zeros of size (n+1)(n+2)(n+3)
2·3). In order to avoid the trivial solution, we

can add an additional constraint, for example ‖a‖ = c where c is a positive

constant. Using this constraint the solution is known to be the eigenvector

which corresponds to the minimal eigenvalue of MT
0 M0.

This solution is highly unstable when the data points are a�ected by noise,

and small perturbation of the data may result in very di�erent solutions (i.e.,

di�erent polynomials). This sensitivity to noise has led to more advanced,

state of the art, least square algorithms - Gradient1, Min-Max and Min-

Var. All three of them use additional requirements in order to improve the

stability of the polynomial coe�cients in the presence of noise.

An example to �tting artifacts is shown in Fig. 2.2. In this example,

the unconstrained least squares solution is unbounded and intersects itself

several times.

13

(a1) (a2)

(b1) (b2)

Figure 2.2: An example for �tting artifacts: (a1,a2) the original data points (b1,b2) the

zero-set of a 4th degree polynomial �t. The left column and the right column describe

di�erent points of view

2.3.2 Gradient1 Fitting Algorithm

The Gradient1 �tting algorithm is presented in [1].

The �rst �tting criterion is the demand that the zero set of the polynomial

will �t the data-set.

The Gradient1 algorithm requires one more �tting criterion: the poly-

nomial gradient at the location of each data point needs to be in the same

14

direction as the normal vector of the data set in the same location. In addi-

tion, the algorithm requires that the value of the gradient will be the same

(and equal to 1) at all the data-set points. The unit norm value of the gradi-

ent can be replaced by any positive constant value, as long as it is required

to be the same at all the data points. Setting it equal to a constant c will

scale all the polynomial coe�cients by c, but will not change the zero-sets of

the polynomial. Therefore, it is chosen to be 1 without loss of generality.

It is a well-known fact that the gradient vector of a surface at a certain

point is perpendicular to the surface tangent plane at this point. Therefore,

in order to calculate the gradient vector of the data-set at each point, a local

plane is �tted to the data point and its closest neighbors (see Fig. 2.3). The

normal vector to the plane is then calculated and scaled to be a unit vector.

Figure 2.3: Estimation of the gradient direction at a certain data point, using a tangent

plane �tted to the the point and its 24 closest neighboring data points

We de�ne pn
x

(x, y, z), pn
y

(x, y, z) and pn
z

(x, y, z) as the derivatives of the

monomials vector pn (x, y, z) , with respect to x, y and z, respectively.

We denote the local normal unit vector at each of the data set points

15

by (vk, wk, qk) where k = 1, 2, ..., N and N is the number of points in the

data-set.

We construct the matrix of monomials and the matrices of monomials

partial derivatives in the following way:

M0 =

[
pn (x1, y1, z1) pn (x2, y2, z2) ... pn (xN , yN , zN)

]T
(2.9)

Mx =

[
pn
x

(x1, y1, z1) pn
x

(x2, y2, z2) ... pn
x

(xN , yN , zN)

]T
(2.10)

My =

[
pn
y

(x1, y1, z1) pn
y

(x2, y2, z2) ... pn
y

(xN , yN , zN)

]T
(2.11)

Mz =

[
pn
z

(x1, y1, z1) pn
z

(x2, y2, z2) ... pn
z

(xN , yN , zN)

]T
(2.12)

and the following gradient coordinates vectors:

v =

[
v1 v2 v3 ... vN

]T
(2.13)

w =

[
w1 w2 w3 ... wN

]T
(2.14)

q =

[
q1 q2 q3 ... qN

]T
(2.15)

and by de�ning M =

M0

Mx

My

Mz

and b =

0

v

w

q

, we can formulate the �tting

criteria as:

Ma = b (2.16)

16

If we formulate it as a minimization problem of the l2 norm of the �tting

error vector we get:

min
a
‖Ma− b‖2 (2.17)

which is again a linear least squares problem with a known solution:

aLS =
(
MTM

)−1
MT b (2.18)

Fig. 2.4 shows an example of the Gradient1 �tting.

(a) (b)

Figure 2.4: Gradient1 �tting using polynomial of 6th degree applied to �The Stanford

Bunny�: (a) original data points (b) 6th degree polynomial �t

2.3.3 Min-Max and Min-Var Fitting Algorithms

Although Gradient1 has good �tting properties, it still su�ers from zero-

set stability problems. An implicit polynomial may have several zero-sets,

and only one of them is describing the data-set. The zero-sets which do not

describe the data-set are called spurious zero-sets. When using Gradient1 �t-

ting algorithm, the spurious zero-sets are sometimes very close to the desired

17

zero-set (which describes the data-set). Consequently, if the data points are

perturbed, these external zero-sets might become too close, and in extreme

cases - even intersect the desired zero-set.

The Min-Max and Min-Var �tting algorithms are presented in [2, 19].

These improved algorithms are based on analysis of the sensitivity of zero-

set points to small changes in the polynomial coe�cients. Small changes in

the position of zero-set points along a tangent direction move zero-set points

back into the zero-set. Therefore, for the purpose of evaluating zero-set

changes, it is su�cient to examine changes in the direction that is perpen-

dicular to the zero-set.

We denote by da the change in the polynomial coe�cients, by dP n
a (x, y, z)

the change in each zero-set point, and by du (x, y, z) the component of

dP n
a (x, y, z) that is locally perpendicular to the zero-set.

The sensitivity function, which we would like to minimize, is therefore:

Sa =
du (x, y, z)

da
(2.19)

In [2] it is shown that the sensitivity function can be calculated at each point

by:

Sa =
pn (x, y, z)∥∥∇P n
a (x, y, z)

∥∥ (2.20)

where ∇P n
a (x, y, z) is the gradient of the polynomial at each point.

The change in the location of a zero-set point ε (x, y, z) = [εx, εy, εz]
T

resulting from a small change in the polynomial coe�cients (denoted by

18

δa = [δa000 , δa100 , ..., δa00n]T) can be approximated by:

ε (x, y, z) ∼= STa δa =

〈
pn (x, y, z) , δa

〉∥∥∇P n
a (x, y, z)

∥∥ (2.21)

If we denote by δmax the maximum of the absolute values of δa, then for a

given zero-set point (x, y, z), the maximum error is bounded by:

max |ε (x, y, z)| ≤ δmax

r∑
k=1

∣∣∣pn
k

(x, y, z)
∣∣∣∥∥∇P n

a (x, y, z)
∥∥ (2.22)

where r = (n+1)(n+2)(n+3)
2·3 .

And if the components of δa are independent random variables with zero

mean and variance of σ2
δ , the variance of of the error is:

var {ε (x, y, z)} = σ2
δ

r∑
k=1

∣∣∣pn
k

(x, y, z)
∣∣∣2∥∥∇P n

a (x, y, z)
∥∥2 (2.23)

The Min-Max �tting algorithm has three �tting requirements:

1. The zero set of the polynomial should �t the data-set.

2. The polynomial gradient at the location of each data point should be

in the same direction as the normal vector of the data set in the same

location.

3. Minimize the maximum error.

Since no data point has priority over any other point, we can limit the

maximal �tting error to a constant value by requiring that the value of

19

max |ε (xi, yi, zi)| would be the same for all the given data points. Since

the value of this constant does not a�ect the optimization, we require that

for i = 1, 2, ..., N :

∥∥∇P n
a (xi, yi, zi)

∥∥ =
r∑

k=1

∣∣∣pn
k

(xi, yi, zi)
∣∣∣ (2.24)

Prioritizing the error minimization at di�erent data points can be done, using

di�erent weights for the error requirements at di�erent points.

This additional requirement modi�es the least squares matrices of (2.9)-

(2.12) in the following way:

M0 =

[
pn (x1, y1, z1) pn (x2, y2, z2) ... pn (xN , yN , zN)

]T
(2.25)

Mx =

[
pn

x
(x1,y1,z1)

r∑
k=1
|pn

k
(x1,y1,z1)|

pn
x

(x2,y2,z2)
r∑

k=1
|pn

k
(x2,y2,z2)|

...
pn

x
(xN ,yN ,zN)

r∑
k=1
|pn

k
(xN ,yN ,zN)|

]T
(2.26)

My =

[
pn

y
(x1,y1,z1)

r∑
k=1
|pn

k
(x1,y1,z1)|

pn
y

(x2,y2,z2)

r∑
k=1
|pn

k
(x2,y2,z2)|

...
pn

y
(xN ,yN ,zN)

r∑
k=1
|pn

k
(xN ,yN ,zN)|

]T
(2.27)

Mz =

[
pn

z
(x1,y1,z1)

r∑
k=1
|pn

k
(x1,y1,z1)|

pn
z

(x2,y2,z2)
r∑

k=1
|pn

k
(x2,y2,z2)|

...
pn

z
(xN ,yN ,zN)

r∑
k=1
|pn

k
(xN ,yN ,zN)|

]T
(2.28)

The gradient coordinates vectors remain the same as in (2.13), (2.14) and

(2.15), and by de�ningM =

M0

Mx

My

Mz

and b =

0

v

w

q

, we can again formulate

the �tting problem as in (2.17) and get the least squares solution of the same

form as in (2.18).

20

Similarly, the Min-Var �tting algorithm has three �tting requirements:

the �rst two are the same as in Min-Max, and the third is to minimize

the variance of the error (instead of the maximum error as in Min-Max).

Using the same formulation as in Min-Max, we get the following least squares

problem:

M0 =

[
pn (x1, y1, z1) pn (x2, y2, z2) ... pn (xN , yN , zN)

]T
(2.29)

Mx =

[
pn

x
(x1,y1,z1)√

r∑
k=1
|pn

k
(x1,y1,z1)|2

pn
x

(x2,y2,z2)√
r∑

k=1
|pn

k
(x2,y2,z2)|2

...
pn

x
(xN ,yN ,zN)√

r∑
k=1
|pn

k
(xN ,yN ,zN)|2

]T
(2.30)

My =

[
pn

y
(x1,y1,z1)√

r∑
k=1
|pn

k
(x1,y1,z1)|2

pn
y

(x2,y2,z2)√
r∑

k=1
|pn

k
(x2,y2,z2)|2

...
pn

y
(xN ,yN ,zN)√

r∑
k=1
|pn

k
(xN ,yN ,zN)|2

]T
(2.31)

Mz =

[
pn

z
(x1,y1,z1)√

r∑
k=1
|pn

k
(x1,y1,z1)|2

pn
z

(x2,y2,z2)√
r∑

k=1
|pn

k
(x2,y2,z2)|2

...
pn

z
(xN ,yN ,zN)√

r∑
k=1
|pn

k
(xN ,yN ,zN)|2

]T
(2.32)

The gradient coordinates vectors remain the same as in (2.13), (2.14) and

(2.15), and by de�ningM =

M0

Mx

My

Mz

and b =

0

v

w

q

, we can again formulate

the �tting problem as in (2.17) and get the least squares solution of the same

form as in (2.18).

A comparison between Gradient1, Min-Max and Min-Var �tting perfor-

mance is shown in Fig. 2.5 and Fig. 2.6.

Based on these observations we can see that compared with Gradient1,

21

Min-Max and Min-Var spurious zero-sets appear farther away from the de-

sired zero-set.

(a) (b)

(c) (d)

Figure 2.5: Fit of a 6th degree polynomial to �The Stanford Bunny�: (a) original data

points (b) Gradient1 �tting (c) Min-Var �tting (d) Min-Max �tting

22

(a) (b)

(c) (d)

Figure 2.6: Fit of a 6th degree polynomial to �lion� (taken from the �Suggestive Contour

Gallery� [10]) (a) original data points (b) Gradient1 �tting (c) Min-Var �tting (d) Min-Max

�tting.

2.4 Rotation Invariant Fitting Algorithms

For the application of object recognition that we will present later, we would

like that the relation between polynomials �tted to the original and the

rotated data-sets will be rotation only. This section is based on 2D rotation

invariant IP �tting algorithms [3] and extended here for 3D rotation invariant

IP �tting algorithms.

23

In all the least squares algorithms (Gradient1, Min-Max and Min-Var)

we had the following requirements:

1. The polynomial value should be zero at each data point location.

2. The gradient direction should coincide with the normal to the data-set

at each data point location.

3. The gradient size at each data point should be equal to a certain value

(algorithm dependent).

We will examine each of these requirements and adjust them so that for each

data point they will not be a�ected by rotation.

We denote by {(xi, yi, zi)}i=1,...,N the coordinates of the data points, and

by {(x̃i, ỹi, z̃i)}i=1,...,N the coordinates of the data points after rotation by

angles (α, β, γ) ((α, β, γ) are the rotation angles around x, y and z axes

respectively).

If we �t an IP to the data-set and then rotate the data-set by angles

(α, β, γ) and re-�t an IP, we would like the requirements on the IP at the

given data-set points before and after rotation to ful�ll the following:

P n
ã (x̃, ỹ, z̃) = P n

a (x, y, z) (2.33)

∠∇P n
ã (x̃, ỹ, z̃) = ∠∇P n

a (x, y, z) + (α, β, γ) (2.34)

∥∥∇P n
ã (x̃, ỹ, z̃)

∥∥ =
∥∥∇P n

a (x, y, z)
∥∥ (2.35)

Where P n
ã (x̃, ỹ, z̃) denotes the IP �tted after rotation.

24

The polynomial value at each data point is required to be zero, both

before and after the rotation, this means that (2.33) is ful�lled.

The gradient direction should coincide with the normal to the data-set.

If the data-set is rotated by (α, β, γ), the normals to it would be rotated by

(α, β, γ) as well. This means that (2.34) is ful�lled.

Since the algorithms di�er in the gradient size requirement, let us now

examine each �tting algorithm separately.

2.4.1 Rotation Invariant Gradient1 Fitting Algorithm

The Gradient1 algorithm requires that the gradient size is equal to 1 for each

data-set point, both before and after the rotation, and therefore (2.35) is

ful�lled.

We conclude that Gradient1 requirement ful�lls all the rotation invariance

conditions and no adjustment is needed.

2.4.2 Rotation Invariant Min-Max Fitting Algorithm

The Min-Max algorithm requires that the value of
∥∥∇P n

a (x, y, z)
∥∥ is equal to

r∑
k=1

∣∣∣pn
k

(x, y, z)
∣∣∣. After rotation the value of

∥∥∇P n
ã (x̃, ỹ, z̃)

∥∥ should be equal

to
r∑

k=1

∣∣∣pn
k

(x̃, ỹ, z̃)
∣∣∣. The sum of the absolute values of the monomials for the

same data point depends on the rotation angles (α, β, γ). Therefore, (2.35)

is not ful�lled, and an adjustment is needed.

Following the same solution as in 2D [3], we transform into spherical coor-

dinates: (x, y, z) → (rcosθsinϕ, rsinθsinϕ, rcosϕ), and replace the gradient

value requirement with the following requirement:

25

∥∥∇P n
a (rcosθsinϕ, rsinθsinϕ, rcosϕ)

∥∥ =

= Eθ,ϕ

{
r∑

k=1

∣∣∣pn
k

(rcosθsinϕ, rsinθsinϕ, rcosϕ)
∣∣∣}

where 0 ≤ θ < 2π and 0 ≤ ϕ < π, and Eθ,ϕ {·} is the expectation with

respect to θ and ϕ.

Now the sum of monomials is averaged over all the possible values of

coordinates (θ, ϕ) and the gradient value requirement is invariant to rotation.

The use of the average value hardly a�ects the Min-Max properties. The

comparison of the �tting performance appears in Fig. 2.7. As it can be seen,

the results of Min-Max and the rotation invariant Min-Max (RI-Min-Max)

are quite similar.

26

(a1) (a2)

(b1) (b2)

Figure 2.7: Fit of an 8th degree polynomial to �The Stanford Bunny� object: (a1,a2) Min-

Max �tting (b1,b2) RI-Min-Max �tting. The left column and the right column describe

di�erent points of view

2.4.3 Rotation Invariant Min-Var Fitting Algorithm

The Min-Var algorithm requires that the value of
∥∥∇P n

a (x, y, z)
∥∥ is equal

to

√
r∑

k=1

∣∣∣pn
k

(x, y, z)
∣∣∣2. After rotation, the value of ∥∥∇P n

ã (x̃, ỹ, z̃)
∥∥ should be

equal to

√
r∑

k=1

∣∣∣pn
k

(x̃, ỹ, z̃)
∣∣∣2.

Let us examine the expression

√
r∑

k=1

∣∣∣pn
k

(x, y, z)
∣∣∣2. For a 2nd degree IP,

27

this expression is equal to:

√
1 + x2 + y2 + z2 + x4 + x2y2 + y4 + x2z2 + y2z2 + z4 =

=
√

1 + d2 + d4 − x2y2 − x2z2 − y2z2

where d is the Euclidean distance from the origin (d =
√
x2 + y2 + z2).

This expression is coordinate system dependent and not invariant to rota-

tion. Only the terms of the form d2p, where p ∈ N, are invariant to rotation.

However, if the 2nd degree monomials xy, xz and yz are replaced by
√

2xy,
√

2xz and
√

2yz correspondingly, this expression becomes√
1 + x2 + y2 + z2 + x4 + 2x2y2 + y4 + 2x2z2 + 2y2z2 + z4 =

√
1 + d2 + d4

and it is now invariant to rotation.

Following the same solution as in 2D [3], we use the binomial expansion

for 3 variables in order to obtain only terms of the form d2p:

(
x2 + y2 + z2

)n
=

∑
0≤k,l,m,k+l+m≤n

n!

k!l!m!

(
x2
)k (

y2
)l (

z2
)m

=

=
∑

0≤k,l,m,k+l+m≤n

[√
n!

k!l!m!
xkylzm

]2

Thus, in order to obtain only rotation invariant terms of the form d2p, we

need to replace each monomial xkylzm with
√

n!
k!l!m!

xkylzm.

In other words, the adjustment we do is the following:

28

P n
a (x, y, z) =

∑
0≤k,l,m,k+l+m≤n

aklmx
kylzm =

=
∑

0≤k,l,m,k+l+m≤n

aklm√
n!

k!l!m!︸ ︷︷ ︸
a′klm

√
n!

k!l!m!
xkylzm =

=
∑

0≤k,l,m,k+l+m≤n

a′klm

√
n!

k!l!m!
xkylzm

Actually we create a new factorized monomials vector, and solve the least

squares problem for a′. After we have a′, we can transform back to our

original coe�cients vector a. This adjustment makes sure that (2.35) is

ful�lled.

The use of the factorized monomials vector hardly a�ects the Min-Var

properties. A comparison of the �tting performance appears in Fig. 2.8. As

it can be seen, the results of Min-Var and the rotation invariant Min-Var

(RI-Min-Var) are quite similar.

29

(a1) (a2)

(b1) (b2)

Figure 2.8: Fit of an 8th degree polynomial to �The Stanford Bunny� object: (a1,a2)

Min-Var �tting (b1,b2) RI-Min-Var �tting. The left column and the right column describe

di�erent points of view

30

Chapter 3

3D Pose Estimation Algorithms -

An Overview

3.1 Problem De�nition

3D Pose estimation involves determining the coordinate transformation be-

tween two occurrences of the same object. In 3D, the coordinate transfor-

mation is usually a rigid motion composed of a rotation and a translation.

Pose estimation is often needed in computer vision applications, since de-

termining an object's position and orientation relative to some coordinate

system, is essential for classi�cation and identi�cation. In this chapter we

will review 3D pose estimation algorithms which assume that the given 3D

objects are represented as clouds of data points. We chose to review relatively

low complexity algorithms, which have interesting mathematical background

that can be utilized when looking for rotation invariant representation.

An example for 2 instances of the same object with relation of translation

31

and rotation is shown in Fig. 3.1.

Figure 3.1: 2 instances of �The Stanford Bunny� with relation of translation and rotation

3.2 Translation

The center of mass of an object is invariant to rotation and scaling. Therefore,

estimating the translation is relatively easy; we locate the center of mass of

the object at the origin:

xi,translated = xi −
1

N

N∑
k=1

xk (3.1)

yi,translated = yi −
1

N

N∑
k=1

yk (3.2)

zi,translated = zi −
1

N

N∑
k=1

zk (3.3)

32

An example of 2 instances of the same object with relation of rotation

only (after locating the center of mass of each object at the origin) is shown

in Fig. 3.2.

Figure 3.2: 2 instances of �The Stanford Bunny� after translation, with relation of

rotation only

3.3 Rotation Estimation Approaches

The output of this stage is a rotation matrix, which should be applied to the

data points.

The di�erent approaches can be divided into two distinct groups:

1. Intrinsic Orientation Methods:

(a) Only one occurrence of the object is required as input

(b) The object is registered according to its intrinsic characteristics

33

2. Methods that use point matching:

(a) Both occurrences of the object are required as input

(b) The two occurrences are registered with respect to each other's

data points

3.4 Intrinsic Orientation Methods

3.4.1 Principal Component Analysis (PCA)

This method is often used for lowering the dimension of the data [11], but it

can also be used for pose estimation.

The input is a 3D object, which is represented by a cloud of N data

points, {(xi, yi, zi)}|i=1,...,N , and its center of mass is located at the origin.

3.4.1.1 Scatter Matrix

PCA is based on the 3D scatter matrix of the object, which is de�ned as

follows:

S
(
x, y, z

)
=

1

N

xT

yT

zT

[
x y z

]
=

1

N

∑
i

x2
i

∑
i

xiyi
∑
i

xizi∑
i

xiyi
∑
i

y2
i

∑
i

yizi∑
i

xizi
∑
i

yizi
∑
i

z2
i

(3.4)

3.4.1.2 PCA Pose Estimation Algorithm

The PCA pose estimation algorithm is as follows:

34

1. Compute the scatter matrix of the data points, S
(
x, y, z

)
.

2. Find the eigenvectors and eigenvalues of the scatter matrix:

Sv = λv (3.5)

3. Sort the eigenvectors and eigenvalues according to decreasing value of

the eigenvalues. We denote the eigenvectors after sorting by v1, v2, v3.

4. Use the eigenvectors matrix as an orthogonal linear transformation that

rotates the data to a new coordinate system:

R =

vT1

vT2

vT3

 (3.6)

This coordinate system is such that the largest variance by any pro-

jection of the data comes to lie on the �rst coordinate (called the �rst

principal component), the second greatest variance on the second co-

ordinate, and so on.

Thus, the output of this method is a rotation matrix consisting of the eigen-

vectors of the scatter matrix. Applying this rotation matrix to the input

object, we get an intrinsic rotation of the object.

The rotation matrix actually de�nes 8 di�erent solutions, since re�ections

of the principal axes were not taken into account (each eigenvector v can be

taken as v or −v, so there are 2n orthogonal systems for an nxn scatter

matrix).

35

Examples are shown in Fig. 3.3 and Fig. 3.4.

In Fig. 3.3 the 2 instances were identical except for a synthetic rotation.

It can be seen that we got identical 8 PCA intrinsic rotations (but in a

di�erent order) for the 2 instances in this case.

In Fig. 3.4 the 2 instances were 2 di�erent acquisitions of the same

face, but with a di�erent expression and some missing/additional patches

of points. It can be seen that this slight deformation together with the re-

sampling resulted in a slightly di�erent pose estimation for each instance.

36

(a) (b)

(c)

(d)

Figure 3.3: An example for the 8 PCA intrinsic rotations of 2 di�erent poses of �The

Stanford Bunny�: (a) the original data points (b) the data points after rotation (c) the

8 PCA intrinsic rotations of the original data points (d) the 8 PCA intrinsic rotations of

the data points after rotation 37

(a) (b)

(c)

(d)

Figure 3.4: An example for the 8 PCA intrinsic rotations of 2 di�erent scans of the same

face: (a) neutral expression (b) smiling expression (c) the 8 PCA intrinsic rotations of the

neutral expression (d) the 8 PCA intrinsic rotations of the smiling expression
38

3.4.2 Implicit Polynomials Pose Estimation (Tensorial

Approach)

The method in this section is described in [6]. Here we use a somewhat

di�erent coordinate notation ((x1, x2, x3) instead of (x, y, z) for convenience).

The input is a 3D object, which is represented by a cloud ofN data points,

{(x1,i, x2,i, x3,i)}|i=1,...,N , and its center of mass is located at the origin.

A 3D implicit polynomial is �tted to the data:

fn (x1, x2, x3) =
∑

0≤k,l,m,k+l+m≤n

aklmx
k
1x

l
2x

m
3 (3.7)

Then, the implicit polynomial can be separated into homogeneous parts in

the following way:

fn (x1, x2, x3) = a000︸︷︷︸
H0

+ a100x1 + a010x2 + a001x3︸ ︷︷ ︸
H1(x1,x2,x3)

+

+a200x
2
1 + +a110x1x2 + a020x

2
2 + a101x1x3 + a011x2x3 + a002x

2
3︸ ︷︷ ︸

H2(x1,x2,x3)

+

+...+ an00x
n
1 + ...+ a0n0x

n
2 + ...+ a00nx

n
3︸ ︷︷ ︸

Hn(x1,x2,x3)

(3.8)

Or in short:

fn (x1, x2, x3) =
n∑
r=0

Hr (x1, x2, x3) (3.9)

Where Hr (x1, x2, x3) denotes a homogeneous ternary polynomial of degree

39

r, also called a 'form' of degree r :

Hr (x1, x2, x3) =
∑

k+l+m=r

aklmx
k
1x

l
2x

m
3 (3.10)

Hn (x1, x2, x3) is called 'the leading form' of an implicit polynomial of

degree n. Translations leave the leading form una�ected, but a�ect the rest

of the forms. Therefore, the orientation of the implicit polynomial can be

calculated directly from Hn (x1, x2, x3).

3.4.2.1 Tensor Representation

For pose estimation purposes, it is more convenient to use tensor represen-

tation for Hn (x1, x2, x3):

Hn (x1, x2, x3) =
∑

k+l+m=n

aklmx
k
1x

l
2x

m
3 (3.11)

Hn (x1, x2, x3) =
3∑

i1=1

3∑
i2=1

...
3∑

in=1

si1i2...inxi1xi2 ...xin (3.12)

Where (si1i2...in)1≤i1,i2,...,in≤3 is a symmetric tensor of order n, denoted Sn,

which represents the leading form. It can also be considered as an n-dimensional

array with 3n entries. Each entry si1i2...in can be expressed by the leading

form coe�cients:

si1i2...in =
aklm
n!

k!l!m!

(3.13)

Where k is the number of tensor indexes (i1, i2, ..., in) which are equal to 1,

l is the number of tensor indexes which are equal to 2, and m is number of

tensor indexes which are equal to 3. See Appendix B for a more detailed

40

explanation about tensors and implicit polynomials representation.

3.4.2.2 Tensor Rotation

Upon an orthogonal transformation (e.g., rotation) on a tensor, denoted by

an nxn matrix R = (rij), the tensor Sn in the new basis is:

s′j1j2...jn =
∣∣J−1

∣∣ 3∑
i1=1

3∑
i2=1

...

3∑
in=1

si1i2...inri1j1ri2j2 ...rinjn (3.14)

Where J is the Jacobian of the transformation, |J | = det (R), (|J | = 1 for

an orthogonal transformation), and s′j1j2...jn is the tensor in the new basis.

3.4.2.3 The Rotation Matrix (Tensor Contraction)

Given a tensor, a contraction with respect to 2 indices (e.g., i1 and i2), is

de�ned as a new tensor of order n− 2 :

s′i3i4...in =
3∑

i1=1

si1i1i3i4...in (3.15)

In other words, we set i2 = i1, and sum over i1. A total contraction of a

tensor gives a zero order tensor (a scalar) which is an invariant.

For example, for a symmetric 3x3 matrix (tensor of order 2), the tensor

contraction gives the trace of the matrix, which is known to be an invariant

under Euclidean transformations (such as rotation).

A single contraction of a tensor of order n gives a tensor of order n − 2,

whose components are linear functions of the original tensor. For a tensor

of even order n = 2p with 3n entries, (p− 1) contractions will result in a

41

3x3 symmetric matrix. When this tensor represents the leading form Hn of

an implicit polynomial of degree n, we denote this matrix by V (Hn). Note

that this matrix components are linear with respect to the coe�cients of the

leading form, a fact that contributes to the robustness of the orientation.

The diagonalization of the matrix V (Hn) and the orthonormal eigenvec-

tors basis allow us to estimate the orientation of the polynomial by providing

an intrinsic orientation for the polynomial. The geometric interpretation of

the eigenvectors of V (Hn) is a 3D ellipsoid which de�nes the orientation.

3.4.2.4 Implicit Polynomials Pose Estimation Algorithm

The implicit polynomials pose estimation algorithm is as follows:

1. Fit a polynomial of an even degree n=2p to the data points, fn (x1, x2, x3).

2. Extract the leading form, Hn (x1, x2, x3), and use its coe�cients to

obtain the tensor representation Sn.

3. Apply (p− 1) contractions to Sn, resulting in a 3x3 matrix, V (Hn).

4. Find the the eigenvectors of V (Hn):

V (Hn) v = λv (3.16)

5. Sort the eigenvectors and eigenvalues according to decreasing value of

the eigenvalues. We denote the eigenvectors after sorting by v1, v2, v3.

6. Use the eigenvectors matrix as an orthogonal linear transformation to

rotate the leading form to a new coordinate system using tensor rota-

42

tion:

R = (rij) =

vT1

vT2

vT3

 (3.17)

The rotation matrix can also be applied directly to the data points

instead of to the leading form. Note that if we already estimated the

translation of the object by locating its center of mass at the origin,

we can use any even degree form of the IP for pose estimation (except

H0) instead of just the leading form. However, since the translation

estimation might be inaccurate, the pose estimation using the leading

form will probably be more accurate than when using a di�erent even

form of the IP.

The matrix V (Hn) does not provide a unique solution, but rather 8 solutions

due to the symmetries of an ellipsoid (each eigenvector v can be taken as v

or −v, so there are 2n orthogonal systems for an nxn matrix).

When using a 2nd degree IP we can see the similarity to PCA by examining

V (H2):

H2 (x1, x2, x3) = a200x
2
1 + a020x

2
2 + a002x

2
3 + a110x1x2 + a101x1x3 + a011x2x3

(3.18)

V (H2) =

a200

a110

2
a101

2

a110

2
a020

a011

2

a101

2
a011

2
a002

 (3.19)

V (H2) has slightly di�erent measurements for the second order moments

of the data, but it has a structure which is similar to the scatter matrix.

43

The di�erence is that we �rst �t an IP and then do the pose estimation on

the IP coe�cients. This can be a disadvantage when the IP coe�cients are

unstable, since if the IP �tting process results in di�erent IP coe�cients (for

the same IP degree), we will get a di�erent pose estimation result.

When using higher IP degrees (>2), the pose estimation from V (Hn) is

using higher order moments of the data, and is therefore di�erent from PCA.

Examples for IP based pose estimation using a 2nd degree IP leading form

are shown in Fig. 3.5 and Fig. 3.6.

In Fig. 3.5 the 2 instances were identical except for synthetic rotation. It

can be seen that using a 2nd degree IP with Gradient1 �tting we got identical

8 tensor intrinsic rotations for the 2 instances. In this case changing the IP

degree or the �tting method does not a�ect the results since the rotation is

synthetic and the surface is closed.

In Fig. 3.6 the 2 instances were 2 di�erent acquisitions of the same face,

but with a di�erent expression and some missing/additional patches of points.

It can be seen that this slight deformation together with the re-sampling (i.e.,

the re-acquisition) resulted in a very di�erent IP �tting (the green ellipsoid in

the �gure). Since we got di�erent ellipsoids, when the tensor pose estimation

rotated the ellipsoids to have their main axes on our coordinate system axes

- we got a slightly di�erent pose estimation for each instance. In this case

we used a 2nd degree IP with Gradient1 �tting.

Fig. 3.7 and Fig. 3.8 show the di�erent expressions results for a 2nd

degree IP with RI-Min-Max and RI-Min-Var, respectively. In both �gures

we see an IP of a hyperboloid instead of an ellipsoid (in green), and the pose

estimation seems more accurate than with Gradient1.

44

Fig. 3.9 shows the di�erent expressions results for a 4th degree IP with

Gradient1 �tting. The IP zero-sets are di�erent and since the tesnor method

estimates the pose from the IP leading form (which describes also the spurious

zero-sets), di�erent IP �tting result in very di�erent intrinsic orientations

(i.e., di�erent pose estimation). The results when using 4th degree IP with

RI-Min-Max or RI-Min-Var are very similar.

It can be seen that when we have more than just a synthetic rotation, we

get di�erent pose estimation results when using Gradient1 (in a similar man-

ner to the di�erences we got using PCA, see �gure 3.4). However, when using

RI-Min-Max or RI-Min-Var, the pose estimation results are more consistent

(i.e., we get very similar 8 intrinsic rotations in both cases).

45

(a) (b)

(c) (d)

(e) (f)

Figure 3.5: An example for the 8 intrinsic rotations of a 2nd degree tensor (Gradient1

IP �tting) of 2 di�erent poses of �The Stanford Bunny�: (a) the original data points (b)

the data points after rotation (c) a 2nd degree IP �t to the original data points (d) a 2nd

degree IP �t to the rotated data points (e) the 8 tensor intrinsic rotations of the original

data points (f) the 8 tensor intrinsic rotations of the data points after rotation

46

(a) (b)

(c) (d)

(e) (f)

Figure 3.6: An example for the 8 intrinsic rotations of a 2nd degree tensor (Gradient1 IP

�tting) of 2 di�erent scans of the same face: (a) neutral expression (b) smiling expression

(c) a 2nd degree IP �t to the neutral face (side view, in green) (d) a 2nd degree IP �t

to the smiling face (side view, in green) (e) the 8 tensor intrinsic rotations of the neutral

expression (f) the 8 tensor intrinsic rotations of the smiling expression

47

(a) (b)

(c) (d)

(e) (f)

Figure 3.7: An example for the 8 intrinsic rotations of a 2nd degree tensor (RI-Min-

Max IP �tting) of 2 di�erent scans of the same face: (a) neutral expression (b) smiling

expression (c) a 2nd degree IP �t to the neutral face (side view, in green) (d) a 2nd degree

IP �t to the smiling face (side view, in green) (e) the 8 tensor intrinsic rotations of the

neutral expression (f) the 8 tensor intrinsic rotations of the smiling expression

48

(a) (b)

(c) (d)

(e) (f)

Figure 3.8: An example for the 8 intrinsic rotations of a 2nd degree tensor (RI-Min-

Var IP �tting) of 2 di�erent scans of the same face: (a) neutral expression (b) smiling

expression (c) a 2nd degree IP �t to the neutral face (side view, in green) (d) a 2nd degree

IP �t to the smiling face (side view, in green) (e) the 8 tensor intrinsic rotations of the

neutral expression (f) the 8 tensor intrinsic rotations of the smiling expression

49

(a) (b)

(c) (d)

(e) (f)

Figure 3.9: An example for the 8 intrinsic rotations of a 4th degree tensor (Gradient1 IP

�tting) of 2 di�erent scans of the same face: (a) neutral expression (b) smiling expression

(c) a 4th degree IP �t to the neutral face (side view, in green) (d) a 4th degree IP �t to

the smiling face (side view, in green) (e) the 8 tensor intrinsic rotations of the neutral

expression (f) the 8 tensor intrinsic rotations of the smiling expression

50

3.5 Methods that Use Point Matching

3.5.1 Quaternion Rotation

The method in this section is described in [12]. The input is two 3D objects,

each is represented by a cloud of N data points, {r1,i = (x1,i, y1,i, z1,i)}|i=1,...,N

and {r2,i = (x2,i, y2,i, z2,i)}|i=1,...,N .

We make three assumptions:

1. The center of mass of each object is located at the origin.

2. The 2 objects have the same number of data points.

3. The data points of the 2 objects are matched. In other words, we know

for sure that each data point r1,i has a corresponding point on the sec-

ond object, denoted by r2,i. This assumption is a major disadvantage,

and we will discuss it later.

The objective is to �nd a rotation matrix R such that r2 = R · r1 for each

data point.

3.5.1.1 Vector Quaternion Representation

A quaternion is a complex number with one real part, q0, and three di�erent

imaginary parts, qx,qy and qz:

q = q0 + qxi+ qyj + qzk (3.20)

51

Basic properties of quaternions arithmetic are:

i2 = −1 j2 = −1 k2 = −1

ij = k jk = i ki = j

ji = −k kj = −i ik = −j

(3.21)

It can easily be seen from (3.21) that quaternion multiplication is non-

commutative (i.e., rq 6= qr).

Let r = (x, y, z)T ∈ R3. Then, it can be represented by a quaternion with

a zero real part:

r = xi+ yj + zk (3.22)

This representation is useful when dealing with rotation in <3.

3.5.1.2 Quaternions Multiplication

Using the quaternion representation in (3.20), we get that:

rq = (r0q0 − rxqx − ryqy − rzqz) +

+i (r0qx + rxq0 + ryqz − rzqy) +

+j (r0qy − rxqz + ryq0 + rzqx) +

+k (r0qz + rxqy − ryqx + rzq0)

(3.23)

Since quaternions multiplication is non-commutative, it is often convenient

to represent it using matrix multiplication. It can be easily shown that for

52

rq we get:

rq =

r0 −rx −ry −rz

rx r0 −rz ry

ry rz r0 −rx

rz −ry rx r0

q = Rrq (3.24)

And for qr we get:

qr =

r0 −rx −ry −rz

rx r0 rz −ry

ry −rz r0 rx

rz ry −rx r0

q = R̄rq (3.25)

Note that R̄r di�ers from Rr in that the lower-right-hand 3x3 submatrix is

transposed.

3.5.1.3 Vector Rotation Using Unit Quaternions

The rotation of a quaternion r, using a unit quaternion q is described by the

product:

r′ = qrq̄ (3.26)

Where q̄ = q0 − qxi − qyj − qzk is the conjugate of q. It can be proven (see

Appendix C) that if r is purely imaginary, then r′ will be purely imaginary

as well.

For a rotation around the axis (ωx, ωy, ωz) by an angle of φ, the appro-

priate rotation unit quaternion q is:

53

q = cos
φ

2
+ sin

φ

2
(ωxi+ ωyj + ωzk)︸ ︷︷ ︸

unit vector ω

(3.27)

(See Appendix A7 of [12] for a detailed proof).

Using the representation of quaternions multiplication and the quater-

nions rotation, we can now present the quaternions pose estimation method.

3.5.1.4 Quaternions Rotation Pose Estimation Algorithm

Recall that we are looking for a rotation R such that r2 = R · r1. Since

we know that there exists point matching between the two objects, we can

represent the problem as maximization of the following dot product:

max
R

N∑
i=1

(Rr1,i) · r2,i (3.28)

Using quaternion representation, we can write:

max
q

N∑
i=1

(qr1,iq̄) · r2,i (3.29)

Using the following quaternion dot product property for unit quaternion q

and some quaternions p and r [12] (see Appendix C):

(pq) · r = p · (rq̄) (3.30)

we get:
N∑
i=1

(qr1,iq̄) · r2,i =
N∑
i=1

(qr1,i) · (r2,iq) (3.31)

54

If we now replace the quaternions multiplications with matrix multiplications,

we get:

N∑
i=1

(qr1,i)·(r2,iq) =
N∑
i=1

(
R̄r1,i

q
)
·
(
Rr2,i

q
)

=
N∑
i=1

qT R̄T
r1,i
Rr2,i

q = qT

(
N∑
i=1

R̄T
r1,i
Rr2,i

)
q

(3.32)

Denoting L =
N∑
i=1

R̄T
r1,i
Rr2,i

, we get the following optimization problem:

max
q
qTLq (3.33)

The solution to this problem is known from linear algebra: The unit quater-

nion q that maximizes qTLq is the eigenvector of L that corresponds to the

most positive eigenvalue of L.

Thus we get the following pose estimation method:

1. Compute L =
N∑
i=1

R̄T
r1,i
Rr2,i

, which is a 4x4 matrix.

2. Find the eigenvector of L that corresponds to the most positive eigen-

value of L.

3. Use this eigenvector as a unit quaternion q to rotate r1,i:

r′ = qrq̄ (3.34)

The main disadvantage of this method is that it is assumed that the 2 objects

have the same number of data points, and that there is point matching.

Therefore, we need a pre-processing stage, which can be either:

1. Matching the points of 2 objects with a di�erent number of points. For

55

example, we can take the object with the smaller number of points as

is, and match the points of the object with the larger number of points

(�nd the appropriate point to each of the �rst object points) .

2. Recognition of key points in each object and using them as represen-

tative points for each object for pose estimation.

3.5.2 Iterative Closest Point (ICP)

The method in this section is described in [13]. It utilizes the results of the

quaternions rotation method, but it doesn't assume point matching.

The input is two 3D objects. The �rst object, Q, is represented by a cloud

of Nq data points, {~qi = (x1,i, y1,i, z1,i)}|i=1,...,Nq
, and the second object, P , is

represented by a cloud of Np data points {~pi = (x2,i, y2,i, z2,i)}|i=1,...,Np
. The

number of points in the general case is di�erent, i.e., Nq 6= Np.

The pose estimation algorithm is as follows:

1. For each point ~pi in object P , �nd the closest point in object Q. We

denote this point by ~qi,closest.

2. Find the registration (i.e., rotation and translation) using the closest

points:

(a) Find the center of mass of the objects: ~µp = 1
Np

Np∑
i=1

~pi and ~µq =

1
Np

Np∑
i=1

~qi,closest.

(b) Locate the center of mass of each object at the origin.

56

(c) Apply the quaternions pose estimation described in 3.5.1.4 to ob-

ject P (with points ~pi, i = 1, ..., Np), with respect to object Q

(with points ~qi,closest, i = 1, ..., Np).

3. Update the points ~pi of object P after the registration.

4. Calculate the new sum of errors between closest points:
Np∑
i=1

~pi−~qi,closest.

5. If the sum of errors is below an empirical threshold - terminate, other-

wise: repeat stages 1-4.

In [13] it is proven that this algorithm always converges. In addition, the

algorithm is looking for matching points, instead of assuming the objects

have the same number of points and that these points are already matched.

This algorithm works well when the 2 input objects were already roughly

registered (e.g., by PCA), and what is still needed is small angles di�erences

registration. Without an initial registration stage this method may converge

to a non-optimal solution. Another disadvantage of this algorithm is that it

is iterative, and although not many iterations are needed, each iteration has

a high computational cost, since in each iteration, for each point in object

P we have to �nd the closest point in object Q. Therefore, this method has

relatively long running times.

An example is shown in Fig. 3.10. After rough registration of 2 instances

of the same face using PCA, we still have small angles di�erences. Apply-

ing ICP for registration of the smiling expression, we improved the relative

registration between the 2 instances of the same face. As can be seen from

this example, the ICP doesn't give perfect results. Over the years, several

57

variants were suggested to this algorithm, trying to improve its results or to

shorten its running time [14].

A recent example for such an improvement is suggested in [14]: when

looking for ~qi,closest for each ~pi, the authors suggest to build a look-up matrix

with all the distances between all the ~pi points and the ~qj points. For each

~qj that was selected as the closest point to more than one point ~pi, only

the closest ~pi is chosen (closest to ~qj), and the rest of the ~pi points which

were closest to this ~qj have to choose a di�erent closest point from Q in this

iteration. This change is supposed to improve the original ICP results, but

the running time is still long.

(a) (b)

(c)

Figure 3.10: An example of ICP pose estimation after PCA using 2 instances of the

same face (a) neutral expression after PCA (b) smiling expression after PCA (c) smiling

face after PCA and ICP

58

Chapter 4

Rotation Invariant

Representation

In order to avoid pose estimation in the classi�cation process, we need to

use expressions that will be invariant to rotation. Such IP based expressions

have been developed for the 2D case, both analytically [7], and using sym-

bolic computation [20, 21]. For the 3D case there are only rotation invariants

developed using symbolic computation [21]. These invariants contain sum of

high degree products of IP coe�cients. These products may cause instabil-

ity due to their high degree, and therefore we prefer to analytically derive

invariants similar to those developed in [7].

In this chapter we develop analytically explicit expressions which are ro-

tation invariants based on the IP coe�cients. These expressions are linear

or quadratic combinations of the IP coe�cients.

59

4.1 Overview of 2D Implicit Polynomials Ro-

tation Invariants

In [7], the authors suggest 2 methods for the derivation of 2D rotation in-

variants. The �rst method is based on the rotation matrix and trigonometric

identities, and the second method uses a complex representation for 2D im-

plicit polynomial curves.

A 2D implicit polynomial of degree n is represented in the following way:

fn(x, y) =
∑

0≤l,m,l+m≤n

almx
lym (4.1)

In the next subsections we will review these 2D invariants derivation methods

and will later adjust them for 3D invariants derivation.

4.1.1 Derivation of 2D Invariants Using the Rotation

Matrix

In 2D, the new coordinates of an object after rotation by angle θ are:

 x′

y′

 =

 cosθ −sinθ

sinθ cosθ

 x

y

 (4.2)

By inverting the rotation matrix, we get:

 x

y

 =

 cosθ sinθ

−sinθ cosθ

 x′

y′

 (4.3)

60

Substituting (4.3) into (4.1), we can �nd the relation between the original

IP coe�cients and the rotated ones. For example, for a 2nd degree IP the

original polynomial is:

f2 (x, y) = a00 + a10x+ a01y + a20x
2 + a11xy + a02y

2 (4.4)

After substituting the relations between x, y and x′, y′ we get:

f2 (x′, y′) = a00 + a10 (cx′ + sy′) + a01 (−sx′ + cy′) +

+a20 (cx′ + sy′)2 + a02 (−sx′ + cy′)2 +

+a11 (cx′ + sy′) (−sx′ + cy′)

(4.5)

where c
∆
= cosθ and s

∆
= sinθ. After expanding and simplifying, we get:

f2 (x′, y′) = a00︸︷︷︸
b00

+ (ca10 − sa01)︸ ︷︷ ︸
b10

x′ + (sa10 + ca01)︸ ︷︷ ︸
b01

y′+

+
(
c2a20 − csa11 + s2a02

)︸ ︷︷ ︸
b20

x′2 +
(
s2a20 + csa11 + c2a02

)︸ ︷︷ ︸
b02

y′2

+
(
2csa20 − 2csa02 +

(
c2 − s2

)
a11

)︸ ︷︷ ︸
b11

x′y′

(4.6)

From examination of the new IP coe�cients blm and using the trigonometric

identity c2 + s2 = 1, we get the following linear invariants:

L2D,0 = b00 = a00 (4.7)

L2D,2 = b20 + b02 = a20 + a02 (4.8)

61

We denote the 2D linear invariants by L2D,k, where k is the form degree.

In addition, using some more trigonometric identities, we get the following

quadratic invariants:

Q2D,1 = b2
10 + b2

01 = a2
10 + a2

01 (4.9)

Q2D,2 = (b20 − b02)2 + b2
11 = (a20 − a02)2 + a2

11 (4.10)

We denote the 2D quadratic invariants by Q2D,k, where k is the form degree.

Obviously, the complexity of the trigonometric expressions grows consid-

erably with the polynomial degree and therefore this method is useful only

for low degree polynomials invariants.

4.1.2 Derivation of 2D Invariants Using a Complex Rep-

resentation

Given the 2D polynomial:

fn(x, y) =
∑

0≤l,m,l+m≤n

almx
lym (4.11)

the main idea in [7] is to rewrite it as a polynomial of complex variables

z = x+ iy and z̄ = x− iy :

fn(z) =
∑

0≤l,m,l+m≤n

alm
im2l+m

(z + z̄)l(z − z̄)m (4.12)

62

Using binomial expansions for (z + z̄)l and (z − z̄)m, we get a new represen-

tation for fn (z) with complex coe�cients clm:

fn(z) =
∑

0≤l,m,l+m≤n

clmz̄
lzm (4.13)

when rotating a polynomial by an angle θ, z transforms as z′ = eiθz, so

that z = e−iθz′. Substituting this relation into the complex polynomial

representation, we get:

fn(z′) =
∑

0≤l,m,l+m≤n

ei(l−m)θclm︸ ︷︷ ︸
dlm

z̄′
l

z′
m

(4.14)

Using this method we get a simple relation between the IP coe�cients before

and after rotation:

dlm = clme
i(l−m)θ (4.15)

which means that when l = m we get invariant rotation IP coe�cients. These

coe�cients always appear before complex monomials of the form: zpz̄p = |z|2p

where p ∈ N. Using this method we get one linear invariant from each even

degree form H2p (x, y), or
⌊
n
2

⌋
+1 invariants from an IP of degree n, fn (x, y).

Note that these are the same linear invariants we got using the �rst method,

only this method has the advantage of simplicity.

Also, when l 6= m, the magnitude of the complex IP coe�cient is still

an invariant (i.e., |dlm| = |clm|) since
∣∣ei(l−m)θ

∣∣ = 1. This leads to a set of

quadratic invariants (since |z|2 = Re {z}2 + Im {z}2, so that the invariants

are quadratic combinations of the original IP coe�cients). In [7], a method

for the derivation of the full set of 2D linear and quadratic invariants is

63

suggested, using the complex representation and a recursive scheme.

4.2 3D Implicit Polynomials Rotation Invari-

ants

A 3D implicit polynomial of degree n is represented in the following way:

fn(x, y, z) =
∑

0≤l,m,r,l+m+r≤n

almrx
lymzr (4.16)

As in 2D, we would now like to derive rotation invariants consisting of com-

binations of the IP coe�cients.

4.2.1 Derivation of 3D Invariants Using the Rotation

Matrix

Every 3D rotation can be considered as 3 rotations, one around each axis (x,

y and z) with angles α, β and γ respectively.

The new coordinates of an object after each of the rotations will then be:

x′

y′

z′

 =

1 0 0

0 cosα sinα

0 −sinα cosα

x

y

z

 (4.17)

x′

y′

z′

 =

cosβ 0 −sinβ

0 1 0

sinβ 0 cosβ

x

y

z

 (4.18)

64

x′

y′

z′

 =

cosγ −sinγ 0

sinγ cosγ 0

0 0 1

x

y

z

 (4.19)

And the general rotation matrix is:

R =

1 0 0

0 cosα sinα

0 −sinα cosα

 ·

cosβ 0 −sinβ

0 1 0

sinβ 0 cosβ

 ·

cosγ −sinγ 0

sinγ cosγ 0

0 0 1

(4.20)

Applying the 2D method described in Section 4.1.1 in the 3D case will

require to prove that the expressions are invariant under each of the above

rotations.

For example, for a 2nd degree IP the original polynomial is:

f2 (x, y, z) = a000 + a100x+ a010y + a001z + a200x
2+

+a110xy + a101xz + a020y
2 + a011yz + a002z

2
(4.21)

After substituting the relations between x, y, z and x′, y′, z′ for a rotation

around z axis (Eq. (4.19)), we get:

f2 (x′, y′, z′) = a000 + a100 (cx′ + sy′) + a010 (−sx′ + cy′) + a001z
′+

+a200 (cx′ + sy′)2 + a020 (−sx′ + cy′)2 + a002z
′2+

+a110 (cx′ + sy′) (−sx′ + cy′) + a101 (cx′ + sy′) z′+

+a011 (−sx′ + cy′) z′

(4.22)

65

where c
∆
= cosγ and s

∆
= sinγ. After expanding and simplifying, we get:

f2 (x′, y′, z′) = a000︸︷︷︸
b000

+ (ca100 − sa010)︸ ︷︷ ︸
b100

x′ + (sa100 + ca010)︸ ︷︷ ︸
b010

y′ + a001︸︷︷︸
b001

z′+

+
(
c2a200 − csa110 + s2a020

)︸ ︷︷ ︸
b200

x′2 +
(
s2a200 + csa110 + c2a020

)︸ ︷︷ ︸
b020

y′2+

+
(
2csa200 − 2csa020 +

(
c2 − s2

)
a110

)︸ ︷︷ ︸
b110

x′y′+

+ (ca101 − sa011)︸ ︷︷ ︸
b101

x′z′ + (sa101 + ca011)︸ ︷︷ ︸
b011

y′z′ + a002︸︷︷︸
b002

z′2

(4.23)

Obviously, we have the following invariant:

L3D,0 = b000 = a000 (4.24)

We denote the 3D linear invariants by L3D,k, where k is the form degree.

From examination of the new IP coe�cients blmr and some trigonometric

identities, we get that after z axis rotation, we also get that:

b200 + b020 = a200 + a020 (4.25)

b002 = a002 (4.26)

If we follow the same procedure for each of the rotation matrices, we'll get

di�erent invariants each time. Rotation around x axis will yield:

b020 + b002 = a020 + a002 (4.27)

b200 = a200 (4.28)

66

and from rotation around y axis:

b200 + b002 = a200 + a002 (4.29)

b020 = a020 (4.30)

The conclusion is that if we rotate the polynomial arbitrarily around x, y

and z, the general rotation invariant will be

L3D,2 = b200 + b020 + b002 = a200 + a020 + a002 (4.31)

As we mentioned earlier, the complexity of the trigonometric expressions

grows considerably with the polynomial degree, and therefore the rotation

matrix together with the trigonometric identities are useful only for low de-

gree polynomials. We used this method for deriving 2 more quadratic invari-

ants (see Appendix D):

Q3D,1 = b2
100 + b2

010 + b2
001 = a2

100 + a2
010 + a2

001 (4.32)

Q3D,2 = b2
200 + b2

020 + b2
002 − 2b200b020 − 2b200b002 − 2b020b002 + b2

110 + b2
101 + b2

011 =

= a2
200 + a2

020 + a2
002 − 2a200a020 − 2a200a002 − 2a020a002 + a2

110 + a2
101 + a2

011

(4.33)

We denote the 3D quadratic invariants by Q3D,k, where k is the form degree.

67

4.2.2 Derivation of 3D Invariants Using Quaternion Rep-

resentation

Following the 2D method described in 4.1.2 of complex representation for

the 3D case, will require the extension of the regular complex representa-

tion to include more dimensions. This can be done using the quaternions

representation introduced in Section 3.5.1.1. Quaternions are often used for

3D rotation estimation, and therefore seem appropriate also for the task of

rotation invariant representation.

Recall that a vector r = (x, y, z)T ∈ R3 can be represented by a quater-

nion with a zero real part:

q = xi+ yj + zk (4.34)

For such a quaternion, we can extract the elements x, y and z in the following

way:

x = 1
2

(̄iq + q̄i)

y = 1
2

(j̄q + q̄j)

z = 1
2

(
k̄q + q̄k

) (4.35)

Where ī, j̄ and k̄ are the conjugates of i, j and k, respectively. Note that in

the case of Eq. (4.34), q̄ = −q.

If we follow the 2D complex method, then given the 3D polynomial:

fn(x, y, z) =
∑

0≤l,m,r,l+m+r≤n

almrx
lymzr (4.36)

we rewrite it as a polynomial of quaternion variables q = xi + yj + zk and

68

q̄ = −xi− yj − zk :

fn(q) =
∑

0≤l,m,r,l+m+r≤n

almr
2l+m+r

(̄iq + q̄i)
l
(j̄q + q̄j)

m (
k̄q + q̄k

)r
(4.37)

In order to rotate q, we use the quaternion rotation introduced in Section

3.5.1.3. We denote our rotation unit quaternion by rq:

q′ = rqqr̄q (4.38)

where q′ is the new quaternion after rotation. Since rq is a unit quaternion,

we can write |rq| = |r̄q| = 1, and therefore |q′| = |q|.

Thus, in the same manner as in 2D, coe�cients which appear before

quaternion monomials of the form qpq̄p = |q|2p where p ∈ N will be rotation

invariant. Using this method we should be able to get one linear invariant

from each even degree form H2p (x, y, z), or
⌊
n
2

⌋
+ 1 invariants from an IP of

degree n, fn (x, y, z).

The �rst even degree form isH0(x, y, z) = a000 and the second isH2(x, y, z) =

a200x
2 + a110xy + a101xz + a020y

2 + a011yz + a002z
2. When re-writing the IP

in quaternion representation, the quaternion IP coe�cients of each form are

dependent only on the real coe�cients of the same degree form of the orig-

inal IP. Therefore, the �rst rotation invariant is L3D,0 = a000, since it is

the quaternion coe�cient of |q|0 in H0 (x, y, z). Let us now �nd the second

rotation invariant (derived form the 2nd degree form):

H2 (x, y, z) = a200x
2 + a110xy + a101xz + a020y

2 + a011yz + a002z
2 (4.39)

69

we substitute x, y and z by their quaternion representation (Eq. (4.35)) and

expand each element separately:

a200x
2 = a200

1
22 (̄iq + q̄i)

2
= a200

22 (iqiq + 2|q|2 + qiqi)

a020y
2 = a020

1
22 (j̄q + q̄j)

2
= a020

22 (jqjq + 2|q|2 + qjqj)

a002z
2 = a002

1
22

(
k̄q + q̄k

)2
= a002

22 (kqkq + 2|q|2 + qkqk)

a110xy = a110
1
22 (̄iq + q̄i) (j̄q + q̄j) = a110

22 (iqjq − |q|2k + qkq + qiqj)

a101xz = a101
1
22 (̄iq + q̄i)

(
k̄q + q̄k

)
= a101

22 (iqkq + |q|2j − qjq + qiqk)

a011yz = a011
1
22 (j̄q + q̄j)

(
k̄q + q̄k

)
= a011

22 (jqkq − |q|2i+ qiq + qjqk)

Summing it all up and looking for the coe�cient of |q|2 we get the second

rotation invariant 1
2
L3D,2 = 1

2
(a200 + a020 + a002). Note that this is the same

invariant as the one we found in (4.31), only multiplied by 1
2
. Also, note that

since quaternion multiplication is non-commutative, iqiq 6= qiqi and there-

fore we can't simplify such expressions or use binomial expansion as in 2D.

The multiplications complexity increases with the polynomial degree and be-

comes impractical when trying to derive quadratic invariants. Therefore, this

method as well is useful only for linear invariants of low degree polynomials.

4.2.3 Derivation of 3D Invariants Using Tensor Repre-

sentation

The third method for 3D rotation invariants derivation, is based on the pose

estimation method of [6], which we introduced in Section 3.4.2.

We recall that the implicit polynomial can be separated into homogeneous

70

parts in the following way:

fn (x1, x2, x3) = a000︸︷︷︸
H0

+ a100x1 + a010x2 + a001x3︸ ︷︷ ︸
H1(x1,x2,x3)

+

+a200x
2
1 + +a110x1x2 + a020x

2
2 + a101x1x3 + a011x2x3 + a002x

2
3︸ ︷︷ ︸

H2(x1,x2,x3)

+

+...+ an00x
n
1 + ...+ a0n0x

n
2 + ...+ a00nx

n
3︸ ︷︷ ︸

Hn(x1,x2,x3)

(4.40)

The IP based pose estimation �ts an even degree IP with n = 2p and extracts

only the leading form (Hn (x, y, z)) since this form is invariant to translation.

In order to �nd the intrinsic orientation of the IP, it performs (p− 1) tensor

contractions on the leading form (see Section 3.4.2), resulting in a 3x3 matrix

denoted by V (Hn), whose elements are linear combinations of the leading

form coe�cients.

We suggest to perform one more tensor contraction (i.e., p contractions

for an IP of degree n = 2p). This will result in a tensor of order 0 (a scalar)

which is the trace of V (Hn). The trace of a matrix is known to be an

invariant under Euclidean transformations and therefore should be rotation

invariant. We refer only to even degree forms (n = 2p) since contraction of

an odd degree form results in a vector, which cannot be contracted again

into a scalar, and our goal is to derive rotation invariant scalar expressions.

When using a 2nd degree form we get:

H2 (x1, x2, x3) = a200x
2
1 + a020x

2
2 + a002x

2
3 + a110x1x2 + a101x1x3 + a011x2x3

(4.41)

71

and:

V (H2) =

a200

a110

2
a101

2

a110

2
a020

a011

2

a101

2
a011

2
a002

 (4.42)

The rotation invariant we get is L3D,2 = trace [V (H2)] = a200 + a020 + a002.

The di�erence from the 2 other methods, is the simplicity in which we

can derive an invariant from any even degree form, even for high degrees. A

4th degree form will be:

H4 (x1, x2, x3) = a400x
4
1 + a040x

4
2 + a004x

4
3+

+a310x
3
1x2 + a301x

3
1x3 + a130x1x

3
2 + a031x

3
2x3+

+a103x1x
3
3 + a013x2x

3
3 + a220x

2
1x

2
2 + +a202x

2
1x

2
3+

+a022x
2
2x

2
3 + a211x

2
1x2x3 + a121x1x

2
2x3 + a112x1x2x

2
3

(4.43)

and after creating the tensor and one contraction (p = 2, p− 1 = 1):

V (H4) =

a400 + a220

6
+ a202

6
a310

4
+ a130

4
+ a112

12
a301

4
+ a103

4
+ a121

12

a310

4
+ a130

4
+ a112

12
a040 + a220

6
+ a022

6
a031

4
+ a013

4
+ a211

12

a301

4
+ a103

4
+ a121

12
a031

4
+ a013

4
+ a211

12
a004 + a202

6
+ a022

6

(4.44)

and the rotation invariant we get is L3D,4 = trace [V (H4)] = a400 + a040 +

a004 + 1
3

(a220 + a202 + a022).

In the general case, of a form of degree n = 2p, we developed a general

expression for the linear invariant we get using p tensor contractions:

72

L3D,n = trace [V (Hn)] =
3∑

in−1=1

· · ·
3∑

i3=1

3∑
i1=1

si1i1i3i3···in−1in−1 (4.45)

and since each tensor element can be expressed by an appropriate polynomial

coe�cient divided by the number of permutations: si1i2...in = almr
n!

l!m!r!

, we get :

L3D,n = trace [V (Hn)] =
∑

l,m,r even,l+m+r=n

l!m!r!

n!
· (n/2)!

(l/2)! (m/2)! (r/2)!
· almr

(4.46)

where (n/2)!
(l/2)!(m/2)!(r/2)!

is the number of times each tensor element participates

in the tensor contractions (the indexes are all divided by 2 since each pair

of indexes is set to be equal in the contraction process). Using the tensor

approach, we can derive the complete set of
⌊
n
2

⌋
+ 1 linear invariants for an

IP of degree n. Note that this is an explicit expression for the derivation

of 3D invariants, unlike the recursive derivation method given in [7] for 2D

invariants. We can extend our explicit 3D invariants expression for the 2D

linear invariants computation as well, in the following way:

L2D,n =
∑

l,m even,l+m=n

l!m!

n!
· (n/2)!

(l/2)! (m/2)!
· alm (4.47)

Thus, we need less computations than the recursive scheme given in [7] for

the 2D linear invariants.

73

Chapter 5

Feature Extraction

5.1 Background

Recognition or classi�cation of 3D objects is important in various �elds, such

as medicine, robotics, automatic security systems etc. The recognition prob-

lem can be described by the next scheme: Assume that we have L di�erent

3D objects, each is represented by a cloud of points describing its surface,

and may have several di�erent representations (for example, the same ob-

ject was acquired from di�erent viewing angles). Thus, we have a dictionary

which contains one or more representations of each of the objects, which can

be used as a learning set. Given a new representation of an object, we would

like to classify it and determine which object it is out of the L possibilities

in our objects set.

Previous approaches usually require a pre-processing stage of pose esti-

mation for the alignment of the new object representation with each of the

dictionary objects representations. In many approaches, there is also a need

74

to identify matching key points between 2 object representations in order

to achieve good classi�cation results. These stages have high computational

cost, since accurate pose estimation (such as the Iterative Closest Point from

Section 3.5.2) and matching key points are usually iterative, and each iter-

ation performs calculations for many data-points. An example for such an

approach can be found in [15], which needs a large number of spin images

(2D histograms around objects surface points), from di�erent points of view

on the object surface, in order to perform surface matching for classi�cation.

The databases which are available for 3D objects classi�cation perfor-

mance evaluation are either synthetic databases (i.e., computer graphic mod-

els, such as [24]) or small real databases (only a relatively small number

of di�erent objects, such as [10]). Therefore, we had to create an objects

database of our own, which will include real acquisitions of many objects in

various viewing angles.

5.2 Rigid Objects Database Creation

This database was acquired using the equipment of the Geometric Image

Processing (GIP) lab at the Computer Science Faculty of the Technion.

The acquisition system was developed at the GIP lab and it consists of

a camera and a projector. The system is based on the 'structured light'

technique, in which di�erent patterns of light stripes are projected on the

3D object, and a depth map is created by analysis of the camera 2D image

[18]. The projector's hardware is manipulated so that it triggers the camera.

The acquisition analysis software was developed at the GIP lab. The camera

75

frame rate is 30Hz, and each 3D image is produced from a sequence of 12

consecutive camera frames of 12 di�erent projected patterns. Therefore, the

system acquires 2.5 images per second. For the acquisition, the object is

placed on a stand, with a black background behind it. After the acquisition,

each 3D frame is re-sampled on a uniform xy grid of 320x240 pixels, then

�ltered in order to smooth noise artifacts, and cropped so that it won't

contain background elements. The �nal number of data-points per object in

our database is ∼ 12, 000 on average. Each pixel has 3 coordinates (x, y, z)

and represents a point in the 3D space.

We acquired 40 di�erent objects, each was placed on the rotatable stand

and acquired in 9 consecutive positions. The di�erence between 2 consecutive

positions is around 10o − 15o degrees, and we acquired 5 frames in each

position of each object. A possible application for such a setup is a factory

production line that contains various products which need automatic sorting.

The database objects appear in Appendix F. An example for 9 di�erent

positions of the object 'fox' is shown in Fig. 5.1.

76

Figure 5.1: 9 di�erent positions of the object 'fox'

5.3 Faces Database

This database is also from the Geometric Image Processing (GIP) lab. The

GIP lab gathered acquisitions of many human volunteers using the same

system described in the previous section (same frame rate and resolution).

The subjects are generally told to look straight at the camera and hold

still, since precision is much higher for stationary objects. The result for

each subject is a video of ∼ 50 − 70 3D frames, during which the subject

usually moves his head a little and changes his expression from neutral to

happy. Since the expressions are usually moderate, and the subject is looking

directly at the camera, this is a cooperative situation. In other words - the

subject would like the system to correctly identify him/her. This application

77

is interesting, for example, for identi�cation at an entrance to restricted

facilities. The database faces appear in Appendix G. An example for 6

di�erent frames of the same face is shown in Fig. 5.2.

Figure 5.2: 6 di�erent frames of the same face

When working with faces and implicit polynomials �tting, we tried using

high degree polynomials (degree>8). Eventually we chose not to use these

IP degrees for classi�cation purposes, since their invariants were not stable

enough. A brief overview of high degree IP �tting is brought in Appendix A.

5.4 Noise Analysis

In order to analyze the acquisition noise of the system, we examined 2 con-

secutive frames of the same position of the object 'mule' (see Figure 5.3).

78

(a) (b)

Figure 5.3: 2 consecutive frames of the object 'mule'

For each data point in the second frame (xf2, yf2, zf2), we found the closest

point in the �rst frame (xf1,closest, yf1,closest, zf1,closest) using l1 distance. The

noise was then estimated for each coordinate separately, using subtraction of

coordinates of all the closest points pairs.

n1 (xf2, yf2) = xf2 − xf1,closest (5.1)

n2 (xf2, yf2) = yf2 − yf1,closest (5.2)

n3 (xf2, yf2) = zf2 − zf1,closest (5.3)

where n1 is the noise of coordinate x, n2 is the noise of coordinate y and

n3 is the noise of coordinate z. The noise patterns and their histograms are

shown in Figure 5.4. It can be seen that the histograms can be approximated

by Gaussian distributions and that most of the noise values are in the range

[−0.02, 0.02] (in all 3 axes). Using the approximation that ∼ 97% of Gaussian

distribution values are in the range [−3σ, 3σ], where σ is the noise standard

79

deviation, we estimate σ̂ = 0.02
3
∼= 0.007 for the noise in each of the 3 axes.

The noise auto-correlations in the same coordinate and cross-correlations

between di�erent coordinates are shown in Figure 5.5 (only the central area of

each correlation matrix is shown). It can be seen that there is a neighborhood

of correlated pixels in each direction between noise matrices of the same

coordinate (e.g., auto-correlation of n1), but hardly any correlation between

noise matrices of di�erent coordinates (e.g., cross-correlation between n1 and

n2). If we repeat this analysis using a di�erent object, or one of the faces,

we get similar results. We conclude that our noise model is additive colored

Gaussian noise in each coordinate. In the same coordinate, the correlation

decreases along 5 pixels to each direction, and there is no correlation between

di�erent coordinates. The standard deviation of the noise in each axis is

σ ∼= 0.007. We will later use this model in order to enrich our learning

database to include more synthetic acquisitions.

80

(a1) (a2)

(b1) (b2)

(c1) (c2)

Figure 5.4: Acquisition noise patterns and histograms for each of the coordinates:

(a) noise in coordinate x (b) noise in coordinate y and (c) noise in coordinate z

81

(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Acquisition noise auto-correlations and cross-correlations: (a) auto-

correlation of n1 (b) auto-correlation of n2 (c) auto-correlation of n3 (d) cross-

correlation between n1 and n2 (e) cross-correlation between n2 and n3 (f) cross-

correlation between n1 and n3

82

5.5 Data Preprossessing

In order to create a feature vector for classi�cation, we have to apply some

pre-processing to each object/face frames. The input to this stage is a cloud

of data-points {(xi, yi, zi)}|i=1,...,N .

5.5.1 Translation

Consider that we have a data-set having a center-of-mass point at (xcm, ycm, zcm),

and that the maximum distance between the point (xcm, ycm, zcm) and the

data-set is d. If the coordinates (xcm, ycm, zcm) are much larger than d, then

the monomials belonging to the di�erent points of the data-set wouldn't dif-

fer much. Thus, the corresponding rows of the matrix M (see Sections 2.3.2

and 2.3.3) would be almost the same, and it will be close to singular. There-

fore, a reasonable choice of the center-of-mass of the data-set location would

be the origin.

Therefore, for translation invariance, we locate the center of mass of the

data-points at the origin:

xi,translated = xi −
1

N

N∑
k=1

xk (5.4)

yi,translated = yi −
1

N

N∑
k=1

yk (5.5)

zi,translated = zi −
1

N

N∑
k=1

zk (5.6)

83

5.5.2 Scaling

In the 2D case [3] it was shown that the scaling factor a�ects the stability of

the polynomial coe�cients. If the object is very small, so that the coordinates

of the data-set points are very close to zero, then the higher degree monomials

will be much smaller than the lower degree ones. The 2D analysis of this

case shows that the high degree IP coe�cients are much larger than the

lower degree ones, and they are very sensitive even to small changes of the

data-set. Similarly, if the object is very big, so that the coordinates of the

data-set points are much larger than 1, then the higher degree monomials

will be much larger than the lower degree ones. The 2D analysis of this case

shows that the low degree IP coe�cients are much larger than the higher

degree ones, and they are very sensitive even to small changes of the data-

set. Thus, scaling the data-set so that its coordinates will be close to ±1

may provide a polynomial with more stable coe�cients in the presence of

the data-set noise.

The 2D conclusion is applicable also in the 3D case, and so we would like

our surface to have coordinates close to ±1. Applying scaling so that all the

points will have coordinates in the range [−1, 1] is too sensitive to outliers.

As in [3], we chose our scaling factor to be the 75th percentile of the distances

of the data-points from the origin. In other words, we �nd the distances of

all the data-points from the origin, sort them and choose the element that

is larger than 75% of the other elements as the scaling factor S75%. We then

84

scale each coordinate using this scaling factor:

xi,scaled = xi/S75% (5.7)

yi,scaled = yi/S75% (5.8)

zi,scaled = zi/S75% (5.9)

5.5.3 Normal Direction Calculation

In order to solve the IP �tting problem, we need the normal direction at each

point. In order to �nd a consistent normal direction in the presence of noise,

we �nd the closest neighbors of the current point and �t to them a local plane.

Then we choose the positive direction of the normal to be in the direction of

the camera (i.e., so that it has a positive z direction). This has a smoothing

e�ect on the normal direction constraints, since neighboring points will have

very similar normals. An example for normal direction estimation was shown

in Fig. 2.3.

5.5.4 Mirroring of the Faces

As we saw in Section 3.4.2.4, since a 3D face is an open surface, the IP that

we �t to it is unconstrained in areas in which there are no data-points. An

example was shown in Fig. 3.6 (repeated here for convenience, see Fig. 5.6),

where a 2nd degree IP �t to a face results in an ellipsoid much larger than the

face. The second instance of the face (the smiling expression) has a di�erent

ellipsoid �t even though the di�erence between the 2 acquisitions is only a

slight deformation.

85

(a) (b)

(c) (d)

Figure 5.6: An example for di�erent 2nd degree IP �tting (using Gradient1) of 2 di�erent

scans of the same face: (a) neutral expression (b) smiling expression (c) a 2nd degree IP

�t to the neutral face (side view, in green) (d) a 2nd degree IP �t to the smiling face (side

view, in green)

In order to get a stable IP �tting, we suggest to mirror each face in the

following way:

We �t a 1st degree IP to the face and place the resulting plane so that

it passes through the origin (the center of mass of the face). Then we lower

it further in the z direction by an empiric distance (-0.25 for faces after the

scaling stage). We dispose of the points below the plane and mirror the rest

86

of the points with respect to the plane in the following way:

Let p
1
denote a data point we want to mirror, p

0
denote some point on

the plane and n denote the unit normal to the plane. We can �nd the closest

point p
2
to p

1
on the plane using:

p
2

= p
1
−
[
nT
(
p

1
− p

0

)]
n (5.10)

Then, the mirrored point coordinates p
1m

are:

p
1m
− p

2
= p

2
− p

1
(5.11)

or:

p
1m

= 2p
2
− p

1
(5.12)

Figure 5.7 shows the relations between the mirroring plane and the points

p
1
, p

0
, p

2
and p

1m
.

Figure 5.7: Mirroring of a point p1 with respect to an arbitrary plane

87

The mirroring results are shown in Fig. 5.8. It can be seen that the

ellipsoid is now very similar between the 2 occurrences of the same face,

despite the smile deformation. In addition, after the mirroring, the ellipsoid

size corresponds to the face size, unlike the large ellipsoid we got before the

mirroring (Fig. 5.6).

88

(a) (b)

(c) (d)

(e) (f)

Figure 5.8: An example for the similar 2nd degree IP �tting (using Gradient1) of 2

di�erent scans of the same face when using mirroring: (a) neutral expression (b) smiling

expression (c) mirroring of the neutral face (d) mirroring of the smiling face (e) a 2nd

degree IP �t to the mirrored neutral face (in green) (f) a 2nd degree IP �t to the mirrored

smiling face (in green)

89

We don't apply mirroring to the rigid objects since they are a heteroge-

neous group, and the desired location of the mirroring plane varies consider-

ably from object to object.

5.5.5 2D Projections

In order to obtain more classi�cation features using implicit polynomials, we

used also 2D projections. We used only projections on the main axes (xy,

xz and yz) in order to avoid high complexity calculations.

5.5.5.1 Rigid Objects - xy Projection

For the rigid objects, the most descriptive projection is the projection on xy.

The two other projections (xz and yz) were not very informative, and had

very noisy contours. An example is shown in Fig. 5.10, note the noisy contour

on the lower part of the 2D projections. After the 2D projection, we used

the morphological operator of 'closing' for holes �lling and then extracted

the 2D contour. An example for xy projection of 3 di�erent positions of the

object 'fox' is shown in Fig. 5.9.

90

(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 5.9: (a) xy projections of 3 di�erent positions of the object 'fox' and (b) their

2D contours

(a)

(b)

Figure 5.10: An example for projections of 'fox' that have noisy contours (a) xz projec-

tions of 3 di�erent positions (b) yz projections of 3 di�erent positions. These projections

were excluded from our rigid objects classi�cation scheme due to their noisy contours.

91

5.5.5.2 Faces - xz Projection and yz Projection

In this case, the xy projection is very similar for di�erent faces, and the more

descriptive projections are the projections on xz and yz. We perform the 2D

projections after the mirroring of the faces, so that they won't have noisy

contours as in the objects database (like the example shown in Fig. 5.10).

After each 2D projection, we used the morphological operator of 'closing'

for holes �lling and then extracted the 2D contour. An example for the 3

projections of a face is shown in Fig. 5.11.

92

(a)

(b1) (b2) (b3)

(c1) (c2) (c3)

Figure 5.11: (a) a face after mirroring (b) 3 projections (on xy , xz and yz) of this

mirrored face and (c) their 2D contours. The xy projection was excluded from our faces

classi�cation scheme due to its high similarity between di�erent faces.

93

5.6 Classi�cation features

5.6.1 Rotation Invariants Derivation

5.6.1.1 Linear Invariants

After all the pre-processing stages, we �t implicit polynomials of degrees

2, 4, 6 and 8 to the 3D objects and faces, and to their 2D projections (xy

projection for the objects, and xz and yz projections for the faces). The

reason for the multi degree polynomial �tting is that di�erent polynomial

degrees describe di�erent features in the object. A simple and smooth object

can be well described by a low degree IP, while higher IP degrees �tting

will be less stable. However, a more complicated object with many details

needs a relatively high degree IP for description, and a low degree IP won't

contain enough information about it to be able to classify it correctly. By this

approach we follow the Multi-Order and Fitting-Error Technique (MOFET),

introduced for 2D contours recognition using implicit polynomials [3]. The

reason for the even degree polynomials is that our linear invariants are derived

only from even degree forms. Thus, if we �t an IP of an odd degree, we won't

use its leading form for invariants derivation, and so we could use a lower

(even) degree IP for the same number of invariants derivation.

Using the polynomial representation, we separated the polynomial into

forms, and from each even degree form - we derived the linear rotation invari-

ants described in Section 4.2.3 using the explicit expressions we developed.

In the 3D case the general invariant expression for a form of degree n (n=2p)

94

is (Eq. (4.46), repeated here for convenience):

L3D,n =
∑

l,m,r even,l+m+r=n

l!m!r!

n!
· (n/2)!

(l/2)! (m/2)! (r/2)!
· almr (5.13)

And in the 2D case, the general invariant expression for a form of degree n

(n=2p) is (Eq. (4.47), repeated here for convenience):

L2D,n =
∑

l,m even,l+m=n

l!m!

n!
· (n/2)!

(l/2)! (m/2)!
· alm (5.14)

In both 3D and 2D cases, we have
⌊
n
2

⌋
+1 linear invariants for an IP of degree

n.

5.6.1.2 Quadratic Invariants

For the 3D case, using the same polynomial representation, we also derived

the 2 quadratic rotation invariants described in Section 4.2.1.

Q3D,1 == a2
100 + a2

010 + a2
001 (5.15)

Q3D,2 = a2
200 +a2

020 +a2
002−2a200a020−2a200a002−2a020a002 +a2

110 +a2
101 +a2

011

(5.16)

The quadratic and angular invariants in the 2D case [7] are not stable enough

[3], and therefore were not used as classi�cation features.

95

5.6.2 Additional features

5.6.2.1 Implicit Polynomial Fitting Error

Following the Multi-Order and Fitting-Error Technique (MOFET), intro-

duced for 2D contours recognition using implicit polynomials [3], we also

suggest to use the implicit polynomial �tting error as a classi�cation feature.

When comparing 2 di�erent objects that have a similar shape, but one is

smooth while the other has �ne details, the �rst object will have a lower IP

�tting error than the second one, since its smooth IP description will describe

it well. Obviously, this feature is an inherent property of the object, and is

also invariant to rotation.

Therefore, for each IP �tting degree, after solving the least squares prob-

lem for the IP �tting, we calculate the �tting error for each data-point and

use the 75th percentile of the errors vector as a feature describing the �tting

error. In the 3D case we denote this feature by E75%,3D,n where n is the IP

�tting degree. In the 2D case we denote this feature by E75%,2D,n where n is

the IP �tting degree.

5.6.2.2 Eigenvalues of Principal Component Analysis (PCA)

We obtain 3 more classi�cation features using principal component analysis

on the original data points. PCA was described in detail in Section 3.4.1. The

PCA eigenvalues are an inherent property of the object, since they describe

its data-points scatter on its principal axes, and therefore - they are also

invariant to rotation.

In the 3D case, we calculate the 3x3 data scatter matrix (see Eq. (3.4)),

96

and perform eigenvalue decomposition. We sort the eigenvalues in decreasing

order according to their magnitude, and use them as additional classi�cation

features, denoted by λ1, λ2 and λ3.

5.6.3 The Classi�cation feature Vector

Assembling all the calculated features, we have:

1. 3D linear invariants from each even degree form of each 3D IP (
⌊
n
2

⌋
+1

linear invariants for an IP of degree n).

2. Two 3D quadratic invariants from each 3D IP.

3. 2D linear invariants from each even degree form of each 2D IP of each

projection we chose (
⌊
n
2

⌋
+ 1 linear invariants for an IP of degree n).

4. 3D �tting error feature from each 3D IP.

5. 2D �tting error feature from each 2D IP of each projection we chose.

6. 3D PCA eigenvalues.

The total number of features depends on the IP degrees we �t to the 3D

object and its 2D projections. We chose di�erent feature vectors for objects

recognition and for faces recognition according to the di�erentiation ability

of the various features in each recognition problem. For example, the �tting

error (in both 3D and 2D cases) is very similar for di�erent faces, and there-

fore it does not contribute to the classi�cation. On the other hand, the faces

have many details and an IP degree of 8 is required in order to achieve good

recognition results. The objects are di�erent enough from each other and

97

so we don't need an IP of degree 8 for classi�cation and use only degrees of

2,4 and 6. The full list of classi�cation features for each database appears in

Table 5.1.

Objects Recognition Faces Recognition

3D linear invariants IP degrees 2,4,6 IP degrees 2,4,6,8

(2+3+4=9 features) (2+3+4+5=14 features)
3D IP �tting error IP degrees 2,4,6 �

(1+1+1=3 features)
two 3D quadratic invariants IP degrees 2,4 IP degrees 2,4

(2+2=4 features) (2+2=4 features)
2D linear invariants xy - IP degrees 2,4,6 xz - IP degrees 2,4,6

(2+3+4=9 features) (2+3+4=9 features)
yz - IP degrees 2,4

(2+3=5 features)
2D IP �tting error xy - IP degrees 2,4,6 �

(1+1+1=3 features)
3D PCA eigenvalues 3 eigenvalues 3 eigenvalues

(3 features) (3 features)

Table 5.1: Classi�cation features for the objects database and the faces
database

The total number of features was 31 in the objects recognition case and

35 in the faces recognition case.

98

Chapter 6

Classi�cation Process

We chose to use a classi�er which is based on the probability density func-

tions (PDFs) of feature vectors. Each PDF is estimated from feature vectors

belonging to one or more di�erent views of an object from the dictionary.

Thus, each dictionary object is represented by one or more PDFs. In all the

simulations we examined the 3 �tting algorithms: Gradient1, RI-Min-Max

and RI-Min-Var.

6.1 Objects Database

We divide the objects database into learning and test data sets in the follow-

ing way: we have 9 di�erent positions for each object (∼ 10o− 15o di�erence

between consecutive positions, we denote these positions by #1-#9), and for

each position we have 5 di�erent consecutive frames. We use even positions

for learning (i.e., positions #2,#4,#6 and #8) and odd positions for testing

(i.e., positions #1,#3,#5,#7 and #9).

99

6.1.1 Learning Positions

For each learning position of each object we do the following: each of the 5

frames is perturbed 10 times by adding colored Gaussian noise with standard

deviation of 0.01 (according to the acquisition noise model we analyzed in

Section 5.4, after round-o� of the estimated standard deviation). Thus, we

have 40·4·5 = 800 real frames in the learning data set, synthetically enhanced

10 times to be 800 · 10 = 8000 frames. For each of the 8000 perturbed

instances we perform all the pre-processing stages from the previous chapter

and calculate the feature vector v.

Let us denote each object by Ok , k = 1, ..., 40, and each learning position

(view) by Vn, n = 2, 4, 6, 8. We examined several approaches:

Creating a PDF from All Learning Positions of the Same Object

In this approach, for each object we combined all the learning positions and

used the 50frames ·4positions = 200 feature vectors of positions #2,#4,#6

and #8 in order to create a vector of means µ, and a covariance matrix Σ.

These statistical characteristics were the basis for a multi-variable Gaussian

probability density function in the following way:

P (v/Ok) =
1

(2π)d/2 |Σ|1/2
exp

(
−1

2

(
v − µ

)T
Σ−1

(
v − µ

))
(6.1)

Where d is the dimension of the features vector v (in case we use the entire

feature vector we have d = 31), and k = 1, ..., 40.

In this approach we have 40 di�erent PDFs for the description of 40

objects (one PDF per object).

100

Creating a PDF from Each Learning Position of Each Object

In this approach, for each object learning position (#2, #4, #6 and #8),

the corresponding 50 feature vectors were used in order to create a separate

PDF.

P (v/Ok, Vn) =
1

(2π)d/2 |Σ|1/2
exp

(
−1

2

(
v − µ

)T
Σ−1

(
v − µ

))
(6.2)

Where k = 1, ..., 40, n = 2, 4, 6, 8, and the dimensions of the feature vectors

are the same as in the previous approach.

In this approach we have 40 · 4 = 160 di�erent PDFs for the description

of 40 objects (4 PDFs per object).

Creating a PDF from Learning Position Pairs of Each Object

In this approach, we combined pairs of learning positions of each object for

PDF creation. Speci�cally, for each object we used the 50 · 2 = 100 feature

vectors of positions #2 and #4 for creation of one PDF, the 100 feature

vectors of positions #4 and #6 for creation of a second PDF, and the 100

feature vectors of positions #6 and #8 for creation of a third PDF.

P (v/Ok, Vn) =
1

(2π)d/2 |Σ|1/2
exp

(
−1

2

(
v − µ

)T
Σ−1

(
v − µ

))
(6.3)

Where k = 1, ..., 40, n = 2&4, 4&6, 6&8, and the dimensions of the feature

vectors are the same as in the previous approaches.

In this approach we have 40 · 3 = 120 di�erent PDFs for the description

of 40 objects (3 PDFs per object).

This approach assumes that positions with very di�erent viewing angles

101

of the same object have very little in common, and therefore it will be better

to learn similar positions together, but to separate the learning of di�erent

positions.

6.1.2 Testing Positions

We calculate the same feature vector for each of the 5 frames of each object

testing position, resulting in 40 · 5 · 5 = 1000 real frames in the testing data

set. We then calculated the probability of it originating from each of the

objects. The object which resulted in the highest probability was chosen as

the best classi�cation for the test vector.

Bayesian Approach

A test vector v is our observation, and we would like to �nd the probabil-

ities that the object was Ok given that we observed v:

P (Ok/v) , k = 1, ..., 40 (6.4)

The maximum probability will be chosen as the correct classi�cation for the

test vector. Using Bayes rule, we get:

P (Ok/v) =
P (v/Ok)P (Ok)

P (v)
(6.5)

Since P (v) is the same for every k, we can ignore it when we compare the

di�erent probabilities.

1st Approach

102

Learning: Creating a PDF from all learning positions of the same object.

Testing: Comparing P (Ok/v), k = 1, ..., 40.

In this approach, we have one PDF to describe each object, and we

only need to compare the nominators of the probabilities (i.e., compare

P (v/Ok)P (Ok), k = 1, ..., 40). We assume that all the objects have the

same probability (i.e., they are uniformly distributed and P (Ok) = 1
40
), and

so we can ignore the expression P (Ok) as well. Thus, for the comparison of

the probabilities P (Ok/v), we need to compare only P (v/Ok), k = 1, ..., 40.

2nd Approach

Learning: Creating a PDF from each learning position of each object.

Testing: Comparing P (Ok/v), k = 1, ..., 40.

In this approach, we have 4 PDFs that describe each object. We expand

the nominator of the probabilities:

P (v/Ok)P (Ok) =
∑

n=2,4,6,8

P (v/Ok, Vn)P (Vn/Ok)P (Ok) (6.6)

Where P (v/Ok, Vn) is the probability that we observe v, given that we had

object Ok in position Vn, P (Vn/Ok) is the probability that we observed po-

sition Vn given that we had object Ok, and P (Ok) is the probability of

object Ok. We assume that both P (Vn/Ok) and P (Ok) are uniformly dis-

tributed, since each object and each view has the same probability of occur-

rence, and so we set P (Vn/Ok) = 1
4
and P (Ok) = 1

40
. Thus, we get that

P (v/Ok)P (Ok) = 1
160

∑
n=2,4,6,8

P (v/Ok, Vn). The 1
160

factor can be ignored

when we compare the probabilities, since it has the same value for every

k. Therefore, for the comparison of the probabilities P (Ok/v), we need to

103

compare only
∑

n=2,4,6,8

P (v/Ok, Vn), k = 1, ..., 40.

3rd Approach

Learning: Creating a PDF from each learning position of each object.

Testing: Comparing P (Ok, Vn/v), k = 1, ..., 40 and n = 2, 4, 6, 8.

In this approach, we have 4 PDFs that describe each object. But instead

of calculating the probabilities of P (Ok/v) we calculate the probabilities of

P (Ok, Vn/v) for each object and each learning position separately:

P (Ok, Vn/v) =
P (v/Ok, Vn)P (Ok, Vn)

P (v)
=
P (v/Ok, Vn)P (Vn/Ok)P (Ok)

P (v)

(6.7)

Again, P (v) is the same for every k, P (Vn/Ok) = 1
4
and P (Ok) = 1

40
, and so

we can ignore these expressions in the probabilities comparison and compare

only P (v/Ok, Vn), k = 1, ..., 40 and n = 2, 4, 6, 8.

4th Approach

Learning: Creating a PDF from learning position pairs of each object.

Testing: Comparing P (Ok, Vn/v), k = 1, ..., 40 and n = 2&4, 4&6, 6&8.

In this approach, we assume that positions with very di�erent viewing

angles of the same object have very little in common, and therefore we want

to compare the probabilities of each object Ok in each position combination

Vn, given the observation v (instead of the general probability of Ok given

v):

P (Ok, Vn/v) , k = 1, 2, ..., 40, n = 2&4, 4&6, 6&8 (6.8)

104

Using Bayes rule, we get:

P (Ok, Vn/v) =
P (v/Ok, Vn)P (Ok, Vn)

P (v)
=
P (v/Ok, Vn)P (Vn/Ok)P (Ok)

P (v)

(6.9)

P (v) is the same for every k, and we assume that P (Ok) = 1
40
, and P (Vn/Ok) =

1
3
. Therefore, we can ignore these expressions in the probabilities comparison

and compare only P (v/Ok, Vn), k = 1, ..., 40 and n = 2&4, 4&6, 6&8.

6.2 Faces Database

We divide the faces database into learning and test databases in the following

way: we have about ∼ 50 di�erent frames for each face (acquired at a rate

of 2.5 frame/sec). We use the �rst 5 frames as learning frames and 5 other

frames are used as test frames (the test frames are linearly spaced along the

rest of the movie).

6.2.1 Learning Frames

For each face we do the following: each of the 5 learning frames is perturbed

10 times by adding colored Gaussian noise with standard deviation of 0.01

(according to the acquisition noise model we analyzed in Section 5.4, after

round-o� of the estimated standard deviation). Thus, we have 41 · 5 = 205

real frames in the learning data set, synthetically enhanced 10 times to be

205 · 10 = 2050 frames. For each of the 2050 perturbed instances we perform

all the pre-processing stages from the previous chapter and calculate the

feature vector v.

105

Let us denote each face by Ok , k = 1, ..., 41.

For each face we used the 50 feature vectors of the learning frames in

order to create a vector of means µ, and a covariance matrix Σ. These statis-

tical characteristics were the basis for a multi-variable Gaussian probability

density function as shown in Eq. (6.1).

In this case, the dimension of the features vector v (if we use the entire

feature vector) is d = 35, and k = 1, ..., 41.

In this approach we have 41 di�erent PDFs for the description of 41 faces

(one PDF per face).

6.2.2 Testing Frames

We calculate the same feature vector for each of the 5 testing frames of

each face, resulting in 41 · 5 = 205 frames in the testing data set. We then

calculated the probability of it originating from each of the faces. The face

which resulted in the highest probability was chosen as the best classi�cation

for the test vector.

6.2.2.1 Bayesian Approach

Following the same method as in Section 6.1.2 (only now, k = 1, ..., 41 since

we have 41 faces), we use Bayes rule (again, ignoring P (v)). Since we use one

PDF to describe each face, we only need to compare the nominators of the

probabilities (i.e., compare P (v/Ok)P (Ok), k = 1, ..., 41). We assume that

all faces have the same probability (i.e., P (Ok) = 1
41
), and so we can ignore

P (Ok) as well. Thus, for the comparison of the probabilities P (Ok/v), we

106

need to compare only P (v/Ok), k = 1, ..., 41.

107

Chapter 7

Experimental Results

7.1 Objects Database Classi�cation Results

Using the entire feature vector (d = 31) the results for each of the learning

approaches appear in Table 7.1. The 4 di�erent approaches refer to the

learning/testing approaches we discussed in Section 6.1.2. It can be seen

that the 4th learning approach (creating a PDF from learning position pairs

of each object) is the most successful. The advantage of an analysis of pairs

of learning positions is that it takes into account the stability of classi�cation

features in di�erent (yet close) positions. The 1st approach performs badly

since it attempts to learn all 4 positions together. Apparently, almost non of

the features are stable after rotation of 90o of an object (this is the average

di�erence between the �rst and last positions in our database) since by such

a change in the point of view, more than half the samples were replaced by

new samples and therefore the joint analysis of the 4 positions is unsuccessful.

The di�erent �tting approaches have similar performance, but when using

108

the 4th approach it can be seen that the Gradient1 �tting results are slightly

better than those of the other �tting methods.

Gradient1 RI-Min-Max RI-Min-Var

1st approach 17.0% 7.3% 12.6%
2nd approach 75.4% 73.9% 75.4%
3rd approach 96.5% 96.9% 95.7%
4th approach 98.8% 98.1% 98.0%

Table 7.1: Results of objects recognition using di�erent learning approaches

Using the 4th learning approach, the analysis of the contribution of classi-

�cation features based on 3D implicit polynomials only (invariants and �tting

errors, d = 16) to the classi�cation appears in Table 7.2. It can be seen that

without the additional 2D/PCA classi�cation features, the results are a little

less good, but we still manage to classify correctly over 90% of the instances.

Gradient1 �tting results are better than those of the other �tting methods

in this case as well.

Gradient1 RI-Min-Max RI-Min-Var

96.1% 94.8% 93.2%

Table 7.2: Results of objects recognition using the 4th learning approach and only the

classi�cation features based on 3D implicit polynomials (invariants and �tting errors)

7.1.1 Comparison with Pose Estimation Results

We compared our method results with pose estimation classi�cation results.

The pose estimation methods we examined are PCA and IP based tensor

approach [6]. In case of pose estimation using PCA, after the rotation of the

data points, we �t an IP and the entire IP coe�cients are our features. In

case of pose estimation using IP tensors, we tried two approaches: the �rst

109

- rotation of the leading form and using its coe�cients as features, and the

second - rotation of the data-points, re-�tting an IP and using the entire IP

coe�cients as features.

We then use an l2 distance between feature vectors for classi�cation. The

IP degree we chose for classi�cation is 4 (d = 35), since higher degree polyno-

mial coe�cients are less stable and showed poor classi�cation performance.

Following the pose estimation results shown in Section 3.4.2, we used IP

based pose estimation using a 2nd degree IP and a 4th degree IP.

The results using Gradient1 appear in Table 7.3. Using a di�erent IP

�tting algorithm (Min-Max or Min-Var) didn't a�ect the results. It can be

seen that the PCA outperforms the 4th degree IP pose estimation, but has

a similar performance to the 2nd degree IP pose estimation. When using

the 4th degree IP based pose estimation with the 4th degree leading form

coe�cients as features, the results are better than when using the entire 4th

degree IP coe�cients as features with the same pose method. The reason

is that the leading form coe�cients are invariant to translation (see Section

3.4.2). Therefore, when the pose estimation is based on the leading form

coe�cients, they are more stable than the rest of the IP coe�cients after

rotation. However, this is not true when the pose estimation is based on PCA

or on a di�erent IP degree, and therefore in these cases the classi�cation is

better when using the entire IP coe�cients as features.

It can also be seen that our method results in Table 7.1 (98.8%) are better

than the PCA/IP based pose estimation methods that appear Table 7.3. We

compare the computational complexity of the two methods in Section 7.1.3.

110

Pose Method IP Degree Fit Results Results
(entire IP coef.) (leading form coef.)

PCA 4th degree IP 91.6% 82.8%
4th degree IP 4th degree IP 58.9% 79.4%
2nd degree IP 4th degree IP 90.5% 78.5%

Table 7.3: Results of objects recognition using pose estimation

7.1.2 Comparison with Shape Spectrum Descriptor (SSD)

We compared the performance of our method with the Shape Spectrum De-

scriptor (SSD) technique [16], which is described brie�y in Appendix E. This

technique was adopted by the MPEG-7 standard for 3D descriptors and has

a relatively low complexity. We used a histogram of 25 bins for the descriptor

(the default for MPEG-7 is 100 bins, but its results are a little worse) and

we also used the singular and planar descriptors (i.e., we had 27 features,

see detailed explanation in Appendix E). We used l1 norm on the di�erence

between the feature vectors for classi�cation.

The results of this comparison appear in Table 7.4. It can be seen that our

method has better performance. We compare the computational complexity

of the two methods in the next section.

Our Method Results SSD Results
(Gradient1, d = 31) (d = 27)

98.8% 90.1%

Table 7.4: Comparison between our method and the SSD method for object recognition

111

7.1.3 Comparison of Computational Complexity

All 3 methods, our method, pose estimation based techniques and the SSD

technique, have a similar computational complexity. If we denote the number

of object data-points by N , then each of the stages of each method has a

complexity of O (N) (The SSD stages are actually dependent on the number

of triangles, which in our databases is around 2N for an object with N data-

points). The constant that multiplies N is large in some stages (such as the

Least-Squares IP �t in our case and in the pose estimation case, or the 2nd

degree explicit polynomial �t at each point in the SSD case), but is di�cult

to estimate. Average running times of classi�cation of a single object using

matlab implementation appear in Table 7.5. We conclude that our method

is both faster and has better results on the objects database than the other

two methods.

our method pose estimation SSD
(Gradient1, d = 31) (PCA/4thdegree IP, d = 35) (d = 27)

13Sec 15Sec 55Sec

Table 7.5: Average running times of classi�cation of a single object

7.2 Faces Database Classi�cation Results

Using the entire feature vector (d = 35) the results appear in Table 7.6. It

can be seen that in this case as well, the Gradient1 �tting based features

have the best classi�cation performance.

Gradient1 RI-Min-Max RI-Min-Var

97.1% 96.6% 93.7%

Table 7.6: Results of faces recognition

112

The analysis of the contribution of classi�cation features based on 3D

implicit polynomials only (invariants, d = 18) to the classi�cation appears in

Table 7.7. It can be seen that without the additional 2D/PCA classi�cation

features, the results are less good, but we still manage to classify correctly

around 90% of the instances. Note that Gradient1 �tting results are now a

little worse than those of the other �tting methods. We conclude that the

3D classi�cation features are more informative in the cases of Min-Max and

Min-Var, compared with Gradient1.

Gradient1 RI-Min-Max RI-Min-Var

89.3% 91.7% 91.7%

Table 7.7: Results of faces recognition using only the classi�cation features based on 3D

implicit polynomials (invariants)

7.2.1 Comparison with Pose Estimation Results

We compared our results with pose estimation classi�cation results. The pose

estimation methods we examined are PCA and IP based tensor approach in

the same way described in Section 7.1.

The results using Gradient1 appear in Table 7.8. Using a di�erent IP

�tting algorithm (Min-Max or Min-Var) didn't a�ect the results. It can be

seen that again, the PCA outperforms the 4th degree IP pose estimation, but

has a similar performance to the 2nd degree IP pose estimation.

It can also be seen that our method results using Gradient1 (97.1%) are

better than the PCA/IP based pose estimation methods that appear in the

table.

113

Pose Method IP Degree Fit Results Results
(entire IP coef.) (leading form coef.)

PCA 4th degree IP 93.2% 88.3%
4th degree IP 4th degree IP 71.2% 81.5%
2nd degree IP 4th degree IP 92.7% 89.3%

Table 7.8: Results of faces recognition using pose estimation

7.2.2 Comparison with Shape Spectrum Descriptor (SSD)

We compared the performance of our method with the Shape Spectrum De-

scriptor (SSD) technique [16] which is described brie�y in Appendix E. We

used the same features and norm as in Section 7.1.2.

The results of this comparison appear in Table 7.9. It can be seen that

our method has a much better performance for the examined database.

Our Method Results SSD Results
(Gradient1, d = 35) (d = 27)

97.1% 72.2%

Table 7.9: Comparison between our method and the SSD method for faces recognition

114

Chapter 8

Summary and Future Work

8.1 Summary

In this work we examined the description and classi�cation abilities of 3D

implicit polynomials using existing �tting algorithms (Gradient1, Min-Max

and Min-Var). We developed a set of 3D linear rotation invariants which is

based on implicit polynomials and their tensor representation, and 2 more

quadratic invariants based on implicit polynomials and trigonometric iden-

tities. The pre-processing we apply to the data has a considerable in�uence

on the classi�cation performance. Our pre-processing includes translation

(locating the center of mass at the origin), scaling (the 75th percentile of

the data-points distances from the origin was the scaling factor), robust nor-

mal direction calculation (using a local plane �tting), mirroring with respect

to an appropriate plane (in case of the faces database) and preparing 2D

projections for obtaining extra classi�cation features (xy projection for the

rigid objects, xz&yz projections for the mirrored faces). Following the 2D

115

IP classi�cation method known as Multi Order and Fitting Error Technique

(MOFET) [3] we created a feature vector containing 3D IP rotation invari-

ants and �tting errors, 2D IP rotation invariants and �tting errors (from the

most descriptive 2D projections) and the eigenvalues of a PCA decomposi-

tion. We used various IP degrees (both for 2D and 3D) in order to utilize

both the stability of low degree polynomials and the descriptiveness of high

degree polynomials. We designed a probability density function (PDF) based

classi�er and examined its performance for various learning and testing ap-

proaches.

We showed that the 3D IP invariants and �tting error approach has better

performance for objects and faces classi�cation compared with pose estima-

tion methods followed by IP �tting [6]. We also found in our tests that our

method outperforms the Shape Spectrum Descriptor (SSD) technique [16],

which was adopted by the MPEG-7 standard for 3D descriptors.

8.2 Main Original Contributions

In this section we summarize the most signi�cant contributions of this work.

3D Rotation Invariants

• Developing a set of linear rotation invariants based on a tensor repre-

sentation of the implicit polynomials forms.

• Developing 2 additional quadratic rotation invariants based on implicit

polynomials and trigonometric identities.

116

Rotation Invariant 3D IP Fitting Algorithms

• Adjusting existing IP �tting algorithms (Min-Max and Min-Var) to be

rotation invariant.

Mirroring of 3D Objects for IP stabilization

• Suggesting the mirroring of 3D objects and showing that it provides

more stable IP coe�cients.

3D Objects/Faces Classi�cation Method

• Designing a classi�er based on both 3D and 2D implicit polynomials

rotation invariant representation and achieving good performance for

both rigid objects classi�cation and faces classi�cation (in a cooperative

situation).

8.3 Future Work

Dimensionality Reduction for Feature Selection

The classi�cation features were chosen for each application (objects/faces

recognition) based on their robustness and informativeness in each case. In

order to automatically choose the best classi�cation features for a certain

application, it will be interesting to explore dimensionality reduction with

known methods (such as PCA or LDA - Linear Discriminant Analysis).

3D Objects Retrieval

The implicit polynomials might be useful for retrieving three-dimensional

117

objects similar to a given one from a database (classi�cation into categories).

Additional Rotation Invariants

Using quaternions for the derivation of a full set of quadratic rotation

invariants, in a similar way to the use of complex representation in the 2D

case.

118

Appendix A

Description of 3D Objects Using

High Degree Implicit Polynomials

When the object we would like to describe is complex and has �ne details, low

degree polynomial �tting will give only a general outline of the object. By

using higher degrees, we can get a more accurate description. Previous works

dealing with 3D polynomial �tting have used polynomials up to 12th degree

[6]. Using each of the Least Squares �tting algorithms, we get a solution of

the form as in (2.18), repeated here for convenience:

aLS =
(
MTM

)−1
MT b (A.1)

When trying to apply polynomial �tting of degrees 18th and higher, the

matrix MTM is usually singular and therefore its inverse
(
MTM

)−1
does

119

not exist. In these situations, the least squares solution to the linear system

Ma = b (A.2)

is not unique. A null vector of M is a nonzero solution to

Mx = 0 (A.3)

Any multiple of any null vector can be added to a without changing how well

Ma approximates b.

In order to choose one possible solution, we used the Moore-Penrose pseu-

doinverse (computed by the matlab command 'pinv'). This pseudoinverse

solution minimizes not only the l2 norm of ‖Ma− b‖, but also the Frobe-

nius norm of pinv (M), where the Frobenius norm of a matrix is de�ned

by ‖M‖F =

(∑
i

∑
j

m2
ij

)1/2

. These minimization properties de�ne a unique

pseudoinverse even if M is rank de�cient.

If M is square and non-singular, then the pseudoinverse and the in-

verse are the same (i.e., pinv (M) = M−1). If M is not square but has

full rank, then the pseudoinverse gives the regular Least Squares solution

(i.e., pinv (M) =
(
MTM

)−1
MT). But even if M is not square and singular,

we get a unique solution to our least squares problem:

aLS = pinv (M) · b (A.4)

Fig. A.1 shows various degree polynomials �tting (using Gradient1) ap-

plied to a 3D face using Moore-Penrose pseudoinverse. In order to demon-

120

strate the �tting performance, in these images we show only the zero-set

points that are in the face area, and ignore the spurious zero-set points.

(a) (b) (c)

(d) (e) (f)

Figure A.1: An example to various degree polynomials �tting (using Gradient1) to a

3D face: (a) the original data points (b) IP �t of 6th degree (c) IP �t of 10th degree (d)

IP �t of 14th degree (e) IP �t of 18th degree (f) IP �t of 22th degree

121

Appendix B

Tensors and Implicit Polynomials

Representation

A tensor is a generalized linear representation. It can be considered as a

multi-dimensional array, where its rank is the number of array indices re-

quired to describe such a quantity. A tensor of rank 0 is a scalar, a tensor of

rank 1 is a vector, a tensor of rank 2 is a matrix and so on.

Let us examine an IP form of degree r :

Hr (x1, x2, x3) =
∑

k+l+m=r

aklmx
k
1x

l
2x

m
3 (B.1)

where k, l,m are non-negative integers. It includes all the combinations of

powers of x1, x2 and x3 which their sum is equal to r, and so it can be

expressed as a tensor of rank r :

(
si1i2...ir

)
1≤i1,i2,...,ir≤3

(B.2)

122

and we can represent the IP form in the following way:

Hr (x1, x2, x3) =
3∑

i1=1

3∑
i2=1

...

3∑
ir=1

si1i2...irxi1xi2 ...xir (B.3)

Each index ik, k = 1, ..., r, can accept the values 1,2 and 3, each corresponds

to one of the variables x1, x2 and x3, respectively. Therefore, we have a

multi-dimensional array of 3r entries.

For r = 2 we have the following form:

H2 (x1, x2, x3) = a200x
2
1+a020x

2
2+a002x

2
3+a110x1x2+a101x1x3+a011x2x3 (B.4)

The possible power combinations of the variables x1, x2 and x3 in this case

are xi1xi2 where 1 ≤ i1 ≤ 3 and 1 ≤ i2 ≤ 3.

We can rewrite (B.4) as:

H2 (x1, x2, x3) = a200x
2
1 + a110

2
x1x2 + a101

2
x1x3 + a110

2
x2x1+

+a020x
2
2 + a011

2
x2x3 + a101

2
x3x1 + a011

2
x3x2 + a002x

2
3

(B.5)

and so we can construct the following tensor of rank 2 with 32 = 9 elements:

S2 = si1i2 =

a200

a110

2
a101

2

a110

2
a020

a011

2

a101

2
a011

2
a002

 (B.6)

Note that each entry si1i2 corresponds to one of the possible powers combi-

nations of x1, x2 and x3.

A generalization of this case for any form of degree r ∈ N is a tensor of

123

rank r, with entries si1i2...ir = aklm
r!

k!l!m!

, and we can represent the form in the

following way:

Hr (x1, x2, x3) =
3∑

i1=1

3∑
i2=1

...

3∑
ir=1

si1i2...irxi1xi2 ...xir (B.7)

124

Appendix C

Quaternions Properties

We include here 2 proofs for quaternions properties, which appear in [12].

C.1 Vector Rotation Using Unit Quaternions

When referring to Eq. (3.26), repeated here for convenience:

r′ = qrq̄ (C.1)

we claimed that when using a unit quaternion q, if r is purely imaginary,

then r′ will be purely imaginary as well. We now prove this property:

The representation of q for matrix multiplication (discussed in Section

3.5.1.2) is denoted by Rq. It can be readily seen that the appropriate repre-

sentation for q is then RT
q . Using (3.25) we get:

r′ = qrq̄ = (Rqr) q̄ = R
T

q (Rqr) =
(
R
T

q Rq

)
r

125

Expanding
(
R
T

q Rq

)
we get:

R
T

q Rq =

q · q 0 0 0

0
(
q2

0 + q2
x − q2

y − q2
z

)
2 (qxqy − q0qz) 2 (qxqz + q0qy)

0 2 (qyqx + q0qz)
(
q2

0 − q2
x + q2

y − q2
z

)
2 (qyqz − q0qx)

0 2 (qzqx − q0qy) 2 (qzqy + q0qx)
(
q2

0 − q2
x − q2

y + q2
z

)

(C.2)

When q is a unit quaternion, q · q = 1. Thus, when multiplying this matrix

by a quaternion r, the �rst element is not a�ected by the multiplication. In

case of a purely imaginary quaternion r with r0 = 0, after rotation we get

r′0 = 0, and so r′ is purely imaginary as well.

C.2 Quaternions Dot-Products

Let us �rst examine the following quaternion dot-product:

(qp) · (qr) = (Rqp) · (Rqr) = (Rqp)
T (Rqr) = pTRT

q Rqr = pT (q · q) Ir

We conclude that (qp) · (qr) = (q · q) (p · r).

In the special case where q is a unit quaternion, it follows that:

(pq) · r = (pq) · (rqq) = (p · (rq)) (q · q) = p · (rq).

And so we proved Eq. (3.30): (pq) · r = p · (rq)

126

Appendix D

Proof for the Expressions of the

3D Quadratic Invariants

D.1 2D Quadratic Invariants

2D Quadratic invariants are derived using a complex representation [6]. The

�rst 2 invariants are:

Q2D,1 = a2
10 + a2

01 (D.1)

Q2D,2 = (a20 − a02)2 + a2
11 = a2

20 + a2
02 − 2a20a02 + a2

11 (D.2)

D.2 Derivation of 3D Quadratic Invariants

When using the same expressions pattern as in 2D, we get the following

expressions:

Q3D,1 = a2
100 + a2

010 + a2
001 (D.3)

127

Q3D,2 = a2
200 +a2

020 +a2
002−2a200a020−2a200a002−2a020a002 +a2

110 +a2
101 +a2

011

(D.4)

We will now use trigonometric identities in order to prove that these 2 ex-

pressions are indeed invariant to rotation.

D.2.1 Representation of Rotation

As shown in Section 4.2.1, every 3D rotation can be considered as 3 rotations,

one around each axis (x, y and z) with angles α, β and γ respectively.

The rotation matrices, given in (4.19)-(4.18), are repeated here for con-

venience:
x′

y′

z′

 =

1 0 0

0 cosα sinα

0 −sinα cosα

x

y

z

 (D.5)

x′

y′

z′

 =

cosβ 0 −sinβ

0 1 0

sinβ 0 cosβ

x

y

z

 (D.6)

x′

y′

z′

 =

cosγ −sinγ 0

sinγ cosγ 0

0 0 1

x

y

z

 (D.7)

If we prove that Q3D,1 and Q3D,2 do not change under any of the rotations

(around each axis), then they are rotation invariants.

128

D.2.2 Proof for the First 3D Quadratic Invariant

We prove here for rotation around the z axis, the proofs for the other rotations

can be done in a similar way.

After rotation around the z axis, the new coordinates are given by (D.7).

After inverting the rotation matrix, we get:

x

y

z

 =

c s 0

−s c 0

0 0 1

x′

y′

z′

 (D.8)

Where c
∆
= cosγ and s

∆
= sinγ.

The �rst degree form (from which we would like to derive Q3D,1), is:

H1 (x, y, z) = a100x+ a010y + a001z (D.9)

Substituting D.8 into D.9, we get:

H1 (x′, y′, z′) = a100 (cx′ + sy′) + a010 (−sx′ + cy′) + a001z
′ =

= (ca100 − sa010)︸ ︷︷ ︸
b100

x′ + (sa100 + ca010)︸ ︷︷ ︸
b010

y′ + a001︸︷︷︸
b001

z′

Where b100, b010 and b001 are the new IP coe�cients after rotation around

the z axis.

We will now prove that b2
100 + b2

010 + b2
001 is equal to a2

100 + a2
010 + a2

001,

129

which means that Q3D,1 is invariant to rotation around z axis:

b2
100 + b2

010 + b2
001 = (ca100 − sa010)2 + (sa100 + ca010)2 + a2

001 =

= a2
100

(
c2 + s2

)
+ a2

010

(
s2 + c2

)
+ 2a100a010 (−2cs+ 2cs) + a2

001 =

= a2
100 + a2

010 + a2
001

The same proof can be repeated with the new coordinates after rotation

around x axis, and after rotation around y axis.

D.2.3 Proof for the Second 3D Quadratic Invariant

We prove for rotation around the z axis, the proofs for the other rotations

proofs can be done in a similar way.

We use the same notation as in the previous section.

The second degree form (from which we would like to derive Q3D,2), is:

H2 (x, y, z) = a200x
2 + a020y

2 + a002z
2 + a110xy + a101xz + a011yz (D.10)

130

Substituting D.8 into D.10, we get:

H2 (x′, y′, z′) = a200 (cx′ + sy′)
2

+ a020 (−sx′ + cy′)
2

+ a002z
′2 +

+a110 (cx′ + sy′) (−sx′ + cy′) + a101 (cx′ + sy′) z′ + a011 (−sx′ + cy′) z′ =

=
(
c2a200 + s2a020 − csa110

)︸ ︷︷ ︸
b200

x′2 +
(
s2a200 + c2a020 + csa110

)︸ ︷︷ ︸
b020

y′2 +

+ a002︸︷︷︸
b002

z′2 +
(
2csa200 − 2csa020 +

(
c2 − s2

)
a110

)︸ ︷︷ ︸
b110

x′y′ +

+ (ca101 − sa011)︸ ︷︷ ︸
b101

x′z′ + (sa101 + ca011)︸ ︷︷ ︸
b011

y′z′

Where b200, b020, b002, b110, b101 and b011 are the new IP coe�cients after

rotation around the z axis.

We will now prove that b2
200 +b2

020 +b2
002−2b200b020−2b200b002−2b020b002 +

b2
110+b2

101+b2
011 is equal to a

2
200+a2

020+a2
002−2a200a020−2a200a002−2a020a002+

a2
110 + a2

101 + a2
011, which means that Q3D,2 is invariant to rotation around z

axis:

b2
200 =

(
c2a200 + s2a020 − csa110

)2
=

= c4a2
200 + s4a2

020 + c2s2a2
110 + 2c2s2a200a020 − 2c3sa200a110 − 2cs3a020a110

b2
020 =

(
s2a200 + c2a020 + csa110

)2
=

= s4a2
200 + c4a2

020 + c2s2a2
110 + 2c2s2a200a020 + 2cs3a200a110 + 2c3sa020a110

b2
002 = a2

002

131

−2b200b020 = −2
(
c2a200 + s2a020 − csa110

) (
s2a200 + c2a020 + csa110

)
=

= −2[c2s2a2
200 + c2s2a2

020 − c2s2a2
110 +

(
c4 + s4

)
a200a020 +

+
(
c3s− cs3

)
a200a110 +

(
cs3 − c3s

)
a020a110]

−2b200b002 = −2 (c2a200 + s2a020 − csa110) a002

−2b020b002 = −2 (s2a200 + c2a020 + csa110) a002

b2
110 =

(
2csa200 − 2csa020 +

(
c2 − s2

)
a110

)2
=

= 4c2s2a2
200 + 4c2s2a2

020 +
(
c2 − s2

)2
a2

110 − 8c2s2a200a020 +

+4cs
(
c2 − s2

)
a200a110 − 4cs

(
c2 − s2

)
a020a110

b2
101 = (ca101 − sa011)2 = c2a2

101 + s2a2
011 − 2csa101a011

b2
011 = (sa101 + ca011)2 = s2a2

101 + c2a2
011 + 2csa101a011

And so we get:

b2
101 +b2

011 = (c2 + s2) a2
101 +(s2 + c2) a2

011 +a101a011 (−2cs+ 2cs) = a2
101 +a2

011

−2b200b002 − 2b020b002 = −2a200a002

(
c2 + s2

)
− 2a020a002

(
s2 + c2

)
+ a110a002 (−cs+ cs) =

= −2a200a002 − 2a020a002

132

b2
200 + b2

020 + b2
110 − 2b200b020 =

= a2
200

(
c4 + s4 − 2c2s2 + 4c2s2

)
+

+a2
020

(
s4 + c4 − 2c2s2 + 4c2s2

)
+

+a2
110

(
2c2s2 + 2c2s2 +

(
c2 − s2

)2
)
−

−2a200a020

(
−2c2s2 + c4 + s4 + 4c2s2

)
+

+2a200a110

(
−c3s+ cs3 − c3s+ cs3 + 2c3s− 2cs3

)
+

+2a020a110

(
−cs3 + c3s− cs3 + c3s− 2c3s+ 2cs3

)
=

=
(
a2

200 + a2
020 + a2

110 − 2a200a020

) (
c2 + s2

)2
=

= a2
200 + a2

020 + a2
110 − 2a200a020

b2
002 = a2

002

Adding up all the partial expressions we get

b2
200 + b2

020 + b2
002 − 2b200b020 − 2b200b002 − 2b020b002 + b2

110 + b2
101 + b2

011 =

a2
200 + a2

020 + a2
002 − 2a200a020 − 2a200a002 − 2a020a002 + a2

110 + a2
101 + a2

011.

The same proof can be repeated with the new coordinates after rotation

around x axis, and after rotation around y axis.

133

Appendix E

Shape Spectrum Descriptor

(SSD)

This is the descriptor that was adopted by MPEG-7 as the 3D descriptor. It

is described in detail in [16] and is based on [22].

The input is a cloud of points and the triangles Tp, p = 1, ..., N that

connect them. For each triangle, we calculate the shape index:

Ip =
1

2
− 1

π
atan

κp1 + κp2
κp1 − κ

p
2

(E.1)

where κp1 and κp2 are the principal curvatures of the surface at this area and

κp1 ≥ κp2. Note that the shape index is always in the range [0, 1]. The Shape

Spectrum Descriptor is the histogram of all the shape indices.

Since each object in our database contains only the cloud of points, we

used 2D Delaunay triangulation [23] to create the connecting triangles and

disposed of the large triangles which connected far data-points which were

134

not supposed to be connected (see Fig. E.1 and Fig. E.2).

(a) (b)

Figure E.1: 'Fox' triangulation (a) before and (b) after disposing of large triangles

(a) (b)

Figure E.2: 'Binocular' triangulation (a) before and (b) after disposing of large triangles

We calculated the area of each triangle Sp and its normal np, and �nd the

adjacent triangles (Two triangles of the mesh are said to be adjacent if and

only if they share a common vertex). We note the set of adjacent triangles

by

Λp = {i|Ti adjacent to Tp} (E.2)

135

and denote the sum of adjacent triangles area by σp:

σp = Sp +
∑
i∈Λp

Si (E.3)

If the number of triangles adjacent to Tp (the cardinality of Λp) is less than 5,

then the area σp is regarded as the area of a singular surface. If the triangle

is not singular we perform the following:

1. We calculate the mean normal of each triangle using the adjacent tri-

angles:

Np =
∑
k∈Λp

wknk (E.4)

where the weights wk are the areas Sk of these triangles. The mean

normal is scaled to have a unit norm:

Ñp =
Np

‖Np‖2

(E.5)

2. We �nd the center of gravity of each triangle gp = (xp, yp, zp).

3. We de�ne a new Cartesian coordinate system so that origin coincides

with the center of gravity gp of the triangle Tp and the mean normal Ñp

is taken as the z axis. We express the centers of gravity of the adjacent

triangles in the new coordinate system Gp = {g′i|i ∈ Λp} .

4. We perform local parametric surface �tting around Tp using a 2nd degree

explicit polynomial:

z = f (x, y) = a0x
2 + a1y

2 + a2xy + a3x+ a4y + a5 (E.6)

136

a = (a0, a1, a2, a3, a4, a5)T (E.7)

b (x, y) =
(
x2, y2, xy, x, y, 1

)T
(E.8)

The optimal �t of the quadratic surface through the points Gp =

{g′i|i ∈ Λp}, which minimizes the mean square error, is computed by:

â =

[
M∑
i=1

wib (xi, yi) b
T (xi, yi)

]−1 [M∑
i=1

wizib (xi, yi)

]
(E.9)

where the weights wi are the areas of the triangles. Note that the

representation of the gravity centers in local coordinates guarantees the

invariance of the approximation with respect to Euclidean transforms.

5. The principal curvatures are de�ned as the eigenvalues of the Wein-

garten map (W) given by the following expression:

W = I−1II (E.10)

where I and II denote the �rst and the second fundamental di�erential

forms, respectively. If z = f (x, y) is twice di�erentiable, we get:

I =

 1 + f 2
x fxfy

fxfy 1 + f 2
y

 (E.11)

II =
1√

1 + f 2
x + f 2

y

 fxx fxy

fxy fyy

 (E.12)

and in case we have a quadratic surface with parameters a = (a0, a1, a2, a3, a4, a5)T ,

137

we can calculate I and II at (x, y) = (0, 0) in the following way:

I =

 1 + a2
3 a3a4

a3a4 1 + a2
4

 (E.13)

II =
1√

1 + a2
3 + a2

4

 a0 a2

a2 a1

 (E.14)

6. A surface is declared as planar if the following condition is ful�lled:

σp

√
(κp1)2 + (κp2)2 < T (E.15)

where T is a given threshold (0.1 ≤ T ≤ 0.4).

After all the shape indices are calculated, we create a histogram ofH bins (the

default for MPEG7 is H = 100) in the range [0, 1] and two more variables:

Singular and Planar. We calculate the sum of all triangle areas: S =
N∑
Sp

p=1

.

For each triangle Tp, p = 1, ..., N we perform the following:

1. If it is singular, we increase Singular by σp/S.

2. Otherwise, if it is planar, we increase Planar by σp/S.

3. Otherwise, we �nd the appropriate histogram bin, and increase it by

σp/S.

Eventually, we normalize the histogram to have a sum of 1. We use the

normalized histogram together with the variables Singular and Planar as

our feature vector for classi�cation.

138

Our SSD matlab implementation is based on [16] and on the freely avail-

able MPEG-7 reference software [17].

Examples for Shape Spectrum Descriptors using a histogram of 100 bins

(the default for MPEG-7) are shown in Fig. E.3 and Fig. E.4.

Figure E.3: 'Fox' Shape Spectrum Descriptor

Figure E.4: 'Binocular' Shape Spectrum Descriptor

139

Appendix F

Rigid Objects Database

Figures F.1 and F.2 show one position for each of the 40 rigid objects of our

database.

Figure F.1: one position of each of the �rst 20 rigid objects

140

Figure F.2: one position of each of the last 20 rigid objects

141

Appendix G

Faces Database

Figures G.1 and G.2 show one frame for each of the 41 faces of our database.

Figure G.1: one frame of each of the �rst 20 faces

142

Figure G.2: one frame of each of the last 21 faces

143

Bibliography

[1] T. Tasdizen, J.P. Tarel and D.B. Cooper, "Improving the Stability of

Algebraic Curves for Application", IEEE Trans. on Image Proc., vol.9,

No. 3, pp. 405-416, March 2000.

[2] A. Helzer, M. Barzohar and D. Malah, "Stable Fitting of 2D Curves and

3D Surfaces by Implicit Polynomials", IEEE Trans. on PAMI., vol. 26,

no. 10, pp. 1283-1294, October 2004.

[3] Z. Landa, �2D Object Description and Classi�cation Based on Contour

Matching by Implicit Polynomials�, M.Sc. Thesis, The Technion � Israel

Institute of Technology, August 2006.

[4] S. Sallivan, L. Sandford and J. Ponce, "Using geometric distance �ts for

3-D object modeling and recognition", IEEE Trans. PAMI, vol. 16, pp.

1183-1196, Dec. 1994.

[5] G. Taubin, �Estimation of Planar Curves, Surfaces and Nonplanar Space

Curves De�ned by Implicit Equations, with Applications to Edge and

Range Image Segmentation�, IEEE Trans. on PAMI, vol. 13, no. 11, pp.

1115-1138, Nov 1991.

144

[6] J.P. Tarel, H. Civi and D.B. Cooper, "Pose Estimation of Free-Form 3D

Objects without Point Matching using Algebraic Surface Models", Proc.

IEEE Workshop Model-Based 3-D Image Analysis, Mumbai, India, pp.

13-21, 1998.

[7] J.P. Tarel and D.B. Cooper, "The Complex Representation of Algebraic

Curves and Its Simple Exploitation for Pose Estimation and Invariant

Recognition�, IEEE Trans. on PAMI., Vol. 22, No. 7, pp. 663-674, July

2000.

[8] B. Zheng, J. Takamatsu, K. Ikeuchi, �3D Model Segmentation and

Representation with Implicit Polynomials�, IEICE Trans. Inf. & Syst.,

VOL.E91�D, pp. 1149-1158, no.4 April 2008.

[9] �The Stanford 3D Scanning Repository�, Stanford Uni-

versity Computer Graphics Laboratory, http://www-

graphics.stanford.edu/data/3Dscanrep/.

[10] S. Rusinkiewicz, D. DeCarlo, A. Finkelstein,

and A. Santella, �Suggestive Contour Gallery�,

http://www.cs.princeton.edu/gfx/proj/sugcon/models/.

[11] R.O. Duda, P.E. Hart and D.G. Stork, �Pattern Classi�cation�, Wiley

Interscience, November 2000.

[12] B.K.P. Horn, �Closed-Form Solution of Absolute Orientation Using Unit

Quaternions�, Journal of the Optical Society of America, Vol. 4, pp. 629-

642, April 1987.

145

[13] P.J. Besl, N.D. McKay, �A Method for Registration of 3-D Shapes�,

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.

14, No. 2, February 1992.

[14] S. Rusinkiewicz, M. Levoy, �E�cient variants of the ICP algorithm�,

Proc. of the Third Int. Conf. on 3D Digital Imaging and Modeling,

Canada, 2001.

[15] A. E. Johnson and M. Hebert, �Using Spin Images for E�cient Object

Recognition in Cluttered 3D Scenes�, IEEE Trans. on PAMI., Vol. 21,

No. 5, May 1999.

[16] T. Zaharia and F. Prêteux, �3D Shape-based retrieval within the MPEG-

7 framework�, Proc. SPIE Conf. on Nonlinear Image Processing and

Pattern Analysis XII, Vol. 4304, pp.133-145, San Jose, Etats-Unis, Jan.

2001.

[17] MPEG-7 Implementation Studies Group, "Information Technology -

Multimedia Content Description Interface - part 6: Reference Software",

ISO/IEC FCD 15938-6 / N4006, MPEG-7, Singapore, March 2001.

[18] D. Scharstein and R. Szeliski, �High-Accuracy Stereo Depth Maps Us-

ing Structured Light�, Computer Vision and Pattern Recognition, 2003.

Proceedings. 2003 IEEE Computer Society Conference on , vol.1, pp.

I-195-I-202, June 2003.

[19] A. Helzer, �Robust Fitting of Implicit Polynomials with Application

to Contour Coding�, M.Sc. Thesis, The Technion � Israel Institute of

Technology, June 2000.

146

[20] D. Keren, �Using Symbolic Computation to Find Algebraic Invariants�,

IEEE Trans. on PAMI., vol. 16, no. 11, pp. 1143-1149, November 1994.

[21] J. Subrahmonia, D. B. Cooper and D. Keren, �Practical Reliable

Bayesian Recognition of 2D and 3D Objects Using Implicit Polynomials

and Algebraic Invariants�, IEEE Trans. on PAMI., vol. 18, no. 5, pp.

505-519, May 1996.

[22] C. Dorai and A. K. Jain, �Shape Spectrum Based View Grouping and

Matching of 3D Free-Form Objects�, IEEE Transactions on PAMI, ,

vol.19, no.10, pp.1139-1145, Oct 1997.

[23] G. Paul-Louis and B. Houman, �Delaunay Triangulation and Meshing:

Application to Finite Elements�, Hermes, Paris 1998.

[24] �Stuttgart Range Image Database�, http://range.informatik.uni-

stuttgart.de/htdocs/html/.

147

תיאור וסיווג עצמים תלת מימדיים

 באמצעות פולינומים סתומים

 יעקב-הילה בן

תיאור וסיווג עצמים תלת מימדיים באמצעות

 פולינומים סתומים

 חיבור על מחקר

 לשם מילוי חלקי של הדרישות לקבלת התואר

 בהנדסת חשמלמגיסטר למדעים

 יעקב-הילה בן

 ן טכנולוגי לישראל מכו-הוגש לסנט הטכניון

 2008 ספטמבר חיפה ח"תשס, אלול

 זוהר-ר מאיר בר"דוד מלאך וד' פרופהמחקר נעשה בהנחיית

 להנדסת חשמלבפקולטה

 על התמיכה הכספית הנדיבה בהשתלמותיטכניוןאני מודה ל

 תקציר

י מידע "מימדיים המתוארים ע- טחים תלתמימדיות ומש- סתומים משמשים לתיאור עקומות דופולינומים

 שהותאם למידע והפלט הוא מקדמי הפולינום הסתום, נקודותהקלט למערכת היא רשימת מיקומי .בדיד

האלגוריתמים . פותחו אלגוריתמים שונים להתאמת פולינומים סתומים למידע, במשך הזמן. הנתון

אשר כל ,)Min-Var(וואר - ומינ) Min-Max(מקס -מינ) Gradient1 (1המתקדמים ביותר הם גרדיאנט

לצורך מציאת מקדמי , לינארית) Least Squares(אחד מהם משתמש בפתרון בעיית ריבועים פחותים

אשר , אלגוריתמים אלה משיגים ביצועים טובים בהרבה בהשוואה לאלגוריתמים ותיקים יותר. הפולינום

וגם מבחינת , של העצמיםיתתיאוריכולת הנת הגם מבחי, משתמשים בשיטות לא לינאריות ואיטרטיביות

לאלגוריתמים אלו סיבוכיות חישובית נמוכה יותר בהשוואה , בנוסף. יכולת הסיווג בין עצמים שונים

מים להתאמת פולינומים נבחנו יכולות התיאור והסיווג של האלגורית, בעבר. לאלגוריתמים הוותיקים

- זו היא לבחון את יכולות התיאור והסיווג במקרה התלת מטרת עבודה.מימדי- בעיקר עבור המקרה הדו

 .מימדי

 היכולות התיאוריות של אלגוריתמים להתאמת פולינומים הוא חקירת, בעבודה זוהשלב הראשון המתואר

הצענו , כמו כן. גבוהיםגם עבור סדרים עבור סדרי פולינומים נמוכים וגם , מימדי-במקרה התלתסתומים

 rotation (מסיבובלא תושפעוואר כך שהתאמת הפולינום - מקס ומינ- מינשינוי לאלגוריתמים

invariant(,שהקשר בין מקדמי הפולינומים שהותאמו לאותו אובייקט בתנוחות שונות יהיה קשר , כלומר

מימדי עבור אלגוריתמים - השינוי שהצענו מבוסס על העבודה שנעשתה במקרה הדו.של סיבוב בלבד

 .אלה

 בו נמצא)pose estimation (כיווןרה של אלגוריתמים המבצעים שערוך היצענו סקיב, בשלב השני

חקרנו מספר שיטות להפקת , באמצעות הרקע המתמטי של אלגוריתמים אלו. מימדי-העצם במקרה התלת

 tensor(באמצעות ייצוג טנזורי . אשר תלויים במקדמי הפולינום, ביטויים שאינם משתנים תחת סיבוב

representation (אשר כל , סיבובושפעים מפיתחנו סדרה של ביטויים שאינם מ, של פולינומים סתומים

 ניתן להפיק nמימדי מסדר זוגי -עבור פולינום תלת. אחד מהם הוא צירוף לינארי של מקדמי הפולינום

n/2+1בוב שאינם מושפעים מסי לינאריםיישמנו את אותה שיטה על מנת להפיק ביטויים. ביטויים כאלה

תהליך אשר משתמשת ב, כיוון שיש לה יתרון חישובי על השיטה הקיימת היום, מימדי-הדוגם במקרה

).רקורסיה(נסיגה

i

פיתחנו עוד שני ביטויים שאינם , מימד וזהויות טריגונומטריות-באמצעות מטריצות הסיבוב בתלת

בדקנו את , כמו כן.םאשר כל אחד מהם הוא צירוף של ריבועי מקדמי הפולינו, סיבובושפעים ממ

 להפקת בתור שיטה חלופית) quaternion representation(האפשרות להשתמש בייצוג קווטרניוני

 .מימדי באמצעות ייצוג מרוכב-באופן דומה למה שנעשה במקרה הדו, סיבובביטויים שאינם מושפעים מ

כאשר הרכיב . ים זה לזה ומשלושה רכיבים מדומים אשר ניצב,הקווטנרניון מורכב מרכיב אחד ממשי

האתגר . מימדי- לווקטור במרחב תלת חלופיניתן להשתמש בקווטרניון בתור ייצוג, הממשי הוא אפס

בחישובים הכוללים קווטרניונים הוא העובדה שלא ניתן ליישם את חוק החילוף בפעולות הכוללות מכפלה

לכן שיטה זו אינה ישימה להפקת ביטויים שאינם מושפעים מסיבוב אשר תלויים . של קווטרניונים

 .במקדמי פולינומים מסדרים גבוהים

ארים את שלבי העיבוד המקדים הנחוצים לצורך קבלת ביצועים טובים בסיווג אנו מת, בשלב הבא

 : השלבים המתוארים בעבודה הם. לפני התאמת הפולינום ומיצוי המאפייניםהעצמים

 על מנת שהתאמת הפולינום לא תושפע הזזת מיקום מרכז המסה של העצם לראשית הצירים .1

 .מהזזת העצם למיקומים שונים במרחב

על מנת שמיקומי נקודות , של מרחקי הנקודות מהראשית75-דל העצם לפי האחוזון השינוי גו .2

דרישה זו . המידע שלנו יהיו קרובים ככל האפשר למיקום המעטפת של כדור ברדיוס של אחד

מבוססת על ניתוח של יציבות מקדמי הפולינום עבור עצמים בגדלים שונים שנעשה בעבודה

 .מימדי- קודמת עבור המקרה הדו

אנו מראים . מימדי סגור-ים סביב מישור על מנת לקבל משטח תלתמימדי-שיקוף של פנים תלת .3

 . שפעולה זו משפרת את יציבות מקדמי הפולינום המותאם לפנים

 אנו .מימדיים של העצמים על מנת למצות מספר רב יותר של מאפיינים-שימוש בהיטלים דו .4

 .בהתאמה ליכולת התיאורית שלהם בכל מקרהבוחרים את ההיטלים המתאימים לכל אפליקציה

מימדיים ומשווים את תוצאות הסיווג בשיטה שאנו מציעים - בשלב האחרון אנו בונים מסווג לעצמים תלת

 .לתוצאות סיווג של אלגוריתמים אחרים

 המשתמשת ,מימדיים-שיטת סיווג של קווי מתאר דושיטת הסיווג הממוצעת בעבודה מתבססת על

).MOFET(סדרים של פולינומים וחישוב שגיאת ההתאמה של כל פולינום בהתאמת מספר

הסיבה לכך שנדרשים מספר סדרים של פולינומים היא שאנו רוצים לנצל גם את היציבות של פולינומים

 .אך גם את היכולת התיאורית של פולינומים בעלי סדר גבוה, בעלי סדר נמוך

על מנת להשוות) pose estimation(שערוך של כיוון העצם היתרון של שיטה זו הוא שאין צורך לבצע

אנו משתמשים , שהוא בעל סיבוכיות חישובית גבוהה, במקום שערוך זה. בינו לבין העצמים שבמילון

 .לצורך הסיווג בווקטור מאפיינים המופקים מהפולינומים

סיבוב ושפעים משאינם מ מאפיינים: באמצעות המאפיינים הבאיםמימדיים נעשה -סיווג העצמים התלת

שגיאות ההתאמה של הפולינומים , מימדי-ואשר תלויים במקדמי הפולינומים שהותאמו לעצם התלת

סיבוב ואשר תלויים במקדמי הפולינומים שהותאמו שאינם מושפעים ממאפיינים, ימדייםמ- התלת

והערכים העצמיים של , מימדיים-שגיאות ההתאמה של הפולינומים הדו, מימדיים של העצם-להיטלים הדו
ii

 35 עד 31כ "סה,)scatter matrix(ניתוח הצירים הראשיים של האובייקט באמצעות מטריצת פיזור

 .מאפיינים

מקס שאינו מושפע מסיבוב -מינ, 1גרדיאנט, אנו בוחנים את תוצאות הסיווג עבור שלושת האלגוריתמים

הראשון הוא מאגר של : על שני מאגרי עצמים אנו מפעילים את המסווג .וואר שאינו מושפע מסיבוב-ומינ

והשני הוא מאגר של פנים של אנשים שונים במצב , שכל אחד צולם מכמה נקודות מבטעצמים קשיחים

). אינן קיצוניותותנועות הראש צילום בתנאים מבוקרים כאשר הבעות הפנים , כלומר(של שיתוף פעולה

יווג של אלגוריתמים אחרים בעלי סיבוכיות חישובית תוצאות הסיווג בשיטה שלנו מושוות לתוצאות ס

 : דומה

 לעצם ומושווים מקדמי סתוםסיווג באמצעות שערוך כיוון העצם שלאחריו מותאם פולינום .1

 .לינומים שהותאמו לעצמים שבמילוןהפולינום עם מקדמי הפו

 Shape Spectrum(סיווג באמצעות סטטיסטיקה של עקמומיות המשטח בכל נקודה .2

Descriptor(,י וועדת התקינה של "שיטה שאומצה עMPEG-7לצורך סיווג עצמים תלת -

 . מימדיים

בים יותר מאשר שתי השוואת תוצאות הסיווג על מאגרי עצמים אלה מראה שלשיטה שלנו ביצועים טו

זמני הריצה של השיטה שלנו קצרים יותר ביחס לזמני הריצה של השיטות , בנוסף.השיטות האחרות

 .תהאחרו

iii

