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Abstract

The need for efficient image restoration methods has grown with the massive production of

digital images and movies of all kinds, often taken in poor conditions. Image denoising is

used to find the best estimate of the original image given its noisy version. Among the vast

image denoising methods that were suggested, patch-based approaches have drawn much

attention in the image processing community. The Non-Local Means (NLM) denoising

algorithm, first introduced by Buades et al. in 2005, takes advantage of image redundancy

by comparing pixel neighborhoods within an extended search region in the image. Each

pixel value is estimated as a weighted average of all other pixels in this search region.

These pixels are each assigned a weight that is a function of the similarity between the local

neighborhood of the Pixel Of Interest (POI) and their local neighborhood, such pixels with a

similar neighborhood are assigned higher weights. The NLM denoising approach originally

refers to Additive White Gaussian Noise (AWGN).

The participation of dissimilar pixels, which may be included in the extended search region,

in the weighted averaging process, degrades the denoising performance. To eliminate their

effect, researchers suggest creating an adaptive search region that excludes those pixels

(e.g. [4,37]). These suggested methods are parameter dependent and involve heuristics.

Another approch [17] suggests using a rectangular search region of various sizes, such that

the window size is adapted to local structure.

In this thesis, we present a novel model-based method that extracts a set of similar pixels
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for a given POI from its initial search region, using the statistical distribution of the NLM

dissimilarity measure. Our approach does not require any parameter setting and provides

better results than other compared adaptive search region approaches. Our proposed scheme

was also compared to the standard NLM and was found to provide better performance both

quantitatively and visually. We have also explored the effect of correlation between the dis-

similarity elements of a given search region. Three sources of correlations were explored:

correlation due to the comparison to the same reference patch, correlation due to patches

overlap, and correlation due to overlap with the reference patch. We found that the cor-

relations affect the dissimilarity model, however their effect on the denoising performance

is insignificant. The model-based scheme was also integrated in the Block-Matching 3D

(BM3D) state-of-the art denoising scheme, such that the computational complexity of the

original BM3D is reduced while denoising results remain comparable. Besides the AWGN,

we have explored our approach on Poisson noisy images as well. Poisson noise, which is

signal dependent, is the noise type that characterizes images taken by a digital camera. In

a similar manner to the Gaussian noise case, we have compared our proposed model-based

approach to the standard NLM as well as the standard BM3D to the model-based BM3D.

For the two methods, both NLM and BM3D, the tendency of the AWGN denoising was pre-

served, such that the proposed NLM provided better results both quantitatively and visually

than the standard NLM, and the model-based BM3D provided comparable results to that of

the standard BM3D.
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L ∈ [2, |Si|] refers to the cardinality of the set

‖·‖2,a Norm 2 operator weighted by a Gaussian of zero mean and a variance a
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1. Introduction

1.1. Image Denoising

The need for efficient image restoration methods has grown with the massive production

of digital images and movies of all kinds, often taken in poor conditions. No matter how

good cameras are, an image improvement is always required. A digital image is generally

encoded as a matrix of gray-level or color values. Each one of the pixel values Yi is the

result of a light intensity measurement, usually made by a charge coupled device (CCD)

matrix coupled with a light focusing system or a complementary metal oxide semiconductor

(CMOS). Each captor of the sensor is roughly a chamber in which the number of incoming

photons is being counted for a fixed period corresponding to the obturation time. The two

main limitations in image accuracy are categorized as blur and noise. Blur is intrinsic to

image acquisition systems, as digital images have a finite number of samples and must

satisfy the Shannon–Nyquist sampling conditions. Moreover, each pixel value is a result of

photon count over the respective sensor chamber, which also depends on chamber’s area.

This integration adds to the blurring effect (known as aperture problem). The second main

image perturbation is noise. In a first rough approximation, one can write Yi =Xi+Ni, where

Yi is the observed value, Xi would be the “true” value at pixel i, namely the one which would

be observed by averaging the photon counting on a long period of time, and Ni is the noise

perturbation. The amount of noise added due to image acquisition is signal-dependent and

characterized by a Poisson distribution, that is, Ni is larger when Xi is larger. However, in
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many works, mostly with simulated noise, additive white Gaussian noise (AWGN) is used,

so that the noise values at different pixels are assumed signal-independent and as realizations

of an i.i.d (independent and identically distributed) random variable.

Image denoising is used to find the best estimate of the original image given its noisy ver-

sion. Many methods for image denoising have been suggested, and a comprehensive review

of them can be found in [5]. Among the proposed denoising schemes, patch-based methods

have drawn much attention in the image processing community (e.g. [9]). Moreover, most

of the suggested schemes deal with Gaussian noise model. An example of a recent patch-

based denoising approach is the one introduced by Ram et al. [33]. Their scheme suggests

to reorder the pixels in a given image based on their corresponding patches similarity and

then apply a smoothing operator on the ordered pixels.

In 2005, Buades et al. [5] introduced the Non-Local Means (NLM) denoising algorithm

which takes advantage of image redundancy by comparing pixel neighborhoods within an

extended search region. Each pixel value is estimated as a weighted average of all the other

pixels in this search region. These pixels are each assigned a weight that is proportional to

the similarity between the local neighborhood of the reference pixel and their local neigh-

borhood, such that pixels whose neighborhood is the most similar to the neighborhood of

the reference pixel are given the largest weights. Moreover, the weights are controlled by

a weight smoothing parameter (h), which steers their decay. It is increased with the noise

variance in the image and it is usually set constant for the entire image. Since image pixels

are highly correlated while Gaussian additive noise is typically i.i.d., weighted averaging of

these pixels results in noise reduction. Consequently, the uniqueness of the NLM approach

lies in its ability to exploit spatial correlation in a defined neighborhood (search region) for

noise removal.

Gaussian image denoising techniques can be exploited to deal with Poisson noise as well.

In the Poisson case, a Variance Stabilizing Transform (VST), e.g., the Anscombe [26] trans-

form is used in order to convert the signal-dependent noise to a Gaussian additive white
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noise with unit variance. Then, NLM can be applied on the transformed noisy image. Fi-

nally, an inverse transform is applied on the denoised image.

1.2. Thesis Objectives

The NLM search region is usually a rectangular neighborhood, centered at the pixel of

interest (POI), which may include pixels whose original gray value do not match the value

of the original central pixel. Consequently, their participation in the weighted averaging

process degrades denoising performance, even though they are assigned relatively small

weights. To eliminate their effect, researchers, e.g., [4,37], suggest creating an adaptive

search-region, which excludes those dissimilar pixels.

In this thesis, we present a novel model-based method, which defines a set of similar pixels

to the POI from the initial search region, using the statistical distribution of the dissimilarity

measure. Moreover, to enhance the denoising, the proposed method also adaptively assigns

one of two patch-kernel types to each pixel, based on its local features. This patch-kernel is

used for weight computation. We show that the suggested NLM modification improves the

standard NLM performance both quantitatively and qualitatively. This approach is parame-

ter free, since it is model-based, and that is its main uniqueness compared to other suggested

methods for an adaptive search region.

We also refer to the correlation between the dissimilarities of the explored pixels within a

defined search region. The correlation is due to overlap between compared neighborhoods

and their comparison to the same reference patch, by definition.

Moreover, we apply our adaptive search region method to the BM3D [9,20] state of the art

denoising approach and suggest a scheme that facilitates the original BM3D flow by using a

model-based grouping for the first phase of the algorithm instead of the conventional group-

ing method. This proposed modification saves computations while providing comparable
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denoising results.

1.3. Thesis Outline

The thesis is organized as follows: in Chapter 2, we overview the Non-Local Means (NLM)

[5] neighborhood filter that takes advantage of the redundancy and self similarity of the

image. The filter defines the denoised value of a given pixel by applying a weighted average

using the pixels included in a defined search region, centered at the pixel of interest (POI).

In addition, we review the NLM set of parameters and discuss how they can be optimized

to provide the best denoising results.

Chapter 3 presents our novel model-based method for determining a pixel-wise adaptive

search region using the statistical distribution of the dissimilarity measure. We discuss the

statistical analysis behind the proposed approach and compare its performance to the stan-

dard NLM and to the LPA-ICI approach [35] that also suggests to use an adaptive search

region. Appendix A provides additional comparison results between the standard NLM and

the proposed model-based approach.

In Chapter 4, we suggest to expand the adaptive search region method by using an adaptive

patch-kernel type, selected out of two possible types. NLM is commonly used with only

one type of patch-kernel for the dissimilarity measure computation. In our analysis, two

patch-kernels were explored: the Uniform and a Box patch-kernel. We suggest to select

the pixel-wise appropriate kernel type based on local structure. Simulations reveal that the

Uniform patch kernel is more adequate for smooth regions, whereas the Box patch-kernel

is more adequate for texture or edges. Consequently, pixels that are characterized by a large

adaptive search region, thus considered “smooth”, are associated with the Uniform kernel,

and pixels that are characterized by a small search region are associated with the Box kernel.

We compare the proposed adaptive NLM performance when applied using a single patch-
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kernel to using an adaptive patch-kernel, and show that the adaptive kernel scheme improves

denoising results.

Chapter 5 discusses the correlation between the dissimilarities of pixels associated to the

adaptive search region and its effect on the model-based scheme presented in Chapter 3. We

tackle the correlation analysis by considering first the correlation due to the mutual reference

patch (Case 1) to whom all the patches in a given search region are compared, assuming

no patch overlaps. Then we add the effect of overlap between patches, but not with the

reference patch (Case 2), and finally we address the most general case in which overlapping

patches may also overlap the reference patch (Case 3). The details of the statistical analysis

are given in Appendix B and of the application of the analysis on the model-based method

are elaborated in Appendix C.

Chapter 6 discusses the performance of the Correlation-Dependent Model-Based scheme,

introduced in Chapter 5, and compares it to the model-based scheme of Chapter 4. In

addition, we refer at the end of the chapter to the sensitivity of the two adaptive schemes

and the standard NLM to an error in the noise variance estimation.

In Chapter 7, we suggest to integrate our model-based approach that defines an adaptive

search region for each pixel in the image, into the BM3D [9] denoising method. This inte-

gration saves computations and eliminates the need for parameter calibration. We compare

the denoising performances of the original BM3D and the BM3D combined with our model-

based approach and show that they are comparable. Appendix D provides an elaborated

explanation of the BM3D algorithm.

In Chapter 8, we refer to the Poisson noise model and present the flow that enables using

the NLM denoising method that is suitable to an additive Gaussian noise, for Poisson noise

denoising. This flow involves using a VST, specifically the Anscombe transform, which

converts the Poisson noise to an additive Gaussian noise with unit variance. We explore

the performance of the proposed adaptive NLM scheme and the model-based BM3D with
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Poisson noise.

In Chapter 9, we present a summary of of the topics discussed in the thesis and suggest some

open issues for future research.
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2. Standard Non-Local Means Image

Denoising

2.1. Introduction

In the presence of noise, the original pixel value is lost. Neighborhood filters (a class of

filters to which the Non-Local Means filter is a member of) reduce the noise by selecting for

each pixel i a set of pixels Si characterized by both spatial proximity and similar gray level

values. These filters proceed by replacing the gray level value of i by the average over the

set Si.

This chapter will focus on the Non-Local Means (NLM) [5] neighborhood filter that at-

tempts to take advantage of the redundancy and self similarity of the image. The filter

defines the denoised value of pixel i by applying a weighted average on the pixels assigned

to the set Si. The algorithm assigns a weight to a pixel j ∈ Si by comparing a small neigh-

borhood around pixel j to a small neighborhood around the pixel of interest i (POI) . This

weight is proportional to the similarity between the pixels’ neighborhoods. In this manner,

pixels with similar neighborhood to pixel i will be assigned a higher weight, thus have a

more significant contribution to the weighted average process. Consequently, NLM pro-

vides a very efficient denoising procedure that preserves edges and texture while smoothing

non-textured regions.
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In this chapter, the NLM algorithm is described along with a proof of its consistency under

stationarity conditions. Moreover, the importance of several parameters which affect the

NLM performance is discussed.

2.2. Neighborhood Filters

Primitive neighborhood filters replace the gray value of a pixel with an average of the prox-

imate pixels values. However, the most similar pixels to a given pixel have no reason to be

spatially close to it. In 1999 Efros and Leung [14] used non-local self-similarities to syn-

thesize textures and to fill in holes in images. Their algorithm scans a vast portion of the

image in search of all the pixels whose neighborhood resembles to the neighborhood of the

POI. The resemblance is evaluated by comparing windows, of defined size, centered at each

compared pixel, and not just the value of the compared pixel itself (i.e., window center).

This technique resembles the methodology of the sigma filter, invented by J.S. Lee [21] in

1983. This filter is motivated by the structure of the Gaussian PDF, and it smoothes the

image noise by averaging only those neighborhood pixels which have the intensities, within

a fixed sigma range, of the POI.

Let X and Y be the original and the observed noisy images, respectively. It is assumed

that the original image is corrupted by a Gaussian noise N with a zero mean and a known

standard deviation σn, such that,

Y = X +N, N ∼N
(
0,σ2

n
)

(2.1)

Then, the filtered value by the sigma-filter strategy can be written as:

X̂Lee
i,h,ρ =

1
Ci

∑
j∈Si,ρ

Yjexp

{
−
∣∣Yi−Yj

∣∣2
h2

}
(2.2)
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where only pixels inside the defined region Si,ρ are averaged, ρ defines the size of the search

region, h controls the pixels dissimilarity and Ci is a normalization factor. The SUSAN

algorithm [36] and the bilateral filter [39] make this process more symmetric by involving

a bilateral Gaussian depending on both spatial proximity and gray level. This leads to the

following:

X̂BLF
i,h,ρ =

1
Ci

∑
j∈Si,ρ

Yjexp

{
−
∣∣Yi−Yj

∣∣2
h2 − |i− j|2

ρ2

}
(2.3)

The bilateral filters perform better denoising than Lee’s statistical filter. They maintain sharp

boundaries, since they average pixels belonging to the same region as the POI. However,

Bilateral filters fail when the standard deviation of the noise exceeds the edge contrast.

2.3. The Non-Local Means (NLM) Algorithm

The NLM algorithm is inspired by the neighborhood filters. It takes advantage of the high

degree of redundancy in any natural image by assuming that every small patch in a natural

image has many similar patches in the same image. One can define a search region centered

at pixel i, of size M×M, such that Si =
{

j | |i− j| ≤ M−1
2

}
. Specifically, in Texture synthesis

[14], a sub-set of similar pixels, denoted k ∈ SS
i ⊆ Si, is extracted such that a patch around k

resembles to a patch around i, by defining an adequate similarity measure. All pixels in that

sub-set can be used for predicting the value at i. The fact that such a self-similarity exists

proves image redundancy and matches the image regularity assumption.

In standard NLM, all the pixels that are included in Si are used for the weighted averaging

process, such that the weights are determined based on their resemblance to the POI, as

explained next.

Assuming the noise model presented in eqn. (2.1), each pixel in the restored image is
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derived as a weighted average of all gray values within a defined search region:

X̂i = ∑
j∈Si

wi, jYj (2.4)

where i represents a pixel index, Si refers to a rectangular search region of size M×M cen-

tered at pixel i . The normalized weights, which can be referred to as similarity probabilities,

are defined as:

wi, j =
1

Wi
exp
{
−di ( j)

h2

}
(2.5)

such that , Wi = ∑ j∈Si wi, j¸ is a weight normalization factor, di ( j) is a dissimilarity measure,

and h is the weight smoothing parameter, which is typically controlled manually in the

algorithm. Choosing a very small h leads to noisy results almost identical to the input,

while a very large h gives a uniform weighting, typically resulting in an overly-smoothed

image. A more comprehensive discussion on the choice of this parameter will be held in

section 2.5. The dissimilarity measure di ( j) is defined over the corresponding similarity

patches as follows:

di ( j) =
∥∥Y (Ai)−Y

(
A j
)∥∥2

2,a (2.6)

Ai represents a square similarity patch of size p× p centered at pixel i (p < M) and Y (Ai)

represents the pixel values of the corresponding similarity patch . The similarity patches

may overlap within a given Si and are defined such that their central pixel is included in

Si, not necessarily the whole patch. The vector norm is the Euclidean difference, weighted

by a Gaussian kernel of zero mean and variance a that is used to smooth out the neigh-

borhood while calculating the weights. This filter reduces the effect of differences in pixel

intensities as they get spatially further away from the center of the patch. In practice, in-

stead of a Gaussian kernel, simpler kernels are used: a Uniform kernel (which assigns the
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same weights to all the pixels of the similarity patch), whose corresponding dissimilarity

measure is denoted dU
i ( j), and a Box kernel, illustrated in Figure 2.1, whose corresponding

dissimilarity measure is denoted dB
i ( j). Efros and Leung [14] showed that the L2 distance

is a reliable measure for the comparison of image windows in a texture search region. This

measure is adapted to any additive white noise such that noise alters the distance between

windows in a uniform way, as shown herein:

E
∥∥Y (Ai)−Y

(
A j
)∥∥2

2,a = E
∥∥X (Ai)−X

(
A j
)∥∥2

2,a +2σ
2
n (2.7)

This equality shows that, in expectation, the Euclidean distance preserves the order of sim-

ilarity between pixels. So the most similar pixels to i in Y are also expected to be the most

similar pixels to i in X .

Refer to Figure 2.2 for a schematic view of a chosen search region and its respective simi-

larity patches.

Figure 2.1.: Box kernel used for dissimilarity measure computation

Pay attention to the difference in weight definition between the NLM filter and the sigma-

filter. The NLM defines pixel dissimilarity as the difference between pixel neighborhoods
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Figure 2.2.: The image Lena with a chosen search region Si (marked in red) and respective
similarity patches. The reference patch (Ai) is marked in green. Several compared patches(
A j
)

, within the search region, are marked by a light dashed orange contour (for patches
which resemble Ai, i.e., having a small dissimilarity measure value) and a heavy dashed
blue contour (for patches with high dissimilarity measure value).

(see eqn. (2.6)) , whereas the sigma-filter refers to the absolute difference between pixel

values in a defined search region (see eqn. (2.2)).

The weights computation is a bottle neck of the NLM algorithm. Therefore, restricting the

size of the search region M2 is important for a practical implementation. Following recom-

mendations presented in [32], that suggest to restrict the search region to M ∈ [11,15] (see

sub-section 2.5.3), the search region here is restricted to 11×11 (M = 11) and the similar-

ity patch is set to 5× 5 (p = 5). Consequently, for a K×K image, the final complexity of

the algorithm is about p2×M2×K2.
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2.4. Statistical Consistency of the NLM

Estimation theory determines that if the original and observed images are considered as

a realization of two random fields X and Y , then the best estimate of X is given by the

conditional expectation

X̂i = E [Xi|Y ] , ∀i ∈ X (2.8)

The best estimate at a pixel i depends on the values of Y in the whole image. In many

applications, e.g., texture synthesis, there is a restricted access to a small neighborhood of

the pixel of interest (POI). In the denoising case, estimation of Xi may be based on a defined

neighborhood centered at pixel i and not on the whole image. It can be shown that eqn. (2.8)

also holds for a restricted neighborhood around pixel i, denoted Si :

Xi = E [Xi|Y (Si)] , ∀i ∈ X (2.9)

Hence, the justification of restricting the search region in the NLM denoising process.

Image consistency means that the value at a given pixel i is directly influenced only by the

values of its neighboring pixels [31]. Moreover, the defined search region is assumed to be

stationary, i.e., it includes pixels whose characterizing distribution is space-invariant (for

shifts within the region itself). Therefore, it can be concluded that the NLM methodology

matches image consistency under stationarity conditions. This conclusion coincides with

image redundancy, i.e., the fact that the image consists of many samples of every image

detail. It is a crucial point in understanding the performance of the NLM algorithm. In

addition, since the image is assumed to be a mixing process (refer to [31]), regions become

more independent as their spatial distance increases, which is intuitively true for natural

images.
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2.5. Setting NLM Parameters

Exploring eqns. (2.4)− (2.6) reveals that NLM denoising depends on setting the following

parameters:

1. The similarity patch size p× p, which is often set to 5×5 or 7×7, but should a priori

be related to the scale of objects in the image, i.e., contrasted small details should be

characterized by a smaller patch size than smooth regions.

2. The weight smoothing parameter h should be proportional to the typical distance be-

tween similar patches, and should also depend on the noise STD, as suggested in[40].

It should also be related to the regularity of the image, as will be explained in sub-

section 2.5.2.

3. The size of the search region Si, M×M, which has a dramatic impact on the compu-

tation time, but which also has an influence on the visual quality of the results.

4. The weight of the central pixel in a given Si. This pixel should be treated differently

than the other pixels in the search region, as it serves as the reference pixel and also

participates in the weighted average procedure.

5. The patch kernel used for the dissimilarity measure computation.

In fact, these parameters are far from being independent, and setting their values is not an

easy task. The rest of this section deals with the analysis of these parameters and their effect

on to the NLM denoising performance.

2.5.1. Similarity-Patch Size

The dissimilarity measure can be defined as difference between similarity patches in either

the spatial domain or in any adequate transform domain. The domain determines how the

patches similarities are computed. Using a large patch size reduces the importance of low
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contrasted small details, becoming more blurred. Moreover, it allows a more robust discrim-

ination between areas that are not actually similar. In Figure 2.3(a), when a small similarity

patch size is being used, Lena’s skin looks mottled. It looks smoother with a larger patch

size (Figure 2.3(b)), at the expense of blurry feathers. On the other hand, if the image has

textures with highly contrasted transitions or that are characterized by rare pattern occur-

rences, using a too large patch prevents the algorithm from finding redundancies, as shown

in Figures 2.4. For a large similarity patch size (Figure 2.4(c)), it is very difficult to find

similar patches around the letters, thus a noisy halo appears. Using a smaller similarity

patch size (Figure 2.4(d)) reduces the spread of the halo since it captures the local texture

more accurately.

This phenomenon is referred to as the rare patch effect and is visually characterized by a

noise halo around edges, due to lack of redundancy of the defined patches in the search

region. Consequently, the patch size should ideally be chosen depending on the local scale

of the image, where smooth regions define a large scale and edges or textures define a small

scale. Deledalle et al. [10] address the problem of the rare patch effect by substituting the

square isotropic patches of fixed size by spatially adaptive patch shapes that can exploit local

image geometry. Their suggestion obviously complicates the implementation of the NLM

filter and restricts the similarity patch shape to be chosen out of a selected bank of shapes.

However, using a locally adapted h should make the choice of the size of the similarity patch

less critical, as will be explained in subsection 2.5.2.
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(a) (b)

Figure 2.3.: Denoising of the image Lena with σn = 20, h = σn, M = 11 and Box kernel
for the dissimilarity measure computations. (a) Using 3×3 similarity patches, (b) Using
5×5 similarity patches.

(a) (b)

(c) (d)

Figure 2.4.: Choice of the patch size: (a) Original image [43], (b) Noisy image with σn = 20,
(c) Zoomed-in view of NLM denoising with σn = 20, h = σn, M = 11 and p = 9, (d)
Zoomed-in view of NLM denoising with σn = 20, h = σn, M = 11 and p = 5. Box
kernel was used for the dissimilarity measure computations.

2.5.2. Weight-Smoothing Parameter

The weight-smoothing parameter (h), which quantifies how fast the weights decay with

increasing dissimilarity of respective patches, is usually set to be proportional to the noise

standard deviation [40]. Since the performance of the NLM filter is sensitive to h, its value
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should be chosen carefully. There is apparently a contradiction between the idea of adapting

the smoothing parameter (whether globally or locally) to the content of the image and the

observation of several authors (e.g., [40]) that h should be set proportional to the noise

standard deviation . Figure 2.5 shows that the relation between the optimal global parameter

h and noise STD is indeed approximately linear and it is remarkable that the slope does not

vary much between different images. This fact relates to the global effect of this parameter,

however empirical results show that using a fixed global h value (where h is proportional to

noise STD) causes over-smoothing of highly textured regions. Whereas, a low global value

may preserve texture and edges, but results in insufficient denoising of smooth regions,

which appear grainy. Consequently, a local value of h, which depends on the local structure

of the image, should provide sufficient denoising of smooth regions as well as preserve

highly textured areas. Therefore, this empirical rule of linear relation between the value of

h and the noise STD only gives a rough idea of the optimal value. Duval et al. [12] reconcile

these two points of view by suggesting a method that sets a locally adaptive h which is

linear with the noise STD. Their method involves several runs of the NLM algorithm with

different values of h. Then, a SURE estimator is calculated pixel-wise in order to select the

local optimal value of h, out of the pre-selected values.
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Figure 2.5.: Evolution of the optimal global smoothing parameter h when the noise level
varies, for six different images [12].

Figure 2.6 demonstrates the importance of setting a local content-based value of h. It is

based on a simulation we carried out, in which two representative patches were extracted

from the image Barbara: one corresponds to a smooth region and the other corresponds to a

textured region. The smoothing parameter was defined as h = k ·σn, and the NLM algorithm

was applied on the selected image patch by using different values of the parameter k in order

to determine which value provides the best denoising results. Each optimization is a result

of averaging over ten noise realizations. Figure 2.6 (b) represents the optimization process

over the smooth region, whereas Figure 2.6 (c) represents the process over the textured

region. It can be seen that the smooth region requires a larger k compared to the textured

region. This simulation shows that indeed h is sensitive to image local structure, as stated
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above.

(a)

(b) (c)

Figure 2.6.: Simulation which demonstrates the sensitivity of h to image local structure.
NLM denoising was applied on the noisy image Barbara (256×256) with σn = 20 and
the parameters: p = 5, M = 11, h = k ·σn, where k = [0.6,2] and Box patch-kernel. (a)
Barbara with two selected patches: the solid yellow patch corresponds to a smooth region,
whereas the dashed red patch corresponds to a textured region, (b) PSNR vs. k curve, (c)
SSIM vs. k curve.

2.5.3. Search-Region Size

Intuitively the search region should be as large as possible to have as many “copies” of the

patch. However, it should be selected to be as small as possible, since it crucially affects
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the computation time. Actually, most natural images are characterized by local similarities,

thus there appears a need to use a very large search region. Salmon at al. [34] demonstrate

that for most standard images, the gain of using a large search region size is insignificant

for a parameter greater than 15, with a fixed choice of p (refer to Figure 2.7). Moreover,

sizes higher than 15 have a negative influence on the NLM denoising performance for both

medium and high noise levels. This phenomenon is due to the accumulation of small posi-

tive weights, leading to average of non-similar patches, hence biasing the estimation. Duval

et. al [12] suggest to minimize the loss caused by a large search region by using truncated

weights, i.e., a hard thresholding operator. When imposing a small threshold value, the

NLM filter is almost insensitive to the increase of the search region. Of course, the weight

thresholding parameter adds another degree of freedom to the algorithm, thus this sugges-

tion is not optimal.

Levin at. al [23] study the relation between denoising gain and search region size require-

ments in patch-based denoising techniques. They conclude that each image pixel has a finite

compact region of informative neighboring pixels based on its characterizing structure. In-

tuitively, the size distribution of these regions must directly impact both denoising error

(small error implies higher PSNR) vs. search window size and its limit as the window size

grows indefinitely. An infinite search region is obviously impractical. However, choosing

only the most similar pixels to a POI (where similarity is measured based on neighborhood

comparison, see eqn.(2.6)), within a finite defined search region, may serve as a practical

solution to the content-based search region size. This suggested solution will be further

discussed in chapter 3.
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Figure 2.7.: [34] Influence of the size of the search region on the PSNR of the NLM proce-
dure, with p = 5, weight of the central pixel is the maximal weight within the weights of
the search region and h is chosen as the optimal value within the range

[√
3σn,
√

72σn
]
.

The top figure refers to σn = 20 whereas the bottom figure refers to σn = 50.

Figure 2.8 displays the empirical PSNR as function of search region size. In this simulation,

clean and noisy test patches pairs were used, such that for each noisy patch, the largest M,

at which estimation is still reliable, was determined by comparing the denoising results with

its paired noise-free patch. The patches were divided into groups, Gl , based on the largest
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window size l (M = [1, l]) at which the estimate is still reliable. The figure displays, for

each group, the empirical PSNR averaged over the group’s patches as a function of window

size M. Moreover, the mean gradient magnitude was computed for each group based on

the noise-free data. As expected, groups that include mostly patches with large gradients

(texture) are associated with a smaller search region size l. These groups of patches cor-

respond to PSNR curves that are lower and also flatten earlier in the figure. In contrast,

groups that include smooth patches are associated with small mean gradient magnitude and

gain more from an increase in search region size. These patches correspond to the higher

curves that flatten later in the figure. Consequently, it seems that pixels that correspond to

smooth regions require a larger search region compared with pixels that correspond to tex-

tured regions. Moreover, theses pixels are characterized by a higher PSNR when denoised

using a larger search region.

Figure 2.8.: [23] PSNR vs. size of search region d for patch groups Gl of varying complex-
ity. Higher curves correspond to smooth regions, which flatten at larger patch dimensions.
Textured regions correspond to lower curves which not only run out of samples sooner,
but also their curves flatten earlier.
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2.5.4. Reference-Pixel Weight

The role of the reference pixel (POI) is different in nature as it plays two roles at the same

time. On one hand, it is the central pixel of the reference patch that is compared to the

other patches, within a defined search region, and on the other hand it also participates

in the averaging process together with all the others pixels of the search region. Several

suggestions on how to set the weight of this pixel have arisen [11], as detailed herein. The

central pixel weight shall be denoted wi,i.

1. The original weight based on eqn. (1.5): di (i) = 0, wi,i = 1 before normalization.

2. Assign the same value as the maximum of the other weights observed in the search

region and then normalize the weights. Though this choice is not validated by theory,

better results are obtained in practice.

3. Assign a zero weight, i.e., don’t consider the central pixel in the weighted average

process, wi,i = 0 .

4. Use Stein Unbiased Risk Estimator (SURE) [40] for weight computation. These

weights are equivalent to replacing the central weight in the NLM procedure by

exp
{
−2σ2

n M2

h2

}
(without modifying the other weights), before normalization.

Salmon et al. [34] compared the performance of the different methods. Their results are

illustrated in Figure 2.9. The histograms are ordered by the following methods: SURE

estimator (4.), maximal weight (2.), original weight (1.) and zero weight (3.). It can be

observed that for most of the images, with any noise level, the first two methods, i.e., the

SURE weight and the maximal weight provide the best results. Consequently, in this work,

the central pixel weight is chosen as the maximal weight within the pixels in the correspond-

ing search region.
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Figure 2.9.: [34] Comparing performance of NLM by changing the weight of the cen-
tral pixel (in order from black to white: SURE, Max, Original, Zero) with two lev-
els of noise and p = 5, M = 13 and h is chosen as the optimal value within the range[√

3σn,
√

90σn
]
.The top figure refers to σn = 20 whereas the bottom figure refers to

σn = 50 . The PSNR given below the name of the image is the one obtained with the
noisy version of each image.
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2.5.5. Patch Kernel

As explained earlier, in sub-section 2.3, the dissimilarity measure is computed using the

vector norm of the difference between the central patch and any compared patch (within

the defined search region), weighted by a Gaussian kernel of zero mean and variance a, as

shown in eqn. (2.6). The Gaussian kernel is used to smooth out the similarity patch while

calculating the weights. This filter reduces the effect of differences in pixel intensities as

they get spatially further away from the center of the patch. In practice, instead of a Gaussian

kernel, simpler kernel is used, the Box kernel, as illustrated in Figure 2.1. Another, even

simpler kernel that is used, is the Uniform kernel. It assigns the same weights to all the pixels

of the similarity patch, thus does not weight the data according to its spatial distance from

the patch center. Simulations suggest that the Uniform kernel is more adequate for smooth

regions, whereas the Box kernel is more adequate for texture or edges. Consequently, there

is an added value of using a Box kernel. Figure 2.10 (c), which represents a standard NLM

denoising using a Box kernel, preserves structure (see Baboon’s fur) but is characterized

by granularity in smooth regions (see Baboon’s nose). Fig. 2.10 (d) presents the denoising

results of the standard NLM with a Uniform kernel. It shows that the granularity effect is

reduced in smooth regions, but texture and edges are over-smoothed. Further discussion

regarding the importance of the patch kernel will be held in chapter 3.
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(a) (b)

(c) (d)

Figure 2.10.: Denoising of the image Baboon with σn = 20, using different patch kernels
and h = σn, p = 5, M = 11. (a) Original image, (b) Noisy image, (c) Box kernel, (d)
Uniform kernel.
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2.6. Denoising Limits

Levin et. al [23] study absolute denoising limits and the convergence rate to them as a func-

tion of the search-region size. Scale invariance is a fundamental property of natural images.

In order to characterize this property, a dead leaves image formation model is considered,

e.g. [1], whereby an image is a random collection of piecewise constant segments, whose

size is drawn from a scale-invariant distribution and whose intensity is drawn i.i.d. from

a uniform distribution. This yields perfect correlation between pixels in the same region.

To further simplify the analysis, an edge oracle, which gives the exact locations of edges in

the image, is assumed. The optimal denoising is then to average all observations in a seg-

ment. For a pixel belonging to segment of size s pixels, the Minimum Mean Squared-Error

(MMSE) is σ2
n
s . Overall the expected reconstruction error with infinite-sized windows is

MMSE(s) =
´

p(s) · σ2
n
s ds where p(s) is the probability that a pixel belongs to a segment pf

size s pixels. Alvarez at. al [2] show that scale-invariance implies that the probability that a

random image pixel belongs to a segment of size s is of the form p(s) ∝
1
s . To get a sense of

the empirical size distribution of nearly-constant-intensity regions in natural images, Levin

at al. perform a simple experiment inspired by[31]. For a random set of pixels {Xi} ,the

size d(i) of the connected region whose pixel values differ from Xi by at most a threshold

T was computed, i.e.: d(i) = card
{

j|
∣∣X j−Xi

∣∣≤T
}

. The threshold T corresponds to the

contrast within the segment, such that a lower value refers to a more uniform segment. The

empirical histogram h(d) of region sizes follows a power law behavior h(d) ∝ d−α with

α ≈ 1, as suggested by [2]. Levin et al. model the MMSE, as a function of search-region

size, denoted M = |Si|, as MMSE(M) = e+ c
M , where e = MMSE(M→ ∞) and c is some

constant. The MMSE value for an infinite search region is set based on extrapolation of ex-

perimental curves which are the result of denoising applied with a finite d. Extrapolating this

parametric law gives a ballpark estimate of the best achievable denoising, suggesting that

some improvement, although modest, is still possible (see Table 2.1). While the extrapo-
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lated value may not be exact, their analysis suggest that there is an inherent limit imposed by

the statistics of natural images, which cannot be broken, no matter how sophisticated future

denoising algorithms will be. Table 2.1 compares the PSNR of existing algorithms (BM3D

[9] and K-SVD [28]) to the predicted PSNR∞, over 20K test patches using the power law fit

based on a pool of 108samples, i.e., for each test patch, the corresponding similar patches

were extracted from the pool . The comparison suggests that depending on noise level σn,

current methods may still be improved by 0.6−2.3dB.

σn 35 50 75 100
Extrapolated Bound (PSNR∞) 30.6 28.8 27.3 26.3

K-SVD [28] 28.7 26.9 25 23.7
BM3D [9] 30 28.1 26.3 25

Table 2.1.: Extrapolated optimal denoising in PSNR, and the results of recent algorithms.
It can be observed that a modest room for improvement still exists.

2.7. Chapter Summary

In this chapter, the Non-Local Means denoising scheme was introduced in detail. This

filter is part of the neighborhood filters family. These filters estimate a POI by using a

weighted average of pixels located in a search region associated with a POI. The weights

are inversely proportional to the dissimilarity between a small neighborhood of the POI and

a corresponding small neighborhood of pixels within the search region. This filter assumes

stationarity of the search region data and depends on five parameters whose values affect

the denoising performance. These parameters are the size of the similarity patch (p), the

weight-smoothing parameter (h), the size of the search region (M), the weight of the central

pixel (wi,i), and the patch kernel type.
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3. Model-Based Non-Local Means

Image Denoising

3.1. Introduction

The Non-Local Means (NLM) denoising algorithm uses a weighted average of pixels, within

a defined search region of the image, to estimate a noise-free pixel value. The search re-

gion is usually a rectangular neighborhood, centered at the pixel of interest (POI), which

may include pixels whose original gray value do not match the value of the original central

pixel. Consequently, their participation in the averaging process degrades denoising per-

formance. To eliminate their effect, researchers suggest creating an adaptive search-region

which excludes those dissimilar pixels.

This chapter presents a novel model-based method, which defines a set of similar pixels to

the POI, from the initial search region, using the statistical distribution of the dissimilarity

measure. Experimental results show that the proposed algorithm has better performance

than the original one in terms of PSNR, Structural Similarity (SSIM) [41], and visual quality

and is found to be more efficient than other examined approaches.
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3.2. NLM Applied With An Adaptive Search Region -

Prior Art

The uniqueness of the NLM approach lies in its ability to exploit spatial correlation in

a defined neighborhood (search region) for noise removal. As mentioned in section 3.1,

the search region may include pixels which differ in their original gray value from that of

the POI and their participation in the averaging process may degrade the denoising per-

formance. Their negative effect can be alleviated by the weight smoothing parameter (h).

This parameter plays the same role as kernel support, such that the larger the support, the

smoother the image becomes. Hence, for textural regions a smaller value of h should be

used than for smooth regions, for the same given noise STD. In that manner, dissimilar

pixels will be assigned a lower weight (refer to sub-section 2.5.2 for more details). As a

result, there are NLM modifications that suggest using an adaptive h value [12,11], which

is matched to local structure. As discussed below, an alternative to using an adaptive h is

to replace the isotropic square search region in the original NLM by an adaptive anisotropic

region in which the most similar pixels to the POI are selected (based on comparing local

neighborhoods). This anisotropic neighborhood can better exploit the local image struc-

ture. Consequently, denoising performance is improved, especially for pixels that belong to

textured regions.

Mahmoudi et al. [29] propose to pre-classify the neighborhoods based on local average

and gradients, but the calculation of the gradient is affected by noise. Coupe et al. [8] and

Kervrann et al. [18] use patch average and patch variance to rule out dissimilar patches.

Dinesh at al. [11] suggest a correlation-based patch classification method. The correlation

is computed using an inner product between two normalized patches. Only patches, within

the search region, whose correlation (with respect to the reference patch) is higher than

a pre-defined threshold, are considered during the averaging process. The problem with

these methods is that the measures which affect pre-selection of pixels use global thresh-
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olds which are chosen somewhat heuristically and may vary based on image characteristics,

hence imply lack of robustness. Azzabou et al. [3] suggest partitioning the image into two

classes: noisy smooth zones and noisy texture/edge zones. Each pixel is characterized by

a statistical model that defines a membership degree to each class. The method relies on

a prior, which does not necessarily satisfy all explored images, and involves a Gaussian

Mixture Model as well as EM optimization that are computationally expensive. Orchard et

al. [32] propose an alternative strategy that uses the SVD to more efficiently eliminate dis-

similar pixel pairs. The method relies on dimensionality reduction of the image patches by

setting a global dimension for all patches. This dimension value may cause over-smoothing

since texture and edge patches should be characterized with a higher dimension than smooth

patches. In [4], Brox et al. suggest to classify pixels by using a cluster tree approach and K-

Means (K=2) with pre-selected parameters that define the classification. This is equivalent

to image segmentation based on iterative binary classification and hence is not necessarily

robust under noisy conditions. Kervran et. al [17] propose to use an adaptive isotropic

neighborhood, such that the proper search region size is set in a manner that it balances the

accuracy of approximation and the stochastic error, at each spatial position. The drawback

of this approach is that it restricts the search region to be rectangular, and it explores several

search window sizes per each pixel, which makes it time-consuming. Sun et al. [37] present

a method that determines a pixel-wise adaptively shaped search region, within which the

image is homogeneous. The method is subjected to a contiguous search region shape that is

not necessarily the best shape within the pre-defined search region.

The following section describes our suggestion for an adaptive search region. The novelty

of our approach is that pixel association with any of these two groups is based on a proba-

bilistic model that characterizes the dissimilarity measure between two compared patches.

Consequently, each pixel is characterized by a content-based search region constructed from

the similar pixels group.
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3.3. Search Region Pixel-Classification - Proposed

Model

The adaptive approaches, presented in the previous section, suggest to partition the given

search region (which can also be defined as the entire image) into two groups, based on

pixels’ similarity to the POI. These approaches are parameter-dependent or restrict the set

of similar pixels to the POI to be contiguous. We too propose to partition the search region

of a given pixel i (Si) into two sets: a set of similar pixels (with respect to the reference pixel

i), denoted here SS
i , and a complement set of dissimilar pixels, denoted SD

i . However, unlike

some of the earlier approaches, the set SS
i is not restricted to be contiguous, and the partition

is determined on the basis of a statistical model of the dissimilarity measure. Similarly

to other approaches, the weighted averaging is applied only to the pixels in the set SS
i . A

schematic view of a partition is depicted in Figure 3.1.

Figure 3.1.: Description of a search region divided into two sets. SD
i is a group of pixels

whose original gray value difference with respect to SS
i is C (marked in light blue). A j is

a similarity patch included in the SS
i set whereas Ak is a similarity patch included in the

SD
i set. Note that SD

i is not restricted to be contiguous.
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To derive the model, we refer at first to the normalized (by the noise variance) dissimilarity

measure that uses a Uniform patch-kernel:

dU
i ( j)
2σ2

n
=

1
p2

∥∥Y (Ai)−Y
(
A j
)∥∥2

2
2σ2

n
=

1
p2 ∑

m∈Ai, l∈A j

(
Ym−Yl√

2σn

)2

, j ∈ SS
i (3.1)

Refer to eqn. (2.6) for the general definition of the dissimilarity measure. Ai is the similarity

patch centered at pixel i (the POI) and A j is a compared similarity patch, centered at pixel

j ∈ Si. Moreover, the size of the similarity patches is set to be p× p.

Assuming that the original gray values of all the pixels in SS
i are the same as pixel i, i.e.,

X j = Xi ∀ j ∈ SS
i (refer to eqn. (2.1) for a description of the noise model), the following

applies:

∑
m∈Ai, l∈A j

(
Ym−Yl√

2σn

)2

= ∑
m∈Ai, l∈A j

(
Nm−Nl√

2σn

)2

, ∀ j ∈ SS
i (3.2)

The normalized noise difference Nm−Nl√
2σn

is distributed N (0,1) as a linear combination of

two i.i.d variables. We start with the simplifying assumption that the dissimilarity values

related to the same reference patch over the search region are not correlated (in spite of patch

overlaps and the use of the same reference patch). In chapter 4, we consider the effects of

having a mutual reference patch, and patch overlaps.

LEMA 3.1 [15]: Let Z1, ...,Zk be independent, standard, normal variables, then the sum

of their squares Q = ∑
k
m=1 Z2

m is distributed according to the Chi-Square distribution with k

degrees of freedom, i.e., Q∼ χ2
k .

Under the current assumption and based on Lema 3.1, the sum, in eqn. (3.2), of p2 squared

independent standard normal variables has a Chi-Square distribution with p2 degrees of

freedom. For large p2 , the Chi-Square distribution converges to a Normal distribution with
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the following first two moments:

χ
2
p2 ∼N

(
p2,2p2) f or p� 1 (3.3)

Figure 3.2(a) illustrates the goodness of fit between the two distributions, for p2 = 25 , as the

similarity patch is typically chosen to be 5× 5, i.e., p = 5. The figure shows that p2 = 25

is sufficiently large to assume a convergence of the Chi-Square distribution to a Normal

distribution. Figure 3.2(b) depicts the Kullbek Leibler (KL) Divergence[31] between the

two distributions as a function of p.

DEFINITION 3.1 [35]: The Kullback-Leibler (KL) Divergence is a fundamental equa-

tion of information theory that quantifies the proximity (in bits) of two probability distri-

butions. In our case, we wish to quantify how close is the Normal distribution, denoted

here qN to the Chi-Square, denoted qχ2
. The corresponding KL Divergence is defined as

DKL

(
qN ||qχ2

)
= ∑i qN

i log2

(
qN

i

qχ2
i

)
, where the index i refers to elements of an input vector

and qN
i , qχ2

i are the respective discretized Normal and Chi-Square probabilities of the input

vector elements. DKL is non-negative, not symmetric in qN and qχ2
, zero if the distributions

match exactly and can potentially equal infinity.

DEFINITION 3.2 [19]: The classical Jensen-Shannon Divergence is a non-negative sym-

metric derivative of the KL Divergence. It is defined as: DJS = 0.5
(

DKL
(
qN ||qMix)+DKL

(
qχ2||qMix

))
where qMix = 0.5

(
qN +qχ2

)
is the average of the two distributions.

The figure demonstrates that as the size of the similarity patch increases, the two explored

distributions become more proximal, as expected. The red dots on the figure, which cor-

respond to p = 5, show that for this patch size, the two distributions can be considered

sufficiently proximal. Increasing p will provide a better approximation, but at the expense

computational complexity.
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(a)

(b)

Figure 3.2.: Goodness of fit between the Normal and Chi-Square distributions. (a) Normal
and Chi-Square distributions for p2 = 25 degrees of freedom, (b) KL Divergence and JS
Divergence as a function of similarity patch size (p).

From the combination of eqns.(3.2) and (3.3) we get, for the uniform kernel:

p2dU
i ( j)

2σ2
n
∼ χ

2
p2 →N

(
p2,2p2) f or p� 1 (3.4)
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And hence the distribution of the normalized dissimilarity measure can be approximated

(for sufficiently large p2) by:

d̃U
i ( j)

4
=

dU
i ( j)
2σ2

n
∼N

(
1,

2
p2

)
(3.5)

In the same manner, for a general kernel, the normalized dissimilarity measure is defined as

follows:

d̃G
i ( j)

4
=

dG
i ( j)
2σ2

n
= ∑

m∈Ai, l∈A j,s∈[1,p2]

αs

(
Nm−Nl√

2σn

)2

, s.t. ∑
s∈[1,p2]

αs = 1, (3.6)

where αs represents the patch-kernel weights of a given p× p similarity patch (hence, αs =

p−2 for the Uniform patch kernel). This measure is distributed (in approximation) [19] as:

d̃G
i ( j)∼N

1,2 ∑
s∈[1,p2]

α
2
s

 (3.7)

The Box patch kernel we use (for p = 5) is characterized by the following normalized coef-

ficients αs, arranged in a matrix form:

F =



0.5 0.5 0.5 0.5 0.5

0.5 1.888 1.888 1.888 0.5

0.5 1.888 1.888 1.888 0.5

0.5 1.888 1.888 1.888 0.5

0.5 0.5 0.5 0.5 0.5


· p−2 (3.8)

We introduce the following definition for a General patch-kernel:

κ
4
= ∑

s∈[1,p2]

α
2
s (3.9)

42



The corresponding values of κ for the Uniform and the Box kernels (of size p = 5) are given

by:

For Uniform patch-kernel: κ = p−2 = 0.04, (p = 5)

For Box patch-kernel: κ = 0.0578, (p = 5)
(3.10)

The definition in eqn. (3.9) and the values of κ in eqn. (3.10) will be used from now on.

Thus, the normalized dissimilarities have the following distribution:

d̃G
i ( j) , d̃U

i ( j)∼N (1,2κ) (3.11)

Model Application

We begin with the description of the proposed method for search region partitioning when

the Uniform patch kernel is used.

Let’s discuss the simplified case in which the search region can be divided into two uniform

sub-regions, as illustrated in Figure 3.2. In the figure, SD
i represents pixels whose original

gray level difference with respect to the POI is C, i.e.,

Ym−Yl =C+Nm−Nl, ∀m ∈ Ai, l ∈ A j, and ∀ j ∈ SD
i (3.12)

In a more general case, Si is divided into multiple sub-regions, with a pixel-wise gray level

difference Cm,l . This difference is defined for a pair of pixels m, l which corresponds to the

same locations in similarity patches Ai, A j respectively.

Ym−Yl =Cm,l +Nm−Nl, ∀m ∈ Ai, l ∈ A j, and ∀ j ∈ SD
i (3.13)
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For this case, the following applies:

∑
m∈Ai, l∈A j

(
Ym−Yl√

2σn

)2

= ∑
m∈Ai, l∈A j

(
Cm,l +Nm−Nl√

2σn

)2

, ∀ j ∈ SD
i (3.14)

The term on the r.h.s. of eqn.(3.11) has a Non-Central Chi-Square distribution with p2

degrees of freedom and a Non-Centrality parameter λ for each pixel j in SD
i :

λ ( j) = ∑
m∈Ai, l∈A j

(
Cm,l√

2σn

)2

, ∀ j ∈ SD
i (3.15)

Finally, the dissimilarity measure in SD
i is characterized by the following first two moments

(assuming Ni is i.i.d and κ = p−2):

∀ j ∈ SD
i :

E
[
d̃U

i ( j)
]
= 1+λ ( j)κ

Var
[
d̃U

i ( j)
]
= 2κ +4λ ( j)κ2

(3.16)

Therefore, the variance of the normalized dissimilarity measure vector of the entire search

region is equal or larger than 2κ . It is important to note that we consider the M2−1 elements

of the dissimilarity vector as a realization of a random sequence of dissimilarity values in a

M×M search region (excluding the POI whose corresponding dissimilarity is zero).

The search region can be divided into two sets on the basis of the aforementioned statistical

analysis. Figure 3.3 illustrates the (theoretical) distribution of the two sets for a selected

value of C. Setting the threshold which distinguishes between the two sets is not an easy

task because practically λ ( j) is unknown. Hence, the distribution parameters of the SD
i set

are unknown. Consequently, we have decided to use a one-sided hypothesis which sets the

threshold based on the characteristics of the SS
i set. This threshold should be sufficiently

robust, such that it will be able to cope with a potential cross-talk between the distributions

of the two sets of pixels. A combined variance-mean threshold on the elements
{

d̃U
i ( j)

}
j∈Si

, like 1+3
√

2κ (corresponding to three STDs from the mean, see eqn. (3.5)), can serve as
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an example for such a threshold. However, this threshold turned out to be less reliable .

Instead, setting a threshold that is based on the accumulated variance of the dissimilarity

elements in Si (refer to ALGORITHM I) turned out to be more robust. This threshold is

set based on a sequential procedure that sorts the normalized dissimilarity elements in an

ascending order and computes the variance of the sorted elements, starting with the two

smallest elements and adding another element in each iteration based on the sorting order.

The stopping criterion is set by comparing the computed variance, in each iteration, to the

model variance threshold (2κ). In a similar manner to the accumulated variance threshold,

an accumulated mean threshold was explored as well. However, experimental simulations

have proven that this threshold is significantly less robust than the variance-based threshold

and provides degraded denoising results.

Figure 3.4 provides a comparison between the three threshold suggestions for a given search

region that is displayed in Figure 3.4 (a). Figure 3.4 (b) presents a dissimilarity histogram

of an 11×11 search region extracted from a synthetic image that contains an edge. The dis-

similarity measure was computed for all pixels in the defined initial search region Si of size

11×11, centered at the POI. It is clear that the dissimilarity measure vector is characterized

by at least two different populations. However, these two populations cross-talk and it is not

an easy task to set the threshold which distinguishes between them. Defining a histogram-

based threshold is not sufficiently robust since it depends on the number of bins assigned to

the histogram. The model-based thresholds are marked on the figure, with the accumulated-

variance threshold marked in red, the accumulated-mean threshold marked in black and the

combined variance-mean threshold marked in green. By exploring the structure of the his-

togram, the red threshold appears to be more suitable than the two other thresholds. Figure

3.4 (c) presents the corresponding adaptive search regions
(
SS

i
)

that are the result of apply-

ing the different thresholds. The search regions are ordered from left to right, such that the

region on the left is the result of the accumulated-variance threshold, the region in the center

is the result of the accumulated-mean threshold, and the region on the right corresponds to
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the combined variance-mean threshold. It is clear the accumulated-variance threshold (left

region) provides the most accurate search region out of the three explored thresholds.

Figure 3.3.: An illustration of the (theoretical) distribution of the SS
i (red) and the SD

i (blue)
sets, for a selected value of C and p = 5. SD

i was assumed to be uniform, such that the
gray level difference was set constant for the SD

i sub-region.
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(a) (b)

(c)

Figure 3.4.: A comparison between three suggested thresholds that satisfy the one-side hy-
pothesis approach. (a) A selected search region from a noisy synthetic image (σn = 20)
that contains an edge. The green pixel (in the center) corresponds to the POI. (b) A
histogram of the normalized dissimilarity vector of the region in (a) (computation is
based on p = 5, M = 11). The red mark corresponds to the accumulated-variance-
based threshold, the black mark corresponds to the accumulated-mean-based threshold,
and the green mark corresponds to a combined variance-mean-based threshold. (c) The
adaptive search regions that correspond to the three explored thresholds. From left to
right: accumulated-variance threshold, accumulated-mean threshold, and the combined
variance-mean threshold.
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The determination of the accumulated variance threshold is described in ALGORITHM I.

This threshold is set based on an iterative procedure that sorts the d̃G
i ( j) elements in an as-

cending order and computes the variance of the sorted elements, such that another element

is added in each iteration based on the sorting order. The stopping criterion is set by com-

paring the computed variance, in each iteration, to the model variance threshold (2κ). Note

that the values of d̃G
i ( j) in a search region Si are considered as a realization of the random

sequence of M2−1 values (|Si|= M2).

It is important to state that the statistical properties presented in eqn. (3.11) are adequate

for random realizations of the normalized dissimilarity measure of the set of similar pixels,

and do not represent the sorted dissimilarities. At the beginning of the accumulation pro-

cess, when a small amount of dissimilarity elements are considered, the estimated mean of

the explored elements is probably smaller than 1, since, in this stage, only the most simi-

lar pixels are considered. Similar observation is made with the estimated variance, that is

smaller at the early accumulation stages and increases as pixels are added. However, as

we approach the variance threshold, the accumulated pixels do satisfy the above-mentioned

statistical characteristics.

ALGORITHM I: SEARCH REGION PIXEL CLASSIFICATION

1. For a given pixel i, calculate the normalized dissimilarity elements, denoted

d̃G
i ( j) ∀ j ∈ Si, j 6= i (see eqn. (3.1)).

2. Sort the normalized dissimilarity elements in an ascending order of values.

3. Compute an accumulated variance of the sorted elements by starting with the first two

elements and adding one element at a time.

4. Stop accumulating elements when the computed variance exceeds T HG = 2κ (see

eqns. (3.9)-(3.11)). The pixels associated with the accumulated dissimilarities define

the SS
i set.

48



The dissimilarity value of the last pixel which participates in the accumulation process that

defines SS
i can serve as a threshold value, denoted T Hd , allowing to define SS

i as follows:

SS
i =

{
j ∈ Si| d̃G

i ( j)≤ T Hd

}
(3.17)

and hence the complementary set SD
i = {Si}\

{
SS

i
}

.

Refer to Figure 3.5 for an illustration of accumulated variance vectors, applied using the

Uniform patch-kernel, obtained for a smooth and for a textured search region. Pay attention

that for the smooth search region, all its respective pixels are included in its SS
i since the

accumulated variance of all these pixels is smaller than 2κ , whereas for the textured search

region only a small fraction of its pixels is included. Hence, each pixel in the image is

associated with its individual SS
i set that defines which pixels will be included in the NLM

averaging process. Moreover, each pixel is associated with a normalized cardinality value,

ri =
|SS

i |
M2 , which is defined as the number of pixels used to denoise it, normalized by the

number of pixels in the original search region, and the image mask of normalized cardinality

is denoted R. In this manner, smooth regions are characterized by a large value (closer to 1),

whereas structural regions are associated with a smaller value (usually smaller than 0.5). A

demonstration of such a matrix can be found in Figure 4.2 (b).
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(a)

(b) (c)

Figure 3.5.: Graphs of accumulated dissimilarity variance for noisy image Lena
(256×256) where the dissimilarities are applied using the Uniform patch-kernel. (a)
Lena with two marked search regions, the red one corresponds to a textured central patch
and the dashed yellow corresponds to a smooth central patch, (b) Accumulated dissimilar-
ity variance for the smooth patch, (c) Accumulated dissimilarity variance for the textured
patch. The red line represents the 2κ value (for p = 5, κ = 0.04). All pixels in Si whose
dissimilarity is smaller or equal to T Hd (see ALGORITHM I) are associated with SS

i .

50



3.4. Variance Threshold Validation

We wish to verify that the model-based variance threshold serves as an appropriate thresh-

old, compared to an empirical one, in terms of PSNR. In Figure 3.6, we compare the de-

noising performance when using an estimated variance threshold to that of the model-based

threshold, as suggested by ALGORITHM I. In our simulations, we explored different thresh-

old values in the range [0.5,1.5] · T HG, where T HG = 2κ (κ is set according to the Box

patch-kernel, see eqn. (3.10)). The results were averaged over ten natural images given a

specific noise level of σn = 10,20,30. The red filled circle on the solid blue curve corre-

sponds to the denoising result using the model-based value, i.e., T HG. It can be seen that the

results that correspond to T HG are located near the global maximum of the simulation curve

for each explored noise level. This implies that the model-based variance threshold, used in

ALGORITHM I, provides a good prediction of the empirical threshold value that results in a

maximal PSNR, on average, in the given denoising scheme.
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(a) (b)

(c)

Figure 3.6.: Results of simulations that explore the model-based denoising results using
various variance thresholds for images corrupted with various noise levels. The red filled
circle on the solid blue curve corresponds to the denoising result using T HG = 2κ , where
κ corresponds to the Box patch-kernel. The following NLM parameters were used: p =
5, M = 11, h = σn. (a) σn = 10, (b) σn = 20, (c) σn = 30.
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3.5. Variance Estimation Error

The accumulated variance of the normalized dissimilarity elements in a given search region

is computed for the sorted elements, by starting with the variance of the two smallest dissim-

ilarity values and adding one element at a time for the variance computation, as indicated in

ALGORITHM I. As mentioned in the previous section, the discussed statistical properties

presented in eqn. (3.11) are adequate for random realizations of the normalized dissimilarity

measure of the set of similar pixels, and do not represent the sorted dissimilarities. Conse-

quently, we refer to the point where the variance threshold is reached, then the dissimilarities

of the accumulated pixels do satisfy the above-mentioned statistical characteristics.

Textured regions or regions that contain an edge are characterized by a small cardinality

of the SS
i set. Consequently, their respective final accumulated variance is computed for a

relatively small number of considered elements, which makes the variance estimation error

larger.

LEMA 3.2 [1]: Let Z1, ...,ZL be a random sample that is distributed N
(
µ,σ2) with un-

known mean and variance. The Sample Mean and Sample Variance are defined respectively

as follows: Z = 1
L ∑

L
l=1 Zl, V̂ = 1

L−1 ∑
L
l=1
(
Zl−Z

)2. V̂ is the Uniformly Minimum Variance

Unbiased (UMVU) Estimator for σ2 and has a Chi-Square distribution, such that

(L−1)V̂
σ2 ∼ χ

2
L−1 (3.18)

Since the Chi-Square distribution with L−1 degrees of freedom has a variance of 2(L−1)

the standard error of estimating σ2 by V 2 is:

σV̂ = σ
2
√

2
L−1

(3.19)

In our case, the normalized dissimilarity measure for a General patch-kernel has a Normal

distribution with µ = 1, σ2 = 2κ (see eqn. (3.11)), as we approach the variance threshold
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(see ALGORITHM I). Consequently, the variance estimation error, under this condition, is a

function of
∣∣SS

i

∣∣ , that is:

σV̂ = 2κ

√
2∣∣SS

i

∣∣−1
(3.20)

Figure 3.6 presents the accumulated variance of sorted normalized dissimilarity elements

for a pixel located on an edge (from the image Lena). It can be easily seen that the error

of UMVU variance estimator is decreased as the number of the considered dissimilarity

elements is increased, making the accumulated variance estimation more robust.

The variance STD presented in eqn.(3.20), or a specific factor of it can be added to the

variance threshold during the accumulation process, such that it becomes:

T HG = 2κ

(
1+ f

√
2

L−1

)
(3.21)

f is a multiplication factor of the STD of the variance estimation error and κ is set according

to the applied patch-kernel (see eqn. (3.10)). Simulations, presented in Figure 3.8, suggest

that the optimal average PSNR is achieved for f = 1. However, this optimal f value has a

minor contribution to the average PSNR (about 0.015 dB) with respect to using f = 0. When

exploring the individual contribution of the utilization of f = 1 to the PSNR of specific

images, we discovered that there is an increase that lies in the range of 0.08-0.14 dB. Since

we wish to find a global f value that is adequate for different types of images, we suggest

to continue here using a threshold value of 2κ (i.e., f = 0), and by that to preserve the

parameter independency of the suggested approach. Figure 3.9 presents a typical histogram

of the normalized cardinality of the adaptive search region, averaged over ten natural images.

It can be seen that above 30% of the pixels are characterized with a relatively large SS
i (most

of the initial search region), hence associated with a small error term, which makes the

selection of f insignificant for these pixels. The other fraction of the pixels are characterized
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with a smaller SS
i , hence associated with a larger value of variance computation error, such

that a value of f that is larger than zero may have a more significant contribution to the

corresponding variance threshold. However, as was explained above, the contribution of a

value of f in the explored range (0-2) to the final PSNR is minor.

In sections 5.4 and 6.1, where consideration is given to the correlation between normalized

dissimilarity elements, the variance threshold is modified, and a different value of f is used.

Figure 3.7.: Accumulated variance of sorted normalized dissimilarity elements for a pixel
located on an edge (from the image Lena with σn = 20, p = 5, M = 11), computed using
the Box patch-kernel. The error bars are added in red on top of the plot, such that the
accumulated variance with the corresponding error STD is constrained to be positive.
It can be seen that the error standard deviation decreases as the number of considered
elements increases. The blue horizontal line corresponds to 2κ (for the Box patch-kernel).
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Figure 3.8.: Exploring the effect of adding a multiplication factor ( f ) of the variance error
STD to the variance threshold. The curve represents averaged denoising results over
ten images with different f values ([0,3] with a stride of 0.2) and different noise levels
([10,30] with a stride of 5). The red vertical lines correspond to variations due to different
noise levels.

56



Figure 3.9.: Histogram of the normalized cardinality of the adaptive search region, accu-
mulated over ten natural images corrupted with noise of σn = 20 . NLM parameters:
f = 0, p = 5, M = 11, h = σn.

3.6. Experimental Results

Two types of performance evaluation were conducted on natural images: an objective evalu-

ation using the common measures of PSNR and SSIM [41] and a visual evaluation based on

the perceived quality by a human observer. The following sub-sections describe the respec-

tive evaluations between the proposed adaptive search region scheme vs. the standard NLM,

NLM with truncated weights and the LPA-ICI [37] method. Moreover, we have conducted

a sanity check that verifies that the model-based variance threshold is indeed the threshold

that provides the maximal PSNR, given the proposed adaptive NLM approach.
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3.6.1. Comparison Between The Proposed Adaptive Search

Region Scheme and Standard NLM

To evaluate the performance of our method, we have used several natural images corrupted

by synthetic Gaussian noise (with σn = 20, 30 ). We compared the adaptive search region

approach applied with either the Uniform or the Box patch-kernels to the standard NLM

algorithm applied with the respective kernels. The same parameters were used for all the

examined methods, i.e., a similarity patch of size 5× 5 (p = 5), a search region of size

11× 11 (M = 11) and h = σn . An objective evaluation that uses the common measures

PSNR and SSIM [41] was conducted. Tables 3.1, 3.2 summarize the quantitative denoising

results (objective evaluation) for different images with different noise levels. From their

analysis, we can conclude that the proposed approach obtains somewhat higher PSNR and

SSIM values than the standard NLM algorithm applied using either the Box or the Uniform

patch-kernels. This tendency is preserved both for textural images (e.g., Baboon) and for

smoother images (e.g., Lena). A visual evaluation based on the perceived quality by a

human observer is presented in Figures 3.10, 3.11. The figures present a zoom-in view

of the images Baboon and Lena and compare the two denoising NLM schemes, adaptive

search region and standard, applied using both the Uniform and the Box patch-kernels.

Figures 3.10 (b), (c) that correspond to the adaptive approach with Uniform and Box patch-

kernels, respectively, are sharper than Figures 3.10 (d), (e) (refer to the eyes and fur) that

corresponds to the Standard scheme with the same kernels. In Figure 3.11, the feathers

and Lena’s eyes appear sharper in the adaptive approach images (3.11 (b)-(c)) compared to

their corresponding standard NLM images (3.11 (d)-(e)). Moreover, the use of the Uniform

patch-kernel in the adaptive approach preserves the smoothness of Lena’s face, as in its

respective standard NLM image.
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Image σn Standard NLM NLM with Adaptive Search Region

PSNR [dB] SSIM PSNR [dB] SSIM
Lena 20 30.11 0.87 30.44 0.88
Lena 30 28.03 0.81 28.34 0.82

Barbara 20 29.11 0.87 29.4 0.88
Barbara 30 26.92 0.8 27.23 0.81
Baboon 20 24.78 0.69 25.36 0.73
Baboon 30 23.53 0.6 23.9 0.64

Table 3.1.: Quantitative comparison between the Standard NLM and the suggested adaptive
NLM, both applied using the Uniform patch-kernel.

Image σn Standard NLM NLM with Adaptive Search Region

PSNR [dB] SSIM PSNR [dB] SSIM
Lena 20 30.27 0.86 30.3 0.87
Lena 30 28.03 0.78 28.08 0.79

Barbara 20 29.19 0.87 29.25 0.87
Barbara 30 26.94 0.79 27.02 0.8
Baboon 20 25.54 0.74 25.73 0.76
Baboon 30 24.04 0.65 24.16 0.67

Table 3.2.: Quantitative comparison between the Standard NLM and the suggested adaptive
NLM, both applied using the Box patch-kernel.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10.: Denoising variations of the image Baboon (204× 204) with σn = 20, p =
5, M = 11, h = σn. A zoom-in view of the eyes and fur. (a) Cropped original image.
(b) Cropped noisy image. (c) Denoised image using Adaptive scheme with a Uniform
patch-kernel. (d) Denoised image using Adaptive scheme with a Box patch-kernel. (e)
Denoised image using Standard NLM with a Uniform patch-kernel. (f) Denoised image
using Standard NLM with a Box patch-kernel.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11.: Denoising variations of the image Lena (256×256) with σn = 20, p= 5, M =
11, h = σn. A zoom-in view of the eyes and hat feathers. (a) Cropped original image.
(b) Cropped noisy image. (c) Denoised image using Adaptive scheme with a Uniform
patch-kernel. (d) Denoised image using Adaptive scheme with a Box patch-kernel. (e)
Denoised image using Standard NLM with a Uniform patch-kernel. (f) Denoised image
using Standard NLM with a Box patch-kernel.
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3.6.2. Comparison Between NLM Applied With The Suggested

Adaptive Search Region and NLM with Truncated Weights

The straight-forward solution for using the most similar pixels in the denoising process is

to use the pixels with the highest weights. In this manner, SS
i will be constructed from the

pixels that are associated with the most significant weights. This solution adds another de-

gree of freedom that is the percentage of the highest weights that are considered. Tables

3.3 and 3.4 compare the adaptive search region scheme to NLM denoising that uses a frac-

tion of the highest weights for the denoising process. Two fraction values were selected:

90% and 95% and explored for each patch-kernel (Uniform and Box). Table 3.3 presents

the comparison for the Uniform patch-kernel and Table 3.4 presents the comparison for the

Box patch-kernel. It can be seen that each patch-kernel has a different characterizing frac-

tion that provides the best denoising results. The optimal fraction value for the Uniform

and the Box patch-kernel denoising are 90% and 95%, respectively . NLM combined with

the adaptive search region scheme provides better results, for any patch-kernel that is being

used, in terms of both PSNR and SSIM than the manually selected fraction of most sig-

nificant weights. The characterizing fraction may be image-dependent while the adaptive

search region scheme is parameter-free and model-based.

Image σn

100% weights 95% weights 90% weights Adaptive Search
Region Scheme

PSNR [dB]/SSIM PSNR [dB]/SSIM PSNR [dB]/SSIM PSNR [dB]/SSIM
Lena 20 30.11/0.87 30.25/0.87 30.34/0.87 30.44/0.88
Lena 30 28.03/0.81 28.16/0.81 28.26/0.81 28.34/0.82

Baboon 20 24.78/0.67 24.97/0.7 25.12/0.72 25.36/0.73

Table 3.3.: Quantitative comparison between the Standard NLM applied with the Uniform
patch-kernel, NLM with selection of a fraction of the most significant weights for each
explored search region, and the suggested adaptive NLM.
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Image σn

100% weights 95% weights 90% weights Adaptive Search
Region Scheme

PSNR [dB]/SSIM PSNR [dB]/SSIM PSNR [dB]/SSIM PSNR [dB]/SSIM
Lena 20 30.27/0.86 30.33/0.86 30.27/0.86 30.3/0.88
Lena 30 28.03/0.78 28.07/0.78 28.02/0.78 28.08/0.82

Baboon 20 25.54/0.67 25.7/0.75 25.36/0.73 25.73/0.75

Table 3.4.: Quantitative comparison between the Standard NLM applied with the Box
patch-kernel, NLM with selection of a fraction of the most significant weights for each
explored search region, and the suggested adaptive NLM.

3.6.3. Comparison Between the Proposed Adaptive Search Region

Scheme and LPA-ICI [37]

Section 3.2 provides a detailed overview of other adaptive NLM approaches that suggest to

use an adaptive search region. This section will focus on the comparison between the Local

Polynomial Approximation-Intersection of Confidence Intervals (LPA-ICI) approach [37]

and our model-based approach. The LPA-ICI technique uses one-dimensional directional

LPA kernels with pre-selected scales for eight directions. The optimal scale is set pixel-

wise, based on the ICI approach, per each direction by computing the correlation between

the POI and its corresponding neighborhood for the explored direction. The resultant search

region is an octagon whose shape is based on the direction-wise spatial support. This method

restricts the search region to be contiguous.

Figure 3.12 presents the resultant adaptive search region of different types of regions for

both our model-based approach and the LPA-ICI approach [37]. For our approach, we used

the following denoising parameters: p = 5, M = 11, h = σn, whereas the LPA-ICI [37]

approach uses the same parameters values except for M = 39. For a fair comparison, we

have also added our adaptive search region for M = 39. It can be clearly observed that for

each explored region, our approach provides a more accurate adaptive search region, such
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that only pixels with similar neighborhoods to that of the POI are included. An adequate

search region assists in improving the denoising performance. The figure refers to three

types of search regions:

• Figure 3.12 (b) presents a search region that contains an edge, but the POI is distant

from the edge center. The respective adaptive search region includes only pixels with

similar neighborhoods to that of the POI, such that the search region contour lies

along the edge. Notice that the resultant region of the LPA-ICI [37] approach is less

accurate.

• Figure 3.12 (c) presents a search region that contains an edge. In this case the POI is

located on the edge and the respective adaptive search region includes pixels located

along the edge as well. The corresponding LPA-ICI [37] region includes pixels that

relate to one side of the edge, but doesn’t necessarily represent the edge itself.

• Figure 3.12 (d) presents a texture region. This example demonstrates one of the ad-

vantages of our approach, which does not restrict the search region to be contiguous,

in contrast to the LPA-ICI method [37].
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(a)

(b) Matches the orange marked region

(c) Matches the red marked region

(d) Matches the cyan marked region

Figure 3.12.: Adaptive search region based on our model-based method and the LPA-ICI
[37] approach. (a) The image Lena with selected search regions. The green dot represents
the POI for of each region, (b) A search region that contains an edge, however the POI is
located far from the edge center, (c) A search region that contains an edge, and the POI is
located on the edge, (d) A search region that contains texture. Figures (b)-(d) are ordered
from left to right: initial search region, model-based search region for M = 11, LPA-ICI
[37] search region for M = 39 and model-based search region for M = 39, marked in red.

65



Chapter 3

3.7. Chapter Summary

In this chapter, we have introduced an Adaptive Model-Based NLM scheme. In this sug-

gested scheme, only pixels whose neighborhood is similar to that of the POI are participating

in the denoising process. The neighborhood similarity is based on the statistical properties of

the dissimilarity measure. These properties classify the initial search region Si into two sets;

SS
i that includes pixels with similar neighborhood to that of the POI, and SD

i that includes

pixels that are not included in the former set. This proposed approach is model-based and

does not restrict the search region to be contiguous, an important quality for textural regions.

By using an adaptive search region, only pixels whose defined neighborhood is similar to

the neighborhood of the POI are selected to participate in the denoising process of the re-

spective POI, and dissimilar pixels are avoided. In this manner, denoising is improved. Our

suggested scheme results in a a more accurate adaptive search region that other common

approaches. Moreover, it provides better denoising results than the standard NLM applied

using either the Box or the Uniform patch-kernels.
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4. Patch Kernel-Type Adaptation

NLM is commonly used with only one type of patch kernel for the dissimilarity measure

computation (see eqn. (2.6)). In our analysis, two patch kernels were explored: the Uniform

patch kernel, which assigns same weights to all the patch pixels, and a Box patch kernel,

which assigns lower weights for distant pixels with respect to the patch center (see Figure

2.1).

Simulations suggest that the Uniform patch kernel is more adequate for smooth regions,

whereas the Box patch kernel is more adequate for texture or edges. This conclusion is

demonstrated in Figure 4.3 (b)-(c). The figure presents the denoising results of the image

Lena with additive Gaussian noise of σn = 20. Figure 4.3 (b), which shows the results of

standard NLM denoising using a Box patch kernel, preserves structure but is characterized

by granularity in smooth regions. Figure 4.3 (c), which presents the denoising results of

the standard NLM with a Uniform patch kernel, reduces the granularity effect, but over-

smoothes texture and edges. Consequently, a combination of these two kernels, based on

local structure, is suggested.

4.1. General Scheme

The information embedded in the matrix R , whose elements are ri =
|SS

i |
M2 (see section 3.3),

can be used to estimate local structure, such that high ri values correspond to smoother
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regions, whose SS
i set is larger. On the other hand, low ri values correspond to edges or

textured region characterized by a small set of SS
i . For the sake of simplicity, i represents a

running index, as if the matrix R is column-stacked.

We suggest to integrate the information embedded in the matrix R in order to assign to

each pixel an adequate patch-kernel that is based on local structure. The suggested scheme,

which is described in ALGORITHM II, requires the determination of two sets of similar

pixels to pixel i: SSU
i , SSB

i . These sets are determined (based on ALGORITHM I) by using

the Uniform and the Box patch kernels, respectively. As a result, two normalized cardinality

matrices RU , RB are created for the noisy image. Their corresponding elements are denoted

rU
i , rB

i . The data in each of these matrices is clustered, using K-Means with K=2, into

two classes with two corresponding centroids. The cluster, denoted Cmax , is associated

with the larger centroid and represents pixels with a larger ri value than the set of pixels,

denoted Cmin , associated with the smaller centroid. Hence, the cluster Cmax contains pixels

that typically relate to a smooth search region, whereas the cluster Cmin contains pixels

that are typically considered structural. We distinguish between the cluster Cmax associated

with the Uniform and the Box patch-kernels, denoted CU
max,CB

max respectively, as well as

the cluster Cmin associated with the Uniform and the Box patch-kernels, denoted CU
min,CB

min

respectively.
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ALGORITHM II: PATCH KERNEL-TYPE ADAPTATION

1. For each pixel i in the noisy image, do the following:

a) Compute the normalized dissimilarity elements using the Uniform patch-kernel,

denoted d̃U
i ( j) , ∀ j ∈ Si, j 6= i (see eqns. (3.1)).

b) Compute the variance of all the elements in the computed set of normalized

dissimilarities. If the variance of all the computed elements is smaller or equal

to T HU = 2κ (see eqns. (3.10),(3.11)), then pixel i is considered “smooth” under

this test. Hence, SSU
i = Si, rU

i = 1 .

c) Otherwise, perform the following:

i. Compute the normalized dissimilarity elements using the Box patch-kernel,

denoted d̃B
i ( j) , ∀ j ∈ Si, j 6= i.

ii. Compute the variance of all the elements in this set. If their variance is

smaller or equal to T HB = 2κ (see eqns. (3.10),(3.11)), then pixel i is con-

sidered “smooth” under this test. Hence, SSB
i = Si, rB

i = 1 .

iii. Otherwise, compute the sets SSU
i , SSB

i using ALGORITHM I and the respec-

tive kernels. Then, compute the corresponding rU
i , rB

i to create the respec-

tive matrices RU , RB.
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2. Cluster the data in each RU , RB into two clusters using K-Means with K=2, such that

each matrix is divided into a set of “smooth” pixels and a set of structured pixels. The

two cluster centroids of each matrix are compared to 0.5, and the following rule is

applied for each pair of centroids:

a) If the values of the two centroids of a given matrix are both larger than 0.5, then

the clusters of the corresponding matrix are joined, associating all the pixels to

the set of "smooth" pixels and the respective "structured" set becomes empty.

b) If the values of the two centroids of a given matrix are both smaller than 0.5, then

the clusters of the corresponding matrix are joined, associating all the pixels to

the set of "structured" pixels and the respective "smooth" set becomes empty.

c) Otherwise, clusters are not joined, and each corresponding matrix has its own

pair of two clusters.

3. For each pixel i , set pixel weights (before normalization) according to the following

rule:

∀ j ∈ SS
i , j 6= i : wi, j =

exp
(
−2d̃U

i ( j)
)

rU
i ∈CU

max and rB
i ∈CB

max

exp
(
−2d̃B

i ( j)
)

Otherwise
, (4.1)

where CU
max, CB

max are the sets associated with the centroids of the larger cluster in

RU , RB matrices, respectively. The POI is assigned a weight that corresponds to the

maximal weight given to any of the pixels included in SS
i (see sub-section 2.5.4).

4. Normalize the computed weights by their sum Wi = ∑ j∈SS
i
wi, j .
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4.2. Simplified Adaptation Scheme

Since the computation of two normalized cardinality matrices is time consuming, we sug-

gest a simplified scheme that is described in ALGORITHM III.

ALGORITHM III: SIMPLIFIED ADAPTATION SCHEME FOR PATCH KERNEL-TYPE ADAP-

TATION

1. For each pixel i in the noisy image, do the following:

a) Compute the variance of all the elements d̃U
i ( j) , ∀ j ∈ Si, j 6= i (see eqn. (3.1)).

If the resultant variance is smaller or equal to T HU = 2κ (see eqns. (3.10),

(3.11)), then pixel i is considered “smooth” and SS
i = Si, ri = 1 .

b) Otherwise, compute the set SS
i using ALGORITHM I and the Uniform patch-

kernel. Then, compute the corresponding ri to create the respective matrix R.

2. Cluster the data in the normalized cardinality matrix R , whose elements are ri, into

two clusters
(
CU

max,C
U
min
)

using K-Means with K=2, such that the cluster CU
max having

the higher centroid value represents the “smooth” pixels, and the cluster CU
min respre-

sents the “structured” pixels. The two cluster centroids are compared to 0.5, and the

following rule is applied:

a) If the two centroids values are both larger than 0.5, then the clusters are joined,

associating all the pixels to the set of "smooth" pixels and the respective "struc-

tured" set becomes empty.

b) If the two centroids values are both smaller than 0.5, then the clusters are joined,

associating all the pixels to the set of "structured" pixels and the respective

"smooth" set becomes empty.

c) Otherwise, the two clusters are not empty, and the matrix R has a pair of clusters.
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d) Compute the dissimilarity elements d̃B
i ( j) , ∀ j ∈ Si for all the pixels i whose ri ∈CU

min.

3. Set pixel weights (before normalization) according to the following rule:

∀ j ∈ SS
i , j 6= i : wi, j =

exp
(
−2d̃U

i ( j)
)

ri ∈CU
max

exp
(
−2d̃B

i ( j)
)

Otherwise
, (4.2)

The POI is assigned a weight that corresponds to the maximal weight given to any of

the pixels included in SS
i (see sub-section 2.5.4).

4. Normalize the computed weights by their sum Wi = ∑ j∈SS
i
wi, j.

This scheme may result in an inconsistent pixel classification into Smooth or Non-Smooth

classes. On average, less than 5% of the pixels in the entire image are affected by this incon-

sistency. It stems from the fact that there are pixels that are considered structural according

to the Uniform patch-kernel scheme, and considered “smooth” according to the Box patch-

kernel scheme. Since the fraction of such pixels is relatively small, the two schemes provide

very similar results. Hence, the less time consuming scheme in ALGORITHM III is rec-

ommended. The computational complexity, with respect to the standard NLM, is of course

reduced when the simplified scheme of ALGORITHM III is being used, since Box-kernel

based dissimilarities are computed for a smaller fraction of pixels in the image. In this man-

ner, ALGORITHM III is characterized by an average increase of 14% of running time with

respect to the standard NLM (applied using either the Uniform or the Box patch-kernel).

Figure 4.1 presents the clustered R matrix for the images Lena and Baboon. The red cluster

corresponds to smooth pixels based on the Uniform kernel, i.e., i ∈ CU
max, the blue cluster

corresponds to pixels that are considered structural according to the two kernels, i.e., CU
min∩

CB
min, and the green cluster corresponds to the pixels that are considered structural according

to the Uniform kernel but not according to the Box kernel, i.e., i∈CU
min∩CB

max. It can be seen

that for both Lena, whose majority of pixels are considered smooth, and Baboon, which is
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characterized by a relatively large amount of structural pixels, the pixels associated with the

green cluster are a clear minority (less than 5%). Moreover, there is no significant difference

in performance in terms of PSNR and SSIM between the two methods (on average 0.01 dB

and 0.001 SSIM difference).

(a) (b)

(c) (d)

Figure 4.1.: Motivation behind the simplified scheme. (a) Baboon (204×204), (b) The
clustered R matrix for the image in (a), (c) Lena (256×256), (d) The clustered R matrix
for the image in (c). The R matrices were created for images corrupted with additive Gaus-
sian noise of σn = 20, based on dissimilarity measures computed using p = 5, M = 11.
The red cluster that corresponds to smooth regions is a result of the pixels i ∈CU

max. The
blue cluster that corresponds to structural regions is a result of the pixels i ∈CU

min∩CB
min .

The green cluster represents less than 5% of the pixels in both images and corresponds to
the pixels i ∈CU

min∩CB
max.

Figure 4.2 (b) displays the normalized cardinality matrix R of the image Lena denoised

using the simplified suggested scheme (i.e., ALGORITHM III). Figure 4.2 (c) displays the
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classified matrix, such that red pixels correspond to smooth regions whose NLM weights

are computed based on the Uniform patch kernel, whereas the blue pixels correspond to

edges or textured regions whose respective NLM weights are computed using the Box patch

kernel.

(a)

(b) (c)

Figure 4.2.: (a) Lena (256× 256), (b) Normalized cardinality matrix ( R ) for noisy im-
age with σn = 20 , (c) Clustered elements of R using K-Means, with K=2. Red pixels
correspond to smooth regions.
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From now on, when we refer to the adaptive NLM scheme, we relate to the scheme that

combines the adaptive search region and the adaptive patch-kernel altogether.

4.3. Experimental Results

Two types of performance evaluation were conducted on natural images: an objective eval-

uation using the common measures of PSNR and SSIM [41] and a visual evaluation based

on the perceived quality by a human observer. The following sub-sections describe the re-

spective evaluations between the two suggested schemes (general vs. simplified) and the

simplified scheme vs. the standard NLM.

4.3.1. Comparison Between the General and the Simplified Kernel

Adaptation Schemes

To verify that the Simplified scheme (ALGORITHM III) is a robust efficient approximation

of the General kernel adaptation scheme (ALGORITHM II), the two schemes were compared

experimentally. For this comparison, several natural images corrupted by synthetic Gaussian

noise (with σn = 20, 30 ) were used with the same NLM parameters, i.e., a similarity patch

of size 5×5 (p = 5), a search region of size 11×11 (M = 11) and h = σn.

Table 4.1 summarizes the quantitative denoising results (objective evaluation) for different

images with different noise levels. It can be seen that the utilization of the Simplified scheme

for the denoising process provides similar results when compared to the results of the Gen-

eral scheme. Besides the quantitative resemblance, the denoised images of both schemes are

quite similar visually. Consequently, this simulation concludes that the Simplified scheme

is a robust alternative to the General scheme. From now on, when we mention the kernel-

type adaptation scheme, we refer to the simplified version. The combined adaptive scheme
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refers to the combination of an adaptive search region with an adaptive kernel-type, that is,

ALGORITHM III.

σn 20 30

Image
General Scheme Simplified Scheme General Scheme Simplified Scheme

PSNR [dB] SSIM PSNR [dB] SSIM PSNR [dB] SSIM PSNR [dB] SSIM
Lena 30.48 0.878 30.49 0.879 28.31 0.815 28.32 0.815

Barbara 29.31 0.874 29.33 0.875 27.15 0.811 27.16 0.811
Peppers 30.54 0.888 30.55 0.888 28.38 0.836 28.39 0.836
Baboon 25.6 0.745 25.62 0.748 23.97 0.64 23.89 0.634
Table 4.1.: Quantitative comparison between the General kernel-type adaptation suggested

scheme (ALGORITHM II) and the its Simplified version (ALGORITHM III).

4.3.2. Comparison Between the Combined Adaptive Scheme and

Standard Non-Local Means

To evaluate the added value of the combined adaptive approach (adaptive search region

and adaptive patch-kernel) to the NLM performance, we have used several natural images

corrupted by synthetic Gaussian noise (with σn = 20, 30 ). We compared our approach to

the standard NLM algorithm applied with both the Box and the Uniform patch-kernels. The

same parameters were used for all the examined methods, i.e., a similarity patch of size 5x5

(p = 5), a search region of size 11x11 (M = 11) and h = σn . As was mentioned in section

3.5, both an objective and a visual evaluation were conducted. Table 4.2 summarizes the

quantitative denoising results (objective evaluation) for different images with different noise

levels. From its analysis, we can conclude that the proposed approach obtains somewhat

higher PSNR and SSIM values than the conventional NLM algorithm for both the Box

and the Uniform patch-kernels. This tendency is preserved both for textural images (e.g.,

Baboon) and for smoother images (e.g., Lena, Pepper). When using only an adaptive search
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region combined with a fixed kernel (see Tables 3.1, 3.2), either the Uniform or the Box

kernels, instead of an adaptive patch-kernel, the PSNR improvement is smaller. Average

improvement based on three selected images with σn = 20 provides an increase of 0.07 dB

and 0.38 dB for using NLM applied using the Box patch-kernel and NLM applied using the

Uniform patch-kernel, respectively, compared to an average increase of 0.15 dB and 0.42

dB when adding the adaptive kernels.

A visual comparison is given in Figure 4.3, which compares the denoised images produced

by the standard NLM (for both the Box and the Uniform patch-kernels) and our proposed

Adaptive NLM, for the image Lena with σn = 20. Figure 4.3 (b), which represents a stan-

dard NLM denoising using a Box patch-kernel, preserves structure but is characterized by

granularity in smooth regions. Figure 4.3 (c), which presents the denoising results of the

standard NLM applied with Uniform patch-kernel, reduces the granularity effect, but over-

smoothes texture and edges. On the other hand, Figure 4.3 (d), which presents the proposed

method, is characterized by both preservation of structural information and reduced gran-

ularity in smooth regions. Moreover, since the proposed approach chooses only similar

pixels from the search region, structures are sharper than in the standard NLM method even

when it uses the Box patch-kernel. In the same manner, Figure 4.4 compares the denoising

performance of the three explored approaches, NLM applied with Box patch-kernel, NLM

applied with Uniform patch-kernel and our model-based approach, for the image Lena with

different noise levels based on the PSNR measure. It can be clearly observed that the sug-

gested model-based NLM method outperforms the standard NLM for any explored noise

level. Although, the PSNR and SSIM differences are not that large, the visual comparison

is highly significant. Appendix A provides additional examples of such a comparison.
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Image σn

NLM with Uniform NLM with Box NLM with
patch-kernel patch-kernel Adaptive TH

PSNR [dB] SSIM PSNR [dB] SSIM PSNR [dB] SSIM
Lena 20 30.11 0.87 30.27 0.86 30.48 0.88
Lena 30 28.03 0.81 28.03 0.78 28.32 0.82

Barbara 20 29.11 0.87 29.19 0.87 29.33 0.88
Baboon 20 24.78 0.69 25.54 0.74 25.62 0.75
Pepper 20 30.28 0.88 30.39 0.87 30.55 0.89
Pepper 30 28.03 0.83 28.06 0.81 28.39 0.84

Table 4.2.: Quantitative comparison between the Standard NLM applied with both the Uni-
form and the Box patch-kernels and the suggested adaptive NLM.
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(a) (b)

(c) (d)

Figure 4.3.: Denoising variations of the image Lena (256x256) with σn = 20, p = 5, M =
11, h = σn. A zoom-in view of the shoulder and face (flat regions) and of the feath-
ers (texture). (a) Noisy image. (b) Denoised image using standard NLM with a Box
patch-kernel. (c) Denoised image using standard NLM with a Uniform patch-kernel. (d)
Denoised image using the Combined Adaptive Scheme (ALGORITHM III).
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Figure 4.4.: A comparison between the three explored NLM approaches, i.e., standard NLM
with either the Uniform patch-kernel or the Box patch-kernel, and our Adaptive approach,
for the image Lena. The comparison is conducted for different noise levels with the
following NLM parameters: p = 5, M = 11, h = σn.

4.3.3. Comparison Between The Adaptive Scheme (Algorithm III)

and The Adaptive Search Region Size Approach [17]

Kervran et. al [17] present a somewhat different approach that uses an adaptive search

region combined with the NLM denoising method. Instead of choosing pixels with similar

neighborhood from a given initial search region of size M×M, they select the most suitable

pixel-wise search region size, out of five potential sizes M = [1,3,5,9,17], in a manner that

it balances the accuracy of approximation and the stochastic error, at each spatial position.
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Their approach restricts the search region to be rectangular, thus contiguous, such that the

optimal pixel-wise search region may include pixels whose neighborhood is different from

that of the POI. This approach of optimal search region size selection (before applying

NLM) is characterized by a computational complexity of O
(

p2G∑m∈[1,3,5,9,17]M2
m
)
, where

p represents the similarity patch size, and G refers to the number of pixels in the image. For

comparison, our proposed approach for adaptive search region selection is characterized by

a computational complexity of O
(

p2GM2). Hence, with M = 11 we obtain a significant

reduction in the number of computations.

We wish to compare our approach to the approach proposed in [17], where both approaches

are combined with the NLM denoising method. Since there is no available implementation

of their respective algorithm, and its implementation by us is beyond the scope of the thesis,

no visual comparison is conducted. Consequently, we compare the two approches in a

quantitative manner, in terms of PSNR. Figure 4.5 presents a comparison with four selected

images at different noise levels σn = [10,25], as reported in [17]. Since the paper results are

reported for p = 9, we have implemented our approach with M = 11 and both p = 5 and

p = 9. Our results represent the average PSNR over five noise realizations for each explored

image. Two main conclusions can be derived from this comparison. The first one is the

fact that the PSNR is improved for our approach when it is applied with p = 9, compared

to p = 5. However, as was explianed in sub-section 2.5.1, increasing the similarity patch

size causes, in some images, hallos around edges. The second conclusion refers to the

fact the different images are characterized by different performance tendency, such that for

the images Lena (a) and House (c), [17] presents better quantitative results, whereas for

the images Barbara (b) and Peppers (d), our proposed apprach is quantitavely somewhat

better. However, as mentioned before, the approach presented in [17] has a much higher

computational complexity.
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(a) (b)

(c) (d)

Figure 4.5.: Comparison between the NLM denoisng results when applied with our pro-
posed adaptive search region approach vs. the adaptive search region size approach [17],
for different noise levels σn = [10,25]. (a) Lena 512× 512, (b) Barbara 512× 512, (c)
House 256×256, (d) Peppers 256×256. The blue line corresponds to the results of the
approach presented in [17], the green circled line corresponds to our proposed approach
applied with p= 5,M = 11, and the red dashed line corresponds to our proposed approach
with p = 9,M = 11.
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4.4. Chapter Summary

In this chapter, we have integrated the adaptive patch-kernel scheme into the adaptive search

region scheme. Consequently, the cardinality of the SS
i set, denoted

∣∣SS
i

∣∣, is exploited to

classify the pixels as “smooth” or “non-smooth”, such that the pixels that are associated

with the “smooth” cluster are characterized with a larger
∣∣SS

i

∣∣ and will be denoised based on

a dissimilarity measure computed using the Uniform kernel. The pixels that are associated

with the other cluster are denoised based on a dissimilarity measure computed using the

Box kernel. The combined approach was compared to the approach that uses an adaptive

search region with a single patch-kernel type, as well as to the standard NLM and was

found to provide better denoising results both quantitatively (PSNR and SSIM-wise) and

qualitatively (visually). Moreover, we have compared our approach to the adaptive search

region size approach [17] in terms of PSNR. The latter is characterized by a much higher

computational complexity and its denoising results are comparable to ours.
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5. Correlation Between Dissimilarities

and Its Effect On The

Model-Based Scheme

The statistical model in the previous chapter was developed under the simplifying assump-

tion that the dissimilarity elements in a given search region Si are not correlated. It is im-

portant to state that researchers, e.g., [31, 38], did not relate to any source of correlation

between the dissimilarity elements and its effect on their statistical properties.

In this chapter we consider the correlation between normalized dissimilarities of patches

in a given search region and its effect on the model-based scheme presented in Chapter 3.

The reason that such a correlation exists is that the dissimilarities of all the patches in a

given search region are computed with respect to the same reference patch. Furthermore,

some patches may overlap each other and/or the mutual reference patch itself, contributing

further to the correlation. To simplify the analysis, we tackle the issue by considering first

the correlation due to the mutual reference patch (Case 1), assuming no patch overlaps.

Then we add the effect of overlap between patches, but not with the reference patch (Case

2), and finally we address the most general case in which overlapping patches may also

overlap the reference patch (Case 3). By arranging the dissimilarities in a vector form, we

express the correlation between the vector elements via its covariance matrix and apply the

results to derive the statistical properties of the empirical (estimated) variance used in the
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proposed model-based denoising scheme.

5.1. Case 1: Correlation Between Dissimilarities of

Patches That Do Not Overlap Each Other, Nor

The Reference Patch

5.1.1. Case Definition

We discuss here the case of non-overlapping similarity patches, as illustrated in Figure 5.1.

In this figure, the reference patch is denoted Ai and the selected compared patches are de-

noted A j,Ak for j,k ∈ Si. The compared patches satisfy the no-overlap criterion, that is:

∀ j 6= k, j, k ∈ SS
i , A j ∩Ak = Ø, A j ∩Ai = Ø, Ak∩Ai = Ø. This means the these patches do

not overlap each other, nor the reference patch.

Figure 5.1.: Scheme of the grid that characterizes Case 1 where patches do not overlap
each other, nor the reference patch. The reference patch Ai is colored in orange and the
compared patches are colored in green (like A j,Ak).

By definition, the normalized dissimilarity of a patch is computed with respect to the ref-

erence patch, thus the reference patch serves as a mutual member that adds a source of
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correlation between dissimilarities of different compared patches. We will compute below

the covariance matrix of the normalized dissimilarity elements arranged in a vector form.

The distribution of each patch dissimilarity remains Chi-Square and can be approximated

by a Normal distribution, as presented in eqn. (3.7). The off-diagonal elements of the re-

spective covariance matrix refer to the cross-variance between the vectorized dissimilarity

elements, and their elaborated analytic development for General and Uniform patch-kernels

can be found in Appendix B.1. Here, we present the notation and the final forms of the

respective covariance matrices.

Notation:

1. The set ΨL
i refers to a sub-set of the search region, ΨL

i ⊆ Si, such that it includes

the global indices of the pixels that are included in the search region and satisfy the

no-overlap constraint, sorted in order of increasing dissimilarity values. L ∈ [2, |Si|]

represents the number of dissimilarity elements that are being explored during the

variance accumulation process (see ALGORITHM I). Hence, for a given L, this sub-

set includes the global indices of the L smallest dissimilarities in Si, out of the patches

that satisfy the non-overlap criterion.

2. The dissimilarity vector that is built from the dissimilarity elements, associated with

Si, is denoted d̃i and its elements are denoted d̃i ( j), where j ∈ Si. When we refer to

the sorted vector elements, arranged by order of increasing dissimilarity values, we

use the notation d̃i
(
ΨL

i (m)
)
, such that the mth element of the sub-set ΨL

i refers to a

global index j ∈ Si, where m ∈ [1,L]. The notation d̃i
(
ΨL

i
)

refers to the vector of

sorted dissimilarity elements. In order to distinguish between the dissimilarity vector

that corresponds to the Uniform and a General patch-kernels, the notations d̃U
i and d̃G

i

are introduced.

Figure 5.2 presents a search region Si of size M = 11. We refer to pixels that are ar-

ranged in a lexicographic order. In this manner, the global pixel indices j1, ..., j8, marked
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in yellow, correspond to pixels whose respective patches (of size p = 5) do not over-

lap each other, nor the reference patch. As an example, and without loss of general-

ity, let’s assume the following relation between patches normalized dissimilarity values:

d̃i ( j2)< d̃i ( j7)< d̃i ( j3)< d̃i ( j1)< d̃i ( j4)< d̃i ( j6)< d̃i ( j8)< d̃i ( j5). In this case, the set

ΨL
i is defined as follows: ΨL

i = { j2, j7, j3, j1, j4, j6, j8, j5}.

Figure 5.2.: A search region Si of size M = 11. The reference patch (of size p = 5) is
marked in red. The similarity patches (of size p = 5) associated with the pixels marked
in yellow do not overlap each other, nor the reference patch.

Based on the new introduced notations, the covariance matrix for a General patch-kernel

and L dissimilarity elements is circulant and obtained in Appendix B.1 as:

Cd̃G
i
= E

[
d̃G

i

(
d̃G

i

)T
]
= κ


2 0.5 .. 0.5

0.5 2 .. 0.5

| | | |

0.5 0.5 .. 2


L×L

(5.1)

where κ = ∑s∈[1,p2]α
2
s (as defined in eqn. (3.9)) and αs refers to the normalized coefficients
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of a General patch-kernel within a similarity patch. Refer to eqn. (3.10) for the respective

values of κ for the Box and the Uniform patch-kernels.

5.1.2. Effect on Statistical Properties of the Estimated Variance

The estimated variance of the normalized dissimilarities, for this case, is affected by the

correlation term that was introduced in the previous sub-section (eqn. (5.1)), and its sta-

tistical analysis is required for setting the accumulated variance threshold, as explained in

ALGORITHM I, presented in Chapter 3.

The sorting process deals with a set of normalized dissimilarity elements of size L, where

L ∈ [2, |Si|]. The set of sorted elements associated with Si can be referred to as a vector d̃i

with elements d̃i
(
ΨL

i (m)
)
, where m ∈ [1,L] and ΨL

i ⊆ Si, according to the notation intro-

duced in sub-section 5.1.1.

The estimated (empirical) unbiased variance of a set of L dissimilarity elements (constitut-

ing d̃i) is defined as:

V̂ =
1

L−1

L

∑
l=1

(
d̃i
(
Ψ

L
i (l)

)
−B
)2

(5.2)

where B = 1
L ∑

L
l=1 d̃i

(
ΨL

i (l)
)

is the estimated mean of the corresponding vector elements,

and as V is a random variable.

Two important points should be emphasized:

• The L elements of the dissimilarity vector are considered here as different realiza-

tions of the same variable, just arranged in vector form, and not as an L-dimensional

variable.

• The statistical properties presented in eqn. (3.11) were derived for random realizations

of normalized dissimilarities of the patches whose central pixel is included in the set
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of similar pixels, denoted SS
i , but not of the sorted dissimilarities. At the beginning of

the accumulation process, the estimated mean of the explored elements is expected to

be smaller than 1, as at this stage, only the most similar pixels are considered and they

are realizations of the lower part of the Gaussian bell. However, as we continue with

this process and approach the variance threshold (T HG = 2κ), the accumulated pixels

do have the above-mentioned statistical characteristics of the unsorted set. Since we

are interested in the threshold crossing point, the analysis of the estimated mean and

the estimated variance that are discussed below refer to the unsorted case.

The distribution of the (unsorted) elements of the dissimilarity vector, for case 1, is (see also

eqns. (3.10), (3.11)):

d̃G
i ( j)∼N (1,2κ) (5.3)

Consequently, the estimated mean B is a Normal random variable, as it is a sum of Normal

random variables. The statistical properties of the estimated mean variable are derived in

Appendix C.1 (eqn. (C.1)) and are as follows:

BG ∼N
(
1, L+3

2L κ
)

(5.4)

As can be seen, the variance of the estimated mean is not decaying to zero for large L values.

This is due to the non-zero correlation between the normalized dissimilarity elements (see

eqn. (5.1)). It matches the result presented in [46] that states that the variance of a mean of

L correlated variables with equal variance (in this case σ2 = 2κ) and correlation coefficient

ρ (in this case ρ = 0.25), is given by: Var
[
BG] = σ2

L + L−1
L ρσ2, which indeed gives eqn.

(5.4).

After establishing the statistical properties of the estimated mean for the threshold crossing

point, we can derive the properties of the estimated variance.
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The estimated variance is not distributed Chi-Square since the dissimilarity elements are

correlated. Therefore, we do not know its distribution type, but can derive its mean and

variance (see Appendix C.1, eqn. (C.8)) for the threshold crossing point (considering the

statistical properties of the estimated mean, as given in eqn. (5.4)):

E
[
V̂ G]= 3

2κ

Var
[
V̂ G]= 9

2κ2 1
L−1

(5.5)

The correlation, in this case, causes a decrease of the mean of the estimated variance, as

expected. Its value decreases from 2κ (eqn. (3.11)) to 1.5κ .

5.2. Case 2: Correlation Between Dissimilarities of

Patches That Overlap Each Other, But Not The

Reference Patch

5.2.1. Case Definition

We discuss here the case of similarity patches that overlap each other, but not the reference

patch, as illustrated in Figure 5.3. In Figure 5.3 (a), the selected compared patches A j, Ak

for j,k ∈ Si overlap each other, such that the following overlap criterion is satisfied: ∀ j 6= k,

j, k ∈ SS
i , A j ∩Ak 6= Ø, A j ∩Ai = Ø, Ak ∩Ai = Ø. Figure 5.3 (b) illustrates which pixels,

whose patches (of size p = 5) do not overlap the reference patch, can participate in the

denoising procedure of pixel i, given the overlap constraint and a search region of size

M = 11. Consequently, the sub-set ΨL
i can include only the indices of the pixels marked in

yellow.

As in Case 1, the reference patch Ai serves as a mutual member in the dissimilarity between

it and the compared patches, thus inducing correlation between the corresponding dissimi-
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(a) (b)

Figure 5.3.: (a) Scheme of the grid that characterizes Case 2 where patches can overlap
each other, but not the reference patch. The reference patch Ai is colored in orange and
the compared patches are colored in green (like A j, Ak). (b) A search region Si of size
M = 11. The reference patch (of size p = 5) is marked in red. The yellow pixels are those
whose similarity patches (of size p = 5) overlap each other, but not the reference patch.
Pay attention that (a) refers to a patch-based grid, whereas (b) refers to a pixel-based grid.

larity elements. In this case, however, there is yet another source of correlation that stems

from patches overlap. The covariance matrix is computed for the dissimilarity elements that

are arranged in a vector form. The distribution of the patch dissimilarity elements remains

Chi-Square and can be approximated by a Normal distribution, as presented in eqn. (3.7).

The off-diagonal elements of the respective covariance matrix refer to the cross-variance

between the vectorized dissimilarity elements. A detailed analytic development for General

and Uniform patch-kernels can be found in Appendix B.2. Here, we present the final forms

of the respective covariance matrices.

The covariance matrix for a General patch-kernel is shown in Appendix B.2 (eqn. (B.6)), to
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be:

Cd̃G
i
= E

[
d̃G

i
(
d̃G

i
)T
]
= κ


2 0.5 .. 0.5

0.5 2 .. 0.5

| | | |

0.5 0.5 .. 2

+0.5O

where,

O =



0 ... ∑m∈O
ΨL

i (1),Ψ
L
i (L)

αA
ΨL

i (1)
(m)αA

ΨL
i (L)

(m)

∑m∈O
ΨL

i (1),Ψ
L
i (2)

αA
ΨL

i (1)
(m)αA

ΨL
i (2)

(m) ... |

| .. |

∑m∈O
ΨL

i (L),Ψ
L
i (1)

αA
ΨL

i (L)
(m)αA

ΨL
i (1)

(m) .. 0


(5.6)

O is a matrix obtained due to patches overlap and whose diagonal elements are all zero.

The off-diagonal elements of the matrix O refers the the region of overlap between com-

pared patches. For example, the notation O
ΨL

i (1),Ψ
L
i (2)

=
{

t | t ∈ A
ΨL

i (1)
∩A

ΨL
i (2)

}
refers to

the global indices that represent the region of overlap between the patch that corresponds

to the smallest dissimilarity and the one that corresponds to the next smallest dissimilarity

and satisfy the overlap criterion. Moreover, the notation A
ΨL

i (m) (t) represents the local in-

dex of the similarity patch centered at ΨL
i (m) that corresponds to the global index t. Each

off-diagonal element represents the sum of coefficient multiplication in the region of patch

overlap, as illustrated in Figure 5.4. This figure presents two compared patches, of size

5× 5, A
ΨL

i (m),AΨL
i (s)

, m,s ∈
[
1,M2−1

]
whose region of overlap includes four pixels. The

corresponding sum of coefficient multiplication is based on the local indices of the respec-

tive coefficients, as follows: α19α1 +α20α2 +α24α6 +α25α7.
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Figure 5.4.: An illustration of the overlap region between two compared patches with p= 5,
and the local indices related to the region of overlap, marked in yellow. Each pixel in the
region of overlap is characterized with two local indices. The left index is associated with
the patch A

ΨL
i (m) and the right index is associated with the patch A

ΨL
i (s)

.

The covariance matrix that corresponds to the Uniform patch kernel has a simpler form of

the matrix O, shown in Appendix B.2, eqn. (B.7), and given by assigning κ = p−2:

O = κ2


0 ...

∣∣∣OΨL
i (1),Ψ

L
i (L)

∣∣∣∣∣∣OΨL
i (2),Ψ

L
i (1)

∣∣∣ ... |

| .. |∣∣∣OΨL
i (L),Ψ

L
i (1)

∣∣∣ .. 0

 (5.7)

5.2.2. Effect on Statistical Properties of the Estimated Variance

We remind the reader that the statistical properties of the elements of the normalized dis-

similarity vector, for this case, are similar to Case 1, as indicated in eqn. (5.3).

In this case, compared patches may overlap each other, but not the reference patch. This

overlap adds another source of correlation between the dissimilarity vector elements, as

93



Chapter 5

described in detail in Appendix B.2. This correlation, together with the correlation described

in Case 1, modify the statistical properties of the estimated mean and estimated variance.

The statistical properties of the estimated mean variable, at the threshold crossover point, are

analyzed in appendix C.2 for the General (eqn. (C.9)) and the Uniform (eqn. (C.10)) patch-

kernels. For simplicity, we present here the final form for only the Uniform patch-kernel,

that is given by (κ = p−2):

BU ∼N
(

1, L+3
2L κ + κ2

2L(L−1) ∑
L
l=1 ∑

L
k=1,k 6=l

∣∣∣OΨL
i (l),Ψ

L
i (k)

∣∣∣) (5.8)

where ΨL
i ⊆ Si is a sub-set of the search region Si that consists of the pixel global indices j ∈

Si that corresponds to sorted dissimilarity values, i.e., the L smallest dissimilarities values,

under the consideration of the overlap criterion between patches A j, Ak, presented in sub-

section 5.1.2.

The mean of the estimated variance, for a General patch-kernel, is developed in Appendix

C.2 (eqn. (C.12)). Here, we present the simplified form that characterizes the Uniform

patch-kernel (eqn. C.3) and is based on assigning κ = p−2:

E
[
V̂U]= 3

2κ− κ2

2L(L−1) ∑
L
l=1 ∑

L
k=1,k 6=l

∣∣∣OΨL
i (l),Ψ

L
i (k)

∣∣∣ (5.9)

The variance of the estimated variance, in this case, involves a complicated development due

to the complicated form of the covariance matrix (see eqn. (5.6)). In Case 1 the correspond-

ing covariance matrix is circulant and a we could diagonalize it by applying a whitening

transform, as explained in Appendix C.1. Then, we were able to use the transform domain,

where the dissimilarities are not correlated, in order to compute the variance of the esti-

mated variance. In the current case, applying a whitening transform creates complicated

terms, whose analysis in not trivial due to the addition of the overlap terms. Further discus-

sion can be found in Appendix C.2.
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It can be seen from eqn. (5.9) that the correlation term due to the overlap between the patches

themselves causes a decrease in the mean of the estimated variance, compared to its mean

in Case 1 (i.e., 1.5κ). This decrease, however, is relatively small since it is proportional to

κ2, where κ � 1 , even for just p = 5 that we use. Moreover, this overlap term has to be

computed for each explored sub-set in each search region, which makes the computation

impractical.

5.3. Case 3: Correlation Between Dissimilarities of

Patches That Overlap Each Other And The

Reference Patch

5.3.1. Case Definition

We finally discuss the most general case of similarity patches that overlap each other as

well as the reference patch, as illustrated in Figure 5.5. In this figure, the selected com-

pared patches A j, Ak for j,k ∈ Si overlap each other, and each one of them also overlaps the

reference patch Ai, satisfying the following overlap criterion: ∀ j 6= k, j, k ∈ SS
i , A j ∩Ak 6=

Ø, A j∩Ai 6= Ø, Ak∩Ai 6= Ø.
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Figure 5.5.: Scheme of the grid that characterizes Case 3 where patches can overlap each
other and the reference patch. The reference patch Ai is colored in orange and the Com-
pared patches are colored in green (like A j,Ak).

Here we get an additional source of correlation, as compared to the two previous cases,

which is the overlap of the compared patches with the reference patch. The covariance

matrix is computed for the dissimilarity elements that are arranged in a vector form. The off-

diagonal elements of the respective covariance matrix refer to the cross-variance between

the vectorized dissimilarity elements, and their elaborated analytic development for General

and Uniform patch-kernels can be found in Appendix B.3. We present here the final forms

of the respective covariance matrices.

The diagonal elements of the covariance matrix refer to the variance of each dissimilarity

element. In this case, the distribution of patch dissimilarity is not Chi-Square anymore

because not all the elements in the summation defining it (see eqn. (3.1)) are independent,

in contrast to what was assumed by Buades et al. [4] and Thacker at. al [38]. The mean

and variance of the dissimilarity for a General patch-kernel are analyzed in Appendix B.3,

resulting in:

E
[
d̃G

i ( j)
]
= 1, Var

[
d̃G

i ( j)
]
= 2κ + ∑

f∈Oi, j

α
2
Ai( f )α

2
A j( f ) (5.10)
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where Oi, j =
{

m |m ∈ Ai∩A j
}

is the set of pixels associated with the overlap between the

similarity patch A j and the reference patch Ai and the cardinality of the set is denoted
∣∣Oi, j

∣∣.
The notation αAi( f ) refers to the local index that corresponds to the global index f of the

similarity patch Ai.

The corresponding statistics for the Uniform patch-kernel are obtained by assigning αs =

p−2, ∀s ∈
[
1, p2], hence κ = p−2 :

E
[
d̃U

i ( j)
]
= 1, Var

[
d̃U

i ( j)
]
= 2κ +

∣∣Oi, j
∣∣κ2 (5.11)

As mentioned earlier, the cross-variance between the dissimilarity elements is also devel-

oped in Appendix B.3, for both General and Uniform patch-kernels. The cross-variance

terms for the General kernel have complicated expressions and are shown only in the Ap-

pendix. For the Uniform kernel (κ = p−2), the expression for the cross-variance between

dissimilarity elements j,k ∈ SS
i is simpler and is given by:

Cov
[
d̃U

i ( j) , d̃U
i (k)

]
= 0.5κ+0.5κ

2 (∣∣Oi, j
∣∣+ ∣∣Oi,k

∣∣+ ∣∣O j,k
∣∣)+

κ2
∣∣Oi, j

∣∣ i f
∣∣Oi, j

∣∣= ∣∣Oi,k
∣∣

0 Otherwise

(5.12)

5.3.2. Effect on Statistical Properties of the Estimated Variance

We remind the reader that unlike the former two cases, the statistical properties of the el-

ements of the normalized dissimilarity vector for this case are not distributed Chi-Square,

and their mean and variance are introduced in eqn. (5.10) for the General patch-kernel and

eqn. (5.11) for the Uniform patch-kernel.

In this case, compared patches may overlap each other, as well as the reference patch. This

overlap adds yet another source of correlation between the dissimilarity vector elements, as
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described in detail in Appendix B.3. This correlation, together with the correlation described

in Case 1, modify the statistical properties of the estimated mean and estimated variance.

In contrast to the two other explored cases, the estimated mean, in this case, is not a normal

random variable since the dissimilarity elements are not distributed normally. Hence, we

derive some of its statistical properties, but not its distribution type. The statistical properties

of the estimated mean variable, at the threshold crossover point, are analyzed in appendix

C.3 for the General patch-kernel (eqn. (C.14)) and the Uniform patch-kernel (eqn. (C.15)).

For simplicity, we present here only the final form for a Uniform patch-kernel, that is given

as follows:

E
[
BU]= 1

Var
[
BU]= L+3

2L κ + κ2

L2 ∑
L
l=1

∣∣∣Oi,ΨL
i (l)

∣∣∣+
+ 1

2L2 p4 ∑
L
l=1 ∑

L
k=1,k 6= j

(∣∣∣Oi,ΨL
i (l)

∣∣∣+ ∣∣∣Oi,ΨL
i (k)

∣∣∣+ ∣∣∣OΨL
i (l),Ψ

L
i (k)

∣∣∣)
+ 1

L2 p4 ∑
L
l=1 ∑

L
k=1,k 6= j

(
1
(∣∣∣Oi,ΨL

i (l)

∣∣∣= ∣∣∣Oi,kΨL
i (k)

∣∣∣)∣∣∣Oi,ΨL
i (l)

∣∣∣)
(5.13)

where ΨL
i ⊆ Si is a sub-set of the search region Si that consists of the pixel global indices j ∈

Si that corresponds to sorted dissimilarity values, i.e., the L smallest dissimilarities values,

under the consideration of the overlap criterion between compared patches and the overlap

with the reference patch. The notation Oi,ΨL
i (k)

, k ∈ [1,L] corresponds to the set of global

indices in the overlap region between the reference patch Ai and the patch A
ΨL

i (k)
,i.e., the

patch that is associated to the kth dissimilarity element in the sorted vector d̃G
i
(
ΨL

i
)
. The

notation 1(·) refers to the Indicator function.

The mean of the estimated variance is developed in Appendix C.3 for a General patch-kernel

(eqn. (C.16)) as well as for the Uniform patch-kernel (eqn. (C.17)). Here, we present the
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final much simpler form that corresponds to the Uniform patch-kernel, that is given by:

E
[
V̂U]= 3

2κ + κ2

L ∑
L
l=1

∣∣∣Oi,ΨL
i (l)

∣∣∣−
− κ2

2L(L−1) ∑
L
l=1 ∑

L
k=1,k 6=l

[∣∣∣Oi,ΨL
i (l)

∣∣∣+ ∣∣∣Oi,ΨL
i (k)

∣∣∣+ ∣∣∣OΨL
i (l),Ψ

L
i (k)

∣∣∣]
− κ2

L(L−1) ∑
L
l=1 ∑

L
k=1,k 6=l

[
1
(∣∣∣Oi,ΨL

i (l)

∣∣∣= ∣∣∣Oi,ΨL
i (k)

∣∣∣)∣∣∣Oi,ΨL
i (l)

∣∣∣]
(5.14)

The variance of the estimated variance, in this case, involves a complicated development

due to the complicated form of the cross-covariance terms (see Appendix B.3, eqns. (B.9),

(B.10)). Similarly to Case 2, applying a whitening transform to the covariance matrix,

in order to compute the variance in a domain where the dissimilarities are not correlated,

results in non-trivial analysis, as explained in Appendix C.3.

Here too, the correlation term due to the overlap of the patches with each other and/or the

reference patch, causes just a small change in the mean of the estimated variance, compared

to Case 1 (i.e., 1.5κ). This change is relatively small because it is proportional to κ2, where

κ � 1, even for just p = 5. As for the former case, these terms have to be computed for

each explored sub-set in each search region, making the computation impractical.

5.4. Effect of Correlation on The Model-Based Scheme

The model introduced in Chapters 3,4 does not consider the correlation between the dis-

similarity elements in a given search region Si. The correlation analysis, presented above,

provides us with a more accurate variance estimator compared to the one used in ALGO-

RITHM III, introduced in Chapter 4.

In the previous sections of this chapter, we analyzed the statistical characteristics of the

estimated mean and estimated variance of the normalized dissimilarity elements at the vari-

ance threshold crossover point, considering three sources of correlation. As was explained

for cases 2 and 3, which consider overlaps both between patches and/or with the reference
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patch, the computation of the respective mean of the estimated variance for each explored

search region is impractical, and the overlap terms have anyway a minor contribution to

the estimated variance mean that was obtained for Case 1 (i.e., 1.5κ), which relates only to

correlation due to the mutual reference patch.

Thus, instead of using the threshold value in eqn. (3.21), which assumes no correlation, we

use here a threshold value that is based on eqn. (5.5):

T HG = E
[
V̂ G]+ f ·ST D

[
V̂ G]= 3

2κ

(
1+ f

√
2

L−1

)
(5.15)

The factor f is a parameter that is selected empirically, as was done in Chapter 3, for the

model that does not consider any correlation between dissimilarities. Its selection for the

model that does consider correlation is discussed in the following chapter.

An attempt to enforce a situation where the only source of correlation would be the mutual

reference patch, so we would have closed form simple expressions for the expectation and

the variance of the estimated variance (as in Case 1), is not efficient for denoising because it

requires increasing much the search region size (M2) in order to get a sufficient number of

patches in the denoising process of each pixel. We assume that a natural image is stationary

within a given search region, and increasing its size may violate this assumption.

5.5. Chapter Summary

In this chapter we analyzed three sources of correlation between normalized dissimilarities,

resulting from the comparison to the same reference patch Ai and the overlap between com-

pared patches and possibly also with the reference patch. These sources of correlation are

analyzed in an ascending order of complexity. The simplest case (Case 1) refers only to the

correlation due to the mutual reference patch and is characterized by a circulant covariance

matrix, whose unique structure was beneficial for the analysis of the variance of the esti-
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mated variance for this case, as explained in Appendix C.1. The other two cases (Case 2,

Case 3) are characterized by a more complicated form of a covariance matrix, due to the

overlap between the compared patches and the overlap of a given patch with the reference

patch. These three sources of correlation were not discussed before by other researchers in

the field that explored the statistical properties of the NLM dissimilarity measure.

Moreover, based on the analysis of the covariance matrices for the three sources of cor-

relation, we were able to derive statistical properties of the estimated mean and estimated

variance at the variance threshold crossover point. For cases 2 and 3, the mean of the es-

timated variance depends also on the degree of overlap between the explored patches and

the overlap with the reference patch. Consequently, these cases yield complicated terms.

However, these terms are relatively small as they are proportional to κ2, where κ� 1, even

for just p = 5 that we use. Thus, their contribution to the mean of the estimated variance is

minor compared to the value obtained in Case 1.

Finally, we use the correlation-dependent estimate of the estimated variance to set the

threshold value in ALGORITHM III. The performance of the modified scheme, denoted the

Correlation-Dependent Model-Based scheme, and its comparison to the original scheme of

ALGORITHM III are discussed in the following chapter.
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6. Performance of The

Correlation-Dependent

Model-Based Scheme

This chapter discusses the performance of the Correlation-Dependent Model-Based scheme,

introduced in section 5.4, and compares it to the model-based scheme of ALGORITHM III,

presented in Chapter 4. The difference between the two schemes is based on the effect of

the correlation between the dissimilarities, within a given search region, on the estimated

variance. As expected, the correlation causes a decrease in the variance between the corre-

sponding elements, reducing it from 2κ (eqn. (3,11) to1.5κ (eqn. (5.5)). As suggested in

Chapter 3 (section 3.5) for the original model-based scheme, and in Chapter 5 (section 5.4)

for the correlation-dependent model-based scheme, the variance threshold is modified by

adding a variance error correction term whose added value is discussed in this chapter. Fi-

nally, since the normalization of the dissimilarities assumes a prior knowledge of σn, which

typically needs to be estimated, we refer at the end of the chapter to the sensitivity of the

two adaptive schemes and the standard NLM to an error in the noise variance estimation.
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6.1. Setting the Factor f

The factor f implies on the deviation of the threshold value from the mean of the estimated

variance, according to the correlation-based model (see eqn. (5.15)), aiming to improve de-

noising performance. It is selected empirically with PSNR being the optimization measure.

As in section 3.5, for the model that does not consider correlations, the simulations were

performed using ten selected natural images, with additive Gaussian white noise at various

levels, and exploring the denoising of each noisy image using different f values. The noise

levels were σn = [10,35] with a stride of 5, and the explored f values were f = [0,3] with a

stride of 0.2. The denoising results were averaged over all images and noise levels. Figure

6.1 presents the average PSNR as a function of f , with error bars, marked in red, indicating

the variance over different noise levels for each examined f value . The global maximum

is obtained for f = 2. Without considering the error STD (error bars), it can be seen that

using an f value that is different from zero can improve the denoising results by 0.06 dB,

on average, whereas for the no-correaltion threshold (section 3.5), using an f value that is

larger than zero ( f = 1) improved the denoising performance by only 0.01 dB, on aver-

age. When exploring the individual contribution of the utilization of f = 2 to the PSNR of

specific images, we discovered that there is a maximal increase of 0.2 dB, which is more

significant than the case of no-correlation, where the maximal increase (for f = 1) was 0.14

dB. Consequently, we suggest to continue here with f = 2.
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Figure 6.1.: f optimization curve

6.2. Performance Comparison of Denoising Schemes

The performance of the scheme presented in ALGORITHM III, with no correlation consider-

ation, was compared to the scheme that considers correlation and introduced in section 5.4.

Moreover, this latter scheme was also compared to the standard NLM applied using Uniform

and Box patch-kernels. The denoising parameters that were used for the comparison are:

p = 5, M = 11, h = σn, f = 2 for the correlation scheme and f = 0 for the no-correlation

scheme. The following table presents the comparison results for different selected images

and various noise levels. As was shown before (Chapter 4), ALGORITHM III without corre-

lation consideration, is characterized with better denoising results, compared to the Standard

NLM, both visually, PSNR-wise and SSIM-wise. The Correlation-Dependent Model-Based

scheme is slightly better than its simplified version, mainly PSNR-wise. The PSNR differ-

ence, for the images and noise conditions presented in the table, is maximum 0.04 dB, and

is not noticeable visually.
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Image σn

NLM w. Uniform NLM w. Box ALGORITHM III Correlation-Based
ALGORITHM III

PSNR [dB]/SSIM PSNR [dB]/SSIM PSNR [dB]/SSIM PSNR [dB]/SSIM
Lena 20 30.11/0.87 30.25/0.87 30.48/0.88 30.51/0.88

Baboon 20 24.78/0.69 25.54/0.74 25.62/0.75 25.64/0.75
Barbara 30 26.92/0.8 26.94/0.8 27.16/0.81 27.18/0.81
Pirate 15 30.55/0.84 31.02/0.85 31.08/0.85 31.12/0.85

Table 6.1.: Quantitative comparison between the Standard NLM applied with Uniform and
Box patch-kernels, the basic model-based NLM (ALGORITHM III without correlation
consideration) with f = 0 and the correlation-dependent model-based NLM with f = 2
(ALGORITHM III with correlation consideration).

Figure 6.2 presents a performance comparison between the two model-based schemes as

function of noise level. The displayed curves are the result of averaging over ten ex-

plored natural images. As observed from the results presented in Table 6.1, the Correlation-

Dependent scheme is only slightly better, PSNR-wise, than the basic model-based scheme.

It is more pronounced for low noise levels.

Figure 6.2.: Comparison between the two model-based NLM schemes: the blue curve refers
to ALGORITHM III with correlation consideration, whereas the dashed red curve refers
to ALGORITHM III without correlation consideration.
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6.3. Sensitivity to Noise Level

In real scenarios, the noise level is an unknown parameter that has to be estimated. The

estimation algorithm is beyond our scope, as there are quite a few suggested approaches

in the literature (e.g., [8, 24] ). We tested the sensitivity of our model-based approach and

compared it to the sensitivity of the standard NLM. The objective of such an examination is

to explore the quality of denoising when noise level estimation is not accurate. Figure 6.3

presents the sensitivity of four compared NLM approaches: standard NLM applied using the

Box patch-kernel, standard NLM applied using the Uniform patch-kernel, Modified model-

based NLM (with correlation consideration) with f = 2, and Basic model-based NLM (no

correlation consideration). The sensitivity is measured for two selected noise levels σn =

20, 30 and the explored range of deviation for a given noise level is [0.8σn,1.2σn], where

PSNR is the performance measure. The results were averaged over five natural images. The

displayed curves refer to normalized PSNR differences between the PSNR obtained for an

estimated noise level and PSNR obtained for the true noise level. The normalizing value

was the PSNR obtained for the true noise level (PSNRTrue). The NLM parameters that were

used are p = 5, M = 11, h = σn.

From the above comparison, one can observe that the standard NLM applied using the Box

patch-kernel (solid blue curve) is somewhat less sensitive than the two adaptive approaches

(black curves with circles for the correlation-dependent scheme and red curve with dots for

the basic model-based scheme). As for the two model-based approaches, the sensitivity

of the Correlation-Dependent model-based scheme is slightly lower than that of the Basic

model-based scheme, when the estimated noise level is lower than the true level. The sensi-

tivity tendency reverts when the estimated noise level is higher than the true level. The stan-

dard NLM applied using the Uniform patch-kernel (dashed green curve) is the most sensitive

both when estimated noise level is lower and higher than the true noise level. Moreover, the

PSNR increases when the noise level is underestimated, implying that a smaller value of the
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smoothing parameter h (that is proportional to the noise level) should have been used when

NLM is applied with the Uniform patch-kernel, to this particular set of noisy images.

Suggested noise level estimation approaches (e.g., [8]) are characterized by an estimation

error of approximately 10%. A recently suggested approach by Liu et al. [24] is charac-

terized by smaller estimation errors, of less then 2%. It can therefore be assumed that the

performance sensitivity to noise level estimation errors up to 10%, for the four examined

approaches, is comparable, with a change in PSNR of at most 0.5%.
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(a)

(b)

Figure 6.3.: Simulations that explore the performance sensitivity (in PSNR) to noise level
estimation error at two different noise levels. The solid blue curve corresponds to Stan-
dard NLM applied using the Box kernel, the dashed green curve corresponds to Stan-
dard NLM applied using the Uniform kernel, the red curve with dots corresponds to the
model-based approach without correlation consideration and f = 0, and the black curve
with circles corresponds to the model-based approach with correlation consideration and
f = 2. (a) σn = 20, (b) σn = 30.
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6.4. Chapter Summary

This chapter explores the performance of the modified model-based approach, i.e., AL-

GORITHM III with correlation consideration and compares it to the basic model-based ap-

proach, i.e., ALGORITHM III without correlation consideration, and to the standard NLM

approach. Simulations show that the modified approach is visually comparable and is

slightly better PSNR-wise than the basic scheme, which does not consider any source of

correlation. Both approaches are better, mainly visually, than the standard NLM method,

applied using either the Box or the Uniform patch-kernels.

We also explored the sensitivity to noise level estimation error of the two proposed model-

based approaches and compared it to the sensitivity of the standard NLM. Within the range

of the common estimation error (approximately 1-10%), all explored methods are compara-

ble in their sensitivity, and the effect on PSNR is limited to 0.5%.
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7. Block Matching 3D (BM3D)

Combined with The Model-Based

Scheme

BM3D [9] is considered to be the state-of-the-art denoising approach that achieves the best

performance over other reported image denoising algorithms, however it is computationally

expensive and requires multiple parameters setting. We suggest to integrate our model-

based approach that defines an adaptive search region for each pixel in the image, with

the BM3D denoising method. By introducing our model-based adaptive search region in

one of the stages of the BM3D approach, we avoid the need for parameter calibration and

save computations. We compare the denoising performances of the original BM3D and the

BM3D combined with our model-based approach and show that they are comparable.

7.1. Brief Description of The BM3D Algorithm

BM3D is based on the fact that an image has a locally sparse representation in a given trans-

form domain (e.g., Bi-orthogonal wavelet transform, DCT, Haar). This sparsity is enhanced

by grouping similar 2D image patches into 3D groups. The grouping and filtering procedure

are named Collaborative Filtering.
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The basic BM3D algorithm assumes a Gaussian additive noise, using the noise model pre-

sented in eqn. (2.1). In general, the algorithm includes two main consecutive phases that

consist of similar stages applied on different inputs, as presented in Figure 7.1. These stages

are reviewed later on. The first phase receives as input the noisy image and estimates the

noise-free image using a hard thresholding operator. This estimate is referred to as the

Basic Estimate. The second phase is based both on the noisy image and on the basic esti-

mate obtained in the first phase, and applies Wiener filtering. A detailed explanation of the

stages of each phase can be found in Appendix D. Here, we present an overview of the main

operations that characterize each of the two phases:

1. Grouping - Finding the image patches similar to a given reference patch, marked as

R in Figure 7.1 (blue R refers to the noisy reference patch and red R refers to the basic

estimate reference patch). The search for similar patches is limited to a defined search

region, centered at the POI. Each phase uses a different patch similarity measure,

where Phase 1 dissimilarity is measured in the transform domain (after coefficients

shrinkage, applied using a hard thresholding operator) and Phase 2 dissimilarity is

measured in image domain. Once the similar patches have been found, they are ar-

ranged in a 3D block, named a group. Phase 1 grouping is based on the noisy patches,

whereas Phase 2 grouping is based on the denoised patches that were obtained in

Phase 1. Phase 2 includes another group that is based on the noisy patches whose lo-

cations are extracted from the basic estimate grouping. The explored patches in each

group may overlap, and each patch may be associated with different groups. Con-

sequently, each pixel may be associated with different groups and different patches.

Moreover, groups may differ in their cardinality.

2. Collaborative Filtering - A 3D isometric linear transform is applied to each group,

followed by a shrinkage [9] of the transform spectrum. Phase 1 shrinkage is applied

using a hard thresholding operator, whereas the shrinkage in Phase 2 is applied by

Wiener filtering. Finally, an inverse linear transform is applied to estimate each patch
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in the 3D group. This stage is described in Figure 7.1 as four consecutive steps: 3D

transform, hard-thresholding for Phase1 and wiener filtering for Phase 2, inverse 3D

transform, and finally block-wise estimates.

3. Aggregation - Since each pixel may be associated with different patches and different

groups, it may posses several estimates. In this stage, all the estimates of a given pixel

are aggregated using a weighted average, where each phase has its own weighting

scheme.

Figure 7.1.: Scheme of the BM3D algorithm [9]

7.2. Model-Based Block Matching

First phase grouping is applied in transform domain, i.e., the dissimilarity between patches

of a defined search region Si is computed using the transformed patches. Then, a hard-

thresholding operator is applied, such that only the most similar transformed patches are

selected to be associated with the corresponding group. We suggest a more efficient method

to create a group of similar patches in the first phase (Basic Estimate) of the BM3D algo-

rithm. This method relies on the model-based NLM approach, which is used to define a set

of pixels whose neighborhood is similar to a neighborhood of a given reference pixel. Our
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alternative method is based on a model that characterizes similar patches, and if we refer

to the model that does not consider correlation between dissimilarities it does not require

any parameter setting. Recall that for the model that does consider correlation, a single

empirical parameter was set based on PSNR optimization. However, since the two models

provided similar results for pixel selection (see Table 6.1), we continue here with the model

that does not consider correlation, and hence is parameter-free. Consequently, it reduces

the degrees of freedom of the first phase grouping from two to zero and saves computations

since there is no need to use the transform domain.

The BM3D algorithm uses similarity patches of an even size, e.g., pHard = 8, in contrast to

the NLM approach that uses an odd size, e.g., p = 5. Therefore, the model-based approach

is applied using the Uniform patch-kernel that assigns same weights to all the patch pixels,

and not other kernels, such as the Box patch-kernel that are defined based on an odd patch

size and assigns higher weights to pixels that are located closer to the patch center.

ALGORITHM IV below explains our grouping methodology for the Basic Estimate phase.

It relies on ALGORITHM I, which was introduced in Chapter 3. The similarity patch size is

defined to be pHard× pHard , and the search region size is defined to be MHard×MHard . The

algorithm input is an initial search region of a given POI, and its output is the most similar

patches extracted from the resultant SS
i , arranged in a 3D array.
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ALGORITHM IV: MODEL-BASED BASIC ESTIMATE GROUPING

1. Compute the dissimilarity between patches Ai and A j, j ∈ Si in the image domain,

based on the dissimilarity definition in eqn. (2.6) using a Uniform patch-kernel.

2. Normalize the computed dissimilarity elements by the noise STD, as defined in eqn.

(3.5).

3. Sort the normalized dissimilarity elements in an ascending order.

4. Compute accumulated variance, by starting with the first two elements (of smallest

dissimilarity) and adding one element at a time. Stop the accumulation process once

the accumulated variance is above the model-based threshold or when the cardinality

of the accumulated patches equals BHard , according to which condition comes first.

Thus, each group contains at most BHard most similar patches.

5. The accumulated pixels define the set SS
i , and the patches associated with this set of

pixels are candidates to form the corresponding group of the reference patch Ai.

The suggested grouping can be applied only on the original noisy patches, whose noise

model is known to be additive Gaussian, thus it is appropriate only for the grouping process

in the Basic Estimate phase. The grouping in the Wiener phase is applied on the patches ex-

tracted from the Basic Estimate, i.e., after an initial denoising. In order to apply the model-

based approach on the denoised patches, we are required to estimate their noise model,

which is not necessarily Gaussian and additive. Moreover, even if the noise model of the

denoised patches could have been estimated, there is no guarantee that the corresponding

dissimilarity variance that is required to set the adaptive search region could be estimated.

Figure 7.2 displays Phase 1 group cardinality map for the two grouping approaches, ap-

plied on the image Lena with σn = 20. The following parameters were used to create the

corresponding groups: pHard = 8, MHard = 39, BHard = 16. It can be clearly seen that pix-

els located on edges are characterized with smaller groups for the model-based grouping
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approach, such that dissimilar patches are not selected for the denoising process. This sig-

nifies the advantage of our proposed grouping with respect to the basic estimate grouping.

(a) (b)

Figure 7.2.: Basic estimate group cardinality map, applied on the image Lena with σn = 20
using the parameters: pHard = 8, MHard = 39, BHard = 16. (a) Original Basic Estimate
grouping. (b) Model-Based grouping.

The following table summarizes the difference between our proposed grouping methodol-

ogy, denoted Model-Based Grouping, and the BM3D Basic Estimate Grouping.
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Index
BM3D Basic

Estimate Grouping

Number of
Operations per
search region

Model-Based
Grouping

Number of
Operations per
search region

1 Transform patches 0.5M2 plog2 p
arithmetic

2
Apply hard thresholding
operator on transformed

patches

M2 p2

comparisons

3
Compute dissimilarities in

transform domain 2M2 p2 arithmetic
Compute normalized

dissimilarities in image
domain

2M2 p2 arithmetic

4
Sort dissimilarities in an

ascending order
log2M2

comparisons

Sort normalized
dissimilarities in an

ascending order

log2M2

comparisons

5
Apply hard-thresholding

operator on computed
dissimilarities

log2M2

comparisons

Accumulated variance
computation and variance

threshold application

0.72M2

arithmetic
log2M2

comparisons

6 Choose at most BHard

most similar patches
0 Choose at most BHard

most similar patches
0

Table 7.1.: Comparison between the flow of the Model-Based Grouping and that of the
BM3D Basic Estimate Grouping.

By comparing the two grouping methods, we can see that the Model-Based approach saves

computations as there is no need to apply a transform and the hard-thresholding operator

on the transformed patches (operations 1-2 of the BM3D Basic Estimate grouping in the

table). When we use a search region of size M×M and a similarity patch of size p×

p, these two stages require 0.5M2 plog2 p arithmetic operations for patch transformation

(for an efficient transform implementation), in addition to M2 p2 comparison operations for

hard-thresholding application. Operations 3,4, and 6 have similar complexity for the two

grouping methods. Operation 5 of the Model-Based method is more complicated than its

respective operation in the original grouping method, because of the accumulated variance

computation module. This module requires approximately 0.72M2 arithmetic operations,

assuming (based on simulations) that 30% of the pixels in a natural image have an adaptive
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search region of size M2 and the other 70% have an average of 0.6M2 pixels in their adaptive

search region. Hence, the entire model-based grouping requires M2 (2p2 +0.72
)

arithmetic

operations and 2log2M2 comparisons, whereas the entire basic estimate grouping requires

M2 (0.5plog2 p+2p2) arithmetic operations and M2 p2 + 2log2M2 comparisons. The ratio

between the basic estimate and the model-based grouping for the arithmetic operations is
0.5plog2 p+2p2

0.72+2p2 and for the comparisons is 1+ M2 p2

2log2M2 , such that for p= 8 and M = 39 the basic

estimate grouping approach requires overall approximately 9% more arithmetic operations

and 4.6 ·103 times more comparisons per search region. The overall running time of the two

grouping methods in Matlab for an image of size 256×256, a search region of size 39×39,

a similarity patch of size 8× 8, and BHard = 16 lasts 270 seconds for the basic estimate

grouping method and 240 seconds for the model-based grouping. This is a reduction of

more than 11% in running time for the grouping step and 4.5% in running time for the

whole BM3D process. On top of that, our proposed approach is parameter independent.

7.3. Experimental Results

We compare the Basic Estimate denoising results for the two methods of Basic Estimate

grouping and also the final results, after the second phase . For our proposed grouping

method, we use 2κ as the variance threshold (see ALGORITHM I), where κ =
(

pHard)−2.

This threshold refers to the basic model-based scheme, that does not consider correlations

between dissimilarities. .

Table 7.2 presents the BM3D results after applying both the hard-thresholding phase (Phase

1) and the Wiener phase (Phase 2), where the grouping of Phase 1 is applied either using the

BM3D approach or the model-based approach. The PSNR and SSIM differences between

the two grouping approaches, both after Phase 1 and Phase 2, are insignificant and no visual

differences were observed, as can be seen in the example presented in Figure 7.3. This

figure presents the denoising results of the image Peppers with σn = 20 after applying the
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two phases of the BM3D algorithm. Figure 7.3 (b) refers to the denoising result using the

basic estimate grouping, whereas Figure 7.3 (c) refers to denoising result using the model-

based grouping. As mentioned earlier, no visible difference can be observed although this

image is characterized by the largest PSNR difference (after Phase 2), in favor of the model-

based grouping, among the images that are presented in Table 7.2.

The original grouping method uses dissimilarities computed based on the transformed patches

after shrinkage, such that the noise is reduced. On the other hand, the proposed grouping

method achieves a comparable performance by using dissimilarities computed in the image

domain, where the noisy patches are being used, as well as the statistical model that charac-

terizes these dissimilarities. Consequently, we can conclude that the model-based grouping

can serve as a simpler grouping alternative to the basic estimate grouping.

Image σn

BM3D Grouping Model-Based Grouping BM3D Grouping Model-Based Grouping
Phase 1 Output Phase 1 Output Final Output Final Output

PSNR [dB]/SSIM PSNR [dB]/SSIM PSNR [dB]/SSIM PSNR [dB]/SSIM
Baboon 20 25.83/0.77 25.86/0.77 26.2/0.79 26.2/0.79
Barbara 20 29.73/0.88 29.76/0.88 30.29/0.9 30.29/0.9
Barbara 30 27.66/0.82 27.63/0.82 28.24/0.85 28.21/0.85
Peppers 20 30.89/0.9 30.99/0.9 31.46/0.92 31.5/0.92
Peppers 30 28.56/0.85 28.6/0.85 29.29/0.88 29.32/0.88

Table 7.2.: Quantitative comparison of denoising results following BM3D Phase 1 and
Phase 2, using two different grouping approaches for Phase 1: original Basic Estimate
and Model-Based.
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(a) (b) (c)

Figure 7.3.: Visual comparison between the denoising results of the two grouping methods
in Phase 1 of the BM3D algorithm, based on the image Peppers with σn = 20. (a) Noisy
image. (b) Final output using the Basic Estimate grouping in Phase 1. (c) Final output
using the Model-Based grouping in Phase 1.

7.4. Chapter Summary

This chapter overviews the BM3D denoising method that is considered to be the state-of-the-

art denoising approach. It consists of two main phases, each of them having three stages:

Grouping, Collaborative Filtering and Aggregation. We suggest to replace the grouping

method in the first phase, i.e., in the basic estimate phase, which compares patch dissimilar-

ity in the transform domain, by the simpler model-based approach that compares dissimilar-

ities in the image domain. The proposed grouping method is parameter free, it saves com-

putations since is does not require patch transformation, and was found to provide similar

denoising results compared to the original basic estimate grouping approach, both quantita-

tively, using the PSNR and SSIM measures, and visually, both after Phase 1 and after Phase

2 of the BM3D algorithm.
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8. Model-Based Adaptive Approach

and The Poisson Noise Model

8.1. Introduction

Many imaging devices, such as digital cameras and any device equipped with a CCD or

a CMOS sensor, capture images by successive photon-to-electron, electron-to-voltage, and

voltage-to-digit conversion. The two predominant sources of noise in digital image acquisi-

tion are the stochastic nature of the photon-counting process at the detectors and the intrinsic

thermal and electronic fluctuations of the acquisition devices. Under standard illumination

conditions, the second source of noise, which is signal-independent, is stronger than the first

one. This motivates the usual Additive White Gaussian Noise (AWGN) assumption. How-

ever, in many applications such as fluorescence microscopy, astronomy, and endoscopy,

only a few photons are collected by the photo-sensors, due to various physical constraints

(low-power light source, short exposure time etc.). Under these imaging conditions, the

major source of noise is strongly signal-dependent. Consequently, it is more reasonable to

model the output of the detectors as a Poisson-distributed random vector.

The pixels in the sensor are arranged in a Bayer mosaic pattern [30], such that for each 2×2

set of pixels, two diagonally opposed pixels have green filters, and the other two have red

and blue filters. Since G (stands for Green) carries most of the luminance information, its
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sampling rate is twice that of R (Red) and B (Blue). Demosaicing [30] is the problem of

interpolating back the image captured with a Bayer pattern, so that every pixel in the sensor

is associated with a full RGB value.

In this chapter, we consider the model of signal-dependent noise and do not relate to any

signal independent noise that may be added to it [27], i.e., we refer to the purely Poisson

random noise. We explain how images corrupted with signal-dependent noise can be de-

noised by removing this signal-dependency and converting the noise model to be additive

Gaussian with known variance. Once the Poisson noise has been transformed to Gaussian

noise, the NLM denoising approach can be used, and we can explore the performance of the

model-based approach on this type of images. We will not elaborate here on the demosaic-

ing process, and refer the reader to [30] for more information.

8.2. Noise Model

Let Yi be an observed pixel value obtained through an image acquisition device. Each Yi is

considered to be an independent random Poisson variable whose mean Xi ≥ 0 is the under-

lying intensity value to be estimated. Explicitly, the discrete Poisson probability of each Yi

is obtained by:

P(Yi|Xi) =
X−Yi

i e−Yi

Yi!
(8.1)

In addition to being the mean of the Poisson variable Yi , the parameter Xi is also its variance:

E [Yi|Xi] = Var [Yi|Xi] = Xi (8.2)
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Poisson noise can be formally defined as:

Ni = Yi−E [Yi|Xi] (8.3)

Consequently, the following is trivially obtained: E [Ni|Xi] = 0 and Var [Ni|Xi] =Var [Yi|Xi] =

Xi. Since the noise variance depends on the true intensity value Xi, Poisson noise is signal-

dependent. More specifically, the standard deviation of the noise at pixel i equals
√

Xi. Due

to this behavior, the effect of Poisson noise increases, i.e., the signal-to-noise ratio decreases,

as the intensity value decreases: SNRi =
X2

i
Xi

= Xi.

8.3. Anscombe Transform - Variance Stabilizing

Transform (VST)

Researchers (e.g. [42, 22]) suggest to apply image denoising techniques directly on the

noisy image. These specific denoising methods are suitable for the Poisson noise model.

However, the NLM denoising approach is originally intended for a Gaussian noise model.

Hence, if we wish to use the NLM for Poisson denoising, a transform that converts the

Poisson noise to a Gaussian noise is required. This is the Anscombe transform [43] that is

described herein.

In applied statistics, a variance-stabilizing transformation (VST) is a data transformation

that is specifically chosen to allow the application of analysis of variance techniques. The

aim behind the choice of a variance-stabilizing transformation is to find a simple function

to be applied on a given data set, such that the variance of the transformed data values is

not related to their mean value. In this manner, the data-dependence of the noise variance is

removed, so that it becomes constant throughout the whole data Y . Moreover, if the trans-

formation is also normalizing, i.e., it results in a Normal (Gaussian) noise distribution, the
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intensity values Xi can be estimated with a conventional denoising method designed for ad-

ditive white Gaussian noise. In practice, neither exact stabilization nor exact normalization

are possible [13], therefore, approximate or asymptotical results are employed. One of the

most popular variance-stabilizing transformations is the Anscombe transformation [26]:

f (y) = 2

√
y+

3
8

(8.4)

Applying eqn. (8.4) to Poisson distributed data gives a signal whose noise is asymptoti-

cally additive standard Normal. In order to understand why a VST transforms a Poisson

distributed data to a Normally distributed data, we refer the reader to [7, 47].

The denoising of f (y) produces a signal f̂ (y) that can be considered as an estimate of

E [ f (y) |x], where x is the noise-free signal. In order to obtain the desired estimate of x, an

inverse transformation should be applied on f̂ (y). The direct algebraic inverse of eqn. (8.4)

is:

TDirect
(

f̂ (y)
)
= f−1 ( f̂ (y)

)
=

(
f̂ (y)

2

)2

− 3
8

(8.5)

However, the resulting estimate of x is biased, because the non-linearity of the transforma-

tion f means that generally E [ f (y) |x] 6= f (E [y|x]) , and thus f−1 (E [ f (y) |x]) 6= E [y|x] .

Another possibility is to use the adjusted inverse [26] that provides asymptotically unbiased

solution for large counts:

TAsym−Unbiased
(

f̂ (y)
)
=

(
f̂ (y)

2

)2

− 1
8

(8.6)

Since the bias is especially significant for low counts, as shown in [26], this solution is

not appropriate for these counts. The problem of bias can be solved by finding the exact

unbiased inverse that maps E [ f (y) |x] to E [y|x], where E [y|x] = x≥ 0 is the noise-free value

of the pixel. This involves computing the infinite sum (see eqns. (8.1), (8.4)) E [ f (y) |x] =
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∑
∞
y=0 f (y)P(y|x) = 2∑

∞
y=0

(√
y+ 3

8
xye−x

y!

)
that can be interpreted as a maximum likelihood

inverse [26]. Makitalo et al. [28] suggested a closed-form expression that approximates the

exact unbiased inverse transform as:

TExact−Unbiased−Closed
(

f̂ (y)
)
=max(0,

1
4

f̂ (y)2+
1
4

√
3
2

f̂ (y)−1− 11
8

f̂ (y)−2+
5
8

√
3
2

f̂ (y)−3− 1
8
)

(8.7)

In low count Poisson image denoising, the results obtained by using eqn. (8.7) and a state-

of-the-art Gaussian denoising algorithm are dramatically better than those obtained with the

asymptotically unbiased inverse (eqn. (8.6)), and better than what is achieved with currently

existing methods specifically designed for Poisson denoising [26].

To conclude, given a noisy image with Poisson noise, the denoising flow consists of the

following stages:

1. Apply forward Anscombe transform based on eqn. (8.4).

2. Denoise the noisy image using a AGWN denoising method, assuming σn = 1.

3. Apply the exact unbiased inverse Anscombe transform based on eqn. (8.7).

8.4. Comparison Between Standard NLM and

Model-Based NLM

In a similar manner to the comparison conducted for Gaussian noise (sub-section 3.6.1),

we wish to compare the denoising performance of the standard NLM, applied using either

the Uniform or the Box patch-kernels, to the performance of the proposed adaptive model-

based NLM, both with and without correlation consideration. Since the Poisson noise is

proportional to pixel intensity, noisy images with different noise levels were created by
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normalizing the noise-free image by its maximal intensity and multiplying the normalized

image by a factor, denoted QPoiss, such that QPoiss is the highest intensity in the resultant

image. Then, the noisy value of each pixel is drawn from a Poisson distribution whose

parameters are set by the noise-free pixel value. Lower QPoiss implies on a noisier image

with a lower SNR, due to lower pixel intensities (SNRi = Xi,where Xi is the noise-free pixel

value).

For the denoising process, same parameters were used for all the examined methods, i.e., a

similarity patch of size 5×5 (p = 5), a search region of size 11×11 (M = 11) and h = σn.

For the proposed adaptive model-based approach, we used f = 0 for the no-correlation

method and f = 2 for the correlation-based method. An objective evaluation that uses the

common measures PSNR and SSIM [41] was conducted. Table 8.1 summarizes the quanti-

tative denoising results (objective evaluation) for different images with different noise levels.

From its analysis, we can conclude that the proposed model-based approach, with and with-

out correlation consideration, obtains somewhat higher PSNR and SSIM values than the

standard NLM algorithm applied using either the Box or the Uniform patch-kernels, as was

shown for the Gaussian noise model. The model-based approach that considers correlation

has slightly higher PSNR than the approach that does not consider correlation (maximum

0.06 dB for the explored images and explored noise levels). The simulations also show that

there is no clear visual distinction.
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Image Initial PSNR Standard NLM Standard NLM Model-Based NLM Model-Based NLM
(QPoiss) w. Uniform w. Box no correlation w. correlation

Lena 22.58 (100) 30.62/0.88 30.73/0.87 30.9/0.89 30.96/0.89
Lena 18.8 (50) 28.52/0.82 28.44/0.79 28.82/0.83 28.84/0.83

Barbara 22.27 (100) 29.17/0.87 29.25/0.87 29.35/0.88 29.41/0.88
Barbara 18.95 (50) 27.14/0.81 27.14/0.8 27.39/0.82 27.43/0.82
Baboon 22.32 (100) 25.28/0.72 26.08/0.77 26.15/0.77 26.19/0.77
Baboon 19 (50) 23.84/0.62 24.39/0.67 24.23/0.65 24.25/0.66
Peppers 22.67 (100) 30.66/0.88 30.7/0.88 30.82/0.89 30.88/0.89
Peppers 19.2 (50) 28.74/0.85 28.63/0.82 28.92/0.85 28.95/0.85

Table 8.1.: Quantitative comparison between the Standard NLM, applied with either the
Uniform or the Box patch-kernels and the Proposed Model-Based NLM (ALGORITHM

III) with and without correlation consideration.

A visual evaluation based on the perceived quality by a human observer is presented in

Figures 8.1, 8.2. The figures present a zoom-in view of the images Baboon and Lena and

compare three denoising methods: Standard NLM applied using the Uniform kernel, Stan-

dard NLM applied using the Box kernel, and the Proposed model-based NLM with corre-

lation consideration. We have chosen to display only the results of the correlation-based

approach and not also the results of model-based NLM without correlation consideration

because, as mentioned earlier, there is no noticeable difference between the resultant im-

ages and the former approach provides slightly higher PSNR than the latter. Figures 8.1

(b) that corresponds to NLM with Uniform kernel is over-smoothed in textured areas, as

the hat’s feathers. Figure 8.1 (c) that corresponds to NLM with Box kernel preserves the

feathers texture, however smooth regions, such as Lena’s face appear grainy. In Figure 8.1

(d) that corresponds to ALGORITHM III (NLM with a model-based search region and an

adaptive patch-kernel type), introduced in Chapter 4, with correlation consideration, both

texture and smoothness are preserved. The same tendency can be concluded for Figure 8.2,

that presents a zoom-in view of the eyes, nose and fur of the image Baboon. NLM with

Uniform kernel (Figure 8.2 (b)) over-smoothes the fur and the eyes, whereas NLM with

Box kernel preserves texture, but also appears grainy in smooth regions, like the nose. In
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Figure 8.2 (d) that corresponds to ALGORITHM III with correlation consideration texture in

the eyes and fur as well as nose smoothness are preserved.

(a) (b)

(c) (d)

Figure 8.1.: Denoising results of the image Lena (256×256) with Poisson noise, QPoiss =
100, p = 5, M = 11, h = σn. A zoom-in view of the eyes and hat feathers. (a) Cropped
noisy image. (b) Denoised image using Standard NLM with a Uniform patch-kernel. (c)
Denoised image using Standard NLM with a Box patch-kernel. (d) Denoised image using
ALGORITHM III with correlation consideration.
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(a) (b)

(c) (d)

Figure 8.2.: Denoising results of the image Baboon (204×204) with Poisson noise, QPoiss =
50, p = 5, M = 11, h = σn. A zoom-in view of the eyes, nose and fur. (a) Cropped
noisy image. (b) Denoised image using Standard NLM with a Uniform patch-kernel. (c)
Denoised image using Standard NLM with a Box patch-kernel. (d) Denoised image using
ALGORITHM III with correlation consideration.

8.5. Comparison Between Standard BM3D and

Model-Based BM3D

In a similar manner to the comparison conducted for Gaussian noise (section 7.3), we wish

to compare the denoising performance of the standard BM3D after both Phase 1 and Phase

2 to the model-based BM3D after each of these two phases, when the input image is char-

acterized by a Poisson noise model. We remind the reader that the difference between

the two approaches stems from the different grouping method of Phase 1. The standard

BM3D Phase 1 grouping creates 3D groups by applying a hard-thresholding operator to

the patches dissimilarity in the transform domain, whereas the model-based grouping uses
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ALGORITHM I with the Uniform patch-kernel, i.e., sets a model-based variance threshold

on patches dissimilarity in the image domain. We have also explored the added-value of the

correlation-based model to the BM3D grouping by comparing the standard BM3D grouping

in Phase 1 to the model-based grouping applied with either the correlation-based threshold,

i.e., eqn. (5.15) with f = 2 or the no-correlation threshold, i.e., eqn. (3.21) with f = 0.

As in the previous section, noisy images with different noise levels were created by normal-

izing the noise-free image by its maximal intensity, multiplying the normalized image by a

factor, denoted QPoiss. The noisy value of each pixel is drawn from a Poisson distribution

whose parameters are set by the noise-free pixel value. For the denoising process, same

parameters were used for all the examined methods, i.e., a similarity patch of size 8×8, and

a search region of size 39× 39. An objective evaluation that uses the common measures

PSNR and SSIM [41] was conducted. Tables 8.2, 8.3 summarize the quantitative denoising

results, for Phase 1 and Phase 2, for different images with different noise levels . From their

analysis, we can conclude that the model-based BM3D is comparable to the standard BM3D

with or without correlation consideration. Consequently, we recommend the user to use the

model without correlation consideration. The PSNR differences between the three explored

methods are negligible, and no visual difference is noticeable.

Image Initial PSNR Standard BM3D Model-Based BM3D Model-Based BM3D
(QPoiss) no correlation w. correlation

Lena 22.46 (100) 31.47/0.9 31.43/0.9 31.4/0.9
Lena 18.84 (50) 29.31/0.85 29.31/0.85 29.31/0.85

Barbara 22.23 (100) 29.8/0.89 29.83/0.89 29.81/0.89
Barbara 18.93 (50) 27.67/0.83 27.7/0.83 27.7/0.83
Baboon 22.99 (100) 26.31/0.79 26.32/0.79 26.3/0.79
Baboon 19.72 (50) 24.57/0.69 24.59/0.69 24.59/0.69

Table 8.2.: Quantitative comparison between the Standard BM3D and the Model-Based
BM3D, applied with either the correlation-based threshold and no-correlation threshold.
All explored methods are explored after Phase 1 of the BM3D algorithm.
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Image Initial PSNR Standard BM3D Model-Based BM3D Model-Based BM3D
(QPoiss) no correlation w. correlation

Lena 22.46 (100) 32.08/0.92 32.07/0.92 32.07/0.92
Lena 18.84 (50) 29.99/0.88 29.959/0.88 29.95/0.88

Barbara 22.23 (100) 30.24/0.91 30.26/0.91 30.25/0.91
Barbara 18.93 (50) 28.32/0.86 28.34/0.86 28.34/0.86
Baboon 22.99 (100) 27.1/0.83 27.09/0.83 27.08/0.83
Baboon 19.72 (50) 24.72/0.71 24.72/0.7 24.72/0.7

Table 8.3.: Quantitative comparison between the Standard BM3D and the Model-Based
BM3D, applied with either the correlation-based threshold and no-correlation threshold.
All explored methods are explored after Phase 2 of the BM3D algorithm.

8.6. Chapter Summary

In this chapter, we have introduced the intensity-dependent Poisson noise model that char-

acterizes images taken by a digital camera. We have explained how the common denoising

algorithms that are used to handle additive Gaussian noise can be exploited to deal with this

type of noise, by utilizing the Anscombe transform. Finally, we have compared the denois-

ing performance of ALGORITHM III, applied with and without correlation consideration,

to the standard NLM. This algorithm that was introduced in Chapter 4, sets a model-based

search region and an adaptive patch-kernel type per pixel. Similar comparison was con-

ducted for the BM3D denoising method and the two Phase 1 grouping approaches. We have

concluded that the performance tendency obtained for Gaussian noise is preserved also for

the Poisson noise, i.e., the model-based approach is somewhat better both objectively and

subjectively than the standard NLM. As for the BM3D method, the model-based BM3D

saves computations and remains comparable to the standard BM3D.
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9. Conclusion

9.1. Summary

In this thesis, we have explored the Non-Local Means denoising method. This method,

inspired by neighborhood filters [14], takes advantage of the high degree of redundancy in

any natural image by assuming that every small patch in a natural image has many similar

patches in the same image. The NLM estimate a POI by using a weighted average of pixels

located in a search region associated with that POI. The weights are exponential terms that

are inversely proportional to the dissimilarity between a small neighborhood of the POI

and a corresponding small neighborhood of pixels within the search region. This method

assumes stationarity of the search region data and depends on five parameters whose values

affect the denoising performance. These parameters are the size of the similarity patch (p),

the weight-smoothing parameter (h), the size of the search region (M), the weight of the

central pixel (wi,i), and the patch-kernel type.

The search region is usually a rectangular neighborhood, centered at the POI, which may

include pixels whose original gray value do not match the value of the original central pixel.

Consequently, their participation in the weighted averaging process degrades denoising per-

formance. To eliminate their effect, researchers (e.g., [32, 37]) suggest creating an adaptive

search-region which excludes those dissimilar pixels, such that the initial search region is

segmented into two sets: a set of similar pixels to the POI and a complementary set of dis-
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similar pixels. In this thesis we present a novel adaptive model-based method, which defines

a set of similar pixels to the POI, from the initial search region, using the statistical distribu-

tion of the dissimilarity measure. This proposed approach does not restrict the search region

to be contiguous, an important quality for textured regions. We further improve the denois-

ing performance by using an adaptive patch-kernel that is set according to the cardinality of

the adaptive search region, denoted
∣∣SS

i

∣∣. This combined approach was compared to the ap-

proach that uses an adaptive search region with a single patch-kernel type, as well as to the

standard NLM and was found to provide better denoising results both quantitatively (PSNR

and SSIM-wise) and qualitatively (visually). As for computational complexity, the running

time of the proposed appraoch is increased by 14% on average with respect to the standard

NLM, applied using either the Uniform or the Box patch-kernels. Another comparison that

was conducted is to the adaptive search region size approach [17], which is much more

complicated than our proposed approach and provides comparable denoising results.

The above-mentioned model-based scheme does not relate to the correlation between the

dissimilarity elements of a given search region. As shown in Chapter 5, there are three

possible sources of correlation that should be referred to. The first source is due to the com-

parison to the same reference patch during dissimilarity computation, the second origin is

due to patches overlap with each other, and the third origin is due to patches overlap with

the reference patch. The first source of correlation provides the main contribution to the

model. The estimated variance of the normalized dissimilarities that are associated with a

given adaptive search region, is decreased, as expected, when correlation is considered. In

order to compensate for variance error computation caused by using a small sample size, we

have added to the variance threshold of ALGORITHM III a variance correction term. This

correction term is the variance of the estimated variance variable, which is sample size de-

pendent, multiplied by a factor f (see section 5.4). The correction causes a slight reduction

in the estimated variance threshold with respect to the case where no correlation is consid-

ered. The added value of this correction term was also explored for the no correlation case
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and was found to be redundant there since the estimated variance threshold was high enough

to include all the relevant pixels. We have compared the performance of the model-based

search region created with no correlation consideration to that of the model-based search

region created with correlation consideration and the correction factor. Simulations suggest

that there is no significant difference between these two modification, thus the scheme that

does not consider correlation is preferred due to its reduced computational complexity.

In addition, we have suggested to exploit the model-based adaptive search method in the

BM3D Phase 1 (Basic Estimate) grouping. The original Phase 1 grouping methodology,

which compares patch dissimilarity in the transform domain, is replaced by a simpler ap-

proach that compares dissimilarities in the image domain. The proposed grouping method

is parameter free, it saves computations (11% for the Phase1 grouping step and 4.5% for the

overall scheme) since is does not require patch transformation, and was found to provide

similar denoising results compared to the original basic estimate grouping approach, both

quantitatively and visually.

Finally, we refer to the intensity-dependent Poisson noise model that characterizes images

taken by a digital camera. The common denoising algorithms that are used to handle additive

Gaussian noise can be exploited to deal with this type of noise, by utilizing the Anscombe

transform. We have compared the denoising performance of our proposed model-based

approach applied with and without correlation consideration to the standard NLM. Similar

comparison was conducted for the BM3D denoising method and the two Phase 1 grouping

approaches. We have concluded that the performance tendency obtained for Gaussian noise

is preserved also for the Poisson noise, i.e., the model-based approach is somewhat better

both objectively and subjectively than standard NLM. As for the BM3D method, the model-

based BM3D saves computations and remains comparable to the standard BM3D.
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9.2. Future Work

As discussed in Chapter 5, there are three sources of correlation between the dissimilarities

of a given search region. We have derived the final estimated variance expression only for

the first source that is due to the comparison to the same reference patch. The two other

sources are characterized by complicated terms of covariance matrices due to patch overlap

terms, thus analyzing the variance of the estimated variance is not an easy task. If we wish

to be more precise, we should add the contribution of patches overlap to the variance of

the estimated variance that is used in the computation of the adaptive search region. This

analysis may be a part of a future research.

Another topic that can be explored is the expansion of the model-based image denoising

technique to video denoising. In this case, the denoising of each pixel can be based on both

the defined search region of the given frame at time t and of the previous frame at time

t−1. In this manner, the adaptive search region can be expanded, such that more pixels are

considered in the weighted averaging process. One should explore whether it improves the

denoising performance.

When dealing with Poisson noise, other variance stabilizing transforms (VST) can be ex-

plored besides the Anscombe transform. Maybe an alternative VST combined with the

proposed model-based approach will provide better denoising results than the commonly

used Anscombe.

Currently, two types of patch-kernels are used. One may try to find a better kernel that suits

the “non-smooth” regions and explore its performance using the proposed adaptive model-

based scheme compared to the commonly used Box patch-kernel. A suggestion of such

a kernel optimization may involove finding the most suitable slope of the Box kernel, see

Figure 2.1.

Finally, color components can be added to the model. Instead of using only intensity-based

dissimilarities, one can add color information, such that the adaptive search region is based
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on a measure that is the result of three dissimilarity values for each pixel in the correspond-

ing search region. Other color spaces, such as Lab [50], can be explored as well.
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A. Additional Examples Of

Comparison Between The

Standard NLM and The

Model-Based NLM

This appendix presents additional graphs that demonstrate the added value of the Model-
based approach (refer to Chapter 3) applied with NLM denoising, compared to the standard
NLM approach, as a continuation to the example that is presented in sub-section 3.6.2.
Figure A1.1 illustrates the improvement of the suggested approach PSNR-wise for different
noise levels. For all the explored cases, same NLM parameters were used for denoising, as
detailed in the figure.
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(a)

(b)

Figure A.1.: A comparison between the three explored NLM approaches, i.e., standard
NLM with either the Uniform patch-kernel or the Box patch-kernel, and our Model-Based
approach, for different images. The comparison is conducted for different noise levels
with the following NLM parameters: p = 5, M = 11, h = σn. (a) Barbara (256× 256),
(b) Peppers (256×256).
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B. Distribution of Normalized

Dissimilarities For Different Cases

of Patches Overlap

In this appendix we develop the cross-variance terms of the normalized dissimilarity values,

associated with pixels included in the SS
i set. We refer to three sources of correlation, as

discussed in Chapter 5, starting from the simplest Case 1, where similarity patches do not

overlap at all, and the correlation between dissimilarities is due to the comparison to a

mutual reference patch. Then, we add another degree of complexity by allowing patches

to overlap each other, but not the reference patch (Case 2). Finally, we refer to the most

general case (Case 3), in which patches may overlap each other and/or the reference patch.

B.1. Case 1: Correlation Between Dissimilarities of
Patches That Do Not Overlap

This case refers to the similarity patches A j,Ak for j,k ∈ Si that satisfy the non-overlap cri-
terion: ∀ j 6= k, j, k ∈ SS

i , A j ∩Ak = Ø, A j ∩Ai = Ø, Ak ∩Ai = Ø, i.e., the patches do not
overlap each other, nor the reference patch Ai. By definition, the normalized dissimilarity
elements, within a given Si, share a mutual member, which is the reference patch. Conse-
quently, these elements are correlated and their cross-variance term is developed herein for
a General patch-kernel.
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Before continuing with the cross-variance analysis, we wish to clarify the definition of

global and local indices. We need to distinguish between a global index (with respect to

the image), which represents the Ni values (based on the noise model where Yi = Xi +Ni ),

and a local index (with respect to the similarity patch), which represents the patch-kernel

coefficients αs, s ∈
[
1, p2]. Figure B.1 presents a global coordinate system of a selected

similarity patch (marked in yellow), on the right, and its respective local coordinate system,

on the left. For example, the third global coordinate corresponds to the first local coordinate,

such that the kernel first coefficient α1 corresponds to the third pixel value in the image N3.

Figure B.1.: The grid on the right corresponds to global coordinates of the image. The
yellow patch is a selected similarity patch of size 5×5. The right patch grid presents the
patch global coordinates, whereas the left patch grid presents its local coordinates.

We begin with the distribution of the normalized dissimilarity variable, which was proven
to be approximately Normal (see section 3.3) and use the definition for κ introduced in
Chapter 3 (eqn. (3.9)):

d̃G
i ( j) = dG

i ( j)
2σ2

n
∼N (1,2κ) (B.1)

By the definition of cross-variance, the following applies for patches A j, Ak for j, k ∈ SS
i :
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Cov
[
d̃G

i ( j) , d̃G
i (k)

]
= E

[(
d̃G

i ( j)−E
[
d̃G

i ( j)
])
·
(

d̃G
i (k)−E

[
d̃G

i (k)
])]

=

= E
[(

d̃G
i ( j)−1

)
·
(

d̃G
i (k)−1

)]
= E

[
d̃G

i ( j) · d̃G
i (k)

]
−E

[
d̃G

i ( j)
]
−E

[
d̃G

i (k)
]
+1 =

= E
[
d̃G

i ( j) · d̃G
i (k)

]
−1

We need to analyze the term E
[
d̃G

i ( j) · d̃G
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]
, based on the definition of the normalized

dissimilarity measure:
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Note: The cross-products Ni ·N j, ∀i 6= j and any other version of them will be neglected
since their expectation is zero and they do not contribute to the sum.
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Dealing with each addend separately and following the next rules:

1. Exchange the order of summation and expectation.

2. Ni are i.i.d, thus share the same distribution and E
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i N2
j

]
= E

[
N2
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·E
[
N2

j

]
= σ4

n

3. For Ni ∼N
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n
)
, the 4th moment is known to be: E
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i
]
= 3σ4

n
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Finally, the cross-product expectation is obtained as:
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1
4σ4

n

3σ
4
n ∑

l∈[1,p2]

α
2
l +2σ

4
n −σ

4
n ∑

l∈[1,p2]

α
2
l +2σ

4
n

= 1+
∑l∈[1,p2]α

2
l

2
= 1+

κ

2

The cross-variance term for a General patch kernel is given by:

∀ j,k ∈ SS
i : Cov

[
d̃G

i ( j) , d̃G
i (k)

]
= E

[
d̃G

i ( j) · d̃G
i (k)

]
−1 =

κ

2
(B.2)

The covariance matrix for a General patch-kernel is obtained by:

CdG
i
= E

[
d̃G

i

(
d̃G

i

)T
]
= κ


2 0.5 .. 0.5

0.5 2 .. 0.5

| | | |

0.5 0.5 .. 2


L×L

(B.3)

For the Uniform patch kernel, we assign κ = p−2.
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B.2. Case 2: Correlation Between Dissimilarities of
Patches That Overlap Each Other, But Not The
Reference Patch

This case refers to the similarity patches A j,Ak for j,k ∈ Si that satisfy the overlap criterion:
∀ j 6= k, j, k ∈ SS

i , A j ∩Ak 6= Ø, A j ∩Ai = Ø, Ak ∩Ai = Ø, i.e., the patches overlap each
other, but not the reference patch Ai. As for the former case, the corresponding normalized
dissimilarities are correlated by definition due to the mutual reference patch. Moreover,
this case is characterized by another source of correlation that is the patch overlap. The
cross-variance term is developed herein for a General patch-kernel.

We begin with the distribution of the normalized dissimilarity measure, which was proven
to be approximately Normal (see eqn. (3.11)):

d̃G
i ( j) = dG

i ( j)
2σ2

n
∼N (1,2κ) (B.4)

As was shown in the previous sub-section,the cross-variance for patches A j,Ak j,k ∈ SS
i is

defined as:

Cov
[
d̃G

i ( j) , d̃G
i (k)

]
= E

[
d̃G

i ( j) · d̃G
i (k)

]
−1

We need to analyze the term E
[
d̃G

i ( j) · d̃G
i (k)

]
, based on the definition of the normalized

dissimilarity measure:

E
[
d̃G

i ( j) · d̃G
i (k)

]
= E

[
∑m∈Ai, f∈A j,l1∈[1,p2]αl1

(
Nm−N f√

2σn

)2
·∑m∈Ai,s∈Ak,l2∈[1,p2]αl2

(
Nm−Ns√

2σn

)2
]
=

= 1
4σ4

n
E
[
∑m∈Ai, f∈A j,l1∈[1,p2]αl1

(
Nm−N f

)2 ·∑m∈Ai,s∈Ak,l2∈[1,p2]αl2 (Nm−Ns)
]

Remarks:

1. The cross-products Ni ·N j ∀i 6= j and any other version of them will be neglected since

their expectation is zero and they do not contribute to the sum.
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2. The term l ∈ A j (m) refers to the patch local index that corresponds to the global index

m in the similarity patch A j.

3. The set of global indices included in the region of patch overlap is defined as: O j,k =

A j∩Ak =
{

m |m ∈ A j∩Ak
}

.

E
[
d̃G

i ( j) · d̃G
i (k)

]
= 1

4σ4
n

E

[
∑

m ∈ Ai, l ∈
[
1, p2] α2

l N4
m

]
+

+ 1
4σ4

n
E

[
∑

m ∈ Ai, l1 ∈
[
1, p2] αl1N2

m ·

(
∑

f ∈ Ai \{m} , l2 ∈
[
1, p2]\{l1} αl2N2

f

)]
+

+ 1
4σ4

n
E

[
∑

m ∈ Ai, l1 ∈
[
1, p2] αl1N2

m ·

(
∑

s ∈ Ak, l3 ∈
[
1, p2] αl3N2

s

)]
+

+ 1
4σ4

n
E
[(

∑m∈A j\{O j,k},l1∈[1,p2]\A j(m)αl1N2
m

)
·
(

∑ f∈Ai,l2∈[1,p2]αl2N2
f

)]
+

+ 1
4σ4

n
E
[(

∑m∈A j\{O j,k},l1∈[1,p2]\A j(m)αl1N2
m

)
·
(

∑s∈Ak,l3∈[1,p2]αl3N2
s

)]
+

+ 1
4σ4

n
E
[
∑m∈O j,k,l1∈A j(m)αl1N2

m ·
(

∑ f∈Ai,l2∈[1,p2]αl2N2
f

)]
+

+ 1
4σ4

n
E
[
∑m∈O j,k,l1∈A j(m)αl1N2

m ·
(

∑s∈Ak\{m},l3∈[1,p2]\Ak(m)αl3N2
s +αAk(m)N2

m

)]
Dealing with each addend separately and following the next rules:

1. Substitute the order of summation and expectation.

2. Ni are i.i.d, thus share the same distribution and E
[
N2

i N2
j

]
= E

[
N2

i
]
·E
[
N2

j

]
= σ4

n

3. For Ni ∼N
(
0,σ2

n
)
, the 4th moment is defined as: E

[
N4

i
]
= 3σ4

n

(i) E
[
∑m∈Ai,l∈[1,p2]α

2
l N4

m

]
= ∑m∈Ai,l∈[1,p2]α

2
l E
[
N4

m
]
= 3σ4

n ∑l∈[1,p2]α
2
l

(ii) E
[
∑m∈Ai,l1∈[1,p2]αl1N2

m ·
(

∑ f∈Ai\{m},l2∈[1,p2]\{l1}αl2N2
f

)]
+

+E
[
∑m∈Ai,l1∈[1,p2]αl1N2

m ·
(

∑s∈Ak,l3∈[1,p2]αl3N2
s

)]
=

= ∑m∈Ai,l1∈[1,p2]αl1E
[
N2

m
]
·
(

∑ f∈Ai\{m},l2∈[1,p2]\{l1}αl2E
[
N2

f

])
+

+∑m∈Ai,l1∈[1,p2]αl1E
[
N2

m
]
·
(

∑s∈Ak,l3∈[1,p2]αl3E
[
N2

s
])

=
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= σ4
n ∑m∈Ai,11∈[1,p2]αl1 ·

(
∑l2∈[1,p2]αl2−αl1 +∑l3∈[1,p2]αl3

)
=

= σ4
n ∑11∈[1,p2]αl1 (2−αl1) = σ4

n

(
2−∑l1∈[1,p2]α

2
l1

)
(iii) E

[(
∑m∈A j\{O j,k},l1∈[1,p2]\A j(m)αl1N2

m

)
·
(

∑ f∈Ai,l2∈[1,p2]αl2N2
f +∑s∈Ak,l3∈[1,p2]αl3N2

s

)]
=

=E
[
∑m∈A j\{O j,k},l1∈[1,p2]\A j(m)αl1N2

m

]
·E
[
∑ f∈Ai,l2∈[1,p2]αl2N2

f +∑s∈Ak,l3∈[1,p2]αl3N2
s

]
=

=
[
∑m∈A j\{O j,k},l1∈[1,p2]\A j(m)αl1E

[
N2

m
]]
·
[
∑ f∈Ai,l2∈[1,p2]αl2E

[
N2

f

]
+∑s∈Ak,l3∈[1,p2]αl3E

[
N2

s
]]

=

= σ4
n

[
∑m∈A j\{O j,k},l1∈[1,p2]\A j(m)αl1

]
·
[
∑l2∈[1,p2]αl2 +∑l3∈[1,p2]αl3

]
=

= 2σ4
n

(
1−∑m∈O j,k

αA j(m)

)
(iv) E

[
∑m∈O j,k

αA j(m)N2
m ·
(

∑ f∈Ai,l2∈[1,p2]αl2N2
f +∑s∈Ak\{m},l3∈[1,p2]\Ak(m)αl3N2

s +αAk(m)N2
m

)]
=

=∑m∈O j,k
αA j(m)E

[
N2

m
]
·
(

∑ f∈Ai,l2∈[1,p2]αl2E
[
N2

f

]
+∑s∈Ak\{m},l3∈[1,p2]\Ak(m)αl3E

[
N2

s
])

+

+∑m∈O j,k
αA j(m)αAk(m)E

[
N4

m
]
= σ4

n ∑m∈O j,k
αA j(m) ·

(
∑l2∈[1,p2]αl2

)
=

+σ4
n ∑m∈O j,k

αA j(m) ·
(

∑l3∈[1,p2]\Ak(m)αl3 +3αAk(m)

)
=

= σ4
n ∑m∈O j,k

αA j(m) ·
(
2+2αAk(m)

)
= 2σ4

n

(
∑m∈O j,k

αA j(m)+∑m∈O j,k
αA j(m)αAk(m)

)

Finally, the cross-product expectation is defined as:

E
[
d̃G

i ( j) · d̃G
i (k)

]
= 1

4σ4
n

(
3σ4

n ∑l∈[1,p2]α
2
l +2σ4

n −σ4
n ∑l1∈[1,p2]α

2
l1 +2σ4

n

)
+

+ 1
4σ4

n

(
−2σ4

n ∑m∈O j,k
αA j(m)+2σ4

n ∑m∈O j,k
αA j(m)+2σ4

n ∑m∈O j,k
αA j(m)αAk(m)

)
=

= 1
2

(
∑l1∈[1,p2]α

2
l1 +2+∑m∈O j,k

αA j(m)αAk(m)

)

The cross-variance term for a General patch kernel is defined as:

∀ j,k∈ SS
i : Cov

[
d̃G

i ( j) , d̃G
i (k)

]
= E

[
d̃G

i ( j) · d̃G
i (k)

]
−1 = κ

2 +
∑m∈O j,k

αA j(m)αAk(m)

2 (B.5)
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In order to define the covariance matrix, we introduce the notation ΨL
i (see section 5.1.1).

The set ΨL
i refers to a sub-set of the search region, such that ΨL

i ⊆ Si. This set includes the

global indices of the pixels that are included in the search region and satisfy the respective

overlap criterion, arranged by order of increasing dissimilarity values. L∈ [2, |Si|] represents

the number of dissimilarity elements that are being explored during the variance accumula-

tion process (see ALGORITHM I in Chapter 3). Hence, for a given L, this sub-set includes

the global indices of the L smallest dissimilarities in Si, out of the patches that satisfy the

non-overlap criterion. The notation d̃i
(
ΨL

i
)

refers to the sorted dissimilarity vector.

The covariance matrix for a General patch-kernel is defined as (where κ = ∑l∈[1,p2]α
2
l )

Cd̃G
i
= E

[
d̃G

i
(
d̃G

i
)T
]
= κ


2 0.5 .. 0.5

0.5 2 .. 0.5

| | | |

0.5 0.5 .. 2

+0.5O

where,

O =



0 ... ∑m∈O
ΨL

i (1),Ψ
L
i (L)

αA
ΨL

i (1)
(m)αA

ΨL
i (L)

(m)

∑m∈O
ΨL

i (1),Ψ
L
i (2)

αA
ΨL

i (1)
(m)αA

ΨL
i (2)

(m) ... |

| .. |

∑m∈O
ΨL

i (L),Ψ
L
i (1)

αA
ΨL

i (L)
(m)αA

ΨL
i (1)

(m) .. 0


(B.6)

For the Uniform patch kernel, we assign κ = p−2, then the matrix O is obtained by

O = κ2


0 ...

∣∣∣OΨL
i (1),Ψ

L
i (L)

∣∣∣∣∣∣OΨL
i (2),Ψ

L
i (1)

∣∣∣ ... |

| .. |∣∣∣OΨL
i (L),Ψ

L
i (1)

∣∣∣ .. 0

 (B.7)
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B.3. Case 3: Correlation Between Dissimilarities of
Patches That Overlap Each Other and The
Reference Patch

This case refers to the similarity patches A j,Ak for j,k ∈ Si that satisfy the overlap criterion:
∀ j 6= k, j, k ∈ SS

i , A j ∩Ak 6= Ø, A j ∩Ai 6= Ø, Ak ∩Ai 6= Ø, i.e., the patches overlap each
other and/or the reference patch Ai. In addition to the correlation between the normalized
dissimilarities that is due to the mutual reference patch, there are two other origins that
stem from the overlap of the patches between themselves and with the reference patch. The
cross-variance term is developed herein for a General patch-kernel.

First, we discuss the distribution of the normalized dissimilarity in this case. The distribution
of this variable is no longer Chi-Square, and the corresponding variance term is developed
herein.

We define the set of indices that are associated with the region of overlap between patches

Ai and A j as : Oi, j = Ai∩A j =
{

m |m ∈ Ai∩A j
}

.

The variance of sum of dependent random variables, in this case, is expressed as:

Var
[
d̃G

i ( j)
]
=Var

[
∑m∈Ai, f∈A j,l∈[1,p2]αl

(
Nm−N f√

2σn

)2
]
=∑m∈Ai, f∈A j,l∈[1,p2]α

2
l Var

[(
Nm−N f√

2σn

)2
]
+

+2∑m∈Ai, f∈A j,k∈Oi, j αAi(k)αA j(k)Cov
((

Nm−Nk√
2σn

)2
,
(

Nk−N f√
2σn

)2
)

The first term on the r.h.s of the equation is already known from previous computations:

∑m∈Ai, f∈A j,l∈[1,p2]Var
(

αl
Nm−N f√

2σn

)2
= 1

4σ4
n

∑m∈Ai, f∈A j,l∈[1,p2]α
2
l Var

(
N2

m +N2
f −2NmN f

)
=

= 1
4σ4

n
∑m∈Ai, f∈A j,,l∈[1,p2]α

2
l

[
2Var

[
N2

m
]
+4Var

[
NmN f

]]
=

= 1
4σ4

n
∑l∈[1,p2]α

2
l

[
4σ4

n +4σ4
n
]
= 2∑l∈[1,p2]α

2
l = 2κ

The second term of the r.h.s of the equation refers to the overlap of the compared patch A j

with the reference patch Ai. In the following development, the cross-products Ni ·N j ∀i 6= j

and any other version of them are neglected since their expectation is zero and they do not
contribute to the sum.

2∑m∈Ai, f∈A j,k∈Oi, j αAi(k)αA j(k)Cov
((

Nm−Nk√
2σn

)2
,
(

Nk−N f√
2σn

)2
)
=
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= 2∑m∈Ai, f∈A j,k∈Oi, j αAi(k)αA j(k)

(
E
[(

Nm−Nk√
2σn

)2
·
(

Nk−N f√
2σn

)2
]
−E

(
Nm−Nk√

2σn

)2
·E
(

Nk−N f√
2σn

)2
)
=

= 2
4σ4

n
∑m∈Ai, f∈A j,k∈Oi, j αAi(k)αA j(k)

(
E
[(

N2
m +N2

k −2NmNk
)
·
(

N2
k +N2

f −2NkN f

)]
− ...

)
(
...−E

(
N2

m +N2
k −2NmNk

)
·E
(

N2
k +N2

f −2NkN f

))
=

= 1
2σ4

n
∑m∈Ai, f∈A j,k∈Oi, j αAi(k)α

2
A j(k)

(
E
[
N2

mN2
k +N2

mN2
f +N4

k +N2
k N2

f

]
−4σ4

n

)
=

= 1
2σ4

n
∑k∈Oi, j αAi(k)αA j(k)2σ4

n = ∑k∈Oi, j αAi(k)αA j(k)

The mean of the normalized dissimilarity remains the same, namely 1. Consequently the
mean and variance of this variable are as follows:

∀ j ∈ SS
i : E

[
d̃G

i ( j)
]
= 1, Var

[
d̃G

i ( j)
]
= 2κ +∑ f∈Oi, j αAi( f )αA j( f ) (B.8)

Now, we begin with the analysis of the cross-variance terms.

As for Case 2, we define the set of global indices included in the region of overlap between
patches A j and Ak, j,k ∈ SS

i as: O j,k = A j∩Ak =
{

m |m ∈ A j∩Ak
}

.

The cross-variance is defined as: Cov
[
d̃G

i ( j) , d̃G
i (k)

]
= E

[
d̃G

i ( j) · d̃G
i (k)

]
−1

We need to analyze the term E
[
d̃G

i ( j) · d̃G
i (k)

]
, based on the definition of the normalized

dissimilarity:

E
[
d̃G

i ( j) · d̃G
i (k)

]
= E

[
∑m∈Ai, f∈A j,l∈[1,p2]αl

(
Nm−N f√

2σn

)2
·∑m∈Ai,s∈Ak,l∈[1,p2]αl

(
Nm−Ns√

2σn

)2
]
=

= 1
4σ4

n
E
[
∑m∈Ai, f∈A j,l∈[1,p2]αl

(
Nm−N f

)2 ·∑m∈Ai,s∈Ak,l∈[1,p2]αl (Nm−Ns)
2
]

Notes:

1. The cross-products Ni ·N j ∀i 6= j and any other version of them will be neglected since
their expectation is zero and they do not contribute to the sum.
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2. The structure of the similarity patches defines the following rule: if
∣∣O j,k

∣∣ > 0 and
both

∣∣Oi, j
∣∣> 0 and

∣∣Oi,k
∣∣> 0 , then O j,k = Oi, j,k

3. The notation 1(·) refers to the Indicator function.

E
[
d̃G

i ( j) · d̃G
i (k)

]
= 1

4σ4
n

E
[
∑m∈Ai,l∈[1,p2]α
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l N4
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+

+ 1
4σ4

n
E
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4σ4
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E
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4σ4
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f
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4σ4

n
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1
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)
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m ·
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∑m∈Oi, j\{O j,k}αA j(m)N2

m ·
(
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O j,k 6= Oi, j,k

)
E
[
∑m∈Oi, j αA j(m)N2

m ·
(

∑ f∈Ai\{m},l2∈[1,p2]\Ai(m)αl2N2
f

)]
+

+ 1
4σ4

n
1
(
O j,k 6= Oi, j,k

)
E
[
∑m∈Oi, j αA j(m)N2

m ·
(

∑s∈Ak,l3∈[1,p2]αl3N2
s

)]
+
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+ 1
4σ4

n
1
(∣∣Oi, j

∣∣= ∣∣Oi,k
∣∣)4E

[
∑m∈Oi, j, f∈Oi,k

αA j(m)αAk( f )N2
mN2

f

]

Analyzing each addend separately:

(i) E
[
∑m∈Ai,l∈[1,p2]α

2
l N4

m

]
= 3σ4

n ∑l∈[1,p2]α
2
l

(ii) E
[
∑m∈Oi, j αAi(m)αA j(m)N4

m

]
= 3σ4

n ∑m∈Oi, j αAi(m)αA j(m)

(iii)E
[
∑m∈Oi,k

αAi(m)αAk(m)N4
m

]
= 3σ4

n ∑m∈Oi,k
αAi(m)αAk(m)

(iv) E
[
∑m∈O j,k

αA j(m)αAk(m)N4
m

]
= 3σ4

n ∑m∈O j,k
αA j(m)αAk(m)

(v) E
[
∑m∈Ai\{Oi,k},l1∈[1,p2]\Ai(m)αl1N2

m ·
(

∑ f∈Ai\{m},l2∈[1,p2]\{l1}αl2N2
f

)]
=

= σ4
n ∑m∈Ai\{Oi,k},l1∈[1,p2]\Ai(m)αl1 · (1−αl1) =

= σ4
n

(
1−∑m∈Oi,k

αAi(m)−∑m∈Ai\{Oi,k},l1∈[1,p2]\Ai(m)α2
l1

)
(vi) E

[
∑m∈Ai\{Oi.k},l1∈[1,p2]\Ai(m)αl1N2

m ·
(

∑s∈Ak,l3∈[1,p2]αl3N2
s

)]
=

= σ4
n ∑m∈Ai\{Oi.k},l1∈[1,p2]\Ai(m)αl1 = σ4

n

(
1−∑m∈Oi,k

αAi(m)

)
(vii)E

[
∑m∈Oi.k

αAi(m)N2
m ·
(

∑ f∈Ai\{m},l2∈[1,p2]\Ai(m)αl2N2
f

)]
=

= σ4
n ∑m∈Oi.k

αAi(m)

(
1−αAi(m)

)
(viii)E

[
∑m∈Oi.k

αAi(m)N2
m ·
(

∑s∈Ak\{m},l3∈[1,p2]\Ak(m)αl3N2
s

)]
=

= σ4
n ∑m∈Oi.k

αAi(m)

(
1−αAk(m)

)
(ix) E

[
∑m∈O j,k

αA j(m)N2
m ·
(

∑s∈Ak\{m},l3∈[1,p2]\Ak(m)αl3N2
f s

)]
=

= σ4
n ∑m∈O j,k

αA j(m)

(
1−αAk(m)

)
(x) 1

(
O j,k = Oi, j,k

)
E
[
∑m∈Oi, j\{Oi, j,k}αA j(m)N2

m ·
(

∑ f∈Ai\{m},l2∈[1,p2]\Ai(m)αl2N2
f

)]
=

= 1
(
O j,k = Oi, j,k

)
σ4

n ∑m∈Oi, j\{O j,k}αA j(m)

(
1−αAi(m)

)
(xi) 1

(
O j,k = Oi, j,k

)
E
[
∑m∈Oi, j\{Oi, j,k}αA j(m)N2

m ·
(

∑s∈Ak,l3∈[1,p2]αl3N2
s

)]
=

= σ4
n ∑m∈Oi, j\{O j,k}αA j(m)
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(xii)1
(
O j,k = Oi, j,k

)
E
[
∑m∈O j,k

αA j(m)N2
m ·
(

∑ f∈Ai\{m},l2∈[1,p2]\Ai(m)αl2N2
f

)]
=

= 1
(
O j,k = Oi, j,k

)
σ4

n ∑m∈O j,k
αA j(m)

(
1−αAi(m)

)
(xiv)1

(
O j,k = Oi, j,k

)
E
[
∑m∈A j\{Oi, j}αA j(m)N2

m ·
(

∑ f∈Ai,l2∈[1,p2]αl2N2
f

)]
=

= 1
(
O j,k = Oi, j,

)
σ4

n ∑m∈A j\{Oi, j}αA j(m)

(xv) 1
(
O j,k=Oi, j,k

)
E
[
∑m∈A j\{Oi, j}αA j(m)N2

m ·
(

∑s∈Ak,l3∈[1,p2]αl3N2
s

)]
=

= 1
(
O j,k=Oi, j,k

)
σ4

n ∑m∈A j\{Oi, j}αA j(m)

(xvi) 1
(
O j,k 6= Oi, j,k

)
E
[
∑m∈Oi, j αA j(m)N2

m ·
(

∑ f∈Ai\{m},l2∈[1,p2]\Ai(m)αl2N2
f

)]
=

= 1
(
O j,k 6= Oi, j,k

)
σ4

n ∑m∈Oi, j αA j(m)

(
1−αAi(m)

)
(xvii) 1

(
O j,k 6= Oi, j,k

)
E
[
∑m∈Oi, j αA j(m)N2

m ·
(

∑s∈Ak,l3∈[1,p2]αl3N2
s

)]
=

= 1
(
O j,k 6= Oi, j,k

)
σ4

n ∑m∈Oi, j αA j(m)

(xviii)1
(
O j,k 6=Oi, j,k

)
E
[
∑m∈A j\{O j,k,Oi, j}αA j(m)N2

m ·
(

∑ f∈Ai,l2∈[1,p2]αl2N2
f

)]
=

= 1
(
O j,k 6=Oi, j,k

)
σ4

n ∑m∈A j\{O j,k,Oi, j}αA j(m)

(xix) 1
(
O j,k 6=Oi, j,k

)
E
[
∑m∈A j\{O j,k,Oi, j}αA j(m)N2

m ·
(

∑s∈Ak,l3∈[1,p2]αl3N2
s

)]
=

= 1
(
O j,k 6=Oi, j,k

)
σ4

n ∑m∈A j\{O j,k,Oi, j}αA j(m)

(xiii)1
(
O j,k 6= Oi, j,k

)
E
[
∑m∈O j,k

αA j(m)N2
m ·
(

∑ f∈Ai,l2∈[1,p2]αl2N2
f

)]
=

= 1
(
O j,k 6= Oi, j,k

)
σ4

n ∑m∈O j,k
αA j(m)

(xx)1
(∣∣Oi, j

∣∣= ∣∣Oi,k
∣∣)4E

[
∑m∈Oi, j, f∈Oi,k

αA j(m)αAk( f )N2
mN2

f

]
=

= 1
(∣∣Oi, j

∣∣= ∣∣Oi,k
∣∣)4σ4

n ∑m∈Oi, j, f∈Oi,k
αA j(m)αAk( f )

Finally, the cross-product expectation is obtained as follows:

E
[
d̃G

i ( j) · d̃G
i (k)

]
= 0.5∑l∈[1,p2]α

2
l +0.5∑m∈Oi, j αAi(m)αA j(m)

+0.5∑m∈Oi,k
αAi(m)αAk(m)+0.5∑m∈O j,k

αA j(m)αAk(m)+1+
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+1
(∣∣Oi, j

∣∣= ∣∣Oi,k
∣∣)∑m∈Oi, j, f∈Oi,k

αA j(m)αAk( f )

And the cross-variance term for a General patch kernel is given by:

∀ j,k ∈ SS
i : Cov

[
d̃G

i ( j) , d̃G
i (k)

]
= E

[
d̃G

i ( j) · d̃G
i (k)

]
−1 =

0.5κ +0.5∑m∈Oi, j αAi(m)αA j(m)+

+0.5∑m∈Oi,k
αAi(m)αAk(m)+0.5∑m∈O j,k

αA j(m)αAk(m)+

+1
(∣∣Oi, j

∣∣= ∣∣Oi,k
∣∣)∑m∈Oi, j, f∈Oi,k

αA j(m)αAk( f )

(B.9)

For the Uniform patch kernel, we use αl = p−2, ∀l ∈
[
1, p2], that is κ = p−2, and the

corresponding cross-variance term is obtained by:

∀ j,k ∈ SS
i : Cov

[
d̃U

i ( j) , d̃U
i (k)

]
= 1

2p2 +
|Oi, j|
2p4 +

|Oi,k|
2p4 +

|O j,k|
2p4 +1

(∣∣Oi, j
∣∣= ∣∣Oi,k

∣∣) |Oi, j|
p4

(B.10)
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C. Statistical Properties of The

estimated variance For Different

Cases of Patches Overlap

In this appendix we analyze the statistical properties of the estimated variance of the normal-

ized dissimilarity elements within a given search region, arranged in a vector form. These

properties are used to set an Ss
i set per pixel, as explained in section 5.4.

C.1. Case 1: Correlation Between Dissimilarities of
Patches That Do Not Overlap

In sub-section 5.1.2, we defined the estimated mean of the normalized dissimilarity elements

within a given search region Si as B = 1
L ∑

L
l=1 d̃i

(
ΨL

i (l)
)
, where ΨL

i is the set of global in-

dices sorted by order of ascending normalized dissimilarities. The (unbiased) estimated

variance is defined using the estimated mean as V̂ = 1
L−1 ∑

L
l=1
(
d̃i
(
ΨL

i (l)
)
−B
)2. In prac-

tice, the estimated mean and estimated variance are computed for the sorted dissimilarity

elements. We refer to the statistical properties of these variables at the variance threshold

crossover point, i.e., when L represents the cardinality of the corresponding adaptive search

region.
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We start with the analytic development of the statistical properties of the estimated mean

and then continue with the estimated variance. The development is conducted using the

General patch-kernel and then simplified for the Uniform patch-kernel.

Notation: We distinguish between the notation of the estimated mean computed using the

General patch-kernel and the Uniform patch-kernel, and refer to them as BG, BU , respec-

tively. In a similar manner, we distinguish between the corresponding estimated variances,

denoted V̂ G, V̂U , respectively.

Estimated mean Analysis:

The expectation of the estimated mean is obtained by:

E
[
BG]= 1

LE
[
∑

L
l=1 d̃G

i
(
ΨL

i (l)
)]

= 1
L ∑

L
l=1 E

[
d̃G

i
(
ΨL

i (l)
)]

= 1

For the computation of the variance of the estimated mean, we analyze the second moment

using the respective statistical properties of the dissimilarity vector (see eqns. (B.1), (B.2)).

We remind the reader that the following definition was used in Chapter 3 (eqn. (3.9)):

κ = ∑s∈[1,p2]α
2
s , where αs are the normalized patch-kernel coefficients.

E
[
BG]2 = 1

L2 E
[
∑

L
l=1 d̃G

i
(
ΨL

i (l)
)]2

= 1
L2 E
[
∑

L
l=1 d̃G

i
(
ΨL

i (l)
)2

+∑
L
l=1 ∑

L
k=1,k 6=l d̃G

i
(
ΨL

i (l)
)

d̃G
i
(
ΨL

i (k)
)]

=

= 1
L2

(
∑

L
l=1 E

[
d̃G

i
(
ΨL

i (l)
)2
]
+∑

L
l=1 ∑

L
k=1,k 6=l E

[
d̃G

i
(
ΨL

i (l)
)

d̃G
i
(
ΨL

i (k)
)])

=

= 1
L2 (L(2κ +1)+L(L−1)(0.5κ +1)) = L+3

2L κ +1

Now, the variance of the estimated mean is obtained by:

Var
[
BG]= E

[
BG]2− (E[BG])2

= L+3
2L κ

The estimated mean is a normal random variable as a linear combination of normal random
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variables, thus the following applies:

BG ∼N

(
1,

L+3
2L

κ

)
(C.1)

The estimated mean that corresponds to the dissimilarity elements that were computed using

the Uniform patch-kernel is obtained by assigning αs =
1
p2 , ∀s ∈

[
1, p2], that is, κ = p−2.

Estimated variance Analysis:

The expectation of the estimated variance is obtained by:

E
[
V̂ G]= 1

L−1E
[

∑
L
l=1

(
d̃G

i
(
ΨL

i (l)
)
−BG

)2
]
= 1

L−1 ∑
L
l=1 E

[
d̃G

i
(
ΨL

i (l)
)]2
− L

L−1E
[
BG]2 =

= L
L−1

(
2κ +1− L+3

2L κ−1
)
= 3

2κ

Analyzing the variance of the estimated variance in this domain, denoted the Correlation

domain, is complicated due to the need to compute statistical properties of high order cor-

relation terms. In order to avoid the analysis of these terms, we need to transform the cor-

related dissimilarity variables to another domain, in which they are uncorrelated, denoted

the Transform domain. This transform is actually a whitening procedure of the covariance

matrix.

DEFINITION C.1 [46]: The Whitening Transform converts a given covariance matrix, of

a Gaussian zero mean data Z of dimensions L×b, to a unit diagonal matrix. This process

is also known as de-correlation. The transform is given by T = Λ−0.5QT , where Λ is the

eigen-values (diagonal) matrix and Q is the respective eigen-vectors matrix whose columns

are the orthonormal eigen-vectors.

In our case, we wish to apply the whitening transform to the dissimilarity vector with sub-

tracted estimated mean, whose dimensions are L×1, such that L∈ [2, |Si|]. The transformed
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dissimilarity vector is defined as:

d̂G
i = T ·

(
d̃G

i −BG
)
= Λ

−0.5QT ·
(

d̃G
i −BG

)
(C.2)

The covariance matrix of the correlated dissimilarity elements, computed using a General

patch-kernel, is given by

Cd̃G
i
= κ


2 0.5 ... 0.5

0.5 2 ... 0.5

| .. .. |

0.5 .. .. 2


L×L

(C.3)

As can be seen, this matrix is circulant, thus characterized with a unique structure.

The eigen-values matrix of dimensions L×L is given by:

Λ = QTCG
d̃G

i
Q = 0.5κ


3 0 ... 0

0 3 ... 0

| .. .. |

0 .. .. L+3

 (C.4)

The eigen-vectors are defined as follows:

∀l ∈ [1,L] : ∑
L
k=1 Q2

kl = 1 (Orthonormality)

∀l ∈ [1,L−1] : ∑
L
k=1 Qkl = 0

l = L,∀k ∈ [1,L] : QkL = 1√
L

(C.5)

where Qkl is the kth element of the lth eigen-vector.
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Consequently, the transformed elements (eqn. (C.3)) are obtained by

∀l ∈ [1,L−1] : d̂G
i (l) =

√
2

3κ ∑
L
k=1
[
Qkl
(
d̃G

i
(
ΨL

i (l)
)
−BG)]

l = L : d̂G
i (L) =

√
2

L(L+3)κ ∑
L
k=1
(
d̃G

i
(
ΨL

i (l)
)
−BG)= 0

(C.6)

The whitening transform, in this case, reduces the dimensionality of the transformed dis-

similarity vector by 1 (d̂G
i
(
ΨL

i (L)
)
= 0).

We wish to verify that the statistical properties of the of the first L− 1 elements of the

transformed vector are characterized by a standard normal distribution:

E
[
d̂G

i (l)
]
=
√

2
3κ

[
∑

L
k=1 QklE

[
d̃G

i
(
ΨL

i (l)
)
−BG]]= 0

Var
[
d̂G

i (l)
]
= E

[
d̂G

i (l)
]2

= 2
3κ

E
[
∑

L
k=1 QklE

[
d̃G

i
(
ΨL

i (l)
)
−BG]]2 =

= 2
3κ ∑

L
k=1 Q2

klE
[
d̃G

i
(
ΨL

i (l)
)
−BG]2+

+ 2
3κ ∑

L
k=1 ∑

L
g=1,g6=k QklQglE

[(
d̃G

i
(
ΨL

i (l)
)
−BG)(d̃G

i
(
ΨL

i (g)
)
−BG)]

We define the normal variable Rk = d̃G
i
(
ΨL

i (k)
)
−BG, k ∈ [1,L] and wish to find its statis-

tical properties:

∀k ∈ [1,L] : E [Rk] = 0

∀k ∈ [1,L] : E
[
R2

k

]
= E

[
d̃G

i
(
ΨL

i (k)
)]2

+E
[
BG]2−2E

[
BGd̃G

i
(
ΨL

i (k)
)]

= 1+2κ +1+

+L+3
2L κ− 2

LE
[(

d̃G
i
(
ΨL

i (k)
))2

+∑
L
g=1,g6=k d̃G

i
(
ΨL

i (k)
)

d̃G
i
(
ΨL

i (g)
)]

= 3
2

L−1
L κ

∀k, f ∈ [1,L] , k 6= f : E
[
RkR f

]
= E

[(
d̃G

i
(
ΨL

i (k)
)
−BG)(d̃G

i
(
ΨL

i ( f )
)
−BG)]=

= E
[
d̃G

i
(
ΨL

i (k)
)

d̃G
i
(
ΨL

i ( f )
)]
−2E

[
d̃G

i
(
ΨL

i (k)
)

BG]+E
[
BG]2 = 3

2Lκ

Going back to the computation of the variance of the transformed dissimilarity element:

Var
[
d̂G

i
(
ΨL

i (l)
)]

= 2
3κ

[
∑

L
k=1 Q2

klE
[
R2

k

]
+∑

L
k=1 ∑

L
g=1,g6=k QklQglE [RkRg]

]
=
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= 2
3κ

3
2

L−1
L κ

L

∑
k=1

Q2
kl︸ ︷︷ ︸

=1

+ 3
2Lκ

L

∑
k=1

Qkl

L

∑
g=1,g6=k

Qgl︸ ︷︷ ︸
=−1

= 1

The relations ∑
L
k=1 Q2

kl = 1 and ∑
L
k=1 Qkl ∑

L
g=1,g6=k Qgl =−1 are based on eqn. (C.6).

After verifying the characteristics of the whitening transform applied to the zero-mean dis-

similarity vector, we wish to return to the computation of the variance of the estimated vari-

ance variable. This variance is defined in matrix notation based on the inverse transform,

i.e.:

d̃G
i −BG = QΛ

0.5d̂G
i (C.7)

Consequently, the estimated variance is obtained by:

V̂ G = 1
L−1

(
d̃G

i −BG)T (d̃G
i −BG)= 1

L

(
d̂G

i
)T

Λd̂G
i =

= 3
2(L−1)κ ∑

L−1
l=1

(
d̂G

i
(
ΨL

i (l)
))2

+ L+3
2(L−1)κ

d̂G
i
(
Ψ

L
i (L)

)︸ ︷︷ ︸
=0


2

= 3
2(L−1)κ ∑

L−1
l=1

(
d̂G

i
(
ΨL

i (l)
))2

In order to compute the variance of the term above, we need to analyze the second moment

of the estimated variance variable:

E
[
V̂ G]2 = 9

4(L−1)2 κ2E
[
∑

L−1
l=1

(
d̂G

i
(
ΨL

i (l)
))2
]2

=

= 9
4L2 κ2E

[
∑

L−1
l=1

(
d̂G

i
(
ΨL

i (l)
))4

+∑
L−1
l=1 ∑

L−1
k=1,k 6=l

(
d̂G

i
(
ΨL

i (l)
))2 (

d̂G
i
(
ΨL

i (k)
))2
]
=

= 9
4(L−1)2 κ2

3(L−1)+∑
L−1
l=1 ∑

L−1
k=1,k 6=l E

[(
d̂G

i
(
Ψ

L
i (l)

))2(
d̂G

i
(
Ψ

L
i (k)

))2
]

︸ ︷︷ ︸
=1

=

= 9
4(L−1)2 κ2 [3(L−1)+(L−1)(L−2)] = 9

4
L+1
L−1κ2
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The relation E
[(

d̂G
i
(
ΨL

i (l)
))2 (

d̂G
i
(
ΨL

i (k)
))2
]
=E

[(
d̂G

i
(
ΨL

i (l)
))2
]

E
[(

d̂G
i
(
ΨL

i (k)
))2
]
=

1, ∀l 6= k, l,k∈ [1,L] is true due to the independency of the variables d̂G
i
(
ΨL

i (l)
)
, d̂G

i
(
ΨL

i (k)
)
.

The variance of the estimated variance is obtained by:

Var
[
V̂ G]= E

[
V̂ G]2− (E[V̂ G])2

= 9
4

L+1
L−1κ2− 9

4κ2 = 9
2κ2 1

L−1

To summarize, the statistical properties of the estimated variance of the dissimilarity ele-

ments, computed using a General patch-kernel, are as follows:

E
[
V̂ G]= 3

2κ

Var
[
V̂ G]= 9

2κ2 1
L−1

(C.8)

By assigning κ = p−2, we obtain the statistical properties of the estimated variance of the

dissimilarity elements, computed using the Uniform patch-kernel.

C.2. Case 2: Correlation Between Dissimilarities of
Patches That Overlap Each Other, But Not The
Reference Patch

The analysis of the statistical properties of the estimated mean and variance for this case are

elaborated herein.

Estimated mean Analysis:

The expectation of the estimated mean is obtained by:

E
[
BG]= 1
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[
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i
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i (l)
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i
(
ΨL

i (l)
)]

= 1

For the computation of the variance of the estimated mean, we use the statistical propeties of

the corresponding dissimilarity vector (see eqns. (B.7), (B.8)). We define O j,k =
{

s|s ∈ A j∩Ak
}
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as the set of global indices that are associated with the region of overlap between similarity

patches A j and Ak, j,k ∈ SS
i , and denote the set cardinality

∣∣O j,k
∣∣.
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Now, the variance of the estimated mean is obtained by:
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The estimated mean is a normal random variable as a linear combination of normal random

variables, thus the following applies:

BG ∼N

1,
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 (C.9)

The estimated mean that corresponds to the dissimilarity elements that were computed using

the Uniform patch-kernel is obtained by assigning αs =
1
p2 , ∀s ∈

[
1, p2], that is κ = p−2:

BU ∼N

(
1,

L+3
2L

κ +
κ2

2L2

L

∑
l=1

L

∑
k=1,k 6=l

∣∣∣OΨL
i (l),Ψ

L
i (k)

∣∣∣) (C.10)

The variance of the estimated mean consists of a supplement (the second term) that is based

on the relative location of the explored patches with respect to each other, and hence is

changed for different sub-sets of explored dissimilarities.
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Estimated variance Analysis:

The expectation of the estimated variance is obtained by:
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The analysis of the variance of the estimated variance in the Correlation domain is compli-

cated as stated for the former case. Its analysis in the Transform domain is not trivial as

well, due to the form of the covariance matrix:
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i
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(C.11)

Each explored pixel is associated with a different covariance matrix for different L values.

The eigen-decomposition of this matrix yields different eigen-values in contrast to the sim-

plified structure of the covariance matrix in Case 1. Consequently, the analysis of this matrix

is impractical and will not be further developed.
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To conclude, the mean of the estimated variance, in this case, for the General patch-kernel

is:

E
[
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(C.12)

To obtain the mean of the estimated variance for the Uniform patch-kernel, we assign αs =

p−2, ∀s ∈
[
1, p2] , hence κ = p−2:

E
[
V̂U]= 3

2
κ− κ2
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∣∣∣ (C.13)

As explained in section 5.2.2, the correlation term due to to overlap between the patches is

smaller by at least one order of magnitude than the variance mean that corresponds to Case

1, i.e., 1.5κ .

C.3. Case 3: Correlation Between Dissimilarities of

Patches That Overlap Each Other and The

Reference Patch

The analysis of the statistical properties of the estimated mean and variance for this case are

elaborated herein.

Estimated mean Analysis:

The expectation of the estimated mean is obtained by:

E
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= 1

For the computation of the variance of the estimated mean, we use the statistical properties
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of the respective dissimilarity vector (see eqns. (B.9), (B.10)).
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Now, the variance of the estimated mean is obtained by:
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In contrast to the two other explored cases, the estimated mean, here, is not a normal random

variable since the dissimilarity elements are not distributed normally.
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The estimated mean that corresponds to the dissimilarity elements that are computed using

the Uniform patch-kernel is obtained by assigning αs =
1
p2 , ∀s ∈

[
1, p2], hence κ = p−2.

To conclude, the statistical properties of the estimated mean for the General patch-kernel

are:
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The statistical properties of the estimated mean for the Uniform patch-kernel are obtained

by assigning αs = p−2, ∀s ∈
[
1, p2] , that is κ = p−2:
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(C.15)

The variance of the estimated mean consists of a supplement that is based on the relative

location of the explored patches with respect to each other and the reference patch, and

hence is changed for different sub-sets of explored dissimilarities.

Estimated variance Analysis:

The expectation of the estimated variance is obtained by:
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The analysis of the variance of the estimated variance in the Correlation domain is compli-

cated as stated for cases 1 and 2. Its analysis in the Transform domain is not trivial as well,

as this case is a more general, thus much more complicated version of Case 2. In a similar

manner to Case 2, each pixel is associated with a different covariance matrix for different

L values (see eqns. (B.9), (B.10) for the cross-variance terms), thus its computation and

eigen-decomposition analysis are impractical, hence will not be further developed.

To conclude, the mean of the estimated variance for the General patch-kernel is as follows:
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The mean of the estimated variance for the Uniform patch-kernel is obtained by assigning

αs = p−2, ∀s ∈
[
1, p2] , that is κ = p−2:
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D. Block-Matching 3D (BM3D)

In Chapter 7, we propose to combine the model-based adaptive search region with the

BM3D [9] denoising scheme. Here, we present a detailed overview of the BM3D algo-

rithm, that consists of two main consecutive phases. Refer to Figure 7.1 for a schematic

description of the algorithm flow.

D.1. Phase I

The reference noisy patch is denoted Ai (marked as R in Figure 7.1) and its size is pHard×

pHard .

Grouping

The original noisy image Y is searched in a Ai-centered MHard×MHard neighborhood, de-

noted Si, for patches similar to the reference patch. The set of similar patches is simply

defined by:

GHard (Ai) =
{

A j, j ∈ Si|dpHard
(
Ai,A j

)
≤ τHard

}
dpHard

(
Ai,A j

)
=
‖γ(Ai)−γ(A j)‖2

2

(pHard)
2

(D.1)
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where τHard is the distance threshold for dpHard
(
Ai,A j

)
under which two patches are as-

sumed similar. dpHard
(
Ai,A j

)
is the normalized quadratic distance between patches, that is

measured in the transform domain, γ (Ai) is a hard-thresholding operator applied in trans-

form domain with a corresponding threshold of λ Hard
2D σn, and σn is the noise STD (see eqn.

(2.1)). In this manner, only transformed values above the defined threshold λ Hard
2D σn are used

for the dissimilarity computation. The 3D group, which is built by stacking up the patches

matched to Ai, is denoted GHard (Ai). Patches in GHard (Ai) are sorted in an ascending order

of dissimilarity
(

dpHard
(
Ai,A j

))
, such that the most BHard similar patches are chosen and

the dimensions of the 3D group are pHard× pHard×BHard .

Collaborative Filtering

Once the 3D-block GHard (Ai) is built, the collaborative filtering is applied. A 3D isometric

linear transform is applied to the group, followed by a shrinkage of the transform spectrum.

Finally the inverse linear transform is applied to estimate each patch in the 3D group

ĜHard (Ai) =
(

T Hard
3D

)−1{
γ

(
T Hard

3D

{
GHard (Ai)

})}
(D.2)

where γ is a hard thresholding operator with threshold λ Hard
2D σn :

γ (x) =

0 i f |x| ≤ λ Hard
2D σn

x Otherwise
(D.3)

For practical purposes, the 3D transform T Hard
3D is made up of two separable transforms: a

2D transform denoted by T Hard
2D applied on each patch in the group GHard (Ai), and a 1D

transform denoted by T Hard
1D applied along the third dimension of the 3D group. The choice

of these transforms is discussed in [20].
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Appendix D

Aggregation

Once the collaborative filtering is completed, we get an estimate for each patch in a 3D

group. Each patch can be associated with several groups and since patches can overlap, each

pixel is associated with different patches. Therefore, each pixel possess several estimates.

In this stage, all the estimates of a given pixel are aggregated using a weighted average, with

the following weights:

wHard
Ai

=


(

σ2
n KHard

Ai

)−1
i f KHard

Ai
≥ 1

1 Otherwise
(D.4)

where KHard
Ai

is the number of non-zero coefficients of the 3D group in the transform domain.

This weighting scheme assigns a priority to homogeneous patches (characterized by small

value of KHard
Ai

), such that patches that contain an edge are assigned with a smaller weight

compared to homogeneous ones. Dabov et. al [9] found that a satisfactory choice for ag-

gregation weights would be ones that are inversely proportional to the total sample variance

of the corresponding block-wise estimates. Thus, noisier block-wise estimates should be

awarded smaller weights.

The result is an artifact reduction around the edges that avoids the classic ringing effects

that is observed in transform threshold methods. The basic estimate after this first phase is

given by:

X̂Basic
i =

∑i∈GHard(A j)wHard
A j

∑Ak∈GHard(Ak)
ÂHard

k (i)

∑i∈GHard(A j)wHard
A j

(D.5)

where ÂHard
k (i) is the basic estimate of pixel i that is associated to patch Ak. The external

sum goes over all the 3D groups that include pixel i and the internal sum goes over all

168



the patches of the corresponding groups and uses the basic estimate of pixel i from these

patches.

D.2. Phase II

The size of the patches in this phase is pWiener× pWiener.

Grouping

Given the basic estimate X̂Basic of the true image, obtained in phase 1, the denoising can

be improved by performing grouping within this basic estimate and collaborative empirical

Wiener filtering. Because the noise of the basic estimate is assumed to be significantly

attenuated, the thresholding-based distance described in eqn. (D.1) is replaced with the

normalized squared l2-distance computed within the basic estimate itself.

GWiener
Hard (Ai) =

{
ÂHard

j |dpWiener

(
ÂHard

i , ÂHard
j

)
≤ τWiener

}
dpWiener

(
ÂHard

i , ÂHard
j

)
=
‖ÂHard

i −ÂHard
j ‖

2
2

(pWiener)2

(D.6)

where τWiener is a set dissimilarity threshold. The group GWiener
Hard (Ai) is a 3D structure that

consists the basic estimate blocks. Another 3D group is constructed by using the corre-

sponding noisy blocks, i.e.,

GWiener
Noisy (Ai) =

{
A j|dpWiener

(
ÂHard

i , ÂHard
j

)
≤ τWiener

}
(D.7)
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Appendix D

Collaborative Filtering

The empirical Wiener shrinkage coefficients are defined by using the energy of the 3D trans-

form coefficients of the basic estimate group GWiener
Hard (Ai):

WWiener
Ai

=

∣∣TWiener
3D

{
GWiener

Hard (Ai)
}∣∣2∣∣TWiener

3D

{
GWiener

Hard (Ai)
}∣∣2 +σ2

n

(D.8)

Then, the collaborative Wiener filtering of GWiener
Noisy (Ai) is realized as the element-by-element

multiplication of the 3D transform coefficients of the noisy data TWiener
3D

{
GWiener

Noisy (Ai)
}

with

the Wiener shrinkage coefficients WWiener
Ai

. Subsequently, the inverse transform produces the

group of estimates

ĜWiener (Ai) =
(
TWiener

3D
)−1{

WWiener
Ai

·TWiener
3D

{
GWiener

Noisy (Ai)
}}

(D.9)

The choice of the transform TWiener
3D is discussed in [20].

Aggregation

In a similar manner to the first phase, each patch, and therefore each pixel, have several

estimates that need to be aggregated. The weights are chosen to be inversely proportional to

the total sample variance, such that:

wWiener
Ai

=
(

σ
2
n
∥∥WWiener

Ai

∥∥2
2

)−1
(D.10)

The final estimate after this second phase is given by:

X̂Wiener
i =

∑i∈GWiener
Noisy (A j)wWiener

A j
∑Ak∈GWiener

Noisy (Ak)
ÂWiener

k (i)

∑i∈GWiener
Noisy (A j)wWiener

A j

(D.11)
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where ÂWiener
k (i) is the final estimate of pixel i that is associated to patch Ak.

171



Bibliography

[1] S. Ahn and J.A. Fessler, “Standard Errors of Mean, Variance, and Standard Deviation

Estimators”, July 2003.

[2] L. Alvarez, Y. Gousseau, and J. Morel, “The Size of Objects In Natural Images”,

Advances in Imaging and Electron Physics, Vol. 111, pp. 167-242, 1999.

[3] N. Azzabou, N. Paragios, F. Guichard, "Uniform and Textured Regions Separation in

Natural Images Towards MPM Adaptive Denoising", in Proceedings of SSVM, pp.

418-429, 2007.

[4] A. Buades, B. Coll, and J.M. Morel, "A Review Of Image Denoising Algorithms, With

a New One", SIAM Journal on Multiscale Modeling and Simulations Vol. 4, No. 2, pp.

490–530, 2005.

[5] A.Buades, B. Coll, and J.M. Morel, “Nonlocal Image and Movie Denoising”, Interna-

tional Journal of Computer Vision, Vol. 76, pp. 123-139, 2008.

[6] T. Brox, O. Kleinschmidt, and D. Cremers, "Efficient Nonlocal Means for Denoising

of Textural Patterns", IEEE Transactions on Image Processing, pp. 1083 – 1092, July

2008.

[7] G. Casella and R.L. Berger, “Statistical Inference”, Book, pp. 243

[8] P. Coupé et. al, "An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D

Magnetic Resonance Images", IEEE Trans Med Imaging, Vol. 27, No. 4, pp. 425–441,

April 2008.

172



[9] K. Dabov et al., “Image Denoising By Sparse 3-D Transform Domain Collaborative

Filtering”, IEEE Trans Image Processing, Vol. 16, Issue 8, pp. 2080-2095, 2007.

[10] C.A Deledalle, V. Duval, and J. Salmon, “Non-Local Methods with Shape-Adaptive

Patches (NLM-SAP)”, Journal of Mathematical Imaging and Vision archive, Vol. 43,

Issue 2, pp. 103-120, June 2012.

[11] P.J. Dinesh, V.K. Govindan, and A.T. Mathew, "Robust Estimation Approach for

Nonlocal-Means Denoising Based On Structurally Similar Patches", International

Journal Open Problems in Computer Science, Vol. 2, No. 2, pp. 311-331, June 2009.

[12] V. Duval, Jean-Francois Aujol, and Yann Gousseau, “On The Parameter Choice For

The Non-Local Means”, SIAM Journal on Image Sciences, hal-00468856, version 1,

Mar 2010.

[13] B. Efron, “Transformation Theory: How Normal Is A Family of Distributions? “, The

Annals of Statistics, Vol. 10, No. 2, pp. 323-339, 1982.

[14] A. Efros and T. Leung, “Texture Synthesis By Non Parametric Sampling, IEEE Inter-

national Conference on Computer Vision, Volume 2, pp. 1033-1038, 1999.

[15] M. Elad and M. Aharon, “Image Denoising Via Sparse and Redundant Representations

Over Learned Dictionaries”, IEEE Transactions on Image Processing, Vol. 15, Issue

12, pp. 3736-3745, December 2006.

[16] S. Gabler and C. Wolff, "A Quick and Easy Approximation To The Distribution Of A

Sum Of Weighted Chi-Square Variables", Statistische Hefte 28, pp. 317-325 (1987).

[17] C. Kervrann and J. Boulanger, “Optimal Spatial Adaptation for Patch-Based Image

Denoising”, IEEE Transactions on Image Processing, Vol. 15, No. 10, pp. 2866-2878,

October 2006

[18] C. Kervrann, J. Boulanger, and P. Coupé, “Bayesian Non-Local Means Filter, Image

173



Bibliography

Redundancy and Adaptive Dictionaries for Noise Removal", in Proceedings of SSVM,

pp. 520–532, 2007.

[19] P.W. Lamberti, A.P. Majtey, A. Borras, M. Casas, and A. Plastino, “Metric Character

of The Quantum Jensen-Shannon Divergence”, Phys. Review, A 77, May 2008.

[20] M. Lebrun, “An Analysis and Implementation of the BM3D Image Denoising

Method”, Image Processing On Line, 2 (2012), pp. 175-213.

[21] J.S. Lee, ”Digital Image Smoothing and The Sigma Filter”, Computer Vision, Graph-

ics and Image Processing, Vol. 24, pp. 255-269, 1983.

[22] S. Lefkimmiatis, P. Maragos, and G. Papandreou, “Bayesian Inference on Multiscale

Models For Poisson Intensity Estimation: Applications to Photon-Limited Image De-

noising”, IEEE Transaction on Image Processing, Vol. 18, No. 8, pp. 1724-1741, Au-

gust 2009.

[23] A. Levin et al., “Patch Complexity, Finite Pixel Correlations and Optimal Denoising”,

Proceedings of the 12th European conference on Computer Vision, Volume Part V, pp.

73-86, 2012.

[24] X. Liu, M. Tanaka and M. Okutomi , “Noise Level Estimation Using Weak Textured

Patches of a Single Noisy Image”, Proceedings of IEEE International Conference on

Image Processing (ICIP 2012), pp. 665-668, September 2012.

[25] F. Luisier, T. Blu, and M. Unser, “Image Denoising in Mixed Poisson–Gaussian

Noise”, IEEE Transactions On Image Processing, Vol. 20, No. 3, pp. 696-708, March

2011.

[26] M. Mäkitalo and A. Foi, “Optimal Inversion of The Anscombe Transformation In Low-

Count Poisson Image Denoising , IEEE Transactions Image Processing, Vol. 20, No.

1, pp.99-109, January 2011.

[27] M. Mäkitalo and A. Foi, “Optimal Inversion of The Generalized Anscombe Transfor-

174



mation For Poisson-Gaussian Noise”, IEEE transactions on image processing, Vol. 22,

No. 1, pp. 91-103, January 2013.

[28] M. Mahmoudi and G. Sapiro, “Fast Image and Video Denoising Via Nonlocal Means

of Similar Neighborhoods,” IEEE Signal Processing Letters, Vol.12, No.12, pp. 839-

842, 2005.

[29] M. Mäkitalo and A. Foi, “A Closed-Form Approximation of the Exact Unbiased In-

verse of the Anscombe Variance-Stabilizing Transformation”, IEEE Transactions on

Image Processing, Vol. 20, No. 9, September 2011.

[30] H.S. Malvar, L.W. He, and R. Cutler, “High-Quality Linear Interpolation For Demo-

saicing of Bayer-Patterned Color Images”, ICASSP 2004.

[31] M. Mohri, and A. Rostamizade, “Stability Bounds for Stationary φ-mixing and β-

mixing Processes”, Journal of Machine Learning Research, Vol. 11, pp. 789-814, 2010.

[32] J. Orchard, M. Ebrahimi, A. Wong, "Efficient Nonlocal- Means Denoising Using The

SVD",15th IEEE International Conference on Image Processing, pp. 1732 – 1735,

October 2008.

[33] I. Ram, M. Elad, and I. Cohen, ”Image Processing using Smooth Ordering of its

Patches”, IEEE Transactions on Image Processing, Vol. 22, Issue 7, pp. 2764-2774,

July 2013.

[34] J. Salmon, "On Two Parameters For Denoising With Non-Local Means", Signal Pro-

cessing Letters IEEE, Vol. 17, Issue 3, pp. 269-272, March 2010.

[35] J. Shlens, “Notes on Kullback-Leibler Divergence and Likelihood Theory”, Systems

Neurobiology Laboratory, Salk Insitute for Biological Studies, La Jolla, CA 92037,

August 2007.

[36] S.M. Smith and J.M. Brady, ”Susan - A New Approach to Low Level Image Process-

ing”, International Journal of Computer Vision, Volume 23 (1), pp. 45-78, 1997.

175



Bibliography

[37] W. Sun, M. Han, "Adaptive Search Based Non-Local Means Image De-noising", Im-

age and Signal Processing CISP ’09, pp. 1- 4, 2009.

[38] N.A. Thacker, J.V. Manjon and P.A. Bromiley, “A Statistical Interpretation of Non-

Local Means”, IET Computer Vision (in press, 2009).

[39] C. Tomasi and R. Manduchi, ”Bilateral Filtering For Gray and Color Images,” 6^{th}

International Conference on Computer Vision, pp. 839-46. 1998.

[40] D. Van De Ville, and M. Kocher, “SURE-Based Non-Local Means” , IEEE Signal

Processing Letters, Vol. 16, No. 11, pp. 973-976, November 2009.

[41] Z. Wang, A.C Bovik, H.R Sheikh, and E.P. Simoncelli, "Image Quality Assessment:

From Error Visibility to Structural Similarity", IEEE Transactions on Image Process-

ing, Vol. 13, No. 4, pp. 600-612, April 2004.

[42] B. Zhang, J.M. Fadili, and J.L. Starck, “Wavelets, Ridgelets, and Curvelets For Poisson

Noise Removal”, IEEE Transaction on Image Processing, Vol. 17, No. 7, pp. 1093-

1108, July 2008.

[43] http://demo.ipol.im/demo/bcm_non_local_means_denoising

[44] http://sipi.usc.edu/database/?volume=textures&image=12

[45] https://en.wikipedia.org/wiki/Chi-squared_distribution

[46] http://www.engr.uky.edu/~lgh/classes/ee640/WhiteCovarianceMatrix.pdf

[47] http://en.wikipedia.org/wiki/Central_limit_theorem

[48] http://en.wikipedia.org/wiki/Variance#Sum_of_correlated_variables

[49] http://www.colourphil.co.uk/lab_lch_colour_space.shtml

[50] http://mobyle-serpico.rennes.inria.fr/cgi-bin/portal.py#forms::NDSafir

176



 

 הסרת רעש מתמונות 

-ממוצעים לאשל  טהבשי

מבוססת ומקומיים מסתגלת 

 מודל

 

 

 

 הילה ברקוביץ



 הסרת רעש מתמונות 

 מקומיים -ממוצעים לאשל  הבשיט

 מבוססת מודלומסתגלת 

 

 חיבור על מחקר

 לשם מילוי חלקי של הדרישות לקבלת התואר

 מגיסטר למדעים בהנדסת חשמל 

 

 הילה ברקוביץ
 

 

 

 

 

 מכון טכנולוגי לישראל –הוגש לסנט הטכניון                   

 4102ד           חיפה          מאי "אייר התשע

  



זוהר בפקולטה להנדסת -ר מאיר בר"דוד מלאך וד' המחקר נעשה בהנחיית פרופ

 חשמל

 

 תודות

ברצוני להודות . ר מאיר בר זוהר על הנחייתם  לאורך כל המחקר"דוד מלאך וד' פרופברצוני להודות ל

. על מסירותו ועל סבלנותו שאינם ברורים מאליהם, דוד מלאך על ששימש לי כמנטור' במיוחד לפרופ

אשר עזרו ביצירת , ואבי רוזן, זיוה אבני, יאיר משה, נמרוד פלג: SIPLאודה לצוות מעבדת , בנוסף

על תמיכתם ועידודם לכל , אודה למשפחתי ולארוסי תומר, לסיום. אימה לביצוע מחקר זהסביבה המת

 .אורך הדרך

 

 

 אני מודה לטכניון על התמיכה הכספית הנדיבה בהשתלמותי

 

 

 

”ISPA 2013 :Local Means -Nonוהוצג בכנס  IMVC 2014חלק מעבודה זו פורסם בכנס 

”Region and Dissimilarity Kernel Based Search-Denoising Using a Content 

 

 

 



 

 



 

I 
 

 קצירת

בשל הייצור ההמוני של תמונות דיגיטליות וסרטוני  ומתרחב יעילות לשחזור תמונות הולךהצורך בשיטות 

, אין זה משנה מהי איכות המצלמה, למעשה. המצולמים לעיתים בתנאי תאורה לקויים, וידאו מסוגים שונים

משוייך  כאשר כל פיקסל, תמונה דיגיטלית מיוצגת לרוב כמטריצה של פיקסלים. שיפור התמונה תמיד נחוץ

הערך של כל פיקסל הינו תוצאה של מדידת כמות האור המגיעה לכל תא . עם רמת אפור או צבע מסויים

בהתאם לזמן החשיפה המוגדר , על ידי ספירת כמות הפוטונים הפוגעים באותו תא, בחיישן של המצלמה

ינו מגבלה פנימית של טשטוש ה. שתי המגבלות העיקריות בשיטת רכישה זו הן יצירת טשטוש ורעש. במצלמה

על פניו מתבצעת הסכימה של הפוטונים הפוגעים כדי , הנובעת ממבנה החיישן ומשטח תא אופייני, המצלמה

כך שכמות הרעש המתווספת , המגבלה השנייה נובעת מרעש. ליצור את ערך הפיקסל המתאים לתא הנידון

ככל שיותר פוטונים , בהתאם לפילוג זה. פואסוניומאופיינת בפילוג  בתהליך רכישת התמונה הינה תלויית אות

בעבודות , עם זאת. כך רמת הרעש המתווספת לערך הפיקסל המשוייך עם אותו תא גדלה, פוגעים בתא מסויים

עם , או מניחים שהוא כזה ,בוחנים את ביצועי האלגוריתמים עם רעש מלאכותי גאוסי אדיטיבי, מחקר רבות

פיקסלים שונים מהווה ריאליזציות שונות של משתנים בהרעש הגאוסי . פסשונות ידועה ותוחלת השווה א

 .) i.i.d.)תלויים ובעלי התפלגות זהה -גאוסיים בלתי

בין השיטות לסינון רעש . מטרת סינון רעש מתמונות היא לשחזר את התמונה המקורית בהינתן תמונה רועשת

עוררו תשומת לב ניכרת בשנים  atches)(pהשיטות המבוססות על חלוקת התמונה לבלוקים , שהוצעו

Local -Non)מקומיים -הינה שיטת הממוצעים הלא, הזבתשבה נדון , אחת משיטות אלה. האחרונות

Means) , אשר הוצגה לראשונה על ידיBuades  השיטה  מנצלת את היתירות הקיימת בתמונה . 5002בשנת

המוגדר בתמונה סביב הפיקסל  ,באיזור חיפוש מורחב על ידי השוואה בין סביבות קטנות של פיקסלים, טבעית

רמת האפור של כל פיקסל משוערך נתונה כממוצע משוקלל של כל , באופן זה. שאותו מעוניינים לשחזר

המשקל של כל פיקסל באיזור החיפוש הוא פרופרציוני לדמיון בין  .הפיקסלים האחרים באיזור החיפוש

, כך.  לשחזר ובין סביבת הפיקסל שאליו משווים באיזור החיפושהסביבה של הפיקסל אותו מעוניינים 

פיקסלים בעלי סביבה הדומה לסביבת פיקסל העניין יהיו בעלי משקלים גבוהים יותר וישפיעו יותר על ערכו 

בעוד שמרכיבי הרעש הגאוסי הינם בלתי , מאחר שהפיקסלים בתמונה הם בעלי קורלציה גבוהה. הסופי

הייחודיות בשיטת , לסיכום. שוקלל של הפיקסלים באיזור החיפוש מפחית את הרעשהמיצוע המ, תלויים

 .  מקומיים נעוץ ביכולת השיטה לנצל קורלציה מרחבית באיזור חיפוש נתון לצורך סינון רעש-הממוצעים הלא

 

. הממורכזת סביב הפיקסל אותו מעוניינים לשחזר, איזור החיפוש המורחב הינו בדרך כלל סביבה ריבועית

סביבה זו עלולה לכלול פיקסלים שרמת האפור המקורית שלהם שונה מרמת האפור המקורית של פיקסל 



 

II 
 

בביצועי  השתתפותם של אותם פיקסלים בתהליך המיצוע המשוקלל יכולה לפגוע, כתוצאה מכך. העניין

חוקרים הציעו , מנת לבטל את השפעתם של הפיקסלים הללו על תהליך המיצוע-על. תהליך סינון הרעש

השיטות שהוצעו תלויות . אשר אינו מכיל את הפיקסלים הללו, (אדפטיבי)ליצור איזור חיפוש מסתגל שונים 

 . בכיול פרמטרים ומערבות היוריסטיקות

שאותו מעוניינים לשחזר , אשר מייצרת עבור כל פיקסל, מבוססת מודל, אנו מציעים שיטה חדשה, בתיזה זו

שיטה זו מתבססת על הפילוג . סביבת חיפוש מסתגלת מתוך איזור החיפוש המורחב ההתחלתי, בתמונה

, בהינתן רעש גאוסי אדיטיבי. מקומיים-הסטטיסטי של ערכי מדד השוני המאפיין את שיטת הממוצעים הלא

. ידי הפרשי הרעש באותן סביבות-דומים נתונים על מקור פיקסלישים בין סביבות של אנו מניחים שההפר

י התפלגות "הניתנת לקירוב ע, (Square-Chi)בריבוע -חי הפרשים אילו ניתנים למידול כבעלי התפלגות

 שסביבתם דומה ,אנו ממדלים את ערכי מדד השוני של פיקסלים, באופן זה. תחת תנאים מתאימים, נורמלית

אנו , בשיטה המוצעת. כבעלי התפלגות גאוסית עם מאפיינים סטטיסטיים ידועים, לסביבת פיקסל העניין

מסתמכים על השונות המאפיינת פילוג זה ומתייחסים לממד השוני של פיקסלים בעלי סביבות דומות 

ה מבוססת מודל הייחודיות של השיטה המוצעת נעוץ בהיות. כריאליזציות שונות של המשתנה הגאוסי הנידון

, בנוסף. בניגוד לשיטות אחרות שהציעו למצוא איזור חיפוש מסתגל, ועל כן אינה מצריכה כיול פרמטרים

בניגוד לשיטות , תכונה חשובה למרקמים, השיטה אינו מגבילה את איזור החיפוש האדפטיבי להיות רצוף

נדרטית עבור תמונות טבעיות שונות מקומיים הסט-השווינו שיטה זו לשיטת הממוצעים הלא. מוצעות אחרות

השיטה המוצעת התגלתה כבעלת ביצועים טובים יותר הן כמותית והן ויזואלית מאשר . עם רמות רעש שונות

 . השיטה הסטנדרטית המקבילה

אחד משני , פי רוב-על. מקומיים משתמשת בגרעין מתאים לצורך חישוב מדד השוני-שיטת הממוצעים הלא

וגרעין , לפיו כל פיקסל בסביבת הפיקסל הנידון מקבל משקל זהה, גרעין אחיד: בשימוש גרעינים נמצא סוגי

. משקלים נמוכים יותר יםקבלמלפיו פיקסלים המרוחקים ממרכז הסביבה המושווית , ("Box") "קופסה"

מתאים יותר " קופסה"סימולציות מראות כי הגרעין האחיד מתאים יותר לאיזורים חלקים ואילו גרעין ה

, גם בסוג גרעין מסתגל באופן מקומי  אנו מציעים להשתמש, בתיזה זו.  לאיזורים המתארים שפות או מרקמים

כך , הסתגלות סוג הגרעין נקבעת לפי גודל איזור החיפוש המסתגל.  בנוסף לאיזור החיפוש המסתגל

ישוייכו לגרעין , איזורים חלקים בסבירות גבוהה שפיקסלים המשוייכים לאיזור חיפוש גדול ולכן מתארים

, איזורי מרקם או שפות בסבירות גבוהה המתארים, האחיד ואילו פיקסלים בעלי איזור חיפוש קטן יותר

הושוותה הן , וג גרעין מקומי מסתגלסשמשלבת איזור חיפוש מסתגל ו, השיטה. ישוייכו לגרעין הקופסה

תגלתה כבעלת וה מקומיים הסטנדרטית-הממוצעים הלאלשיטה בה רק איזור החיפוש הוא מסתגל והן לשיטת 

שימוש בגרעין המתאים למבנה המקומי בתמונה משפר את תוצאות , כלומר. ערך מוסף ביחס לשתי השיטות

 .כך שאיזורים חלקים מוחלקים ואילו איזורי מרקמים או שפות שומרים על חדות, הסרת הרעש
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מקןמיים -י של שיטת הממוצעים הלאה בין איברי מדד השונבחנו את מידת ההשפעה של הקורלצי, בנוסף לכך

, קורלציה כתוצאה מהשוואה לאותו בלוק ייחוס: שלושה מקורות של קורלציה נבחנו. באיזור חיפוש נתון

נמצא כי . וקורלציה כתוצאה מחפיפה של בלוקים לבלוק הייחוס, קורלציה כתוצאה מחפיפה בין הבלוקים

  . הסרת הרעש אינה משמעותיתדל אך השפעתה על מידת יש השפעה על המולקורלציה 

  Block Matchingממדיים-שיטת איזור החיפוש המסתגל המוצעת שולבה גם בשיטת התאמת בלוקים תלת

3D (BM3D) ,כתוצאה מהשילוב בין השיטות מתקבל . הנחשבת כיום לשיטת הסרת הרעש הטובה ביותר

 . חיסכון בחישובים ללא פגיעה בבביצועי הסרת הרעש

יש , מנת לאפשר זאת-על. טכניקות סינון רעש גאוסי יכולות להתמודד גם עם רעש בעל התפלגות פואסונית

כדוגמת התמרת , VST) –zing Transform (Variance Stabiliלהשתמש בהתמרה מייצבת שונות 

Anscombe . התמרה זו ממירה אות בעל התפלגות פואסונית לאות בעלת התפלגות גאוסית עם שונות השווה

מקומיים לצורך -ניתן להשתמש בשיטת הממוצעים הלא, לאחר השימוש בהתמרה. לאחד ותוחלת השווה לאפס

יש לבצע התמרה הופכית על התמונה , לאחר סינון הרעש .כאשר הקלט הוא התמונה המותמרת, סינון הרעש

ערכנו השוואה עבור תמונות עם , אדיטיבי לבן באופן דומה לסימולציות שנערכו עבור רעש גאוסי. המסוננת

, בנוסף. מקומיים הסטנדרטית-רעש פואסוני בין השיטה המבוססת מודל המוצעת לבין שיטת הממוצעים הלא

התקבל כי . מימדיים המבוססת מודל לשיטה הסטנדרטית-התאמת הבלוקים התלתערכנו השוואה בין שיטת 

-שיטת הממוצעים הלא. נשמרה המגמה שהתקיימה עבור מודל הרעש הגאוסי, עבור שתי השיטות שבחנו

שיטת התאמת , כן-כמו. מקומיים המבוססת מודל הניבה תוצאות טובות יותר מאשר השיטה הסטנדרטית

ם המבוססת מודל הניבה תוצאות דומות לתוצאות השיטה הסטנדרטית המתאימה תוך מימדיי-הבלוקים התלת

 .חסכון בחישובים
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