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Abstract

The need for efficient image restoration methods has grown with the massive production of
digital images and movies of all kinds, often taken in poor conditions. Image denoising is
used to find the best estimate of the original image given its noisy version. Among the vast
image denoising methods that were suggested, patch-based approaches have drawn much
attention in the image processing community. The Non-Local Means (NLM) denoising
algorithm, first introduced by Buades et al. in 2005, takes advantage of image redundancy
by comparing pixel neighborhoods within an extended search region in the image. Each
pixel value is estimated as a weighted average of all other pixels in this search region.
These pixels are each assigned a weight that is a function of the similarity between the local
neighborhood of the Pixel Of Interest (POI) and their local neighborhood, such pixels with a
similar neighborhood are assigned higher weights. The NLM denoising approach originally
refers to Additive White Gaussian Noise (AWGN).

The participation of dissimilar pixels, which may be included in the extended search region,
in the weighted averaging process, degrades the denoising performance. To eliminate their
effect, researchers suggest creating an adaptive search region that excludes those pixels
(e.g. [4,37]). These suggested methods are parameter dependent and involve heuristics.
Another approch [17] suggests using a rectangular search region of various sizes, such that

the window size is adapted to local structure.

In this thesis, we present a novel model-based method that extracts a set of similar pixels



Chapter 0

for a given POI from its initial search region, using the statistical distribution of the NLM
dissimilarity measure. Our approach does not require any parameter setting and provides
better results than other compared adaptive search region approaches. Our proposed scheme
was also compared to the standard NLM and was found to provide better performance both
quantitatively and visually. We have also explored the effect of correlation between the dis-
similarity elements of a given search region. Three sources of correlations were explored:
correlation due to the comparison to the same reference patch, correlation due to patches
overlap, and correlation due to overlap with the reference patch. We found that the cor-
relations affect the dissimilarity model, however their effect on the denoising performance
is insignificant. The model-based scheme was also integrated in the Block-Matching 3D
(BM3D) state-of-the art denoising scheme, such that the computational complexity of the
original BM3D is reduced while denoising results remain comparable. Besides the AWGN,
we have explored our approach on Poisson noisy images as well. Poisson noise, which is
signal dependent, is the noise type that characterizes images taken by a digital camera. In
a similar manner to the Gaussian noise case, we have compared our proposed model-based
approach to the standard NLM as well as the standard BM3D to the model-based BM3D.
For the two methods, both NLM and BM3D, the tendency of the AWGN denoising was pre-
served, such that the proposed NLM provided better results both quantitatively and visually
than the standard NLM, and the model-based BM3D provided comparable results to that of
the standard BM3D.
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Symbols
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Similarity patch centered at pixel i

Estimated mean of normalized dissimilarities computed using the
Uniform and the Box patch-kernel respectively

Maximal number of patches per group in BM3D Phasel

Clusters of matrix R8

Clusters of matrix RV

Covariance matrix of normalized dissimilarities computed using the
Box and the Uniform patch-kernel respectively

Jensen-Shannon divergence

Kullback-Leibler divergence

Matrix form of Box patch-kernel

Linear size of search region in NLM

Linear search region patch size in BM3D Phase 1

Noise value at pixel i

Matrix that represents correlation between dissimilarities due to
patches overlap

Matrix of normalized cardinality of adaptive search region

Matrix of normalized cardinality of adaptive search region, based on
the Uniform and Box patch-kernels respectively

Set of global indices associated with the initial search region of size
MxM

Sub-set of the search region S; that includes pixels with dissimilar

neighborhood to that of pixel i
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Sub-set of the search region S; that includes pixels with similar
neighborhood to that of pixel i

Sub-set of the search region S; that includes pixels with similar
neighborhood to that of pixel i, for dissimilarity computed using the
Uniform or the Box patch-kernel respectively

Direct inverse Anscombe transform

Asymptotically unbiased inverse Anscombe transform

Closed-form exact unbiased inverse Anscombe transform
Dissimilarity threshold based on ALGORITHM I

Estimated Variance threshold

Estimated variance of normalized dissimilarities computed using the
Uniform and the Box patch-kernel respectively

Sum of weights of pixels associated with S; (for weight normalization)
Noise-free pixel i

Noisy pixel i

Dissimilarity of pixel j with respect to pixel i, j € S;

Dissimilarity, computed using the Uniform or Box patch-kernel, of
pixel j with respect to pixel i, j € S;

Normalized dissimilarity, computed using the Uniform or Box
patch-kernel, of pixel j with respect to pixel i, j € S;

Vector of normalized dissimilarities arranged in ascending order
The normalized dissimilarity of the global index that corresponds to
the m' element of the set P*

Multiplication factor of the variance of the estimated variance
Anscombe transform

NLM smoothing parameter

Lexicographic pixel location

Linear size of similarity patch in NLM
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Wi j Weight of pixel j with respect to pixel i

Ot Normalized patch-kernel coefficients, s € [1, p?]

K Sum of squared patch-kernel coefficients
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pixel j in SP

G,% Additive noise variance
Sub-set of the search region that includes the global indices of the
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i
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1. Introduction

1.1. Image Denoising

The need for efficient image restoration methods has grown with the massive production
of digital images and movies of all kinds, often taken in poor conditions. No matter how
good cameras are, an image improvement is always required. A digital image is generally
encoded as a matrix of gray-level or color values. Each one of the pixel values Y; is the
result of a light intensity measurement, usually made by a charge coupled device (CCD)
matrix coupled with a light focusing system or a complementary metal oxide semiconductor
(CMOS). Each captor of the sensor is roughly a chamber in which the number of incoming
photons is being counted for a fixed period corresponding to the obturation time. The two
main limitations in image accuracy are categorized as blur and noise. Blur is intrinsic to
image acquisition systems, as digital images have a finite number of samples and must
satisfy the Shannon—Nyquist sampling conditions. Moreover, each pixel value is a result of
photon count over the respective sensor chamber, which also depends on chamber’s area.
This integration adds to the blurring effect (known as aperture problem). The second main
image perturbation is noise. In a first rough approximation, one can write ¥; = X; 4+ N;, where
Y; is the observed value, X; would be the “true” value at pixel i, namely the one which would
be observed by averaging the photon counting on a long period of time, and A; is the noise
perturbation. The amount of noise added due to image acquisition is signal-dependent and

characterized by a Poisson distribution, that is, &V; is larger when X; is larger. However, in
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many works, mostly with simulated noise, additive white Gaussian noise (AWGN) is used,
so that the noise values at different pixels are assumed signal-independent and as realizations

of an i.i.d (independent and identically distributed) random variable.

Image denoising is used to find the best estimate of the original image given its noisy ver-
sion. Many methods for image denoising have been suggested, and a comprehensive review
of them can be found in [5]. Among the proposed denoising schemes, patch-based methods
have drawn much attention in the image processing community (e.g. [9]). Moreover, most
of the suggested schemes deal with Gaussian noise model. An example of a recent patch-
based denoising approach is the one introduced by Ram et al. [33]. Their scheme suggests
to reorder the pixels in a given image based on their corresponding patches similarity and

then apply a smoothing operator on the ordered pixels.

In 2005, Buades et al. [5] introduced the Non-Local Means (NLM) denoising algorithm
which takes advantage of image redundancy by comparing pixel neighborhoods within an
extended search region. Each pixel value is estimated as a weighted average of all the other
pixels in this search region. These pixels are each assigned a weight that is proportional to
the similarity between the local neighborhood of the reference pixel and their local neigh-
borhood, such that pixels whose neighborhood is the most similar to the neighborhood of
the reference pixel are given the largest weights. Moreover, the weights are controlled by
a weight smoothing parameter (&), which steers their decay. It is increased with the noise
variance in the image and it is usually set constant for the entire image. Since image pixels
are highly correlated while Gaussian additive noise is typically i.i.d., weighted averaging of
these pixels results in noise reduction. Consequently, the uniqueness of the NLM approach
lies in its ability to exploit spatial correlation in a defined neighborhood (search region) for

noise removal.

Gaussian image denoising techniques can be exploited to deal with Poisson noise as well.
In the Poisson case, a Variance Stabilizing Transform (VST), e.g., the Anscombe [26] trans-

form is used in order to convert the signal-dependent noise to a Gaussian additive white



noise with unit variance. Then, NLM can be applied on the transformed noisy image. Fi-

nally, an inverse transform is applied on the denoised image.

1.2. Thesis Objectives

The NLM search region is usually a rectangular neighborhood, centered at the pixel of
interest (POI), which may include pixels whose original gray value do not match the value
of the original central pixel. Consequently, their participation in the weighted averaging
process degrades denoising performance, even though they are assigned relatively small
weights. To eliminate their effect, researchers, e.g., [4,37], suggest creating an adaptive

search-region, which excludes those dissimilar pixels.

In this thesis, we present a novel model-based method, which defines a set of similar pixels
to the POI from the initial search region, using the statistical distribution of the dissimilarity
measure. Moreover, to enhance the denoising, the proposed method also adaptively assigns
one of two patch-kernel types to each pixel, based on its local features. This patch-kernel is
used for weight computation. We show that the suggested NLM modification improves the
standard NLM performance both quantitatively and qualitatively. This approach is parame-
ter free, since it is model-based, and that is its main uniqueness compared to other suggested

methods for an adaptive search region.

We also refer to the correlation between the dissimilarities of the explored pixels within a
defined search region. The correlation is due to overlap between compared neighborhoods

and their comparison to the same reference patch, by definition.

Moreover, we apply our adaptive search region method to the BM3D [9,20] state of the art
denoising approach and suggest a scheme that facilitates the original BM3D flow by using a
model-based grouping for the first phase of the algorithm instead of the conventional group-

ing method. This proposed modification saves computations while providing comparable
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denoising results.

1.3. Thesis Outline

The thesis is organized as follows: in Chapter 2, we overview the Non-Local Means (NLM)
[5] neighborhood filter that takes advantage of the redundancy and self similarity of the
image. The filter defines the denoised value of a given pixel by applying a weighted average
using the pixels included in a defined search region, centered at the pixel of interest (POI).
In addition, we review the NLM set of parameters and discuss how they can be optimized

to provide the best denoising results.

Chapter 3 presents our novel model-based method for determining a pixel-wise adaptive
search region using the statistical distribution of the dissimilarity measure. We discuss the
statistical analysis behind the proposed approach and compare its performance to the stan-
dard NLM and to the LPA-ICI approach [35] that also suggests to use an adaptive search
region. Appendix A provides additional comparison results between the standard NLM and

the proposed model-based approach.

In Chapter 4, we suggest to expand the adaptive search region method by using an adaptive
patch-kernel type, selected out of two possible types. NLM is commonly used with only
one type of patch-kernel for the dissimilarity measure computation. In our analysis, two
patch-kernels were explored: the Uniform and a Box patch-kernel. We suggest to select
the pixel-wise appropriate kernel type based on local structure. Simulations reveal that the
Uniform patch kernel is more adequate for smooth regions, whereas the Box patch-kernel
1s more adequate for texture or edges. Consequently, pixels that are characterized by a large
adaptive search region, thus considered “smooth”, are associated with the Uniform kernel,
and pixels that are characterized by a small search region are associated with the Box kernel.

We compare the proposed adaptive NLM performance when applied using a single patch-

10



kernel to using an adaptive patch-kernel, and show that the adaptive kernel scheme improves

denoising results.

Chapter 5 discusses the correlation between the dissimilarities of pixels associated to the
adaptive search region and its effect on the model-based scheme presented in Chapter 3. We
tackle the correlation analysis by considering first the correlation due to the mutual reference
patch (Case 1) to whom all the patches in a given search region are compared, assuming
no patch overlaps. Then we add the effect of overlap between patches, but not with the
reference patch (Case 2), and finally we address the most general case in which overlapping
patches may also overlap the reference patch (Case 3). The details of the statistical analysis
are given in Appendix B and of the application of the analysis on the model-based method

are elaborated in Appendix C.

Chapter 6 discusses the performance of the Correlation-Dependent Model-Based scheme,
introduced in Chapter 5, and compares it to the model-based scheme of Chapter 4. In
addition, we refer at the end of the chapter to the sensitivity of the two adaptive schemes

and the standard NLLM to an error in the noise variance estimation.

In Chapter 7, we suggest to integrate our model-based approach that defines an adaptive
search region for each pixel in the image, into the BM3D [9] denoising method. This inte-
gration saves computations and eliminates the need for parameter calibration. We compare
the denoising performances of the original BM3D and the BM3D combined with our model-
based approach and show that they are comparable. Appendix D provides an elaborated

explanation of the BM3D algorithm.

In Chapter 8, we refer to the Poisson noise model and present the flow that enables using
the NLM denoising method that is suitable to an additive Gaussian noise, for Poisson noise
denoising. This flow involves using a VST, specifically the Anscombe transform, which
converts the Poisson noise to an additive Gaussian noise with unit variance. We explore

the performance of the proposed adaptive NLM scheme and the model-based BM3D with

11
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Poisson noise.

In Chapter 9, we present a summary of of the topics discussed in the thesis and suggest some

open issues for future research.

12



2. Standard Non-Local Means Image

Denoising

2.1. Introduction

In the presence of noise, the original pixel value is lost. Neighborhood filters (a class of
filters to which the Non-Local Means filter is a member of) reduce the noise by selecting for
each pixel i a set of pixels S; characterized by both spatial proximity and similar gray level
values. These filters proceed by replacing the gray level value of i by the average over the

set S;.

This chapter will focus on the Non-Local Means (NLM) [5] neighborhood filter that at-
tempts to take advantage of the redundancy and self similarity of the image. The filter
defines the denoised value of pixel i by applying a weighted average on the pixels assigned
to the set S;. The algorithm assigns a weight to a pixel j € S; by comparing a small neigh-
borhood around pixel j to a small neighborhood around the pixel of interest i (POI) . This
weight is proportional to the similarity between the pixels’ neighborhoods. In this manner,
pixels with similar neighborhood to pixel i will be assigned a higher weight, thus have a
more significant contribution to the weighted average process. Consequently, NLM pro-
vides a very efficient denoising procedure that preserves edges and texture while smoothing

non-textured regions.

13
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In this chapter, the NLM algorithm is described along with a proof of its consistency under
stationarity conditions. Moreover, the importance of several parameters which affect the

NLM performance is discussed.

2.2. Neighborhood Filters

Primitive neighborhood filters replace the gray value of a pixel with an average of the prox-
imate pixels values. However, the most similar pixels to a given pixel have no reason to be
spatially close to it. In 1999 Efros and Leung [14] used non-local self-similarities to syn-
thesize textures and to fill in holes in images. Their algorithm scans a vast portion of the
image in search of all the pixels whose neighborhood resembles to the neighborhood of the
POI. The resemblance is evaluated by comparing windows, of defined size, centered at each
compared pixel, and not just the value of the compared pixel itself (i.e., window center).
This technique resembles the methodology of the sigma filter, invented by J.S. Lee [21] in
1983. This filter is motivated by the structure of the Gaussian PDF, and it smoothes the
image noise by averaging only those neighborhood pixels which have the intensities, within

a fixed sigma range, of the POI.

Let X and Y be the original and the observed noisy images, respectively. It is assumed
that the original image is corrupted by a Gaussian noise N with a zero mean and a known

standard deviation o, such that,
Y =X+N, N~ .+ (0,07) 2.1)

Then, the filtered value by the sigma-filter strategy can be written as:

2
# = ¥ Yew {_%} (2.2)

I jeSip
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where only pixels inside the defined region S; , are averaged, p defines the size of the search
region, h controls the pixels dissimilarity and C; is a normalization factor. The SUSAN
algorithm [36] and the bilateral filter [39] make this process more symmetric by involving
a bilateral Gaussian depending on both spatial proximity and gray level. This leads to the

following:

2 . .2

) 1 YY" Ji—j|

BLF i— 1

i = & Z Yjexp{— ;2 (2.3)
L jESip

The bilateral filters perform better denoising than Lee’s statistical filter. They maintain sharp

boundaries, since they average pixels belonging to the same region as the POI. However,

Bilateral filters fail when the standard deviation of the noise exceeds the edge contrast.

2.3. The Non-Local Means (NLM) Algorithm

The NLM algorithm is inspired by the neighborhood filters. It takes advantage of the high
degree of redundancy in any natural image by assuming that every small patch in a natural
image has many similar patches in the same image. One can define a search region centered
at pixel i, of size M x M, such that S; = { j| |i — j| < 2=1}. Specifically, in Texture synthesis
[14], a sub-set of similar pixels, denoted k € Sf C §;, is extracted such that a patch around &
resembles to a patch around i, by defining an adequate similarity measure. All pixels in that
sub-set can be used for predicting the value at i. The fact that such a self-similarity exists

proves image redundancy and matches the image regularity assumption.

In standard NLM, all the pixels that are included in S; are used for the weighted averaging
process, such that the weights are determined based on their resemblance to the POI, as

explained next.

Assuming the noise model presented in eqn. (2.1), each pixel in the restored image is

15
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derived as a weighted average of all gray values within a defined search region:
Xl’ = Z Wiyij (24)
JESi
where i represents a pixel index, S; refers to a rectangular search region of size M x M cen-
tered at pixel i . The normalized weights, which can be referred to as similarity probabilities,
are defined as:

1 di (j
Wi = Wiexp {— h(zj) } (2.5)

such that, W; =} ;s wi j, 1s a weight normalization factor, d; (/) is a dissimilarity measure,
and 4 is the weight smoothing parameter, which is typically controlled manually in the
algorithm. Choosing a very small % leads to noisy results almost identical to the input,
while a very large & gives a uniform weighting, typically resulting in an overly-smoothed
image. A more comprehensive discussion on the choice of this parameter will be held in
section 2.5. The dissimilarity measure d; (j) is defined over the corresponding similarity

patches as follows:
a;(7) = |l (4) - (4))[15, 2.6)

A; represents a square similarity patch of size p X p centered at pixel i (p < M) and Y (A;)
represents the pixel values of the corresponding similarity patch . The similarity patches
may overlap within a given S; and are defined such that their central pixel is included in
Si, not necessarily the whole patch. The vector norm is the Euclidean difference, weighted
by a Gaussian kernel of zero mean and variance a that is used to smooth out the neigh-
borhood while calculating the weights. This filter reduces the effect of differences in pixel
intensities as they get spatially further away from the center of the patch. In practice, in-

stead of a Gaussian kernel, simpler kernels are used: a Uniform kernel (which assigns the

16



same weights to all the pixels of the similarity patch), whose corresponding dissimilarity
measure is denoted d” (), and a Box kernel, illustrated in Figure 2.1, whose corresponding
dissimilarity measure is denoted d? (). Efros and Leung [14] showed that the L, distance
is a reliable measure for the comparison of image windows in a texture search region. This
measure is adapted to any additive white noise such that noise alters the distance between
windows in a uniform way, as shown herein:

2 12062 2.7)

2.a n

E[[Y (4) =¥ (4)) [, = E[[X (4) - X (4))]

This equality shows that, in expectation, the Euclidean distance preserves the order of sim-
ilarity between pixels. So the most similar pixels to i in Y are also expected to be the most

similar pixels to i in X.

Refer to Figure 2.2 for a schematic view of a chosen search region and its respective simi-

larity patches.

Figure 2.1.: Box kernel used for dissimilarity measure computation

Pay attention to the difference in weight definition between the NLM filter and the sigma-

filter. The NLM defines pixel dissimilarity as the difference between pixel neighborhoods
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Figure 2.2.: The image Lena with a chosen search region §; (marked in red) and respective
similarity patches. The reference patch (A;) is marked in green. Several compared patches
(A j) , within the search region, are marked by a light dashed orange contour (for patches
which resemble A;, i.e., having a small dissimilarity measure value) and a heavy dashed
blue contour (for patches with high dissimilarity measure value).

(see eqn. (2.6)) , whereas the sigma-filter refers to the absolute difference between pixel

values in a defined search region (see eqn. (2.2)).

The weights computation is a bottle neck of the NLM algorithm. Therefore, restricting the
size of the search region M? is important for a practical implementation. Following recom-
mendations presented in [32], that suggest to restrict the search region to M € [11,15] (see
sub-section 2.5.3), the search region here is restricted to 11 x 11 (M = 11) and the similar-
ity patch is set to 5 x 5 (p =5). Consequently, for a K x K image, the final complexity of

the algorithm is about p* x M? x K2,
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2.4, Statistical Consistency of the NLM

Estimation theory determines that if the original and observed images are considered as
a realization of two random fields X and Y , then the best estimate of X is given by the

conditional expectation

X;=E[X||Y], Vic X (2.8)

The best estimate at a pixel i depends on the values of Y in the whole image. In many
applications, e.g., texture synthesis, there is a restricted access to a small neighborhood of
the pixel of interest (POI). In the denoising case, estimation of X; may be based on a defined
neighborhood centered at pixel i and not on the whole image. It can be shown that eqn. (2.8)

also holds for a restricted neighborhood around pixel i, denoted S; :
X;=E [Xi‘Y (S,)] , VieX (2.9)

Hence, the justification of restricting the search region in the NLM denoising process.

Image consistency means that the value at a given pixel i is directly influenced only by the
values of its neighboring pixels [31]. Moreover, the defined search region is assumed to be
stationary, i.e., it includes pixels whose characterizing distribution is space-invariant (for
shifts within the region itself). Therefore, it can be concluded that the NLM methodology
matches image consistency under stationarity conditions. This conclusion coincides with
image redundancy, i.e., the fact that the image consists of many samples of every image
detail. It is a crucial point in understanding the performance of the NLM algorithm. In
addition, since the image is assumed to be a mixing process (refer to [31]), regions become
more independent as their spatial distance increases, which is intuitively true for natural

images.
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2.5. Setting NLM Parameters

Exploring eqns. (2.4) — (2.6) reveals that NLM denoising depends on setting the following

parameters:

1. The similarity patch size p x p, which is often set to 5 x 5 or 7 x 7, but should a priori
be related to the scale of objects in the image, i.e., contrasted small details should be

characterized by a smaller patch size than smooth regions.

2. The weight smoothing parameter 4 should be proportional to the typical distance be-
tween similar patches, and should also depend on the noise STD, as suggested in[40)].
It should also be related to the regularity of the image, as will be explained in sub-

section 2.5.2.

3. The size of the search region S; M x M, which has a dramatic impact on the compu-

tation time, but which also has an influence on the visual quality of the results.

4. The weight of the central pixel in a given S;. This pixel should be treated differently
than the other pixels in the search region, as it serves as the reference pixel and also

participates in the weighted average procedure.
5. The patch kernel used for the dissimilarity measure computation.

In fact, these parameters are far from being independent, and setting their values is not an
easy task. The rest of this section deals with the analysis of these parameters and their effect

on to the NLM denoising performance.

2.5.1. Similarity-Patch Size

The dissimilarity measure can be defined as difference between similarity patches in either
the spatial domain or in any adequate transform domain. The domain determines how the

patches similarities are computed. Using a large patch size reduces the importance of low
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contrasted small details, becoming more blurred. Moreover, it allows a more robust discrim-
ination between areas that are not actually similar. In Figure 2.3(a), when a small similarity
patch size is being used, Lena’s skin looks mottled. It looks smoother with a larger patch
size (Figure 2.3(b)), at the expense of blurry feathers. On the other hand, if the image has
textures with highly contrasted transitions or that are characterized by rare pattern occur-
rences, using a too large patch prevents the algorithm from finding redundancies, as shown
in Figures 2.4. For a large similarity patch size (Figure 2.4(c)), it is very difficult to find
similar patches around the letters, thus a noisy halo appears. Using a smaller similarity
patch size (Figure 2.4(d)) reduces the spread of the halo since it captures the local texture

more accurately.

This phenomenon is referred to as the rare patch effect and is visually characterized by a
noise halo around edges, due to lack of redundancy of the defined patches in the search
region. Consequently, the patch size should ideally be chosen depending on the local scale
of the image, where smooth regions define a large scale and edges or textures define a small
scale. Deledalle et al. [10] address the problem of the rare patch effect by substituting the
square isotropic patches of fixed size by spatially adaptive patch shapes that can exploit local
image geometry. Their suggestion obviously complicates the implementation of the NLM
filter and restricts the similarity patch shape to be chosen out of a selected bank of shapes.
However, using a locally adapted 4 should make the choice of the size of the similarity patch

less critical, as will be explained in subsection 2.5.2.
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(b)

Figure 2.3.: Denoising of the image Lena with o, = 20, h = 0,,, M = 11 and Box kernel
for the dissimilarity measure computations. (a) Using 3 x 3 similarity patches, (b) Using
5 x 5 similarity patches.

Figure 2.4.: Choice of the patch size: (a) Original image [43], (b) Noisy image with o, = 20,
(c) Zoomed-in view of NLM denoising with ¢,, =20, h = 0,, M =11 and p =9, (d)
Zoomed-in view of NLM denoising with 6, =20, h = o6,, M = 11 and p = 5. Box
kernel was used for the dissimilarity measure computations.

2.5.2. Weight-Smoothing Parameter

The weight-smoothing parameter (&), which quantifies how fast the weights decay with
increasing dissimilarity of respective patches, is usually set to be proportional to the noise

standard deviation [40]. Since the performance of the NLM filter is sensitive to A, its value
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should be chosen carefully. There is apparently a contradiction between the idea of adapting
the smoothing parameter (whether globally or locally) to the content of the image and the
observation of several authors (e.g., [40]) that & should be set proportional to the noise
standard deviation . Figure 2.5 shows that the relation between the optimal global parameter
h and noise STD is indeed approximately linear and it is remarkable that the slope does not
vary much between different images. This fact relates to the global effect of this parameter,
however empirical results show that using a fixed global 4 value (where £ is proportional to
noise STD) causes over-smoothing of highly textured regions. Whereas, a low global value
may preserve texture and edges, but results in insufficient denoising of smooth regions,
which appear grainy. Consequently, a local value of 4, which depends on the local structure
of the image, should provide sufficient denoising of smooth regions as well as preserve
highly textured areas. Therefore, this empirical rule of linear relation between the value of
h and the noise STD only gives a rough idea of the optimal value. Duval et al. [12] reconcile
these two points of view by suggesting a method that sets a locally adaptive 4 which is
linear with the noise STD. Their method involves several runs of the NLM algorithm with
different values of 4. Then, a SURE estimator is calculated pixel-wise in order to select the

local optimal value of A, out of the pre-selected values.
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Figure 2.5.: Evolution of the optimal global smoothing parameter & when the noise level
varies, for six different images [12].

Figure 2.6 demonstrates the importance of setting a local content-based value of 4. It is
based on a simulation we carried out, in which two representative patches were extracted
from the image Barbara: one corresponds to a smooth region and the other corresponds to a
textured region. The smoothing parameter was defined as h = k - 6,,, and the NLM algorithm
was applied on the selected image patch by using different values of the parameter k in order
to determine which value provides the best denoising results. Each optimization is a result
of averaging over ten noise realizations. Figure 2.6 (b) represents the optimization process
over the smooth region, whereas Figure 2.6 (c) represents the process over the textured
region. It can be seen that the smooth region requires a larger k compared to the textured

region. This simulation shows that indeed 4 is sensitive to image local structure, as stated
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Figure 2.6.: Simulation which demonstrates the sensitivity of /4 to image local structure.
NLM denoising was applied on the noisy image Barbara (256 x 256) with o, = 20 and
the parameters: p =5, M = 11, h = k- 6,,, where k = [0.6,2] and Box patch-kernel. (a)
Barbara with two selected patches: the solid yellow patch corresponds to a smooth region,
whereas the dashed red patch corresponds to a textured region, (b) PSNR vs. k curve, (c)
SSIM vs. k curve.

2.5.3. Search-Region Size

Intuitively the search region should be as large as possible to have as many “copies” of the

patch. However, it should be selected to be as small as possible, since it crucially affects
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the computation time. Actually, most natural images are characterized by local similarities,
thus there appears a need to use a very large search region. Salmon at al. [34] demonstrate
that for most standard images, the gain of using a large search region size is insignificant
for a parameter greater than 15, with a fixed choice of p (refer to Figure 2.7). Moreover,
sizes higher than 15 have a negative influence on the NLM denoising performance for both
medium and high noise levels. This phenomenon is due to the accumulation of small posi-
tive weights, leading to average of non-similar patches, hence biasing the estimation. Duval
et. al [12] suggest to minimize the loss caused by a large search region by using truncated
weights, i.e., a hard thresholding operator. When imposing a small threshold value, the
NLM filter is almost insensitive to the increase of the search region. Of course, the weight
thresholding parameter adds another degree of freedom to the algorithm, thus this sugges-

tion is not optimal.

Levin at. al [23] study the relation between denoising gain and search region size require-
ments in patch-based denoising techniques. They conclude that each image pixel has a finite
compact region of informative neighboring pixels based on its characterizing structure. In-
tuitively, the size distribution of these regions must directly impact both denoising error
(small error implies higher PSNR) vs. search window size and its limit as the window size
grows indefinitely. An infinite search region is obviously impractical. However, choosing
only the most similar pixels to a POI (where similarity is measured based on neighborhood
comparison, see eqn.(2.6)), within a finite defined search region, may serve as a practical
solution to the content-based search region size. This suggested solution will be further

discussed in chapter 3.
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Figure 2.7.: [34] Influence of the size of the search region on the PSNR of the NLM proce-
dure, with p = 5, weight of the central pixel is the maximal weight within the weights of
the search region and 4 is chosen as the optimal value within the range [\/§ Oy, \/ﬁcn} .
The top figure refers to 0, = 20 whereas the bottom figure refers to o, = 50.

Figure 2.8 displays the empirical PSNR as function of search region size. In this simulation,
clean and noisy test patches pairs were used, such that for each noisy patch, the largest M,
at which estimation is still reliable, was determined by comparing the denoising results with

its paired noise-free patch. The patches were divided into groups, G;, based on the largest
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window size [ (M = [1,1]) at which the estimate is still reliable. The figure displays, for
each group, the empirical PSNR averaged over the group’s patches as a function of window
size M. Moreover, the mean gradient magnitude was computed for each group based on
the noise-free data. As expected, groups that include mostly patches with large gradients
(texture) are associated with a smaller search region size /. These groups of patches cor-
respond to PSNR curves that are lower and also flatten earlier in the figure. In contrast,
groups that include smooth patches are associated with small mean gradient magnitude and
gain more from an increase in search region size. These patches correspond to the higher
curves that flatten later in the figure. Consequently, it seems that pixels that correspond to
smooth regions require a larger search region compared with pixels that correspond to tex-
tured regions. Moreover, theses pixels are characterized by a higher PSNR when denoised

using a larger search region.

PSNR

25} —G4
0 10 20 30 40
Number of pixels m

Figure 2.8.: [23] PSNR vs. size of search region d for patch groups G; of varying complex-
ity. Higher curves correspond to smooth regions, which flatten at larger patch dimensions.
Textured regions correspond to lower curves which not only run out of samples sooner,
but also their curves flatten earlier.

28



2.5.4. Reference-Pixel Weight

The role of the reference pixel (POI) is different in nature as it plays two roles at the same
time. On one hand, it is the central pixel of the reference patch that is compared to the
other patches, within a defined search region, and on the other hand it also participates
in the averaging process together with all the others pixels of the search region. Several
suggestions on how to set the weight of this pixel have arisen [11], as detailed herein. The

central pixel weight shall be denoted w; ;.
1. The original weight based on eqn. (1.5): d; (i) =0, w;; = 1 before normalization.

2. Assign the same value as the maximum of the other weights observed in the search
region and then normalize the weights. Though this choice is not validated by theory,

better results are obtained in practice.

3. Assign a zero weight, i.e., don’t consider the central pixel in the weighted average

process, w;; = 0.

4. Use Stein Unbiased Risk Estimator (SURE) [40] for weight computation. These

weights are equivalent to replacing the central weight in the NLM procedure by

2142
exp { — 20221\4 } (without modifying the other weights), before normalization.

Salmon et al. [34] compared the performance of the different methods. Their results are
illustrated in Figure 2.9. The histograms are ordered by the following methods: SURE
estimator (4.), maximal weight (2.), original weight (1.) and zero weight (3.). It can be
observed that for most of the images, with any noise level, the first two methods, i.e., the
SURE weight and the maximal weight provide the best results. Consequently, in this work,
the central pixel weight is chosen as the maximal weight within the pixels in the correspond-

ing search region.
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Figure 2.9.: [34] Comparing performance of NLM by changing the weight of the cen-
tral pixel (in order from black to white: SURE, Max, Original, Zero) with two lev-
els of noise and p =5, M = 13 and h is chosen as the optimal value within the range
[\/50',,, \/%Gn} .The top figure refers to 0, = 20 whereas the bottom figure refers to
0, = 50 . The PSNR given below the name of the image is the one obtained with the

noisy version of each image.
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2.5.5. Patch Kernel

As explained earlier, in sub-section 2.3, the dissimilarity measure is computed using the
vector norm of the difference between the central patch and any compared patch (within
the defined search region), weighted by a Gaussian kernel of zero mean and variance a, as
shown in eqn. (2.6). The Gaussian kernel is used to smooth out the similarity patch while
calculating the weights. This filter reduces the effect of differences in pixel intensities as
they get spatially further away from the center of the patch. In practice, instead of a Gaussian
kernel, simpler kernel is used, the Box kernel, as illustrated in Figure 2.1. Another, even
simpler kernel that is used, is the Uniform kernel. It assigns the same weights to all the pixels
of the similarity patch, thus does not weight the data according to its spatial distance from
the patch center. Simulations suggest that the Uniform kernel is more adequate for smooth
regions, whereas the Box kernel is more adequate for texture or edges. Consequently, there
is an added value of using a Box kernel. Figure 2.10 (c), which represents a standard NLM
denoising using a Box kernel, preserves structure (see Baboon’s fur) but is characterized
by granularity in smooth regions (see Baboon’s nose). Fig. 2.10 (d) presents the denoising
results of the standard NLM with a Uniform kernel. It shows that the granularity effect is
reduced in smooth regions, but texture and edges are over-smoothed. Further discussion

regarding the importance of the patch kernel will be held in chapter 3.
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(a@)

Figure 2.10.: Denoising of the image Baboon with ¢,, = 20, using different patch kernels
and h = o0, p =5, M = 11. (a) Original image, (b) Noisy image, (c) Box kernel, (d)
Uniform kernel.

32



2.6. Denoising Limits

Levin et. al [23] study absolute denoising limits and the convergence rate to them as a func-
tion of the search-region size. Scale invariance is a fundamental property of natural images.
In order to characterize this property, a dead leaves image formation model is considered,
e.g. [1], whereby an image is a random collection of piecewise constant segments, whose
size 1s drawn from a scale-invariant distribution and whose intensity is drawn i.i.d. from
a uniform distribution. This yields perfect correlation between pixels in the same region.
To further simplify the analysis, an edge oracle, which gives the exact locations of edges in
the image, is assumed. The optimal denoising is then to average all observations in a seg-
ment. For a pixel belonging to segment of size s pixels, the Minimum Mean Squared-Error
(MMSE) is GT'% . Overall the expected reconstruction error with infinite-sized windows is
MMSE(s) = [ p(s)- GT’% ds where p(s) is the probability that a pixel belongs to a segment pf
size s pixels. Alvarez at. al [2] show that scale-invariance implies that the probability that a
random image pixel belongs to a segment of size s is of the form p(s) o< % . To get a sense of
the empirical size distribution of nearly-constant-intensity regions in natural images, Levin
at al. perform a simple experiment inspired by[31]. For a random set of pixels {X;} ,the
size d(i) of the connected region whose pixel values differ from X; by at most a threshold
T was computed, i.e.: d(i) = card { j| |X | —Xi| <T}. The threshold T corresponds to the
contrast within the segment, such that a lower value refers to a more uniform segment. The
empirical histogram h(d) of region sizes follows a power law behavior h(d) o< d~% with
o =~ 1, as suggested by [2]. Levin et al. model the MMSE, as a function of search-region
size, denoted M = [S;|, as MMSE (M) = e + 1;, where e = MMSE(M —> o) and ¢ is some
constant. The MMSE value for an infinite search region is set based on extrapolation of ex-
perimental curves which are the result of denoising applied with a finite d. Extrapolating this
parametric law gives a ballpark estimate of the best achievable denoising, suggesting that

some improvement, although modest, is still possible (see Table 2.1). While the extrapo-
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lated value may not be exact, their analysis suggest that there is an inherent limit imposed by
the statistics of natural images, which cannot be broken, no matter how sophisticated future
denoising algorithms will be. Table 2.1 compares the PSNR of existing algorithms (BM3D
[9] and K-SVD [28)) to the predicted PSNR.., over 20K test patches using the power law fit
based on a pool of 108samples, i.e., for each test patch, the corresponding similar patches
were extracted from the pool . The comparison suggests that depending on noise level o,

current methods may still be improved by 0.6 —2.3dB.

Oy | 35 [ 50 | 75 | 100 |
Extrapolated Bound (PSNR..) | 30.6 | 28.8 | 27.3 | 26.3
K-SVD [28] 287269 25 | 237
BM3D [9] 30 | 28.1 263 25

Table 2.1.: Extrapolated optimal denoising in PSNR, and the results of recent algorithms.
It can be observed that a modest room for improvement still exists.

2.7. Chapter Summary

In this chapter, the Non-Local Means denoising scheme was introduced in detail. This
filter is part of the neighborhood filters family. These filters estimate a POI by using a
weighted average of pixels located in a search region associated with a POI. The weights
are inversely proportional to the dissimilarity between a small neighborhood of the POI and
a corresponding small neighborhood of pixels within the search region. This filter assumes
stationarity of the search region data and depends on five parameters whose values affect
the denoising performance. These parameters are the size of the similarity patch (p), the
weight-smoothing parameter (%), the size of the search region (M), the weight of the central

pixel (w;;), and the patch kernel type.
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3. Model-Based Non-Local Means

Image Denoising

3.1. Introduction

The Non-Local Means (NLM) denoising algorithm uses a weighted average of pixels, within
a defined search region of the image, to estimate a noise-free pixel value. The search re-
gion is usually a rectangular neighborhood, centered at the pixel of interest (POI), which
may include pixels whose original gray value do not match the value of the original central
pixel. Consequently, their participation in the averaging process degrades denoising per-
formance. To eliminate their effect, researchers suggest creating an adaptive search-region

which excludes those dissimilar pixels.

This chapter presents a novel model-based method, which defines a set of similar pixels to
the POI, from the initial search region, using the statistical distribution of the dissimilarity
measure. Experimental results show that the proposed algorithm has better performance
than the original one in terms of PSNR, Structural Similarity (SSIM) [41], and visual quality

and is found to be more efficient than other examined approaches.
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3.2. NLM Applied With An Adaptive Search Region -

Prior Art

The uniqueness of the NLM approach lies in its ability to exploit spatial correlation in
a defined neighborhood (search region) for noise removal. As mentioned in section 3.1,
the search region may include pixels which differ in their original gray value from that of
the POI and their participation in the averaging process may degrade the denoising per-
formance. Their negative effect can be alleviated by the weight smoothing parameter (/).
This parameter plays the same role as kernel support, such that the larger the support, the
smoother the image becomes. Hence, for textural regions a smaller value of 4 should be
used than for smooth regions, for the same given noise STD. In that manner, dissimilar
pixels will be assigned a lower weight (refer to sub-section 2.5.2 for more details). As a
result, there are NLM modifications that suggest using an adaptive & value [12,11], which
is matched to local structure. As discussed below, an alternative to using an adaptive 4 is
to replace the isotropic square search region in the original NLM by an adaptive anisotropic
region in which the most similar pixels to the POI are selected (based on comparing local
neighborhoods). This anisotropic neighborhood can better exploit the local image struc-
ture. Consequently, denoising performance is improved, especially for pixels that belong to

textured regions.

Mahmoudi et al. [29] propose to pre-classify the neighborhoods based on local average
and gradients, but the calculation of the gradient is affected by noise. Coupe et al. [8] and
Kervrann et al. [18] use patch average and patch variance to rule out dissimilar patches.
Dinesh at al. [11] suggest a correlation-based patch classification method. The correlation
is computed using an inner product between two normalized patches. Only patches, within
the search region, whose correlation (with respect to the reference patch) is higher than
a pre-defined threshold, are considered during the averaging process. The problem with

these methods is that the measures which affect pre-selection of pixels use global thresh-
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olds which are chosen somewhat heuristically and may vary based on image characteristics,
hence imply lack of robustness. Azzabou et al. [3] suggest partitioning the image into two
classes: noisy smooth zones and noisy texture/edge zones. Each pixel is characterized by
a statistical model that defines a membership degree to each class. The method relies on
a prior, which does not necessarily satisfy all explored images, and involves a Gaussian
Mixture Model as well as EM optimization that are computationally expensive. Orchard et
al. [32] propose an alternative strategy that uses the SVD to more efficiently eliminate dis-
similar pixel pairs. The method relies on dimensionality reduction of the image patches by
setting a global dimension for all patches. This dimension value may cause over-smoothing
since texture and edge patches should be characterized with a higher dimension than smooth
patches. In [4], Brox et al. suggest to classify pixels by using a cluster tree approach and K-
Means (K=2) with pre-selected parameters that define the classification. This is equivalent
to image segmentation based on iterative binary classification and hence is not necessarily
robust under noisy conditions. Kervran et. al [17] propose to use an adaptive isotropic
neighborhood, such that the proper search region size is set in a manner that it balances the
accuracy of approximation and the stochastic error, at each spatial position. The drawback
of this approach is that it restricts the search region to be rectangular, and it explores several
search window sizes per each pixel, which makes it time-consuming. Sun et al. [37] present
a method that determines a pixel-wise adaptively shaped search region, within which the
image is homogeneous. The method is subjected to a contiguous search region shape that is

not necessarily the best shape within the pre-defined search region.

The following section describes our suggestion for an adaptive search region. The novelty
of our approach is that pixel association with any of these two groups is based on a proba-
bilistic model that characterizes the dissimilarity measure between two compared patches.
Consequently, each pixel is characterized by a content-based search region constructed from

the similar pixels group.
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3.3. Search Region Pixel-Classification - Proposed

Model

The adaptive approaches, presented in the previous section, suggest to partition the given
search region (which can also be defined as the entire image) into two groups, based on
pixels’ similarity to the POI. These approaches are parameter-dependent or restrict the set
of similar pixels to the POI to be contiguous. We too propose to partition the search region
of a given pixel i (S;) into two sets: a set of similar pixels (with respect to the reference pixel
i), denoted here SiS , and a complement set of dissimilar pixels, denoted S? . However, unlike
some of the earlier approaches, the set Sf is not restricted to be contiguous, and the partition
is determined on the basis of a statistical model of the dissimilarity measure. Similarly
to other approaches, the weighted averaging is applied only to the pixels in the set Sf A

schematic view of a partition is depicted in Figure 3.1.

Figure 3.1.: Description of a search region divided into two sets. Slp is a group of pixels
whose original gray value difference with respect to Sf is C (marked in light blue). A; is
a similarity patch included in the Sf set whereas Ay is a similarity patch included in the
SP set. Note that S? is not restricted to be contiguous.
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To derive the model, we refer at first to the normalized (by the noise variance) dissimilarity

measure that uses a Uniform patch-kernel:

_ 2
i (j) _ 1 Y () -1 (4)) ] _ 1 (H)z eSS 3.1)
2072 p? 207 p? meA;,l€A, V2o, ) l

Refer to eqn. (2.6) for the general definition of the dissimilarity measure. A, is the similarity
patch centered at pixel i (the POI) and A; is a compared similarity patch, centered at pixel

J € Si. Moreover, the size of the similarity patches is set to be p x p.

Assuming that the original gray values of all the pixels in SZ-S are the same as pixel i, i.e.,
Xi=X/Vje Sf (refer to eqn. (2.1) for a description of the noise model), the following

applies:

Y -1\ 2 N —N\?
y (m l> _ ¥ ( m l) viess (32)
meA;,l€A, V20, meA;, leA; V20,

The normalized noise difference % is distributed .4 (0,1) as a linear combination of

two i.i.d variables. We start with the simplifying assumption that the dissimilarity values

related to the same reference patch over the search region are not correlated (in spite of patch
overlaps and the use of the same reference patch). In chapter 4, we consider the effects of

having a mutual reference patch, and patch overlaps.

LEMA 3.1 [15]: Let Z;,...,Z; be independent, standard, normal variables, then the sum
of their squares Q = 22:1 Z,%l is distributed according to the Chi-Square distribution with k

degrees of freedom, i.e., Q ~ x,?

Under the current assumption and based on Lema 3.1, the sum, in eqn. (3.2), of p? squared
independent standard normal variables has a Chi-Square distribution with p*> degrees of

freedom. For large p? , the Chi-Square distribution converges to a Normal distribution with
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the following first two moments:
2 25 2
X~ N (p ,2p ) forp>1 (3.3)

Figure 3.2(a) illustrates the goodness of fit between the two distributions, for p> =25, as the
similarity patch is typically chosen to be 5 x 5, i.e., p = 5. The figure shows that p> = 25
is sufficiently large to assume a convergence of the Chi-Square distribution to a Normal
distribution. Figure 3.2(b) depicts the Kullbek Leibler (KL) Divergence[31] between the

two distributions as a function of p.

DEFINITION 3.1 [35]: The Kullback-Leibler (KL) Divergence is a fundamental equa-
tion of information theory that quantifies the proximity (in bits) of two probability distri-
butions. In our case, we wish to quantify how close is the Normal distribution, denoted
here ¢”¥ to the Chi-Square, denoted qxz. The corresponding KL Divergence is defined as

5 N ) . .
Dkr, (q/ ||g% ) =Y, q‘l/ylogz <ql7> where the index i refers to elements of an input vector

1

2
and q‘l-/’/ , qf.c are the respective discretized Normal and Chi-Square probabilities of the input
vector elements. D is non-negative, not symmetric in ' and g%, zero if the distributions

match exactly and can potentially equal infinity.

DEFINITION 3.2 [19]: The classical Jensen-Shannon Divergence is a non-negative sym-
metric derivative of the KL Divergence. It is defined as: Djs =0.5 (DKL (Cl‘/’/ | |inx) +DgL (qxz | |inx> )

where g™ = 0.5 (q‘A/ + q%2> is the average of the two distributions.

The figure demonstrates that as the size of the similarity patch increases, the two explored
distributions become more proximal, as expected. The red dots on the figure, which cor-
respond to p = 5, show that for this patch size, the two distributions can be considered
sufficiently proximal. Increasing p will provide a better approximation, but at the expense

computational complexity.
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Figure 3.2.: Goodness of fit between the Normal and Chi-Square distributions. (a) Normal
and Chi-Square distributions for p?> = 25 degrees of freedom, (b) KL Divergence and JS
Divergence as a function of similarity patch size (p).

From the combination of eqns.(3.2) and (3.3) we get, for the uniform kernel:

p*d? (j)

2
20}

~ 1;2 - N (p2,2p2) forp>1
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And hence the distribution of the normalized dissimilarity measure can be approximated

(for sufficiently large p?) by:
d¥ (j 2
&P |y (L—) (3.5)

In the same manner, for a general kernel, the normalized dissimilarity measure is defined as

follows:

G a2
rpriy_ oy %(N’" N’) st Y a=1, (6

2
20, meA;,1€Aj se[1,p?] \/EG” se[1,p?]

where o represents the patch-kernel weights of a given p x p similarity patch (hence, o, =

p~2 for the Uniform patch kernel). This measure is distributed (in approximation) [19] as:
aiiH~r 1,2 Y of (3.7)

The Box patch kernel we use (for p = 5) is characterized by the following normalized coef-

ficients o, arranged in a matrix form:

[ 0.5 05 0.5 0.5 05 1
0.5 1.888 1.888 1.888 0.5
F=1]05 1838 1.883 1.888 0.5 | -p* (3.8)
0.5 1.888 1.888 1.888 0.5
I 0.5 05 0.5 0.5 05 |

We introduce the following definition for a General patch-kernel:

1>

K

Y o (3.9)

s€ [l,pz]
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The corresponding values of k for the Uniform and the Box kernels (of size p = 5) are given

by:

For Uniform patch-kernel: k = p=2 =0.04, (p = 5)
For Box patch-kernel: k¥ = 0.0578, (p =5)

(3.10)

The definition in eqn. (3.9) and the values of x in eqn. (3.10) will be used from now on.

Thus, the normalized dissimilarities have the following distribution:

i (j),dy (j) ~ . (1,2k) 3.11)

Model Application

We begin with the description of the proposed method for search region partitioning when

the Uniform patch kernel is used.

Let’s discuss the simplified case in which the search region can be divided into two uniform
sub-regions, as illustrated in Figure 3.2. In the figure, SiD represents pixels whose original

gray level difference with respect to the POl is C, i.e.,
Ypu—Y;=C+Ny—N;, Vm €A, 1 €A;, and Vj € SP (3.12)

In a more general case, S; is divided into multiple sub-regions, with a pixel-wise gray level
difference C,, ;. This difference is defined for a pair of pixels m,! which corresponds to the

same locations in similarity patches A;, A; respectively.

Y—Y;=Cpy+Nuy—N;, Vm € A; 1 €A}, and Vj € SP (3.13)
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For this case, the following applies:

2 2
Y —Y C N, —N
) (m—l) = ) <—’”’l+ - ’) ,VjesP (3.14)
meA;, [€A \/QG” meA;,l€A; \/EGn

The term on the r.h.s. of eqn.(3.11) has a Non-Central Chi-Square distribution with p2

degrees of freedom and a Non-Centrality parameter A for each pixel j in SID :

Cns \°
A=Y (ﬁ;),WESlp (3.15)

meA;,l€A;

Finally, the dissimilarity measure in SID 1s characterized by the following first two moments

(assuming N; is i.i.d and Kk = P72

E[dY ()] =1+A(j)k

VjesP:
Var [dY (j)] =2k +4A (j) k*

(3.16)
Therefore, the variance of the normalized dissimilarity measure vector of the entire search
region is equal or larger than 2k . It is important to note that we consider the M? — 1 elements
of the dissimilarity vector as a realization of a random sequence of dissimilarity values in a

M x M search region (excluding the POI whose corresponding dissimilarity is zero).

The search region can be divided into two sets on the basis of the aforementioned statistical
analysis. Figure 3.3 illustrates the (theoretical) distribution of the two sets for a selected
value of C. Setting the threshold which distinguishes between the two sets is not an easy
task because practically A (j) is unknown. Hence, the distribution parameters of the SiD set
are unknown. Consequently, we have decided to use a one-sided hypothesis which sets the
threshold based on the characteristics of the Sf set. This threshold should be sufficiently
robust, such that it will be able to cope with a potential cross-talk between the distributions
of the two sets of pixels. A combined variance-mean threshold on the elements {d}U (j) }j es:
, like 1+ 3v/2K (corresponding to three STDs from the mean, see eqn. (3.5)), can serve as
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an example for such a threshold. However, this threshold turned out to be less reliable .
Instead, setting a threshold that is based on the accumulated variance of the dissimilarity
elements in S; (refer to ALGORITHM I) turned out to be more robust. This threshold is
set based on a sequential procedure that sorts the normalized dissimilarity elements in an
ascending order and computes the variance of the sorted elements, starting with the two
smallest elements and adding another element in each iteration based on the sorting order.
The stopping criterion is set by comparing the computed variance, in each iteration, to the
model variance threshold (2x). In a similar manner to the accumulated variance threshold,
an accumulated mean threshold was explored as well. However, experimental simulations
have proven that this threshold is significantly less robust than the variance-based threshold

and provides degraded denoising results.

Figure 3.4 provides a comparison between the three threshold suggestions for a given search
region that is displayed in Figure 3.4 (a). Figure 3.4 (b) presents a dissimilarity histogram
of an 11 x 11 search region extracted from a synthetic image that contains an edge. The dis-
similarity measure was computed for all pixels in the defined initial search region S; of size
11 x 11, centered at the POLI. It is clear that the dissimilarity measure vector is characterized
by at least two different populations. However, these two populations cross-talk and it is not
an easy task to set the threshold which distinguishes between them. Defining a histogram-
based threshold is not sufficiently robust since it depends on the number of bins assigned to
the histogram. The model-based thresholds are marked on the figure, with the accumulated-
variance threshold marked in red, the accumulated-mean threshold marked in black and the
combined variance-mean threshold marked in green. By exploring the structure of the his-
togram, the red threshold appears to be more suitable than the two other thresholds. Figure
3.4 (c) presents the corresponding adaptive search regions (SlS ) that are the result of apply-
ing the different thresholds. The search regions are ordered from left to right, such that the
region on the left is the result of the accumulated-variance threshold, the region in the center

is the result of the accumulated-mean threshold, and the region on the right corresponds to
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the combined variance-mean threshold. It is clear the accumulated-variance threshold (left

region) provides the most accurate search region out of the three explored thresholds.
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Figure 3.3.: An illustration of the (theoretical) distribution of the Sf (red) and the SlD (blue)
sets, for a selected value of C and p = 5. SZD was assumed to be uniform, such that the
gray level difference was set constant for the Slp sub-region.
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Figure 3.4.: A comparison between three suggested thresholds that satisfy the one-side hy-
pothesis approach. (a) A selected search region from a noisy synthetic image (o, = 20)
that contains an edge. The green pixel (in the center) corresponds to the POL. (b) A
histogram of the normalized dissimilarity vector of the region in (a) (computation is
based on p =5, M = 11). The red mark corresponds to the accumulated-variance-
based threshold, the black mark corresponds to the accumulated-mean-based threshold,
and the green mark corresponds to a combined variance-mean-based threshold. (c) The
adaptive search regions that correspond to the three explored thresholds. From left to
right: accumulated-variance threshold, accumulated-mean threshold, and the combined
variance-mean threshold.
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The determination of the accumulated variance threshold is described in ALGORITHM 1.
This threshold is set based on an iterative procedure that sorts the dNZ.G (j) elements in an as-
cending order and computes the variance of the sorted elements, such that another element
is added in each iteration based on the sorting order. The stopping criterion is set by com-
paring the computed variance, in each iteration, to the model variance threshold (2x). Note
that the values of cflG (j) in a search region S; are considered as a realization of the random

sequence of M? — 1 values (|S;| = M?).

It is important to state that the statistical properties presented in eqn. (3.11) are adequate
for random realizations of the normalized dissimilarity measure of the set of similar pixels,
and do not represent the sorted dissimilarities. At the beginning of the accumulation pro-
cess, when a small amount of dissimilarity elements are considered, the estimated mean of
the explored elements is probably smaller than 1, since, in this stage, only the most simi-
lar pixels are considered. Similar observation is made with the estimated variance, that is
smaller at the early accumulation stages and increases as pixels are added. However, as
we approach the variance threshold, the accumulated pixels do satisfy the above-mentioned

statistical characteristics.

ALGORITHM I: SEARCH REGION PIXEL CLASSIFICATION

1. For a given pixel i, calculate the normalized dissimilarity elements, denoted

dC (j) Vj € Si, j # i (see eqn. (3.1)).
2. Sort the normalized dissimilarity elements in an ascending order of values.

3. Compute an accumulated variance of the sorted elements by starting with the first two

elements and adding one element at a time.

4. Stop accumulating elements when the computed variance exceeds TH® = 2k (see
eqns. (3.9)-(3.11)). The pixels associated with the accumulated dissimilarities define

the Sf set.
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The dissimilarity value of the last pixel which participates in the accumulation process that

defines S;g can serve as a threshold value, denoted TH,; , allowing to define Sf as follows:

s§={Jjeside (j) <THa} (3.17)

and hence the complementary set S? = {S;}\ {7 }.

Refer to Figure 3.5 for an illustration of accumulated variance vectors, applied using the
Uniform patch-kernel, obtained for a smooth and for a textured search region. Pay attention
that for the smooth search region, all its respective pixels are included in its Sf since the
accumulated variance of all these pixels is smaller than 2k, whereas for the textured search
region only a small fraction of its pixels is included. Hence, each pixel in the image is
associated with its individual Sl.S set that defines which pixels will be included in the NLM
averaging process. Moreover, each pixel is associated with a normalized cardinality value,
ri= ‘;;—g , which is defined as the number of pixels used to denoise it, normalized by the
number of pixels in the original search region, and the image mask of normalized cardinality
is denoted R. In this manner, smooth regions are characterized by a large value (closer to 1),

whereas structural regions are associated with a smaller value (usually smaller than 0.5). A

demonstration of such a matrix can be found in Figure 4.2 (b).
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Figure 3.5.: Graphs of accumulated dissimilarity variance for noisy image Lena
(256 x 256) where the dissimilarities are applied using the Uniform patch-kernel. (a)
Lena with two marked search regions, the red one corresponds to a textured central patch
and the dashed yellow corresponds to a smooth central patch, (b) Accumulated dissimilar-
ity variance for the smooth patch, (c) Accumulated dissimilarity variance for the textured
patch. The red line represents the 2k value (for p =5, k = 0.04). All pixels in S; whose
dissimilarity is smaller or equal to TH; (see ALGORITHM I) are associated with SiS .
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3.4. Variance Threshold Validation

We wish to verify that the model-based variance threshold serves as an appropriate thresh-
old, compared to an empirical one, in terms of PSNR. In Figure 3.6, we compare the de-
noising performance when using an estimated variance threshold to that of the model-based
threshold, as suggested by ALGORITHM 1. In our simulations, we explored different thresh-
old values in the range [0.5,1.5] - THS, where TH® = 2k (k is set according to the Box
patch-kernel, see eqn. (3.10)). The results were averaged over ten natural images given a
specific noise level of ¢, = 10,20,30. The red filled circle on the solid blue curve corre-
sponds to the denoising result using the model-based value, i.e., THC. It can be seen that the
results that correspond to THY are located near the global maximum of the simulation curve
for each explored noise level. This implies that the model-based variance threshold, used in
ALGORITHM I, provides a good prediction of the empirical threshold value that results in a

maximal PSNR, on average, in the given denoising scheme.

51



Chapter 3

JZEL

[Ap] NS d abemny
)
= ' ' ' ' ' ' “
e
o] : i : : : <
i T U R IR I
S R S
bommg-mm - - To-smmm--r-oom cr--%
g2 # 3§ ° & B L ®°
o o4 o4 .m o4 o4 4 o4
] ] ] ] ] " L]
[3pP] dMEd 8bieEny

Variance threshold

Variance thres hold

(b)

n

T

]
[ S ——

]

'

]

I

v

'

]

]
(R —
R S ——

r=-=---1

e
T .

[ ——

P R ——

F=====7-=-===-=

A== — ==

mhk-----
Tk
wf-----

T R LEEEr

ol
=
b1 R [N

[3P] dMEd abeiamny

mazf-----

-] p———

A

Variance threshold

(0

Figure 3.6.: Results of simulations that explore the model-based denoising results using

various variance thresholds for images corrupted with various noise levels. The red filled

circle on the solid blue curve corresponds to the denoising result using 7TH®

2k, where

Kk corresponds to the Box patch-kernel. The following NLM parameters were used: p

5M=11,h

oy. () 0, = 10, (b) 0, = 20, (¢) 0, = 30.
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3.5. Variance Estimation Error

The accumulated variance of the normalized dissimilarity elements in a given search region
is computed for the sorted elements, by starting with the variance of the two smallest dissim-
ilarity values and adding one element at a time for the variance computation, as indicated in
ALGORITHM I. As mentioned in the previous section, the discussed statistical properties
presented in eqn. (3.11) are adequate for random realizations of the normalized dissimilarity
measure of the set of similar pixels, and do not represent the sorted dissimilarities. Conse-
quently, we refer to the point where the variance threshold is reached, then the dissimilarities

of the accumulated pixels do satisfy the above-mentioned statistical characteristics.

Textured regions or regions that contain an edge are characterized by a small cardinality
of the Sis set. Consequently, their respective final accumulated variance is computed for a
relatively small number of considered elements, which makes the variance estimation error

larger.

LEMA 3.2 [1]: Let Zy,...,Z;, be a random sample that is distributed N (/.L, 62) with un-
known mean and variance. The Sample Mean and Sample Variance are defined respectively
as follows: Z = %ZILZI 7,V = ﬁZlel (Zl —7)2. V is the Uniformly Minimum Variance
Unbiased (UMVU) Estimator for 62 and has a Chi-Square distribution, such that

(L-1)V

5~ X (3.18)

Since the Chi-Square distribution with L — 1 degrees of freedom has a variance of 2 (L —1)

the standard error of estimating 6% by V? is:
Op =07\ —— (3.19)

In our case, the normalized dissimilarity measure for a General patch-kernel has a Normal

distribution with u = 1, 62 = 2« (see eqn. (3.11)), as we approach the variance threshold
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(see ALGORITHM I). Consequently, the variance estimation error, under this condition, is a

function of ‘Sf , that is:

(3.20)

Figure 3.6 presents the accumulated variance of sorted normalized dissimilarity elements
for a pixel located on an edge (from the image Lena). It can be easily seen that the error
of UMVU variance estimator is decreased as the number of the considered dissimilarity

elements is increased, making the accumulated variance estimation more robust.

The variance STD presented in eqn.(3.20), or a specific factor of it can be added to the

variance threshold during the accumulation process, such that it becomes:

THY =2k (1+f,/%> (3.21)

f is a multiplication factor of the STD of the variance estimation error and K is set according
to the applied patch-kernel (see eqn. (3.10)). Simulations, presented in Figure 3.8, suggest
that the optimal average PSNR is achieved for f = 1. However, this optimal f value has a
minor contribution to the average PSNR (about 0.015 dB) with respect to using f = 0. When
exploring the individual contribution of the utilization of f = 1 to the PSNR of specific
images, we discovered that there is an increase that lies in the range of 0.08-0.14 dB. Since
we wish to find a global f value that is adequate for different types of images, we suggest
to continue here using a threshold value of 2k (i.e., f = 0), and by that to preserve the
parameter independency of the suggested approach. Figure 3.9 presents a typical histogram
of the normalized cardinality of the adaptive search region, averaged over ten natural images.
It can be seen that above 30% of the pixels are characterized with a relatively large Sf (most
of the initial search region), hence associated with a small error term, which makes the

selection of f insignificant for these pixels. The other fraction of the pixels are characterized
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with a smaller SZ-S , hence associated with a larger value of variance computation error, such
that a value of f that is larger than zero may have a more significant contribution to the
corresponding variance threshold. However, as was explained above, the contribution of a

value of f in the explored range (0-2) to the final PSNR is minor.

In sections 5.4 and 6.1, where consideration is given to the correlation between normalized

dissimilarity elements, the variance threshold is modified, and a different value of f is used.
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Figure 3.7.: Accumulated variance of sorted normalized dissimilarity elements for a pixel
located on an edge (from the image Lena with ¢,, =20, p =5, M = 11), computed using
the Box patch-kernel. The error bars are added in red on top of the plot, such that the
accumulated variance with the corresponding error STD is constrained to be positive.
It can be seen that the error standard deviation decreases as the number of considered
elements increases. The blue horizontal line corresponds to 2k (for the Box patch-kernel).
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Figure 3.8.: Exploring the effect of adding a multiplication factor (f) of the variance error
STD to the variance threshold. The curve represents averaged denoising results over
ten images with different f values ([0,3] with a stride of 0.2) and different noise levels
([10,30] with a stride of 5). The red vertical lines correspond to variations due to different
noise levels.
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Figure 3.9.: Histogram of the normalized cardinality of the adaptive search region, accu-
mulated over ten natural images corrupted with noise of 6, = 20 . NLM parameters:
f=0,p=5M=11,h=o0,.

3.6. Experimental Results

Two types of performance evaluation were conducted on natural images: an objective evalu-
ation using the common measures of PSNR and SSIM [41] and a visual evaluation based on
the perceived quality by a human observer. The following sub-sections describe the respec-
tive evaluations between the proposed adaptive search region scheme vs. the standard NLM,
NLM with truncated weights and the LPA-ICI [37] method. Moreover, we have conducted
a sanity check that verifies that the model-based variance threshold is indeed the threshold

that provides the maximal PSNR, given the proposed adaptive NLM approach.
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3.6.1. Comparison Between The Proposed Adaptive Search
Region Scheme and Standard NLM

To evaluate the performance of our method, we have used several natural images corrupted
by synthetic Gaussian noise (with o, = 20, 30 ). We compared the adaptive search region
approach applied with either the Uniform or the Box patch-kernels to the standard NLM
algorithm applied with the respective kernels. The same parameters were used for all the
examined methods, i.e., a similarity patch of size 5 x 5 (p = 5), a search region of size
11 x 11 (M =11) and h = 0, . An objective evaluation that uses the common measures
PSNR and SSIM [41] was conducted. Tables 3.1, 3.2 summarize the quantitative denoising
results (objective evaluation) for different images with different noise levels. From their
analysis, we can conclude that the proposed approach obtains somewhat higher PSNR and
SSIM values than the standard NLM algorithm applied using either the Box or the Uniform
patch-kernels. This tendency is preserved both for textural images (e.g., Baboon) and for
smoother images (e.g., Lena). A visual evaluation based on the perceived quality by a
human observer is presented in Figures 3.10, 3.11. The figures present a zoom-in view
of the images Baboon and Lena and compare the two denoising NLM schemes, adaptive
search region and standard, applied using both the Uniform and the Box patch-kernels.
Figures 3.10 (b), (c) that correspond to the adaptive approach with Uniform and Box patch-
kernels, respectively, are sharper than Figures 3.10 (d), (e) (refer to the eyes and fur) that
corresponds to the Standard scheme with the same kernels. In Figure 3.11, the feathers
and Lena’s eyes appear sharper in the adaptive approach images (3.11 (b)-(c)) compared to
their corresponding standard NLM images (3.11 (d)-(e)). Moreover, the use of the Uniform
patch-kernel in the adaptive approach preserves the smoothness of Lena’s face, as in its

respective standard NLM image.
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Image ‘ On ‘ Standard NLM ‘ NLM with Adaptive Search Region ‘
PSNR [dB] | SSIM | PSNR [dB] SSIM
Lena | 20 30.11 0.87 30.44 0.88
Lena | 30 28.03 0.81 28.34 0.82
Barbara | 20 29.11 0.87 294 0.88
Barbara | 30 26.92 0.8 27.23 0.81
Baboon | 20 24.78 0.69 25.36 0.73
Baboon | 30 23.53 0.6 23.9 0.64

Table 3.1.: Quantitative comparison between the Standard NLM and the suggested adaptive
NLM, both applied using the Uniform patch-kernel.

Image ‘ (o ‘ Standard NLM ‘ NLM with Adaptive Search Region ‘
PSNR [dB] | SSIM | PSNR [dB] SSIM
Lena | 20 30.27 0.86 30.3 0.87
Lena | 30 28.03 0.78 28.08 0.79
Barbara | 20 29.19 0.87 29.25 0.87
Barbara | 30 26.94 0.79 27.02 0.8
Baboon | 20 25.54 0.74 25.73 0.76
Baboon | 30 24.04 0.65 24.16 0.67

Table 3.2.:

Quantitative comparison between the Standard NLM and the suggested adaptive
NLM, both applied using the Box patch-kernel.
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(e) ®

Figure 3.10.: Denoising variations of the image Baboon (204 x 204) with o, = 20, p =
5, M =11, h = 0,. A zoom-in view of the eyes and fur. (a) Cropped original image.
(b) Cropped noisy image. (c) Denoised image using Adaptive scheme with a Uniform
patch-kernel. (d) Denoised image using Adaptive scheme with a Box patch-kernel. (e)
Denoised image using Standard NLM with a Uniform patch-kernel. (f) Denoised image
using Standard NLM with a Box patch-kernel.
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Figure 3.11.: Denoising variations of the image Lena (256 x 256) with 6, =20, p=5, M =
11, h = 0,. A zoom-in view of the eyes and hat feathers. (a) Cropped original image.
(b) Cropped noisy image. (c) Denoised image using Adaptive scheme with a Uniform
patch-kernel. (d) Denoised image using Adaptive scheme with a Box patch-kernel. (e)
Denoised image using Standard NLM with a Uniform patch-kernel. (f) Denoised image
using Standard NLM with a Box patch-kernel.
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3.6.2. Comparison Between NLM Applied With The Suggested
Adaptive Search Region and NLM with Truncated Weights

The straight-forward solution for using the most similar pixels in the denoising process is
to use the pixels with the highest weights. In this manner, SiS will be constructed from the
pixels that are associated with the most significant weights. This solution adds another de-
gree of freedom that is the percentage of the highest weights that are considered. Tables
3.3 and 3.4 compare the adaptive search region scheme to NLM denoising that uses a frac-
tion of the highest weights for the denoising process. Two fraction values were selected:
90% and 95% and explored for each patch-kernel (Uniform and Box). Table 3.3 presents
the comparison for the Uniform patch-kernel and Table 3.4 presents the comparison for the
Box patch-kernel. It can be seen that each patch-kernel has a different characterizing frac-
tion that provides the best denoising results. The optimal fraction value for the Uniform
and the Box patch-kernel denoising are 90% and 95%, respectively . NLM combined with
the adaptive search region scheme provides better results, for any patch-kernel that is being
used, in terms of both PSNR and SSIM than the manually selected fraction of most sig-
nificant weights. The characterizing fraction may be image-dependent while the adaptive

search region scheme is parameter-free and model-based.

100% weights 95% weights 90% weights Adaptive Search
Image | o, Region Scheme
PSNR [dB]/SSIM || PSNR [dB]/SSIM || PSNR [dB]/SSIM | PSNR [dB]/SSIM
Lena | 20 30.11/0.87 30.25/0.87 30.34/0.87 30.44/0.88
Lena | 30 28.03/0.81 28.16/0.81 28.26/0.81 28.34/0.82
Baboon | 20 24.78/0.67 24.97/0.7 25.12/0.72 25.36/0.73

Table 3.3.: Quantitative comparison between the Standard NLM applied with the Uniform
patch-kernel, NLM with selection of a fraction of the most significant weights for each
explored search region, and the suggested adaptive NLM.
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100% weights 95% weights 90% weights Adaptive Search
Image | o, Region Scheme
PSNR [dB]/SSIM || PSNR [dB]/SSIM || PSNR [dB]/SSIM | PSNR [dB]/SSIM
Lena | 20 30.27/0.86 30.33/0.86 30.27/0.86 30.3/0.88
Lena | 30 28.03/0.78 28.07/0.78 28.02/0.78 28.08/0.82
Baboon | 20 25.54/0.67 25.7/0.75 25.36/0.73 25.73/0.75

Table 3.4.: Quantitative comparison between the Standard NLM applied with the Box
patch-kernel, NLM with selection of a fraction of the most significant weights for each
explored search region, and the suggested adaptive NLM.

3.6.3. Comparison Between the Proposed Adaptive Search Region
Scheme and LPA-ICI [37]

Section 3.2 provides a detailed overview of other adaptive NLM approaches that suggest to
use an adaptive search region. This section will focus on the comparison between the Local
Polynomial Approximation-Intersection of Confidence Intervals (LPA-ICI) approach [37]
and our model-based approach. The LPA-ICI technique uses one-dimensional directional
LPA kernels with pre-selected scales for eight directions. The optimal scale is set pixel-
wise, based on the ICI approach, per each direction by computing the correlation between
the POI and its corresponding neighborhood for the explored direction. The resultant search
region is an octagon whose shape is based on the direction-wise spatial support. This method

restricts the search region to be contiguous.

Figure 3.12 presents the resultant adaptive search region of different types of regions for
both our model-based approach and the LPA-ICI approach [37]. For our approach, we used
the following denoising parameters: p =5, M = 11, h = 0, whereas the LPA-ICI [37]
approach uses the same parameters values except for M = 39. For a fair comparison, we
have also added our adaptive search region for M = 39. It can be clearly observed that for

each explored region, our approach provides a more accurate adaptive search region, such
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that only pixels with similar neighborhoods to that of the POI are included. An adequate
search region assists in improving the denoising performance. The figure refers to three

types of search regions:

e Figure 3.12 (b) presents a search region that contains an edge, but the POI is distant
from the edge center. The respective adaptive search region includes only pixels with
similar neighborhoods to that of the POI, such that the search region contour lies
along the edge. Notice that the resultant region of the LPA-ICI [37] approach is less

accurate.

e Figure 3.12 (c) presents a search region that contains an edge. In this case the POI is
located on the edge and the respective adaptive search region includes pixels located
along the edge as well. The corresponding LPA-ICI [37] region includes pixels that

relate to one side of the edge, but doesn’t necessarily represent the edge itself.

e Figure 3.12 (d) presents a texture region. This example demonstrates one of the ad-
vantages of our approach, which does not restrict the search region to be contiguous,

in contrast to the LPA-ICI method [37].
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(c¢) Matches the red marked region

(d) Matches the cyan marked region

Figure 3.12.: Adaptive search region based on our model-based method and the LPA-ICI
[37] approach. (a) The image Lena with selected search regions. The green dot represents
the POI for of each region, (b) A search region that contains an edge, however the POI is
located far from the edge center, (c) A search region that contains an edge, and the POI is
located on the edge, (d) A search region that contains texture. Figures (b)-(d) are ordered
from left to right: initial search region, model-based search region for M = 11, LPA-ICI
[37] search region for M = 39 and model-based search region for M = 39, marked in red.
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3.7. Chapter Summary

In this chapter, we have introduced an Adaptive Model-Based NLM scheme. In this sug-
gested scheme, only pixels whose neighborhood is similar to that of the POI are participating
in the denoising process. The neighborhood similarity is based on the statistical properties of
the dissimilarity measure. These properties classify the initial search region S; into two sets;
SZ.S that includes pixels with similar neighborhood to that of the POI, and SID that includes
pixels that are not included in the former set. This proposed approach is model-based and
does not restrict the search region to be contiguous, an important quality for textural regions.
By using an adaptive search region, only pixels whose defined neighborhood is similar to
the neighborhood of the POI are selected to participate in the denoising process of the re-
spective POI, and dissimilar pixels are avoided. In this manner, denoising is improved. Our
suggested scheme results in a a more accurate adaptive search region that other common
approaches. Moreover, it provides better denoising results than the standard NLM applied

using either the Box or the Uniform patch-kernels.
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4. Patch Kernel-Type Adaptation

NLM is commonly used with only one type of patch kernel for the dissimilarity measure
computation (see eqn. (2.6)). In our analysis, two patch kernels were explored: the Uniform
patch kernel, which assigns same weights to all the patch pixels, and a Box patch kernel,
which assigns lower weights for distant pixels with respect to the patch center (see Figure

2.1).

Simulations suggest that the Uniform patch kernel is more adequate for smooth regions,
whereas the Box patch kernel is more adequate for texture or edges. This conclusion is
demonstrated in Figure 4.3 (b)-(c). The figure presents the denoising results of the image
Lena with additive Gaussian noise of ¢, = 20. Figure 4.3 (b), which shows the results of
standard NLM denoising using a Box patch kernel, preserves structure but is characterized
by granularity in smooth regions. Figure 4.3 (c), which presents the denoising results of
the standard NLM with a Uniform patch kernel, reduces the granularity effect, but over-
smoothes texture and edges. Consequently, a combination of these two kernels, based on

local structure, is suggested.

4.1. General Scheme

_ Is]]

= 5 (seesection 3.3),

The information embedded in the matrix R , whose elements are r;

can be used to estimate local structure, such that high r; values correspond to smoother
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regions, whose SZ-S set is larger. On the other hand, low r; values correspond to edges or
textured region characterized by a small set of Sf . For the sake of simplicity, i represents a

running index, as if the matrix R is column-stacked.

We suggest to integrate the information embedded in the matrix R in order to assign to
each pixel an adequate patch-kernel that is based on local structure. The suggested scheme,
which is described in ALGORITHM II, requires the determination of two sets of similar
pixels to pixel i: S3U, S8, These sets are determined (based on ALGORITHM I) by using
the Uniform and the Box patch kernels, respectively. As a result, two normalized cardinality
matrices RV, RE are created for the noisy image. Their corresponding elements are denoted
rlU , rlB . The data in each of these matrices is clustered, using K-Means with K=2, into
two classes with two corresponding centroids. The cluster, denoted G,y , 1s associated
with the larger centroid and represents pixels with a larger r; value than the set of pixels,
denoted Gy, , associated with the smaller centroid. Hence, the cluster C,,,, contains pixels
that typically relate to a smooth search region, whereas the cluster C,,;, contains pixels

that are typically considered structural. We distinguish between the cluster C,,,, associated

with the Uniform and the Box patch-kernels, denoted CY ., CB

maes Cmaxe TESPECtively, as well as

the cluster C,;, associated with the Uniform and the Box patch-kernels, denoted CV. | CB

min’ ~min

respectively.
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ALGORITHM II: PATCH KERNEL-TYPE ADAPTATION

1. For each pixel i in the noisy image, do the following:

a) Compute the normalized dissimilarity elements using the Uniform patch-kernel,

denoted dV (j), Vj € S;, j # i (see eqns. (3.1)).

b) Compute the variance of all the elements in the computed set of normalized
dissimilarities. If the variance of all the computed elements is smaller or equal
to THY =2k (see eqns. (3.10),(3.11)), then pixel i is considered “smooth” under

this test. Hence, S5V = §;, rV/ = 1.
¢) Otherwise, perform the following:
i. Compute the normalized dissimilarity elements using the Box patch-kernel,
denoted d? (j), Vj € S;, j #i.

ii. Compute the variance of all the elements in this set. If their variance is
smaller or equal to TH? = 2k (see eqns. (3.10),(3.11)), then pixel i is con-

sidered “smooth” under this test. Hence, ;8 =;, rf =1.

iii. Otherwise, compute the sets S?V, S5 using ALGORITHM I and the respec-
tive kernels. Then, compute the corresponding rlU , rlB to create the respec-

tive matrices RV, R5.
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2. Cluster the data in each RV, R® into two clusters using K-Means with K=2, such that
each matrix is divided into a set of “smooth” pixels and a set of structured pixels. The
two cluster centroids of each matrix are compared to 0.5, and the following rule is

applied for each pair of centroids:

a) If the values of the two centroids of a given matrix are both larger than 0.5, then
the clusters of the corresponding matrix are joined, associating all the pixels to

the set of "smooth" pixels and the respective "structured" set becomes empty.

b) If the values of the two centroids of a given matrix are both smaller than 0.5, then
the clusters of the corresponding matrix are joined, associating all the pixels to

the set of "structured" pixels and the respective "smooth" set becomes empty.

c) Otherwise, clusters are not joined, and each corresponding matrix has its own

pair of two clusters.

3. For each pixel i , set pixel weights (before normalization) according to the following

rule:

exp (—2dY (j)) Y eCY, and B cCE
Vje S;S, i Wi = ( ~l ) i max i max , @.1)
exp (—2d?(j)) Otherwise

where CY,., CB _ are the sets associated with the centroids of the larger cluster in
Ry, Rp matrices, respectively. The POI is assigned a weight that corresponds to the

maximal weight given to any of the pixels included in Sf (see sub-section 2.5.4).

4. Normalize the computed weights by their sum W; =) jessWij -
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4.2. Simplified Adaptation Scheme

Since the computation of two normalized cardinality matrices is time consuming, we sug-

gest a simplified scheme that is described in ALGORITHM I11.

ALGORITHM III: SIMPLIFIED ADAPTATION SCHEME FOR PATCH KERNEL-TYPE ADAP-

TATION

1. For each pixel i in the noisy image, do the following:

a) Compute the variance of all the elements dNiU (j), Vj €S, j#i(seeeqn. (3.1)).
If the resultant variance is smaller or equal to TH U =2k (see eqns. (3.10),

(3.11)), then pixel i is considered “smooth” and Sf =S, r=1.

b) Otherwise, compute the set Sf using ALGORITHM I and the Uniform patch-

kernel. Then, compute the corresponding r; to create the respective matrix R.

2. Cluster the data in the normalized cardinality matrix R , whose elements are r;, into

two clusters (Cn({ax, Cf,{l-n

) using K-Means with K=2, such that the cluster C U

max having

the higher centroid value represents the “smooth” pixels, and the cluster Cn[{in respre-
sents the “structured” pixels. The two cluster centroids are compared to 0.5, and the

following rule is applied:

a) If the two centroids values are both larger than 0.5, then the clusters are joined,
associating all the pixels to the set of "smooth" pixels and the respective "struc-

tured" set becomes empty.

b) If the two centroids values are both smaller than 0.5, then the clusters are joined,
associating all the pixels to the set of "structured" pixels and the respective

"smooth" set becomes empty.

c) Otherwise, the two clusters are not empty, and the matrix R has a pair of clusters.
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d) Compute the dissimilarity elements d? (j), V,j € S; for all the pixels i whose r; € CY

min*

3. Set pixel weights (before normalization) according to the following rule:
exp (—2dY (j)) r,ecCY
VieSS jAi wij= (247 0)) 1€ Co : (4.2)
exp (—2d? (j)) Otherwise

The POI is assigned a weight that corresponds to the maximal weight given to any of

the pixels included in Sf (see sub-section 2.5.4).

4. Normalize the computed weights by their sum W; =Y, jess Wiij-

This scheme may result in an inconsistent pixel classification into Smooth or Non-Smooth
classes. On average, less than 5% of the pixels in the entire image are affected by this incon-
sistency. It stems from the fact that there are pixels that are considered structural according
to the Uniform patch-kernel scheme, and considered “smooth” according to the Box patch-
kernel scheme. Since the fraction of such pixels is relatively small, the two schemes provide
very similar results. Hence, the less time consuming scheme in ALGORITHM III is rec-
ommended. The computational complexity, with respect to the standard NLM, is of course
reduced when the simplified scheme of ALGORITHM III is being used, since Box-kernel
based dissimilarities are computed for a smaller fraction of pixels in the image. In this man-
ner, ALGORITHM III is characterized by an average increase of 14% of running time with

respect to the standard NLM (applied using either the Uniform or the Box patch-kernel).

Figure 4.1 presents the clustered R matrix for the images Lena and Baboon. The red cluster
corresponds to smooth pixels based on the Uniform kernel, i.e., i € Cgax, the blue cluster

corresponds to pixels that are considered structural according to the two kernels, i.e., CY. N

min
CB

'vin» and the green cluster corresponds to the pixels that are considered structural according

to the Uniform kernel but not according to the Box kernel, i.e.,i € CY. NCB_ . It can be seen

min

that for both Lena, whose majority of pixels are considered smooth, and Baboon, which is
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characterized by a relatively large amount of structural pixels, the pixels associated with the
green cluster are a clear minority (less than 5%). Moreover, there is no significant difference
in performance in terms of PSNR and SSIM between the two methods (on average 0.01 dB
and 0.001 SSIM difference).

(©) (d)

Figure 4.1.: Motivation behind the simplified scheme. (a) Baboon (204 x 204), (b) The
clustered R matrix for the image in (a), (c) Lena (256 x 256), (d) The clustered R matrix
for the image in (c). The R matrices were created for images corrupted with additive Gaus-
sian noise of o0, = 20, based on dissimilarity measures computed using p =5, M = 11.
The red cluster that corresponds to smooth regions is a result of the pixels i € C,,. The
blue cluster that corresponds to structural regions is a result of the pixelsi € CY. NCB, .
The green cluster represents less than 5% of the pixels in both images and corresponds to
the pixelsi € CY. NCE,..

min

Figure 4.2 (b) displays the normalized cardinality matrix R of the image Lena denoised

using the simplified suggested scheme (i.e., ALGORITHM III). Figure 4.2 (c) displays the
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classified matrix, such that red pixels correspond to smooth regions whose NLM weights
are computed based on the Uniform patch kernel, whereas the blue pixels correspond to
edges or textured regions whose respective NLM weights are computed using the Box patch

kernel.

(b) (o)

Figure 4.2.: (a) Lena (256 x 256), (b) Normalized cardinality matrix ( R ) for noisy im-
age with o, = 20, (c) Clustered elements of R using K-Means, with K=2. Red pixels
correspond to smooth regions.
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From now on, when we refer to the adaptive NLM scheme, we relate to the scheme that

combines the adaptive search region and the adaptive patch-kernel altogether.

4.3. Experimental Results

Two types of performance evaluation were conducted on natural images: an objective eval-
uation using the common measures of PSNR and SSIM [41] and a visual evaluation based
on the perceived quality by a human observer. The following sub-sections describe the re-
spective evaluations between the two suggested schemes (general vs. simplified) and the

simplified scheme vs. the standard NLM.

4.3.1. Comparison Between the General and the Simplified Kernel

Adaptation Schemes

To verify that the Simplified scheme (ALGORITHM III) is a robust efficient approximation
of the General kernel adaptation scheme (ALGORITHM II), the two schemes were compared
experimentally. For this comparison, several natural images corrupted by synthetic Gaussian
noise (with o, = 20, 30 ) were used with the same NLM parameters, i.e., a similarity patch

of size 5 X5 (p =5), a search region of size 11 x 11 (M = 11) and h = ©,,.

Table 4.1 summarizes the quantitative denoising results (objective evaluation) for different
images with different noise levels. It can be seen that the utilization of the Simplified scheme
for the denoising process provides similar results when compared to the results of the Gen-
eral scheme. Besides the quantitative resemblance, the denoised images of both schemes are
quite similar visually. Consequently, this simulation concludes that the Simplified scheme
is a robust alternative to the General scheme. From now on, when we mention the kernel-

type adaptation scheme, we refer to the simplified version. The combined adaptive scheme
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refers to the combination of an adaptive search region with an adaptive kernel-type, that is,

ALGORITHM III.

on | 20 30
Image General Scheme Simplified Scheme General Scheme Simplified Scheme
PSNR [dB] | SSIM | PSNR [dB] | SSIM || PSNR [dB] | SSIM | PSNR [dB] | SSIM
Lena 30.48 0.878 30.49 0.879 28.31 0.815 28.32 0.815
Barbara 29.31 0.874 29.33 0.875 27.15 0.811 27.16 0.811
Peppers 30.54 0.888 30.55 0.888 28.38 0.836 28.39 0.836
Baboon 25.6 0.745 25.62 0.748 23.97 0.64 23.89 0.634

Table 4.1.: Quantitative comparison between the General kernel-type adaptation suggested
scheme (ALGORITHM II) and the its Simplified version (ALGORITHM III).

4.3.2. Comparison Between the Combined Adaptive Scheme and

Standard Non-Local Means

To evaluate the added value of the combined adaptive approach (adaptive search region
and adaptive patch-kernel) to the NLM performance, we have used several natural images
corrupted by synthetic Gaussian noise (with o,, = 20, 30 ). We compared our approach to
the standard NLM algorithm applied with both the Box and the Uniform patch-kernels. The
same parameters were used for all the examined methods, i.e., a similarity patch of size 5x5
(p =5), a search region of size 11x11 (M = 11) and h = 6,, . As was mentioned in section
3.5, both an objective and a visual evaluation were conducted. Table 4.2 summarizes the
quantitative denoising results (objective evaluation) for different images with different noise
levels. From its analysis, we can conclude that the proposed approach obtains somewhat
higher PSNR and SSIM values than the conventional NLM algorithm for both the Box

and the Uniform patch-kernels. This tendency is preserved both for textural images (e.g.,

Baboon) and for smoother images (e.g., Lena, Pepper). When using only an adaptive search
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region combined with a fixed kernel (see Tables 3.1, 3.2), either the Uniform or the Box
kernels, instead of an adaptive patch-kernel, the PSNR improvement is smaller. Average
improvement based on three selected images with ¢,, = 20 provides an increase of 0.07 dB
and 0.38 dB for using NLM applied using the Box patch-kernel and NLM applied using the
Uniform patch-kernel, respectively, compared to an average increase of 0.15 dB and 0.42

dB when adding the adaptive kernels.

A visual comparison is given in Figure 4.3, which compares the denoised images produced
by the standard NLM (for both the Box and the Uniform patch-kernels) and our proposed
Adaptive NLM, for the image Lena with o0, = 20. Figure 4.3 (b), which represents a stan-
dard NLM denoising using a Box patch-kernel, preserves structure but is characterized by
granularity in smooth regions. Figure 4.3 (c), which presents the denoising results of the
standard NLM applied with Uniform patch-kernel, reduces the granularity effect, but over-
smoothes texture and edges. On the other hand, Figure 4.3 (d), which presents the proposed
method, is characterized by both preservation of structural information and reduced gran-
ularity in smooth regions. Moreover, since the proposed approach chooses only similar
pixels from the search region, structures are sharper than in the standard NLM method even
when it uses the Box patch-kernel. In the same manner, Figure 4.4 compares the denoising
performance of the three explored approaches, NLM applied with Box patch-kernel, NLM
applied with Uniform patch-kernel and our model-based approach, for the image Lena with
different noise levels based on the PSNR measure. It can be clearly observed that the sug-
gested model-based NLM method outperforms the standard NLM for any explored noise
level. Although, the PSNR and SSIM differences are not that large, the visual comparison

is highly significant. Appendix A provides additional examples of such a comparison.

77



Chapter 4

NLM with Uniform NLM with Box NLM with
Image | o, patch-kernel patch-kernel Adaptive TH
PSNR [dB] | SSIM || PSNR [dB] | SSIM || PSNR [dB] | SSIM
Lena | 20 30.11 0.87 30.27 0.86 30.48 0.88
Lena | 30 28.03 0.81 28.03 0.78 28.32 0.82
Barbara | 20 29.11 0.87 29.19 0.87 29.33 0.88
Baboon | 20 24.78 0.69 25.54 0.74 25.62 0.75
Pepper | 20 30.28 0.88 30.39 0.87 30.55 0.89
Pepper | 30 28.03 0.83 28.06 0.81 28.39 0.84

Table 4.2.: Quantitative comparison between the Standard NLM applied with both the Uni-
form and the Box patch-kernels and the suggested adaptive NLM.
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Figure 4.3.: Denoising variations of the image Lena (256x256) with 6, =20, p=5, M =
11, h = 0,. A zoom-in view of the shoulder and face (flat regions) and of the feath-
ers (texture). (a) Noisy image. (b) Denoised image using standard NLM with a Box
patch-kernel. (c) Denoised image using standard NLM with a Uniform patch-kernel. (d)
Denoised image using the Combined Adaptive Scheme (ALGORITHM III).
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Figure 4.4.: A comparison between the three explored NLM approaches, i.e., standard NLM
with either the Uniform patch-kernel or the Box patch-kernel, and our Adaptive approach,
for the image Lena. The comparison is conducted for different noise levels with the
following NLM parameters: p =5, M =11, h = 0,.

4.3.3. Comparison Between The Adaptive Scheme (Algorithm I11)
and The Adaptive Search Region Size Approach [17]

Kervran et. al [17] present a somewhat different approach that uses an adaptive search
region combined with the NLM denoising method. Instead of choosing pixels with similar
neighborhood from a given initial search region of size M x M, they select the most suitable
pixel-wise search region size, out of five potential sizes M = [1,3,5,9, 17], in a manner that

it balances the accuracy of approximation and the stochastic error, at each spatial position.
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Their approach restricts the search region to be rectangular, thus contiguous, such that the
optimal pixel-wise search region may include pixels whose neighborhood is different from
that of the POI. This approach of optimal search region size selection (before applying
NLM) is characterized by a computational complexity of O (pZGZmE[ 1,3,5,9,17] M,%l) where
p represents the similarity patch size, and G refers to the number of pixels in the image. For
comparison, our proposed approach for adaptive search region selection is characterized by
a computational complexity of O (szMZ). Hence, with M = 11 we obtain a significant

reduction in the number of computations.

We wish to compare our approach to the approach proposed in [17], where both approaches
are combined with the NLM denoising method. Since there is no available implementation
of their respective algorithm, and its implementation by us is beyond the scope of the thesis,
no visual comparison is conducted. Consequently, we compare the two approches in a
quantitative manner, in terms of PSNR. Figure 4.5 presents a comparison with four selected
images at different noise levels ¢, = [10,25], as reported in [17]. Since the paper results are
reported for p =9, we have implemented our approach with M = 11 and both p =5 and
p =9. Our results represent the average PSNR over five noise realizations for each explored
image. Two main conclusions can be derived from this comparison. The first one is the
fact that the PSNR is improved for our approach when it is applied with p = 9, compared
to p = 5. However, as was explianed in sub-section 2.5.1, increasing the similarity patch
size causes, in some images, hallos around edges. The second conclusion refers to the
fact the different images are characterized by different performance tendency, such that for
the images Lena (a) and House (c), [17] presents better quantitative results, whereas for
the images Barbara (b) and Peppers (d), our proposed apprach is quantitavely somewhat
better. However, as mentioned before, the approach presented in [17] has a much higher

computational complexity.
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Figure 4.5.: Comparison between the NLM denoisng results when applied with our pro-
posed adaptive search region approach vs. the adaptive search region size approach [17],
for different noise levels o, = [10,25]. (a) Lena 512 x 512, (b) Barbara 512 x 512, (c)
House 256 x 256, (d) Peppers 256 x 256. The blue line corresponds to the results of the
approach presented in [17], the green circled line corresponds to our proposed approach
applied with p =5, M = 11, and the red dashed line corresponds to our proposed approach
with p =9, M =11.
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4.4. Chapter Summary

In this chapter, we have integrated the adaptive patch-kernel scheme into the adaptive search

region scheme. Consequently, the cardinality of the SZ-S set, denoted }SZS , 1s exploited to
classify the pixels as “smooth” or “non-smooth”, such that the pixels that are associated
with the “smooth” cluster are characterized with a larger ‘Sﬂ and will be denoised based on
a dissimilarity measure computed using the Uniform kernel. The pixels that are associated
with the other cluster are denoised based on a dissimilarity measure computed using the
Box kernel. The combined approach was compared to the approach that uses an adaptive
search region with a single patch-kernel type, as well as to the standard NLM and was
found to provide better denoising results both quantitatively (PSNR and SSIM-wise) and
qualitatively (visually). Moreover, we have compared our approach to the adaptive search

region size approach [17] in terms of PSNR. The latter is characterized by a much higher

computational complexity and its denoising results are comparable to ours.
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5. Correlation Between Dissimilarities
and Its Effect On The
Model-Based Scheme

The statistical model in the previous chapter was developed under the simplifying assump-
tion that the dissimilarity elements in a given search region S; are not correlated. It is im-
portant to state that researchers, e.g., [31, 38], did not relate to any source of correlation

between the dissimilarity elements and its effect on their statistical properties.

In this chapter we consider the correlation between normalized dissimilarities of patches
in a given search region and its effect on the model-based scheme presented in Chapter 3.
The reason that such a correlation exists is that the dissimilarities of all the patches in a
given search region are computed with respect to the same reference patch. Furthermore,
some patches may overlap each other and/or the mutual reference patch itself, contributing
further to the correlation. To simplify the analysis, we tackle the issue by considering first
the correlation due to the mutual reference patch (Case 1), assuming no patch overlaps.
Then we add the effect of overlap between patches, but not with the reference patch (Case
2), and finally we address the most general case in which overlapping patches may also
overlap the reference patch (Case 3). By arranging the dissimilarities in a vector form, we
express the correlation between the vector elements via its covariance matrix and apply the

results to derive the statistical properties of the empirical (estimated) variance used in the
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proposed model-based denoising scheme.

5.1. Case 1: Correlation Between Dissimilarities of

Patches That Do Not Overlap Each Other, Nor

The Reference Patch

5.1.1. Case Definition

We discuss here the case of non-overlapping similarity patches, as illustrated in Figure 5.1.
In this figure, the reference patch is denoted A; and the selected compared patches are de-
noted Aj,Ay for j,k € S;. The compared patches satisfy the no-overlap criterion, that is:
Vji#k, jke S, AjNAy =0, AjNA; =B, AyNA; = @. This means the these patches do

not overlap each other, nor the reference patch.

A

Figure 5.1.: Scheme of the grid that characterizes Case 1 where patches do not overlap
each other, nor the reference patch. The reference patch A; is colored in orange and the
compared patches are colored in green (like A j, Ay).

By definition, the normalized dissimilarity of a patch is computed with respect to the ref-

erence patch, thus the reference patch serves as a mutual member that adds a source of
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correlation between dissimilarities of different compared patches. We will compute below
the covariance matrix of the normalized dissimilarity elements arranged in a vector form.
The distribution of each patch dissimilarity remains Chi-Square and can be approximated
by a Normal distribution, as presented in eqn. (3.7). The off-diagonal elements of the re-
spective covariance matrix refer to the cross-variance between the vectorized dissimilarity
elements, and their elaborated analytic development for General and Uniform patch-kernels
can be found in Appendix B.1. Here, we present the notation and the final forms of the

respective covariance matrices.
Notation:

1. The set lPlL refers to a sub-set of the search region, ‘PlL C S, such that it includes
the global indices of the pixels that are included in the search region and satisfy the
no-overlap constraint, sorted in order of increasing dissimilarity values. L € [2,]S;|]
represents the number of dissimilarity elements that are being explored during the
variance accumulation process (see ALGORITHM I). Hence, for a given L, this sub-
set includes the global indices of the L smallest dissimilarities in S;, out of the patches

that satisfy the non-overlap criterion.

2. The dissimilarity vector that is built from the dissimilarity elements, associated with
S., is denoted d; and its elements are denoted d; (j), where j € S;. When we refer to
the sorted vector elements, arranged by order of increasing dissimilarity values, we
use the notation d; (‘PlL (m)), such that the m" element of the sub-set WL refers to a
global index j € S;, where m € [1,L]. The notation d; (¥}) refers to the vector of
sorted dissimilarity elements. In order to distinguish between the dissimilarity vector
that corresponds to the Uniform and a General patch-kernels, the notations (~11U and a,.G

are introduced.

Figure 5.2 presents a search region S; of size M = 11. We refer to pixels that are ar-

ranged in a lexicographic order. In this manner, the global pixel indices jy,..., jg, marked
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in yellow, correspond to pixels whose respective patches (of size p = 5) do not over-
lap each other, nor the reference patch. As an example, and without loss of general-
ity, let’s assume the following relation between patches normalized dissimilarity values:
di(j2) <di (jr) <di(j3) <di(jr) <d; (ja) <di(je) < di(js) <d;(js). In this case, the set
WL is defined as follows: WE = {2, j7, j3, j1s ja, J6s Jss J5 }-

v 3 J

Figure 5.2.: A search region S; of size M = 11. The reference patch (of size p =5) is
marked in red. The similarity patches (of size p = 5) associated with the pixels marked
in yellow do not overlap each other, nor the reference patch.

Based on the new introduced notations, the covariance matrix for a General patch-kernel

and L dissimilarity elements is circulant and obtained in Appendix B.1 as:

2 05 .. 05
o fe\T 05 2 .. 05
Cio =E [d,G (d?) } — K (5.1)
’ I
05 05 .. 2
L 4 LxL
where Kk =Y, 2] Otsz (as defined in eqn. (3.9)) and o refers to the normalized coefficients

se[l,p
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of a General patch-kernel within a similarity patch. Refer to eqn. (3.10) for the respective

values of k for the Box and the Uniform patch-kernels.

5.1.2. Effect on Statistical Properties of the Estimated Variance

The estimated variance of the normalized dissimilarities, for this case, is affected by the
correlation term that was introduced in the previous sub-section (eqn. (5.1)), and its sta-
tistical analysis is required for setting the accumulated variance threshold, as explained in

ALGORITHM I, presented in Chapter 3.

The sorting process deals with a set of normalized dissimilarity elements of size L, where
L € [2,]S:]]. The set of sorted elements associated with S; can be referred to as a vector d;
with elements d; (W5 (m)), where m € [1,L] and W C §;, according to the notation intro-

duced in sub-section 5.1.1.

The estimated (empirical) unbiased variance of a set of L dissimilarity elements (constitut-

ing d;) is defined as:
= Y (G (1) - B)? 5.2
V_L_12(1(1<)) ) (5.2)

I=1

where B = %ZJL:1 d; (‘PlL (1 )) is the estimated mean of the corresponding vector elements,

and as V is a random variable.
Two important points should be emphasized:

e The L elements of the dissimilarity vector are considered here as different realiza-
tions of the same variable, just arranged in vector form, and not as an L-dimensional

variable.

e The statistical properties presented in eqn. (3.11) were derived for random realizations

of normalized dissimilarities of the patches whose central pixel is included in the set
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of similar pixels, denoted SiS , but not of the sorted dissimilarities. At the beginning of
the accumulation process, the estimated mean of the explored elements is expected to
be smaller than 1, as at this stage, only the most similar pixels are considered and they
are realizations of the lower part of the Gaussian bell. However, as we continue with
this process and approach the variance threshold (TH® = 2x), the accumulated pixels
do have the above-mentioned statistical characteristics of the unsorted set. Since we
are interested in the threshold crossing point, the analysis of the estimated mean and

the estimated variance that are discussed below refer to the unsorted case.

The distribution of the (unsorted) elements of the dissimilarity vector, for case 1, is (see also
eqns. (3.10), (3.11)):

g (j) ~ A (1,2K) (5.3)

1

Consequently, the estimated mean B is a Normal random variable, as it is a sum of Normal
random variables. The statistical properties of the estimated mean variable are derived in

Appendix C.1 (eqn. (C.1)) and are as follows:
BS ~ . (1,553 (5.4)

As can be seen, the variance of the estimated mean is not decaying to zero for large L values.
This is due to the non-zero correlation between the normalized dissimilarity elements (see
eqn. (5.1)). It matches the result presented in [46] that states that the variance of a mean of
L correlated variables with equal variance (in this case 6> = 2k) and correlation coefficient
p (in this case p = 0.25), is given by: Var [BG] = %2 + LT_]pO'Z, which indeed gives eqn.
(5.4).

After establishing the statistical properties of the estimated mean for the threshold crossing

point, we can derive the properties of the estimated variance.
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The estimated variance is not distributed Chi-Square since the dissimilarity elements are
correlated. Therefore, we do not know its distribution type, but can derive its mean and
variance (see Appendix C.1, eqn. (C.8)) for the threshold crossing point (considering the

statistical properties of the estimated mean, as given in eqn. (5.4)):
(5.5)

The correlation, in this case, causes a decrease of the mean of the estimated variance, as

expected. Its value decreases from 2k (eqn. (3.11)) to 1.5k.

5.2. Case 2: Correlation Between Dissimilarities of
Patches That Overlap Each Other, But Not The

Reference Patch

5.2.1. Case Definition

We discuss here the case of similarity patches that overlap each other, but not the reference
patch, as illustrated in Figure 5.3. In Figure 5.3 (a), the selected compared patches A ;, Ay
for j,k € S; overlap each other, such that the following overlap criterion is satisfied: Vj # k,
J keSS AiNAL#£@, AjNA; =D, AyNA; = @. Figure 5.3 (b) illustrates which pixels,
whose patches (of size p = 5) do not overlap the reference patch, can participate in the
denoising procedure of pixel i, given the overlap constraint and a search region of size
M = 11. Consequently, the sub-set ‘PIL can include only the indices of the pixels marked in

yellow.

As in Case 1, the reference patch A; serves as a mutual member in the dissimilarity between

it and the compared patches, thus inducing correlation between the corresponding dissimi-
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Figure 5.3.: (a) Scheme of the grid that characterizes Case 2 where patches can overlap
each other, but not the reference patch. The reference patch A; is colored in orange and
the compared patches are colored in green (like A, Ay). (b) A search region §; of size
M = 11. The reference patch (of size p = 5) is marked in red. The yellow pixels are those
whose similarity patches (of size p = 5) overlap each other, but not the reference patch.
Pay attention that (a) refers to a patch-based grid, whereas (b) refers to a pixel-based grid.

larity elements. In this case, however, there is yet another source of correlation that stems
from patches overlap. The covariance matrix is computed for the dissimilarity elements that
are arranged in a vector form. The distribution of the patch dissimilarity elements remains
Chi-Square and can be approximated by a Normal distribution, as presented in eqn. (3.7).
The off-diagonal elements of the respective covariance matrix refer to the cross-variance
between the vectorized dissimilarity elements. A detailed analytic development for General
and Uniform patch-kernels can be found in Appendix B.2. Here, we present the final forms

of the respective covariance matrices.

The covariance matrix for a General patch-kernel is shown in Appendix B.2 (eqn. (B.6)), to
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be:
2 05 .. 05
o 0.5 2 . 05
Cp = (7 @)"] = e
’ I .
0.5 0.5 2
where,
0 . ZmEOT{‘U)\Pl (L) aA\PL(l)(m) aAlPlL(L) (m)
0— ZmeO‘PlL(l),‘{’lL(z) aAlPL(l)(m) aA‘PiL(z) (m) |
| .. |
i ZmeOTL(L),‘PlL(l) aA‘I’lL(L) (m) aA\PlL(])(m) 0 .
(5.6)

O is a matrix obtained due to patches overlap and whose diagonal elements are all zero.
The off-diagonal elements of the matrix O refers the the region of overlap between com-
pared patches. For example, the notation O\PlL(l)71PlL(2) = {t |t € A\PiL(l) ﬂA\PiL(Z)} refers to
the global indices that represent the region of overlap between the patch that corresponds
to the smallest dissimilarity and the one that corresponds to the next smallest dissimilarity
and satisfy the overlap criterion. Moreover, the notation AlI_{iL(m) (t) represents the local in-
dex of the similarity patch centered at W5(m) that corresponds to the global index ¢. Each
off-diagonal element represents the sum of coefficient multiplication in the region of patch
overlap, as illustrated in Figure 5.4. This figure presents two compared patches, of size
5% 5, Ayt (), Ayt (5), M,S € [1,M? — 1] whose region of overlap includes four pixels. The
corresponding sum of coefficient multiplication is based on the local indices of the respec-

tive coefficients, as follows: ¢tj90t + Qo0 + 0040 + Clp507.
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Figure 5.4.: An illustration of the overlap region between two compared patches with p =5,
and the local indices related to the region of overlap, marked in yellow. Each pixel in the
region of overlap is characterized with two local indices. The left index is associated with

the patch A‘I‘.L(m) and the right index is associated with the patch Ay (s)"

The covariance matrix that corresponds to the Uniform patch kernel has a simpler form of

the matrix O, shown in Appendix B.2, eqn. (B.7), and given by assigning k = p~2:

0

‘0T5<2>,w5<1>‘
|
i ‘me),wfm(

‘0415(1)){%@)’

|
0

(5.7

5.2.2. Effect on Statistical Properties of the Estimated Variance

We remind the reader that the statistical properties of the elements of the normalized dis-

similarity vector, for this case, are similar to Case 1, as indicated in eqn. (5.3).

In this case, compared patches may overlap each other, but not the reference patch. This

overlap adds another source of correlation between the dissimilarity vector elements, as
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described in detail in Appendix B.2. This correlation, together with the correlation described

in Case 1, modify the statistical properties of the estimated mean and estimated variance.

The statistical properties of the estimated mean variable, at the threshold crossover point, are
analyzed in appendix C.2 for the General (eqn. (C.9)) and the Uniform (eqn. (C.10)) patch-
kernels. For simplicity, we present here the final form for only the Uniform patch-kernel,

that is given by (k = p~2):

2
BV~ (1, Llk+ m i1 Zi:l,k;él )O\Plé(z),‘yf(k)‘) (5:8)

where ‘PlL C §; is a sub-set of the search region S; that consists of the pixel global indices j €
S; that corresponds to sorted dissimilarity values, i.e., the L smallest dissimilarities values,
under the consideration of the overlap criterion between patches A, A, presented in sub-

section 5.1.2.

The mean of the estimated variance, for a General patch-kernel, is developed in Appendix
C.2 (eqn. (C.12)). Here, we present the simplified form that characterizes the Uniform

patch-kernel (eqn. C.3) and is based on assigning k¥ = p~2:

A 2
E [VU} - %K_ m lL:1Zi:1,k7éz ’wa(l),\l’f(k)’ (59)

The variance of the estimated variance, in this case, involves a complicated development due
to the complicated form of the covariance matrix (see eqn. (5.6)). In Case 1 the correspond-
ing covariance matrix is circulant and a we could diagonalize it by applying a whitening
transform, as explained in Appendix C.1. Then, we were able to use the transform domain,
where the dissimilarities are not correlated, in order to compute the variance of the esti-
mated variance. In the current case, applying a whitening transform creates complicated
terms, whose analysis in not trivial due to the addition of the overlap terms. Further discus-

sion can be found in Appendix C.2.
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It can be seen from eqn. (5.9) that the correlation term due to the overlap between the patches
themselves causes a decrease in the mean of the estimated variance, compared to its mean
in Case 1 (i.e., 1.5x). This decrease, however, is relatively small since it is proportional to
k2, where Kk < 1, even for just p =5 that we use. Moreover, this overlap term has to be
computed for each explored sub-set in each search region, which makes the computation

impractical.

5.3. Case 3: Correlation Between Dissimilarities of
Patches That Overlap Each Other And The

Reference Patch

5.3.1. Case Definition

We finally discuss the most general case of similarity patches that overlap each other as
well as the reference patch, as illustrated in Figure 5.5. In this figure, the selected com-
pared patches A, Ay for j,k € S; overlap each other, and each one of them also overlaps the
reference patch A;, satisfying the following overlap criterion: Vj # k, j, k € SlS ,AjNAg #
B, AiNA; # D, AyNA; # Q.
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Figure 5.5.: Scheme of the grid that characterizes Case 3 where patches can overlap each
other and the reference patch. The reference patch A; is colored in orange and the Com-
pared patches are colored in green (like A, Ay).

Here we get an additional source of correlation, as compared to the two previous cases,
which is the overlap of the compared patches with the reference patch. The covariance
matrix is computed for the dissimilarity elements that are arranged in a vector form. The off-
diagonal elements of the respective covariance matrix refer to the cross-variance between
the vectorized dissimilarity elements, and their elaborated analytic development for General
and Uniform patch-kernels can be found in Appendix B.3. We present here the final forms

of the respective covariance matrices.

The diagonal elements of the covariance matrix refer to the variance of each dissimilarity
element. In this case, the distribution of patch dissimilarity is not Chi-Square anymore
because not all the elements in the summation defining it (see eqn. (3.1)) are independent,
in contrast to what was assumed by Buades et al. [4] and Thacker at. al [38]. The mean
and variance of the dissimilarity for a General patch-kernel are analyzed in Appendix B.3,

resulting in:

E[dF (j)] =1, Var |47 ()] :21<+f620,' %0 (5.10)
LJ
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where O; j = {m lmeA;NA j} is the set of pixels associated with the overlap between the
similarity patch A ; and the reference patch A; and the cardinality of the set is denoted ‘0,-, j |
The notation oy, () refers to the local index that corresponds to the global index f* of the

similarity patch A;.

The corresponding statistics for the Uniform patch-kernel are obtained by assigning o =

p %, Vs€ [1,p*], hence k = p~2:
E[d/ ()] =1, Var[d! (j)] =2k +]|0i | &> (5.11)

As mentioned earlier, the cross-variance between the dissimilarity elements is also devel-
oped in Appendix B.3, for both General and Uniform patch-kernels. The cross-variance
terms for the General kernel have complicated expressions and are shown only in the Ap-
pendix. For the Uniform kernel (k = p~2), the expression for the cross-variance between

dissimilarity elements j, k € Sf is simpler and is given by:

. . 20, 10, = |0
Cov |dY (j),dY (k)| =0.5k+0.5k* (|0 ;| +|0ix| +]0;x]) + 0i|  if 0ij] =0
0 Otherwise

(5.12)

5.3.2. Effect on Statistical Properties of the Estimated Variance

We remind the reader that unlike the former two cases, the statistical properties of the el-
ements of the normalized dissimilarity vector for this case are not distributed Chi-Square,
and their mean and variance are introduced in eqn. (5.10) for the General patch-kernel and

eqn. (5.11) for the Uniform patch-kernel.

In this case, compared patches may overlap each other, as well as the reference patch. This

overlap adds yet another source of correlation between the dissimilarity vector elements, as
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described in detail in Appendix B.3. This correlation, together with the correlation described

in Case 1, modify the statistical properties of the estimated mean and estimated variance.

In contrast to the two other explored cases, the estimated mean, in this case, is not a normal
random variable since the dissimilarity elements are not distributed normally. Hence, we
derive some of its statistical properties, but not its distribution type. The statistical properties
of the estimated mean variable, at the threshold crossover point, are analyzed in appendix
C.3 for the General patch-kernel (eqn. (C.14)) and the Uniform patch-kernel (eqn. (C.15)).
For simplicity, we present here only the final form for a Uniform patch-kernel, that is given

as follows:

E[BY] =1
Var [BY] = L2—J23K+ f—iZlL:l ‘Oi.,‘PiL(l)‘ +
+ﬁ Y 21;;:17167&,' <‘0i,\1’§(1)‘ + ’Q‘,\Pf(k)’ + ‘O‘I’;L(l)"l’f(k) D
+L217 Zlel Z%:Lk;éj (1 (‘Oi)I’I-L(l)‘ - ‘Ohk‘l‘f(k)’) )01'7'{’?(1)‘)

(5.13)

where ‘PZL C §; is a sub-set of the search region §; that consists of the pixel global indices j €
S; that corresponds to sorted dissimilarity values, i.e., the L smallest dissimilarities values,
under the consideration of the overlap criterion between compared patches and the overlap
with the reference patch. The notation 0,-7?[;(,{), k € [1,L] corresponds to the set of global
indices in the overlap region between the reference patch A; and the patch A\PiL(k),i.e., the
patch that is associated to the k' dissimilarity element in the sorted vector d° (WF). The

notation 1 (-) refers to the Indicator function.

The mean of the estimated variance is developed in Appendix C.3 for a General patch-kernel

(eqn. (C.16)) as well as for the Uniform patch-kernel (eqn. (C.17)). Here, we present the
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final much simpler form that corresponds to the Uniform patch-kernel, that is given by:

A 3 2
E[VY] = dx+ X0, ‘Oi.}I’iL(l)’ -
K.Z

~an L D HOWHD‘ - )Oiﬂ’%(k)‘ +Ou H (5.14)
Bt 1 (O] = 0o ) s |

The variance of the estimated variance, in this case, involves a complicated development
due to the complicated form of the cross-covariance terms (see Appendix B.3, eqns. (B.9),
(B.10)). Similarly to Case 2, applying a whitening transform to the covariance matrix,
in order to compute the variance in a domain where the dissimilarities are not correlated,

results in non-trivial analysis, as explained in Appendix C.3.

Here too, the correlation term due to the overlap of the patches with each other and/or the
reference patch, causes just a small change in the mean of the estimated variance, compared
to Case 1 (i.e., 1.5x). This change is relatively small because it is proportional to k2, where
K < 1, even for just p = 5. As for the former case, these terms have to be computed for

each explored sub-set in each search region, making the computation impractical.

5.4. Effect of Correlation on The Model-Based Scheme

The model introduced in Chapters 3,4 does not consider the correlation between the dis-
similarity elements in a given search region S;. The correlation analysis, presented above,
provides us with a more accurate variance estimator compared to the one used in ALGO-

RITHM III, introduced in Chapter 4.

In the previous sections of this chapter, we analyzed the statistical characteristics of the
estimated mean and estimated variance of the normalized dissimilarity elements at the vari-
ance threshold crossover point, considering three sources of correlation. As was explained

for cases 2 and 3, which consider overlaps both between patches and/or with the reference
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patch, the computation of the respective mean of the estimated variance for each explored
search region is impractical, and the overlap terms have anyway a minor contribution to
the estimated variance mean that was obtained for Case 1 (i.e., 1.5k), which relates only to

correlation due to the mutual reference patch.

Thus, instead of using the threshold value in eqn. (3.21), which assumes no correlation, we

use here a threshold value that is based on eqn. (5.5):

THO =E[0°] + £-STD [V6] = 3x (14 £,/ %) (5.15)

The factor f is a parameter that is selected empirically, as was done in Chapter 3, for the
model that does not consider any correlation between dissimilarities. Its selection for the

model that does consider correlation is discussed in the following chapter.

An attempt to enforce a situation where the only source of correlation would be the mutual
reference patch, so we would have closed form simple expressions for the expectation and
the variance of the estimated variance (as in Case 1), is not efficient for denoising because it
requires increasing much the search region size (M?) in order to get a sufficient number of
patches in the denoising process of each pixel. We assume that a natural image is stationary

within a given search region, and increasing its size may violate this assumption.

5.5. Chapter Summary

In this chapter we analyzed three sources of correlation between normalized dissimilarities,
resulting from the comparison to the same reference patch A; and the overlap between com-
pared patches and possibly also with the reference patch. These sources of correlation are
analyzed in an ascending order of complexity. The simplest case (Case 1) refers only to the
correlation due to the mutual reference patch and is characterized by a circulant covariance

matrix, whose unique structure was beneficial for the analysis of the variance of the esti-
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mated variance for this case, as explained in Appendix C.1. The other two cases (Case 2,
Case 3) are characterized by a more complicated form of a covariance matrix, due to the
overlap between the compared patches and the overlap of a given patch with the reference
patch. These three sources of correlation were not discussed before by other researchers in

the field that explored the statistical properties of the NLM dissimilarity measure.

Moreover, based on the analysis of the covariance matrices for the three sources of cor-
relation, we were able to derive statistical properties of the estimated mean and estimated
variance at the variance threshold crossover point. For cases 2 and 3, the mean of the es-
timated variance depends also on the degree of overlap between the explored patches and
the overlap with the reference patch. Consequently, these cases yield complicated terms.
However, these terms are relatively small as they are proportional to k2, where k < 1, even
for just p = 5 that we use. Thus, their contribution to the mean of the estimated variance is

minor compared to the value obtained in Case 1.

Finally, we use the correlation-dependent estimate of the estimated variance to set the
threshold value in ALGORITHM III. The performance of the modified scheme, denoted the
Correlation-Dependent Model-Based scheme, and its comparison to the original scheme of

ALGORITHM III are discussed in the following chapter.

101



6. Performance of The

Correlation-Dependent

Model-Based Scheme

This chapter discusses the performance of the Correlation-Dependent Model-Based scheme,
introduced in section 5.4, and compares it to the model-based scheme of ALGORITHM III,
presented in Chapter 4. The difference between the two schemes is based on the effect of
the correlation between the dissimilarities, within a given search region, on the estimated
variance. As expected, the correlation causes a decrease in the variance between the corre-
sponding elements, reducing it from 2k (eqn. (3,11) tol.5k (eqn. (5.5)). As suggested in
Chapter 3 (section 3.5) for the original model-based scheme, and in Chapter 5 (section 5.4)
for the correlation-dependent model-based scheme, the variance threshold is modified by
adding a variance error correction term whose added value is discussed in this chapter. Fi-
nally, since the normalization of the dissimilarities assumes a prior knowledge of o;,, which
typically needs to be estimated, we refer at the end of the chapter to the sensitivity of the

two adaptive schemes and the standard NLM to an error in the noise variance estimation.
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6.1. Setting the Factor f

The factor f implies on the deviation of the threshold value from the mean of the estimated
variance, according to the correlation-based model (see eqn. (5.15)), aiming to improve de-
noising performance. It is selected empirically with PSNR being the optimization measure.
As in section 3.5, for the model that does not consider correlations, the simulations were
performed using ten selected natural images, with additive Gaussian white noise at various
levels, and exploring the denoising of each noisy image using different f values. The noise
levels were o, = [10,35] with a stride of 5, and the explored f values were f = [0,3] with a
stride of 0.2. The denoising results were averaged over all images and noise levels. Figure
6.1 presents the average PSNR as a function of f, with error bars, marked in red, indicating
the variance over different noise levels for each examined f value . The global maximum
is obtained for f = 2. Without considering the error STD (error bars), it can be seen that
using an f value that is different from zero can improve the denoising results by 0.06 dB,
on average, whereas for the no-correaltion threshold (section 3.5), using an f value that is
larger than zero (f = 1) improved the denoising performance by only 0.01 dB, on aver-
age. When exploring the individual contribution of the utilization of f = 2 to the PSNR of
specific images, we discovered that there is a maximal increase of 0.2 dB, which is more
significant than the case of no-correlation, where the maximal increase (for f = 1) was 0.14

dB. Consequently, we suggest to continue here with f = 2.
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Figure 6.1.: f optimization curve

6.2. Performance Comparison of Denoising Schemes

The performance of the scheme presented in ALGORITHM III, with no correlation consider-
ation, was compared to the scheme that considers correlation and introduced in section 5.4.
Moreover, this latter scheme was also compared to the standard NLM applied using Uniform
and Box patch-kernels. The denoising parameters that were used for the comparison are:
p=5 M=11, h=0,, f =2 for the correlation scheme and f = 0 for the no-correlation
scheme. The following table presents the comparison results for different selected images
and various noise levels. As was shown before (Chapter 4), ALGORITHM III without corre-
lation consideration, is characterized with better denoising results, compared to the Standard
NLM, both visually, PSNR-wise and SSIM-wise. The Correlation-Dependent Model-Based
scheme is slightly better than its simplified version, mainly PSNR-wise. The PSNR differ-
ence, for the images and noise conditions presented in the table, is maximum 0.04 dB, and

is not noticeable visually.
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NLM w. Uniform NLM w. Box ALGORITHM III Correlation-Based

Image | o, ALGORITHM III

PSNR [dB]/SSIM || PSNR [dB]/SSIM || PSNR [dB]/SSIM || PSNR [dB]/SSIM
Lena 20 30.11/0.87 30.25/0.87 30.48/0.88 30.51/0.88
Baboon | 20 24.78/0.69 25.54/0.74 25.62/0.75 25.64/0.75
Barbara | 30 26.92/0.8 26.94/0.8 27.16/0.81 27.18/0.81
Pirate | 15 30.55/0.84 31.02/0.85 31.08/0.85 31.12/0.85

Table 6.1.: Quantitative comparison between the Standard NLM applied with Uniform and
Box patch-kernels, the basic model-based NLM (ALGORITHM III without correlation
consideration) with f = 0 and the correlation-dependent model-based NLM with f =2
(ALGORITHM III with correlation consideration).

Figure 6.2 presents a performance comparison between the two model-based schemes as
function of noise level. The displayed curves are the result of averaging over ten ex-
plored natural images. As observed from the results presented in Table 6.1, the Correlation-
Dependent scheme is only slightly better, PSNR-wise, than the basic model-based scheme.

It is more pronounced for low noise levels.

[ m— Oplimized
s teeeobrnene e eeaben .| 77" Basic adaptive threshold |
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a5 i i i ;
10 ] 20 25 30 ]

Figure 6.2.: Comparison between the two model-based NLM schemes: the blue curve refers
to ALGORITHM III with correlation consideration, whereas the dashed red curve refers
to ALGORITHM III without correlation consideration.
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6.3. Sensitivity to Noise Level

In real scenarios, the noise level is an unknown parameter that has to be estimated. The
estimation algorithm is beyond our scope, as there are quite a few suggested approaches
in the literature (e.g., [8, 24] ). We tested the sensitivity of our model-based approach and
compared it to the sensitivity of the standard NLM. The objective of such an examination is
to explore the quality of denoising when noise level estimation is not accurate. Figure 6.3
presents the sensitivity of four compared NLM approaches: standard NLM applied using the
Box patch-kernel, standard NLM applied using the Uniform patch-kernel, Modified model-
based NLM (with correlation consideration) with f = 2, and Basic model-based NLM (no
correlation consideration). The sensitivity is measured for two selected noise levels o, =
20, 30 and the explored range of deviation for a given noise level is [0.80,, 1.20;], where
PSNR is the performance measure. The results were averaged over five natural images. The
displayed curves refer to normalized PSNR differences between the PSNR obtained for an
estimated noise level and PSNR obtained for the true noise level. The normalizing value
was the PSNR obtained for the true noise level (PSNR7,,.). The NLM parameters that were

usedare p=5, M =11, h= 0o,.

From the above comparison, one can observe that the standard NLM applied using the Box
patch-kernel (solid blue curve) is somewhat less sensitive than the two adaptive approaches
(black curves with circles for the correlation-dependent scheme and red curve with dots for
the basic model-based scheme). As for the two model-based approaches, the sensitivity
of the Correlation-Dependent model-based scheme is slightly lower than that of the Basic
model-based scheme, when the estimated noise level is lower than the true level. The sensi-
tivity tendency reverts when the estimated noise level is higher than the true level. The stan-
dard NLM applied using the Uniform patch-kernel (dashed green curve) is the most sensitive
both when estimated noise level is lower and higher than the true noise level. Moreover, the

PSNR increases when the noise level is underestimated, implying that a smaller value of the
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smoothing parameter 4 (that is proportional to the noise level) should have been used when

NLM is applied with the Uniform patch-kernel, to this particular set of noisy images.

Suggested noise level estimation approaches (e.g., [8]) are characterized by an estimation
error of approximately 10%. A recently suggested approach by Liu et al. [24] is charac-
terized by smaller estimation errors, of less then 2%. It can therefore be assumed that the
performance sensitivity to noise level estimation errors up to 10%, for the four examined

approaches, is comparable, with a change in PSNR of at most 0.5%.
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Figure 6.3.: Simulations that explore the performance sensitivity (in PSNR) to noise level
estimation error at two different noise levels. The solid blue curve corresponds to Stan-
dard NLM applied using the Box kernel, the dashed green curve corresponds to Stan-
dard NLM applied using the Uniform kernel, the red curve with dots corresponds to the
model-based approach without correlation consideration and f = 0, and the black curve
with circles corresponds to the model-based approach with correlation consideration and
f=2.(a) 0, =20, (b) 0, = 30.
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6.4. Chapter Summary

This chapter explores the performance of the modified model-based approach, i.e., AL-
GORITHM III with correlation consideration and compares it to the basic model-based ap-
proach, i.e., ALGORITHM III without correlation consideration, and to the standard NLM
approach. Simulations show that the modified approach is visually comparable and is
slightly better PSNR-wise than the basic scheme, which does not consider any source of
correlation. Both approaches are better, mainly visually, than the standard NLM method,

applied using either the Box or the Uniform patch-kernels.

We also explored the sensitivity to noise level estimation error of the two proposed model-
based approaches and compared it to the sensitivity of the standard NLM. Within the range
of the common estimation error (approximately 1-10%), all explored methods are compara-

ble in their sensitivity, and the effect on PSNR is limited to 0.5%.
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7. Block Matching 3D (BM3D)
Combined with The Model-Based

Scheme

BM3D [9] is considered to be the state-of-the-art denoising approach that achieves the best
performance over other reported image denoising algorithms, however it is computationally
expensive and requires multiple parameters setting. We suggest to integrate our model-
based approach that defines an adaptive search region for each pixel in the image, with
the BM3D denoising method. By introducing our model-based adaptive search region in
one of the stages of the BM3D approach, we avoid the need for parameter calibration and
save computations. We compare the denoising performances of the original BM3D and the

BM3D combined with our model-based approach and show that they are comparable.

7.1. Brief Description of The BM3D Algorithm

BM3D is based on the fact that an image has a locally sparse representation in a given trans-
form domain (e.g., Bi-orthogonal wavelet transform, DCT, Haar). This sparsity is enhanced
by grouping similar 2D image patches into 3D groups. The grouping and filtering procedure

are named Collaborative Filtering.
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The basic BM3D algorithm assumes a Gaussian additive noise, using the noise model pre-
sented in eqn. (2.1). In general, the algorithm includes two main consecutive phases that
consist of similar stages applied on different inputs, as presented in Figure 7.1. These stages
are reviewed later on. The first phase receives as input the noisy image and estimates the
noise-free image using a hard thresholding operator. This estimate is referred to as the
Basic Estimate. The second phase is based both on the noisy image and on the basic esti-
mate obtained in the first phase, and applies Wiener filtering. A detailed explanation of the
stages of each phase can be found in Appendix D. Here, we present an overview of the main

operations that characterize each of the two phases:

1. Grouping - Finding the image patches similar to a given reference patch, marked as
R in Figure 7.1 (blue R refers to the noisy reference patch and red R refers to the basic
estimate reference patch). The search for similar patches is limited to a defined search
region, centered at the POI. Each phase uses a different patch similarity measure,
where Phase 1 dissimilarity is measured in the transform domain (after coefficients
shrinkage, applied using a hard thresholding operator) and Phase 2 dissimilarity is
measured in image domain. Once the similar patches have been found, they are ar-
ranged in a 3D block, named a group. Phase 1 grouping is based on the noisy patches,
whereas Phase 2 grouping is based on the denoised patches that were obtained in
Phase 1. Phase 2 includes another group that is based on the noisy patches whose lo-
cations are extracted from the basic estimate grouping. The explored patches in each
group may overlap, and each patch may be associated with different groups. Con-
sequently, each pixel may be associated with different groups and different patches.

Moreover, groups may differ in their cardinality.

2. Collaborative Filtering - A 3D isometric linear transform is applied to each group,
followed by a shrinkage [9] of the transform spectrum. Phase 1 shrinkage is applied
using a hard thresholding operator, whereas the shrinkage in Phase 2 is applied by

Wiener filtering. Finally, an inverse linear transform is applied to estimate each patch

111



Chapter 7

in the 3D group. This stage is described in Figure 7.1 as four consecutive steps: 3D
transform, hard-thresholding for Phasel and wiener filtering for Phase 2, inverse 3D

transform, and finally block-wise estimates.

3. Aggregation - Since each pixel may be associated with different patches and different
groups, it may posses several estimates. In this stage, all the estimates of a given pixel

are aggregated using a weighted average, where each phase has its own weighting

scheme.
Phase 1 Phase 2

e L . | ......................... .
"
1 Bilock- wu-m- Humgtm-&auuﬂ:ﬂa tlun-h block-wise estimates -paqqregaﬁan
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Figure 7.1.: Scheme of the BM3D algorithm [9]

7.2. Model-Based Block Matching

First phase grouping is applied in transform domain, i.e., the dissimilarity between patches
of a defined search region S; is computed using the transformed patches. Then, a hard-
thresholding operator is applied, such that only the most similar transformed patches are
selected to be associated with the corresponding group. We suggest a more efficient method
to create a group of similar patches in the first phase (Basic Estimate) of the BM3D algo-
rithm. This method relies on the model-based NLLM approach, which is used to define a set

of pixels whose neighborhood is similar to a neighborhood of a given reference pixel. Our
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alternative method is based on a model that characterizes similar patches, and if we refer
to the model that does not consider correlation between dissimilarities it does not require
any parameter setting. Recall that for the model that does consider correlation, a single
empirical parameter was set based on PSNR optimization. However, since the two models
provided similar results for pixel selection (see Table 6.1), we continue here with the model
that does not consider correlation, and hence is parameter-free. Consequently, it reduces
the degrees of freedom of the first phase grouping from two to zero and saves computations

since there is no need to use the transform domain.

Hard — 8 iy contrast to

The BM3D algorithm uses similarity patches of an even size, e.g., p
the NLM approach that uses an odd size, e.g., p = 5. Therefore, the model-based approach
is applied using the Uniform patch-kernel that assigns same weights to all the patch pixels,
and not other kernels, such as the Box patch-kernel that are defined based on an odd patch

size and assigns higher weights to pixels that are located closer to the patch center.

ALGORITHM IV below explains our grouping methodology for the Basic Estimate phase.
It relies on ALGORITHM I, which was introduced in Chapter 3. The similarity patch size is
defined to be pf1%¢ x pf@d and the search region size is defined to be M47¢ x pHard The
algorithm input is an initial search region of a given POI, and its output is the most similar

patches extracted from the resultant Sl-S , arranged in a 3D array.

113



Chapter 7

ALGORITHM IV: MODEL-BASED BASIC ESTIMATE GROUPING

1. Compute the dissimilarity between patches A; and A;, j € §; in the image domain,

based on the dissimilarity definition in eqn. (2.6) using a Uniform patch-kernel.

2. Normalize the computed dissimilarity elements by the noise STD, as defined in eqn.

(3.5).
3. Sort the normalized dissimilarity elements in an ascending order.

4. Compute accumulated variance, by starting with the first two elements (of smallest
dissimilarity) and adding one element at a time. Stop the accumulation process once
the accumulated variance is above the model-based threshold or when the cardinality
of the accumulated patches equals B7¢?  according to which condition comes first.

BH ard

Thus, each group contains at most most similar patches.

5. The accumulated pixels define the set Sl-S , and the patches associated with this set of

pixels are candidates to form the corresponding group of the reference patch A;.

The suggested grouping can be applied only on the original noisy patches, whose noise
model is known to be additive Gaussian, thus it is appropriate only for the grouping process
in the Basic Estimate phase. The grouping in the Wiener phase is applied on the patches ex-
tracted from the Basic Estimate, i.e., after an initial denoising. In order to apply the model-
based approach on the denoised patches, we are required to estimate their noise model,
which is not necessarily Gaussian and additive. Moreover, even if the noise model of the
denoised patches could have been estimated, there is no guarantee that the corresponding

dissimilarity variance that is required to set the adaptive search region could be estimated.

Figure 7.2 displays Phase 1 group cardinality map for the two grouping approaches, ap-
plied on the image Lena with o, = 20. The following parameters were used to create the
corresponding groups: pf'@d =8 MH¥d =39 BHad — 16 Tt can be clearly seen that pix-

els located on edges are characterized with smaller groups for the model-based grouping
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approach, such that dissimilar patches are not selected for the denoising process. This sig-

nifies the advantage of our proposed grouping with respect to the basic estimate grouping.

(a) (b)

Figure 7.2.: Basic estimate group cardinality map, applied on the image Lena with &, =20
using the parameters: pf¥? =8 MH¥d = 39 BHad — 16, (a) Original Basic Estimate
grouping. (b) Model-Based grouping.

The following table summarizes the difference between our proposed grouping methodol-

ogy, denoted Model-Based Grouping, and the BM3D Basic Estimate Grouping.
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Number of

Number of

BM3D Basic . Model-Based .
Index . . Operations per . Operations per
Estimate Grouping . Grouping .
search region search region
2
1 Transform patches O'SM p logzp
arithmetic
Apply hard thresholding )
M-p
2 operator on transformed .
comparisons
patches
Compute dissimilarities in Compute normalized
3 P . 2M? p? arithmetic dissimilarities in image | 2M?p? arithmetic
transform domain i
domain
e 2 Sort normalized 5
Sort dissimilarities in an logoM e logoM
4 . . dissimilarities in an .
ascending order comparisons . comparisons
ascending order
. . 0.72M?
Apply hard-thresholding > Accumulated variance . .
logoM : . arithmetic
5 operator on computed . computation and variance 5
e comparisons . logoM
dissimilarities threshold application .
comparisons
6 Choose at most B4 0 Choose at most B4 0

most similar patches

most similar patches

Table 7.1.: Comparison between the flow of the Model-Based Grouping and that of the
BM3D Basic Estimate Grouping.

By comparing the two grouping methods, we can see that the Model-Based approach saves

computations as there is no need to apply a transform and the hard-thresholding operator

on the transformed patches (operations 1-2 of the BM3D Basic Estimate grouping in the

table). When we use a search region of size M X M and a similarity patch of size p X

p, these two stages require 0.5M?plog,p arithmetic operations for patch transformation

(for an efficient transform implementation), in addition to M?p? comparison operations for

hard-thresholding application. Operations 3,4, and 6 have similar complexity for the two

grouping methods. Operation 5 of the Model-Based method is more complicated than its

respective operation in the original grouping method, because of the accumulated variance

computation module. This module requires approximately 0.72M? arithmetic operations,

assuming (based on simulations) that 30% of the pixels in a natural image have an adaptive
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search region of size M? and the other 70% have an average of 0.6M? pixels in their adaptive
search region. Hence, the entire model-based grouping requires M? (2p2 + 0.72) arithmetic
operations and 2logoM? comparisons, whereas the entire basic estimate grouping requires
M? (0.5 plogap + 2p2) arithmetic operations and M?p? + 2logsM?* comparisons. The ratio
between the basic estimate and the model-based grouping for the arithmetic operations is
2p2

and for the comparisons is 1+ h, such that for p = 8 and M = 39 the basic

0.5plog2p+2p2
0.72+4-2p?

estimate grouping approach requires overall approximately 9% more arithmetic operations
and 4.6 - 10% times more comparisons per search region. The overall running time of the two
grouping methods in Matlab for an image of size 256 x 256, a search region of size 39 x 39,
a similarity patch of size 8 x 8, and B#¥“ = 16 lasts 270 seconds for the basic estimate
grouping method and 240 seconds for the model-based grouping. This is a reduction of
more than 11% in running time for the grouping step and 4.5% in running time for the

whole BM3D process. On top of that, our proposed approach is parameter independent.

7.3. Experimental Results

We compare the Basic Estimate denoising results for the two methods of Basic Estimate
grouping and also the final results, after the second phase . For our proposed grouping
method, we use 2k as the variance threshold (see ALGORITHM I), where K = (pH‘” d) _2.
This threshold refers to the basic model-based scheme, that does not consider correlations

between dissimilarities. .

Table 7.2 presents the BM3D results after applying both the hard-thresholding phase (Phase
1) and the Wiener phase (Phase 2), where the grouping of Phase 1 is applied either using the
BM3D approach or the model-based approach. The PSNR and SSIM differences between
the two grouping approaches, both after Phase 1 and Phase 2, are insignificant and no visual
differences were observed, as can be seen in the example presented in Figure 7.3. This

figure presents the denoising results of the image Peppers with ¢, = 20 after applying the

117



Chapter 7

two phases of the BM3D algorithm. Figure 7.3 (b) refers to the denoising result using the

basic estimate grouping, whereas Figure 7.3 (c) refers to denoising result using the model-

based grouping. As mentioned earlier, no visible difference can be observed although this

image is characterized by the largest PSNR difference (after Phase 2), in favor of the model-

based grouping, among the images that are presented in Table 7.2.

The original grouping method uses dissimilarities computed based on the transformed patches

after shrinkage, such that the noise is reduced. On the other hand, the proposed grouping

method achieves a comparable performance by using dissimilarities computed in the image

domain, where the noisy patches are being used, as well as the statistical model that charac-

terizes these dissimilarities. Consequently, we can conclude that the model-based grouping

can serve as a simpler grouping alternative to the basic estimate grouping.

BM3D Grouping || Model-Based Grouping || BM3D Grouping || Model-Based Grouping
Image | o, | Phase 1 Output Phase 1 Output Final Output Final Output

PSNR [dB]/SSIM PSNR [dB]/SSIM PSNR [dB]/SSIM PSNR [dB]/SSIM
Baboon | 20 25.83/0.77 25.86/0.77 26.2/0.79 26.2/0.79
Barbara | 20 29.73/0.88 29.76/0.88 30.29/0.9 30.29/0.9
Barbara | 30 27.66/0.82 27.63/0.82 28.24/0.85 28.21/0.85
Peppers | 20 30.89/0.9 30.99/0.9 31.46/0.92 31.5/0.92
Peppers | 30 28.56/0.85 28.6/0.85 29.29/0.88 29.32/0.88

Table 7.2.: Quantitative comparison of denoising results following BM3D Phase 1 and
Phase 2, using two different grouping approaches for Phase 1: original Basic Estimate
and Model-Based.
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Figure 7.3.: Visual comparison between the denoising results of the two grouping methods
in Phase 1 of the BM3D algorithm, based on the image Peppers with ¢,, = 20. (a) Noisy
image. (b) Final output using the Basic Estimate grouping in Phase 1. (c) Final output
using the Model-Based grouping in Phase 1.

7.4. Chapter Summary

This chapter overviews the BM3D denoising method that is considered to be the state-of-the-
art denoising approach. It consists of two main phases, each of them having three stages:
Grouping, Collaborative Filtering and Aggregation. We suggest to replace the grouping
method in the first phase, i.e., in the basic estimate phase, which compares patch dissimilar-
ity in the transform domain, by the simpler model-based approach that compares dissimilar-
ities in the image domain. The proposed grouping method is parameter free, it saves com-
putations since is does not require patch transformation, and was found to provide similar
denoising results compared to the original basic estimate grouping approach, both quantita-
tively, using the PSNR and SSIM measures, and visually, both after Phase 1 and after Phase
2 of the BM3D algorithm.
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8. Model-Based Adaptive Approach

and The Poisson Noise Model

8.1. Introduction

Many imaging devices, such as digital cameras and any device equipped with a CCD or
a CMOS sensor, capture images by successive photon-to-electron, electron-to-voltage, and
voltage-to-digit conversion. The two predominant sources of noise in digital image acquisi-
tion are the stochastic nature of the photon-counting process at the detectors and the intrinsic
thermal and electronic fluctuations of the acquisition devices. Under standard illumination
conditions, the second source of noise, which is signal-independent, is stronger than the first
one. This motivates the usual Additive White Gaussian Noise (AWGN) assumption. How-
ever, in many applications such as fluorescence microscopy, astronomy, and endoscopy,
only a few photons are collected by the photo-sensors, due to various physical constraints
(low-power light source, short exposure time etc.). Under these imaging conditions, the
major source of noise is strongly signal-dependent. Consequently, it is more reasonable to

model the output of the detectors as a Poisson-distributed random vector.

The pixels in the sensor are arranged in a Bayer mosaic pattern [30], such that for each 2 x 2
set of pixels, two diagonally opposed pixels have green filters, and the other two have red

and blue filters. Since G (stands for Green) carries most of the luminance information, its
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sampling rate is twice that of R (Red) and B (Blue). Demosaicing [30] is the problem of
interpolating back the image captured with a Bayer pattern, so that every pixel in the sensor

is associated with a full RGB value.

In this chapter, we consider the model of signal-dependent noise and do not relate to any
signal independent noise that may be added to it [27], i.e., we refer to the purely Poisson
random noise. We explain how images corrupted with signal-dependent noise can be de-
noised by removing this signal-dependency and converting the noise model to be additive
Gaussian with known variance. Once the Poisson noise has been transformed to Gaussian
noise, the NLM denoising approach can be used, and we can explore the performance of the
model-based approach on this type of images. We will not elaborate here on the demosaic-

ing process, and refer the reader to [30] for more information.

8.2. Noise Model

Let ¥; be an observed pixel value obtained through an image acquisition device. Each Y; is
considered to be an independent random Poisson variable whose mean X; > 0 is the under-
lying intensity value to be estimated. Explicitly, the discrete Poisson probability of each Y;

is obtained by:

Xi_y"e*Yi
P(Yj[X;) = 2NN 8.1)
fli

In addition to being the mean of the Poisson variable ¥; , the parameter X; is also its variance:

E[Y;|X] = Var[Y;|x] = X; (8.2)
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Poisson noise can be formally defined as:
N; =Y; —E[Yi|X] 8.3)

Consequently, the following is trivially obtained: E [N;|X;] = 0 and Var [V;|X;] = Var [Y;|X;] =
X;. Since the noise variance depends on the true intensity value X;, Poisson noise is signal-
dependent. More specifically, the standard deviation of the noise at pixel i equals /X;. Due
to this behavior, the effect of Poisson noise increases, i.e., the signal-to-noise ratio decreases,

2
as the intensity value decreases: SNR; = i—’ =X.

8.3. Anscombe Transform - Variance Stabilizing

Transform (VST)

Researchers (e.g. [42, 22]) suggest to apply image denoising techniques directly on the
noisy image. These specific denoising methods are suitable for the Poisson noise model.
However, the NLM denoising approach is originally intended for a Gaussian noise model.
Hence, if we wish to use the NLM for Poisson denoising, a transform that converts the
Poisson noise to a Gaussian noise is required. This is the Anscombe transform [43] that is

described herein.

In applied statistics, a variance-stabilizing transformation (VST) is a data transformation
that is specifically chosen to allow the application of analysis of variance techniques. The
aim behind the choice of a variance-stabilizing transformation is to find a simple function
to be applied on a given data set, such that the variance of the transformed data values is
not related to their mean value. In this manner, the data-dependence of the noise variance is
removed, so that it becomes constant throughout the whole data Y. Moreover, if the trans-

formation is also normalizing, i.e., it results in a Normal (Gaussian) noise distribution, the
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intensity values X; can be estimated with a conventional denoising method designed for ad-
ditive white Gaussian noise. In practice, neither exact stabilization nor exact normalization
are possible [13], therefore, approximate or asymptotical results are employed. One of the

most popular variance-stabilizing transformations is the Anscombe transformation [26]:

3
fO)=24/y+3 (8.4)

8
Applying eqn. (8.4) to Poisson distributed data gives a signal whose noise is asymptoti-
cally additive standard Normal. In order to understand why a VST transforms a Poisson

distributed data to a Normally distributed data, we refer the reader to [7, 47].

The denoising of f(y) produces a signal f(y) that can be considered as an estimate of
E[f (y) |x], where x is the noise-free signal. In order to obtain the desired estimate of x, an
inverse transformation should be applied on f (v). The direct algebraic inverse of eqn. (8.4)
is:

7o)

2
Toireer (F () = £ (7)) = (T) —% (8.5)

However, the resulting estimate of x is biased, because the non-linearity of the transforma-
tion f means that generally E[f (v)|x] # £ (E[y|x]) , and thus f~' (E[f (y)|x]) # E[y|x] .
Another possibility is to use the adjusted inverse [26] that provides asymptotically unbiased
solution for large counts:

7o)

2
N 1
TAsym—Unbiased (f (y)) = ( ) > - g (8.6)

Since the bias is especially significant for low counts, as shown in [26], this solution is
not appropriate for these counts. The problem of bias can be solved by finding the exact
unbiased inverse that maps E [f (y) |x] to E [y|x], where E [y|x] = x > 0 is the noise-free value

of the pixel. This involves computing the infinite sum (see eqns. (8.1), (8.4)) E[f () |x] =
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Yoof (y)P(y|x) = 2¥ 70 (\ /y+ gx ye! x) that can be interpreted as a maximum likelihood
inverse [26]. Makitalo et al. [28] suggested a closed-form expression that approximates the

exact unbiased inverse transform as:

2 1
TExact—Unbiased—Closed (f (y)) max O f \/7 -1_ ? \/>

(8.7)

In low count Poisson image denoising, the results obtained by using eqn. (8.7) and a state-
of-the-art Gaussian denoising algorithm are dramatically better than those obtained with the
asymptotically unbiased inverse (eqn. (8.6)), and better than what is achieved with currently

existing methods specifically designed for Poisson denoising [26].

To conclude, given a noisy image with Poisson noise, the denoising flow consists of the

following stages:
1. Apply forward Anscombe transform based on eqn. (8.4).
2. Denoise the noisy image using a AGWN denoising method, assuming c,, = 1.

3. Apply the exact unbiased inverse Anscombe transform based on eqn. (8.7).

8.4. Comparison Between Standard NLM and
Model-Based NLM

In a similar manner to the comparison conducted for Gaussian noise (sub-section 3.6.1),
we wish to compare the denoising performance of the standard NLM, applied using either
the Uniform or the Box patch-kernels, to the performance of the proposed adaptive model-
based NLM, both with and without correlation consideration. Since the Poisson noise is

proportional to pixel intensity, noisy images with different noise levels were created by
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normalizing the noise-free image by its maximal intensity and multiplying the normalized
image by a factor, denoted Qpiss, such that Op,;ss 1s the highest intensity in the resultant
image. Then, the noisy value of each pixel is drawn from a Poisson distribution whose
parameters are set by the noise-free pixel value. Lower Qp,ss implies on a noisier image
with a lower SNR, due to lower pixel intensities (SNR; = X;,where X; is the noise-free pixel

value).

For the denoising process, same parameters were used for all the examined methods, i.e., a
similarity patch of size 5 x 5 (p = 5), a search region of size 11 x 11 (M = 11) and h = o,.
For the proposed adaptive model-based approach, we used f = O for the no-correlation
method and f = 2 for the correlation-based method. An objective evaluation that uses the
common measures PSNR and SSIM [41] was conducted. Table 8.1 summarizes the quanti-
tative denoising results (objective evaluation) for different images with different noise levels.
From its analysis, we can conclude that the proposed model-based approach, with and with-
out correlation consideration, obtains somewhat higher PSNR and SSIM values than the
standard NLM algorithm applied using either the Box or the Uniform patch-kernels, as was
shown for the Gaussian noise model. The model-based approach that considers correlation
has slightly higher PSNR than the approach that does not consider correlation (maximum
0.06 dB for the explored images and explored noise levels). The simulations also show that

there is no clear visual distinction.
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Image || Initial PSNR || Standard NLM || Standard NLM | Model-Based NLM || Model-Based NLM
(Qpoiss) w. Uniform w. Box no correlation w. correlation
Lena 22.58 (100) 30.62/0.88 30.73/0.87 30.9/0.89 30.96/0.89
Lena 18.8 (50) 28.52/0.82 28.44/0.79 28.82/0.83 28.84/0.83
Barbara | 22.27 (100) 29.17/0.87 29.25/0.87 29.35/0.88 29.41/0.88
Barbara | 18.95 (50) 27.14/0.81 27.14/0.8 27.39/0.82 27.43/0.82
Baboon | 22.32 (100) 25.28/0.72 26.08/0.77 26.15/0.77 26.19/0.77
Baboon 19 (50) 23.84/0.62 24.39/0.67 24.23/0.65 24.25/0.66
Peppers | 22.67 (100) 30.66/0.88 30.7/0.88 30.82/0.89 30.88/0.89
Peppers 19.2 (50) 28.74/0.85 28.63/0.82 28.92/0.85 28.95/0.85

Table 8.1.: Quantitative comparison between the Standard NLM, applied with either the
Uniform or the Box patch-kernels and the Proposed Model-Based NLM (ALGORITHM
I1I) with and without correlation consideration.

A visual evaluation based on the perceived quality by a human observer is presented in
Figures 8.1, 8.2. The figures present a zoom-in view of the images Baboon and Lena and
compare three denoising methods: Standard NLM applied using the Uniform kernel, Stan-
dard NLM applied using the Box kernel, and the Proposed model-based NLM with corre-
lation consideration. We have chosen to display only the results of the correlation-based
approach and not also the results of model-based NLM without correlation consideration
because, as mentioned earlier, there is no noticeable difference between the resultant im-
ages and the former approach provides slightly higher PSNR than the latter. Figures 8.1
(b) that corresponds to NLM with Uniform kernel is over-smoothed in textured areas, as
the hat’s feathers. Figure 8.1 (c) that corresponds to NLM with Box kernel preserves the
feathers texture, however smooth regions, such as Lena’s face appear grainy. In Figure 8.1
(d) that corresponds to ALGORITHM III (NLM with a model-based search region and an
adaptive patch-kernel type), introduced in Chapter 4, with correlation consideration, both
texture and smoothness are preserved. The same tendency can be concluded for Figure 8.2,
that presents a zoom-in view of the eyes, nose and fur of the image Baboon. NLM with
Uniform kernel (Figure 8.2 (b)) over-smoothes the fur and the eyes, whereas NLM with

Box kernel preserves texture, but also appears grainy in smooth regions, like the nose. In
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Figure 8.2 (d) that corresponds to ALGORITHM III with correlation consideration texture in

the eyes and fur as well as nose smoothness are preserved.

PR T

——

(b)

(d)

Figure 8.1.: Denoising results of the image Lena (256 x 256) with Poisson noise, Qpyiss =
100, p =5, M =11, h = 0,,. A zoom-in view of the eyes and hat feathers. (a) Cropped
noisy image. (b) Denoised image using Standard NLM with a Uniform patch-kernel. (c)
Denoised image using Standard NLM with a Box patch-kernel. (d) Denoised image using
ALGORITHM III with correlation consideration.
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(a) (b)

(d)

Figure 8.2.: Denoising results of the image Baboon (204 x 204) with Poisson noise, Qpyiss =
50, p=5,M=11, h =0, A zoom-in view of the eyes, nose and fur. (a) Cropped
noisy image. (b) Denoised image using Standard NLM with a Uniform patch-kernel. (c)
Denoised image using Standard NLM with a Box patch-kernel. (d) Denoised image using
ALGORITHM III with correlation consideration.

8.5. Comparison Between Standard BM3D and
Model-Based BM3D

In a similar manner to the comparison conducted for Gaussian noise (section 7.3), we wish
to compare the denoising performance of the standard BM3D after both Phase 1 and Phase
2 to the model-based BM3D after each of these two phases, when the input image is char-
acterized by a Poisson noise model. We remind the reader that the difference between
the two approaches stems from the different grouping method of Phase 1. The standard
BM3D Phase 1 grouping creates 3D groups by applying a hard-thresholding operator to

the patches dissimilarity in the transform domain, whereas the model-based grouping uses
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ALGORITHM I with the Uniform patch-kernel, i.e., sets a model-based variance threshold
on patches dissimilarity in the image domain. We have also explored the added-value of the
correlation-based model to the BM3D grouping by comparing the standard BM3D grouping
in Phase 1 to the model-based grouping applied with either the correlation-based threshold,
i.e., eqn. (5.15) with f = 2 or the no-correlation threshold, i.e., eqn. (3.21) with f = 0.

As in the previous section, noisy images with different noise levels were created by normal-
izing the noise-free image by its maximal intensity, multiplying the normalized image by a
factor, denoted Qpyiss. The noisy value of each pixel is drawn from a Poisson distribution
whose parameters are set by the noise-free pixel value. For the denoising process, same
parameters were used for all the examined methods, i.e., a similarity patch of size 8 x 8, and
a search region of size 39 x 39. An objective evaluation that uses the common measures
PSNR and SSIM [41] was conducted. Tables 8.2, 8.3 summarize the quantitative denoising
results, for Phase 1 and Phase 2, for different images with different noise levels . From their
analysis, we can conclude that the model-based BM3D is comparable to the standard BM3D
with or without correlation consideration. Consequently, we recommend the user to use the
model without correlation consideration. The PSNR differences between the three explored

methods are negligible, and no visual difference is noticeable.

Image || Initial PSNR || Standard BM3D || Model-Based BM3D || Model-Based BM3D
(OPoiss) no correlation w. correlation

Lena 22.46 (100) 31.47/0.9 31.43/0.9 31.4/0.9

Lena 18.84 (50) 29.31/0.85 29.31/0.85 29.31/0.85
Barbara | 22.23 (100) 29.8/0.89 29.83/0.89 29.81/0.89
Barbara | 18.93 (50) 27.67/0.83 27.7/0.83 27.7/0.83
Baboon | 22.99 (100) 26.31/0.79 26.32/0.79 26.3/0.79
Baboon | 19.72 (50) 24.57/0.69 24.59/0.69 24.59/0.69

Table 8.2.: Quantitative comparison between the Standard BM3D and the Model-Based
BM3D, applied with either the correlation-based threshold and no-correlation threshold.

All explored methods are explored after Phase 1 of the BM3D algorithm.
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Image || Initial PSNR || Standard BM3D || Model-Based BM3D | Model-Based BM3D
(Opoiss) no correlation w. correlation
Lena 22.46 (100) 32.08/0.92 32.07/0.92 32.07/0.92
Lena 18.84 (50) 29.99/0.88 29.959/0.88 29.95/0.88
Barbara | 22.23 (100) 30.24/0.91 30.26/0.91 30.25/0.91
Barbara | 18.93 (50) 28.32/0.86 28.34/0.86 28.34/0.86
Baboon | 22.99 (100) 27.1/0.83 27.09/0.83 27.08/0.83
Baboon | 19.72 (50) 24.72/0.71 24.72/0.7 24.72/0.7

Table 8.3.: Quantitative comparison between the Standard BM3D and the Model-Based
BM3D, applied with either the correlation-based threshold and no-correlation threshold.
All explored methods are explored after Phase 2 of the BM3D algorithm.

8.6. Chapter Summary

In this chapter, we have introduced the intensity-dependent Poisson noise model that char-
acterizes images taken by a digital camera. We have explained how the common denoising
algorithms that are used to handle additive Gaussian noise can be exploited to deal with this
type of noise, by utilizing the Anscombe transform. Finally, we have compared the denois-
ing performance of ALGORITHM III, applied with and without correlation consideration,
to the standard NLM. This algorithm that was introduced in Chapter 4, sets a model-based
search region and an adaptive patch-kernel type per pixel. Similar comparison was con-
ducted for the BM3D denoising method and the two Phase 1 grouping approaches. We have
concluded that the performance tendency obtained for Gaussian noise is preserved also for
the Poisson noise, i.e., the model-based approach is somewhat better both objectively and
subjectively than the standard NLM. As for the BM3D method, the model-based BM3D

saves computations and remains comparable to the standard BM3D.
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9. Conclusion

9.1. Summary

In this thesis, we have explored the Non-Local Means denoising method. This method,
inspired by neighborhood filters [14], takes advantage of the high degree of redundancy in
any natural image by assuming that every small patch in a natural image has many similar
patches in the same image. The NLM estimate a POI by using a weighted average of pixels
located in a search region associated with that POI. The weights are exponential terms that
are inversely proportional to the dissimilarity between a small neighborhood of the POI
and a corresponding small neighborhood of pixels within the search region. This method
assumes stationarity of the search region data and depends on five parameters whose values
affect the denoising performance. These parameters are the size of the similarity patch (p),
the weight-smoothing parameter (%), the size of the search region (M), the weight of the

central pixel (w;;), and the patch-kernel type.

The search region is usually a rectangular neighborhood, centered at the POI, which may
include pixels whose original gray value do not match the value of the original central pixel.
Consequently, their participation in the weighted averaging process degrades denoising per-
formance. To eliminate their effect, researchers (e.g., [32, 37]) suggest creating an adaptive
search-region which excludes those dissimilar pixels, such that the initial search region is

segmented into two sets: a set of similar pixels to the POI and a complementary set of dis-
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similar pixels. In this thesis we present a novel adaptive model-based method, which defines
a set of similar pixels to the POI, from the initial search region, using the statistical distribu-
tion of the dissimilarity measure. This proposed approach does not restrict the search region
to be contiguous, an important quality for textured regions. We further improve the denois-
ing performance by using an adaptive patch-kernel that is set according to the cardinality of
the adaptive search region, denoted |Sf | This combined approach was compared to the ap-
proach that uses an adaptive search region with a single patch-kernel type, as well as to the
standard NLM and was found to provide better denoising results both quantitatively (PSNR
and SSIM-wise) and qualitatively (visually). As for computational complexity, the running
time of the proposed appraoch is increased by 14% on average with respect to the standard
NLM, applied using either the Uniform or the Box patch-kernels. Another comparison that
was conducted is to the adaptive search region size approach [17], which is much more

complicated than our proposed approach and provides comparable denoising results.

The above-mentioned model-based scheme does not relate to the correlation between the
dissimilarity elements of a given search region. As shown in Chapter 5, there are three
possible sources of correlation that should be referred to. The first source is due to the com-
parison to the same reference patch during dissimilarity computation, the second origin is
due to patches overlap with each other, and the third origin is due to patches overlap with
the reference patch. The first source of correlation provides the main contribution to the
model. The estimated variance of the normalized dissimilarities that are associated with a
given adaptive search region, is decreased, as expected, when correlation is considered. In
order to compensate for variance error computation caused by using a small sample size, we
have added to the variance threshold of ALGORITHM III a variance correction term. This
correction term is the variance of the estimated variance variable, which is sample size de-
pendent, multiplied by a factor f (see section 5.4). The correction causes a slight reduction
in the estimated variance threshold with respect to the case where no correlation is consid-

ered. The added value of this correction term was also explored for the no correlation case
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and was found to be redundant there since the estimated variance threshold was high enough
to include all the relevant pixels. We have compared the performance of the model-based
search region created with no correlation consideration to that of the model-based search
region created with correlation consideration and the correction factor. Simulations suggest
that there is no significant difference between these two modification, thus the scheme that

does not consider correlation is preferred due to its reduced computational complexity.

In addition, we have suggested to exploit the model-based adaptive search method in the
BM3D Phase 1 (Basic Estimate) grouping. The original Phase 1 grouping methodology,
which compares patch dissimilarity in the transform domain, is replaced by a simpler ap-
proach that compares dissimilarities in the image domain. The proposed grouping method
is parameter free, it saves computations (11% for the Phasel grouping step and 4.5% for the
overall scheme) since is does not require patch transformation, and was found to provide
similar denoising results compared to the original basic estimate grouping approach, both

quantitatively and visually.

Finally, we refer to the intensity-dependent Poisson noise model that characterizes images
taken by a digital camera. The common denoising algorithms that are used to handle additive
Gaussian noise can be exploited to deal with this type of noise, by utilizing the Anscombe
transform. We have compared the denoising performance of our proposed model-based
approach applied with and without correlation consideration to the standard NLM. Similar
comparison was conducted for the BM3D denoising method and the two Phase 1 grouping
approaches. We have concluded that the performance tendency obtained for Gaussian noise
is preserved also for the Poisson noise, i.e., the model-based approach is somewhat better
both objectively and subjectively than standard NLM. As for the BM3D method, the model-

based BM3D saves computations and remains comparable to the standard BM3D.
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9.2. Future Work

As discussed in Chapter 5, there are three sources of correlation between the dissimilarities
of a given search region. We have derived the final estimated variance expression only for
the first source that is due to the comparison to the same reference patch. The two other
sources are characterized by complicated terms of covariance matrices due to patch overlap
terms, thus analyzing the variance of the estimated variance is not an easy task. If we wish
to be more precise, we should add the contribution of patches overlap to the variance of
the estimated variance that is used in the computation of the adaptive search region. This

analysis may be a part of a future research.

Another topic that can be explored is the expansion of the model-based image denoising
technique to video denoising. In this case, the denoising of each pixel can be based on both
the defined search region of the given frame at time ¢ and of the previous frame at time
t — 1. In this manner, the adaptive search region can be expanded, such that more pixels are
considered in the weighted averaging process. One should explore whether it improves the

denoising performance.

When dealing with Poisson noise, other variance stabilizing transforms (VST) can be ex-
plored besides the Anscombe transform. Maybe an alternative VST combined with the
proposed model-based approach will provide better denoising results than the commonly

used Anscombe.

Currently, two types of patch-kernels are used. One may try to find a better kernel that suits
the “non-smooth” regions and explore its performance using the proposed adaptive model-
based scheme compared to the commonly used Box patch-kernel. A suggestion of such
a kernel optimization may involove finding the most suitable slope of the Box kernel, see

Figure 2.1.

Finally, color components can be added to the model. Instead of using only intensity-based

dissimilarities, one can add color information, such that the adaptive search region is based
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on a measure that is the result of three dissimilarity values for each pixel in the correspond-

ing search region. Other color spaces, such as Lab [50], can be explored as well.
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A. Additional Examples Of
Comparison Between The
Standard NLM and The
Model-Based NLM

This appendix presents additional graphs that demonstrate the added value of the Model-
based approach (refer to Chapter 3) applied with NLM denoising, compared to the standard
NLM approach, as a continuation to the example that is presented in sub-section 3.6.2.
Figure Al.1 illustrates the improvement of the suggested approach PSNR-wise for different
noise levels. For all the explored cases, same NLM parameters were used for denoising, as

detailed in the figure.
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Figure A.1.: A comparison between the three explored NLM approaches, i.e., standard
NLM with either the Uniform patch-kernel or the Box patch-kernel, and our Model-Based
approach, for different images. The comparison is conducted for different noise levels
with the following NLM parameters: p =5, M = 11, h = 0,. (a) Barbara (256 x 256),
(b) Peppers (256 x 256).
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B. Distribution of Normalized
Dissimilarities For Different Cases

of Patches Overlap

In this appendix we develop the cross-variance terms of the normalized dissimilarity values,
associated with pixels included in the SZ.S set. We refer to three sources of correlation, as
discussed in Chapter 5, starting from the simplest Case 1, where similarity patches do not
overlap at all, and the correlation between dissimilarities is due to the comparison to a
mutual reference patch. Then, we add another degree of complexity by allowing patches
to overlap each other, but not the reference patch (Case 2). Finally, we refer to the most

general case (Case 3), in which patches may overlap each other and/or the reference patch.

B.1. Case 1: Correlation Between Dissimilarities of
Patches That Do Not Overlap

This case refers to the similarity patches A;, Ay for j,k € S; that satisfy the non-overlap cri-
terion: Vj £k, j, k € SiS, AiNAr=0,A;NA; =0, AyNA; =D, ie., the patches do not
overlap each other, nor the reference patch A;. By definition, the normalized dissimilarity
elements, within a given S;, share a mutual member, which is the reference patch. Conse-
quently, these elements are correlated and their cross-variance term is developed herein for

a General patch-kernel.
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Before continuing with the cross-variance analysis, we wish to clarify the definition of
global and local indices. We need to distinguish between a global index (with respect to
the image), which represents the N; values (based on the noise model where Y; = X; + N; ),
and a local index (with respect to the similarity patch), which represents the patch-kernel
coefficients Q, s € [1, pz]. Figure B.1 presents a global coordinate system of a selected
similarity patch (marked in yellow), on the right, and its respective local coordinate system,
on the left. For example, the third global coordinate corresponds to the first local coordinate,

such that the kernel first coefficient o corresponds to the third pixel value in the image N3.

1| 12(23 |34 | 45|56 | 67 ?S' 89| 100|111

2| 13| 24| 35| 46| 57 | 68| 79| 90|101 112

1| 6111621 3|14|25(36| 47| 58 | 69| 80 91(102|113
2| 7|12|17 |22 4| 15| 26| 37| 48| 59| 70| 81| 92|103|114
3| B| 1318|423 5| 16| 27| 38| 49| 50| 71| 82| 93|104[115
4| 9| 14|19 |24 6| 17| 28| 39| s0| 61| 72| 83| 94105 116
5 | 10| 15| 20 | 25 7| 18(29|40|51]62 | 73| 84 | 95|106 117

8 |19(30|41 |52 (63 | 74| 85 | 96|107 118

9 | 20(31|42 | 53|64 | 75| 80 | 897|108 119

10| 21|32 (43 | 54| 65 | 76| 87 | 98| 109|120

11| 22|33 (44 |55 |66 |77 | B8 | 99 |110(121

Figure B.1.: The grid on the right corresponds to global coordinates of the image. The
yellow patch is a selected similarity patch of size 5 x 5. The right patch grid presents the
patch global coordinates, whereas the left patch grid presents its local coordinates.

We begin with the distribution of the normalized dissimilarity variable, which was proven
to be approximately Normal (see section 3.3) and use the definition for k introduced in
Chapter 3 (eqn. (3.9)):

~ G(i
de (j) = Sd ~ o (1,2x) B.1)

By the definition of cross-variance, the following applies for patches A ;, Ay for j, k € Sl-S:
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Cov [dC (j),d (k)] =E [ (48 (j) ~ B[P ()] ) - (4€ (k) ~E [P (k)] ) | =
—E[(dF()~1)- (d° (k) =1)| =E[d€ (j)-dC ()] ~E [d ()] ~E [d€ ()] +1 =
—E |dC(j)-d0 (k)] - 1

We need to analyze the term E [dG( ) - dG (k)], based on the definition of the normalized

dissimilarity measure:

EWwaﬂEhwﬁM@M @ﬂffmwwmﬂ%Mﬁﬂ‘

_ 2
- EE [ZmeAi,feAj,lle[L;ﬂ] o, (Nm _Nf> 'ZmeAi,seAk,lze[LpZ] o, (N — Ns) }
Note: The cross-products N;-N;, Vi # j and any other version of them will be neglected

since their expectation is zero and they do not contribute to the sum.
[dU( ) dU (k)} = 4é4E [ZmeA le[1,p?] O‘12N4] +

+4(1;4E ZmEAi,lle[l,p ] %N \Xean m, Lhe[tp?\{l1} %Nf)] *

+4(1,4E Loeasnel1?) o, Ny, Yicanhe[1.) N7 ) | +

+4c1;4E Yiea;nel1p?] oy, N ) - Loneasbe[1.7) %N,%)] +

+4c1;4E Yiea; et p?] oy, N} ) - Yicanhe[1.) %st)]

Dealing with each addend separately and following the next rules:

1. Exchange the order of summation and expectation.
2. N; are i.i.d, thus share the same distribution and E [NZZNJZ} =E [Nﬂ -E [sz] = ot

3. For N; ~ AN (O, G,%), the 4" moment is known to be: E [Nﬂ =304

n
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(i) E[Len e % azNﬂ = Loeaietp?) % E Nu] =305 Lye1 2 &

(if) E [ZmeA nel1,p2] N (ZfeA \m}.be[lp ]\{11}alsz+):seA 1se[1,p2] NN )] =
= Loneaihe[1,p?] o, E [N;] - (ZfeA \{m}.be[lp ]\{11} 0, B [Nf] + e nef1p2] % E [NZD
= Gjlee[l’pz] o, (2—0y) =04 (2- Lief1p7] o

(iii) E <Zm6AJ‘,lle[1,p2] OC[IN%> : (ZfeAi,lze[l,Iﬂ] O‘lzNJ%"'ZseAk,lge[l,pz] o, Ny } —
=E ZmEAj,lle[l Ve O‘llNz} Bl Ypea, he[lp?] alZN]%_'_ZéGAk he[1.p?] Ny | =

- ZmGA/"lle[l’p ] B[N, H Ljea he[1,p?] ok [Nf} + Lseay, Le(1,p?] ;B [NZH =20,

Finally, the cross-product expectation is obtained as:

E[dG()dG(k)}z 30, Y of+20,-0, Y of+20, =1+ =143

4
dou \ e 1]

The cross-variance term for a General patch kernel is given by:

Vi keSSt Cov|do(j), dG(k)} E[dG( ) -dS (k) 1:5 (B.2)

The covariance matrix for a General patch-kernel is obtained by:

2 05 .. 05

o NT 05 2 . 05
Cas =E [d? (d?) } —x C (B.3)
05 05 .. 2

d LxXL

For the Uniform patch kernel, we assign k = p~2
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B.2. Case 2: Correlation Between Dissimilarities of
Patches That Overlap Each Other, But Not The

Reference Patch

This case refers to the similarity patches A ;, Ay for j, k € S; that satisfy the overlap criterion:
Vji#£k, j ke Sf, AjNA # 9D, AjNA; =D, Ay NA; = @, i.e., the patches overlap each
other, but not the reference patch A;. As for the former case, the corresponding normalized
dissimilarities are correlated by definition due to the mutual reference patch. Moreover,
this case is characterized by another source of correlation that is the patch overlap. The

cross-variance term is developed herein for a General patch-kernel.

We begin with the distribution of the normalized dissimilarity measure, which was proven
to be approximately Normal (see eqn. (3.11)):

a0 (j) = 41 ~ v (1,2x) (B4)

1 \J/
207
As was shown in the previous sub-section,the cross-variance for patches A, Ay j,k € Sls is

defined as:
Cov [dG( i, dG(k)] E[dG( . dG(k)} 1

We need to analyze the term E [dG( ) - dG (k)} , based on the definition of the normalized

dissimilarity measure:

NN\ 2 NN, \ 2
E [dG( ) dG (k)} . {ZmeAivfeAjvlle[lvpz] i ( ﬁcnf> Lmeaisenrhell 7] % < V20, ) } -

1 2
= 4G4E [ZmeAi,feAj,lle[l,pz] o, (Nm —Nf) 'ZmeA,-,seAk.,lge[l,pz] o, (Nm —Ns)]

Remarks:

1. The cross-products N;-N; Vi # j and any other version of them will be neglected since

their expectation is zero and they do not contribute to the sum.
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2. The term / € A (m) refers to the patch local index that corresponds to the global index

m in the similarity patch A ;.

3. The set of global indices included in the region of patch overlap is defined as: O =

AjNAg={m|meA;jNA}.

E[dG( ): dG(k)] :437,;* [Z m € Al € [1,p?] OGN | +

TagrE |

TaorE L

OC[IN,%l- Z +

m € Al € [1,p?]

feAN{m} e [Lp’]\{I} alZNJ%)

oy, N2, - +

L e Aul e [1,p?] %st)
+357E | (Znea {0y et asim %in ) - (Zrennef 2 N7 ) | +
T307E | (Zneaj {0t L 0N ) (Zscaasefn ] N ) | +
+4<1,4E ZmEOJk,lleA (m) o, IV, FE ZjeA lze[lp]alsz +

1 2 2
+4G4E ZmEOLk,lleAj(m) 0, Ny, - ZseAk\{m},l3e[l,p2]\Ak( 04 N; + O (m)Nim )]

m € Al € [1,p?]

Dealing with each addend separately and following the next rules:

1. Substitute the order of summation and expectation.
2. N; are i.i.d, thus share the same distribution and E [NIZNJZ] =E [N-z] -E [NZ} = o?

3. For N; ~ (0, G,%), the 4" moment is defined as: E [Nﬂ =30?

(i) E [ZmeAi,ze[l,pZ] O‘ZZN;] = Yoneaiie1,p7] &’E[N,] =30, Yie[1,p2] of
(i) E [ZmeAi,lle[l,p 2] o, N, (ZfeA A\m}.he[L,p?\{i }O%Nfﬂ T

+E [ZmeAhlle[Lpz] oy, N2 - <ZseAk,13€[l,p2] O‘lastﬂ =

= Lneanel1,p?] E N3] - (ZfEAi\{m},lze[Lpz]\{ll} o, E [NJ%D +

2 27\ _
a2 AE N2 (Zyen, nefn o WE V] ) =
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= G:ZmeAi,lle[l,pZ] oy, - <lee[ 1,p2] ¥ — Ot +Zl3€[l,p2] 0‘13) =
= GI?Z]]E[I,I)Z] o, (2—ay,) = o (2 Zl,e[l ] 0‘12>
(iti) E [<Zm€Aj\{0j~,k},11€[1>P2]\Aj(m) al'N’%> . (ZfGAi’be[lva] alsz%+ZseAk’l3€[l’p2] al3st>] N
=E [ZmGAj\{Ojﬁk},l]E[l,pz]\Aj(m) allN’%li| ‘E [ZfeAi,lze[l,pz] alZN]% +Zs€Ak,l3€[17p2] O‘last] =
= [ZmeAj\{ojﬁk},lle[1,p2]\Aj(m) oy, E [N,%,]] ' [ZfeAi,lze[l.,p2] 0, E [NJ%] t Xsea et p2] %E [Nz]]
= [Zoea oy bt @ [Er ) O+ el )0 | =
=20, (1 —Ymeo;, aAj(m)>
(iv) E [Zmeoj,k O ()N - <ZfeAi,12€[1,p2] al2N]2”+ZseAk\{m}7l3€[17p2]\Ak(m) oy, N + O‘Ak(m)N:%zﬂ =
= Ync0, %, )E (V2] (E peasineft ) BB [N] 4 Luc o) vt g @B [NE]) +
+ Lm0, O (m) tay (m) B [Ny = o, ZmEOJk O j(m (Z,2€[1 P2 O%) -
+0, Yoneo;, O ;(m (ZI;E[I p2]\Ax(m) ¥ Jr30‘/4k(m)> =

= Gif ZmGOM aAj(m) ) (2 +2aAk(m)) = 2Gn (ZmEO Y aA +Zm€0 y 7% j(m) O (m ))

Finally, the cross-product expectation is defined as:
1
E [dG( ) - dG (k)] = Ja3 (36,‘}216[1’172] o+ 20, — Gjlee[l’pz] oclzl +26,‘l‘> +
404 ( 20, Yoneo,, Oa;(m) + 20, Ymeo,; Ca;(m) + 20, Yoo, O;(m) aAk(m)>:

- % <le€[1,p2] alzl +2+Zm€0j,k aAj(m) aAk(l’l’l))

The cross-variance term for a General patch kernel is defined as:

ZmEOj k Q4 - (m) aAk(m)

4 0 (B5)

ST

Vikess: Cov|dS (), dG(k)} E[dG( )-dS (k)] —1=
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In order to define the covariance matrix, we introduce the notation ‘PIL (see section 5.1.1).

The set ‘I’IL refers to a sub-set of the search region, such that ‘PIL C §;. This set includes the

global indices of the pixels that are included in the search region and satisfy the respective

overlap criterion, arranged by order of increasing dissimilarity values. L € [2,S;|] represents

the number of dissimilarity elements that are being explored during the variance accumula-

tion process (see ALGORITHM I in Chapter 3). Hence, for a given L, this sub-set includes

the global indices of the L smallest dissimilarities in S;, out of the patches that satisfy the

non-overlap criterion. The notation d; (‘PIL) refers to the sorted dissimilarity vector.

The covariance matrix for a General patch-kernel is defined as (where k =}, e[1.57] 0512)

2 05
~ e~ 05 2
Cao = E 9 (@9)"| =« o
0.5 0.5
where,
[ 0

ZmeO‘Pl.L(] )*\PiL(z) aA‘Pl.L(l)(m) aA‘PiL(2) (m)

o7}

| 20y gyt ) Ht ) (m) Fa ) ()

0.5
0.5

For the Uniform patch kernel, we assign k = p~2, then the matrix O is obtained by

" ‘O‘PiL(l),‘PiL(L)’
‘O'{’f@),‘{’fu)‘ |
L
L ‘Oq'f(L)APZLu)‘ . 0
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B.3. Case 3: Correlation Between Dissimilarities of
Patches That Overlap Each Other and The

Reference Patch

This case refers to the similarity patches A;, Ay for j,k € S; that satisfy the overlap criterion:
Vi#k, j k€S, AjNAL £ D, AjNA; # B, AyNA; # D, i.e., the patches overlap each
other and/or the reference patch A;. In addition to the correlation between the normalized
dissimilarities that is due to the mutual reference patch, there are two other origins that
stem from the overlap of the patches between themselves and with the reference patch. The

cross-variance term is developed herein for a General patch-kernel.

First, we discuss the distribution of the normalized dissimilarity in this case. The distribution
of this variable is no longer Chi-Square, and the corresponding variance term is developed

herein.
We define the set of indices that are associated with the region of overlap between patches

A; andAj as: OiijAiﬂAjZ {m|m GAiﬂAj}.

The variance of sum of dependent random variables, in this case, is expressed as:

G (] Nu—Np\2| ) Nn—Ny\ 2
Var [dj” (j)] = Var |:Zm€Ai,f€Aj,le[1,p2] O‘l< ﬂonf> ] = Yonea, reajiel1,p?] % Var |:<—ﬂanf> 14‘

2 2
Nu—N, Ne—N
T2 Ymea; fea; keo; ; Oa;(k) %, (k) COV (( Vg ) : ( o ) >
The first term on the r.h.s of the equation is already known from previous computations:
2

N _Nf 1 2 2 2 —
Ymea,.reariellp] Var (a’ V20, ) = Jof Lmea; fea, e[l % Var (Nm Ny - 2Nme) -
_ 1 2 2 —
= mzmeAi,feA jode[1,p?] % [2Var [N, | 4+4Var [N,.Nf]] =

1 2 4 4 2
= @Zle[l,lﬂ] of [4c, +40,] = 2216[1,]72] o = 2K

The second term of the r.h.s of the equation refers to the overlap of the compared patch A
with the reference patch A;. In the following development, the cross-products N; - N; Vi # j
and any other version of them are neglected since their expectation is zero and they do not

contribute to the sum.

N\ 2 NN\ 2
2Zm€A[,f€Aj,k€0,',j aA[(k)aAj(k)COV ((N\%;Zk> ) ( &EGJ) ) =
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e o (S[(522)° (5] (55 B(352))
= 2 L, s heo,, %)% (E | (N3 +NE—2NuN) - (N2 + N2 = 2Ny )| =)
(-~ E(N2+ N2 —2N,N) -E (N2 + N2 = 2NV, ) ) =

= Z}T,‘,‘ YoneA; feA; ke, ; O (k) Oﬂjj(k) (E [N,%N,% +NN7 + N} +N,3Nﬂ — 46,‘}) =

= 217;} Ykeor; ()%, (k) 20, = Lkeo, ; 0 (k) O, (k)

The mean of the normalized dissimilarity remains the same, namely 1. Consequently the

mean and variance of this variable are as follows:

vjeS}: B[P (j)] =1, Var[d7 (j)] = 2K+ L eo,, O,(r) O, (1) (B.8)

Now, we begin with the analysis of the cross-variance terms.

As for Case 2, we define the set of global indices included in the region of overlap between
patches Aj and Ay, j.k € S? as: Ojx =A;jNAy = {m|m € AjNA}.

The cross-variance is defined as: Cov [dG( ), dO (k)} [a’G( )-dO (k)] -1

We need to analyze the term E [a’G( ) - dG (k)} , based on the definition of the normalized

dissimilarity:

Npu—Np\ 2

2
E[dG< ) dG (k)] E [ZmeAi,fEAj,le[l,p] ( V2o, ) 'ZmeAi,seAk,Ze[l,p] (f;:?) } =
- ﬁE [ZmeAi,feAj,le[l,pZ] o (Nm _Nf> .ZmGA,’,SEAk,ZG[],pZ] 0y (N, — Ny) }

Notes:

1. The cross-products N;-N; Vi # j and any other version of them will be neglected since

their expectation is zero and they do not contribute to the sum.
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2. The structure of the similarity patches defines the following rule: if |O j,k| > ( and
both [O0;j| >0and |O;x| >0, then O = 0; jx

3. The notation 1(-) refers to the Indicator function.

E|df (1)-dF ()] = 5B [Zen,sefr 2 0PN +

+4é;ltE _ZmGO,‘_,j aA,-(m) aAJ(m)N;tl] + 4(;4 |:Zm601 k aA ( )aAk(m)N’i]

L el 4
+ 367 E | Lmeo, 4 % j(m) Oy (m)Nom }Jr

R
+402‘E _ZmeAi\{Oi,k}all6[17P2]\Ai( ) 0 Nop (ZfeA,\{m} Le[L,p\{i} al2Nf)] T

LE| 2
+4G§‘E _ZmEAi\{Oi‘k}vlle[Lpz]\Al oy, N, m (ZseAk,l3e[1,p2] ;N ﬂ +

ZmGO, k alsz>:| +

+4G’411E _ZmEOi_k O‘Al(m)an1

+#E _ZmEOi.k OtAi(m)N,%, ( s€A\{m}, € [1,p2]\Ar(m) (X@Nf)] +

1L gl 2 2
+4G4E _Zmeoj,k aAj(m)Nm ’ (ZseAk\{m},l3€[1,p2]\Ak(m) alSNf)] +

+4c1;31 (Oj,k = Oi,j,k) E _ZmeAj\{o,;j} aAj(m)N,%l. (ZfeA,»,ZQE[I,pZ] alzN})} +

+4cly;ltl (0jx=0;;x)E :ZmeAj\{o,-_,j} O‘Aj(m)N,%l - (ZseAk,l3e[1,p2] 0613NS2>} +

+4c1$’;11 (0jx=0;:x)E :ZmEOj’k OcAj(m)N,%l - (ZfEAi\{m},lze[l,pz]\Ai(m) O%N%ﬂ +
+4é;1 (0jx=0ijx) B :Zmeoi,f\{oj,k} 0 m /N <Zf€A A\{m} e [1,p2]\Ai(m) O‘lszﬂ +
+4c1;§ 1 (0j,k = Oi,j,k) E :):meo,;j\{oj,k} aAj(m)Ni . (ZseAk,lge[l,pz] oc13Ns2)} +

—|-4C1;3 1(0;x#0;x)E :Zmeoﬁk O‘Aj(m)N,% : <ZfeAi,lze[l,p2] oclzN]%ﬂ +

+4(15;‘1 (Ojx #0;jx)E :ZmeAj\{Oj_k,O,-_,j} (xAj(m)N,%l : (ZfeA,»,lge[l,pz] OC[ZN%)} +

+4<1y,;t 1(0jx# 0ijx)E :ZmeAj\{Oj,k,O,-_,} Ot (m) Ny - <Zs€ Adse[1.7] oc,st)} +
Trorl (054 # 010 B :Zmeow % )N (ZfeAi\{m},lze[1,p2]\Ai(m> O‘lzN?ﬂ *
+3071 (0j # 01,j4) E :Zmeo,-, 04 (N (Zse Acel107] a,BNf)] +
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+@1 (|01 = |0ix|) 4E [Zmeoi_,-,feo,-_,k Ca;(m) aAk(f)Nr%tN]%]

Analyzing each addend separately:

(i) E [ZmeAhlG[Lpz] och,ﬂ =30, Yie[1,7] of

(i) E [Zmeo,», 5 0 (m) Cla j(m)N,ﬂ =30, Lineo,; %a(m) %4 (m)

(i) E [Zmeoi,k A, (m) O‘Ak(m)Nf;l] =30, Lneo,; % (m) %, (m)

(iv) E [ZmGO 1 O (m) OCAk(m)Nrﬂ =30, Ym0, O, (m) Oy (m)

(V) E [ZmeAi\{Oi_k},llE[l,pz]\Ai(m) 0 Ny <Zf€Ai\{m},12€[l,p2]\{ll} O‘lzN]%ﬂ =

= G}’Ll‘ ZmEA,-\{O,"k},llE[l,pz]\A,-(m) all ’ (1 - all) =

=0, (1 — Linc0i, %i(m) ~ Lmeap {0, } i e[1.0]\Ai(m) 0‘121>

(vi) E [ZmeAi\{Oi‘k},he[1,172]\1‘\5(’”) oy, N2, - <Zs€Ak,l3€[1,p2] Ongstﬂ =
- L (Ot el asim) % = ot (1 — Lmeoy, OCA,-(m)>
(vii)E [ZmEOi,k 0 (m) N <Zf€Ai\{m}’12€[lvpz]\A"(m) N} ﬂ -
= Oy Yneo,; % (m) (1 — Otaym))
(viii)E [):meo,,k O‘A,-(m)Ni%z ' <ZseAk\{m},l3e[1,p2]\Ak(m) o Ny ﬂ -
= Oy Ym0, %as(m) (1= O, (m))
(2 B [Zneo,, 00N (Zucagy onp el mcom % )| =
= 0,/ Linco,, % (m) (1= Caym))
(3) 1(0j= 0110 E | Sonco,\ {0, Ve (Sreans mpinelt 2t @} | =
=1(0jx =0, jx) o, Yine0;\{0;,} FAj(m) (1= )
(xi)1(0jx =0, jx)E [ZmGOi,j\{O,;j.k} O‘f“j(m)]\]’%1 ' <256Ak>l3€[171’2] O%stﬂ B

= G;l‘. ZmGOivj\{OLk} aAj(m)
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(xii)1(0jx =0 k) E [Zmeo 2 %A m) N <Zf€Ai\{m}712€[1:P2]\Ai(’”) O‘lsz%)} -
=1(0;x=0i k) O3 Lmeo,, % ;m) (1= 0 (m))

(xiv)1(0jx = 0 jx) E [ZmeA,.\{o,.,,-}“A,(m)N%' <Zf€AiJz€[17P2] O‘lszz‘ﬂ -
=1(0;4,=0,)0 ZmeA,\{o,,} A (m)

(xv) 1(0;4=0; ;) E [ZmEA,\{oi,,} % m) N <ZseAk,l3e[l,p2] ;N3 )] B
=1(0;4=0i ) o} Loneap{0:,} %A;(m)

(xvi) 1(0jx # Oijx) B |:Zm€0i,j )N (ZfeAi\{m}JzE[I»PQ]\AZ‘(’") o, )] B
= 1(04 # 01j4) 6 Lo, % i) (1~ Qayim)

(i) 1(0j # Oiji) B [Zmeo,-,,- %t Vo (ZSeAk,z3e[1,pz] Ny )} -
=1(0jx # O jx) O} Lmeo,, %, (m)

(xviii)1 (0 x#0; jx) E [zme AN 0,000} % j(m)N,i : <ZfeA,~,12€[17p2] oqﬂ?)] —

1( Jk#O ij, k) Oy ZmeA,\{Oﬂm 0.} %a(
XUC 1 (OJ k?’é ij k) [ZmEAi\{Oj.IﬁOzﬂj} OCAj(m)Nr%z : <ngAk,l3e[l7p2] OCI3N52)] —
(0

=1(0;4#0i x) o, ZmGAJ\{OJ 001} HAs(
(xiii)1 (O}« # Oijx) E [Zmeo & %A (m) Niv: (ZfGAiJZG[LPZ] alZNJ%)] -
=1(0;x # Oij) O Lmeo,, %, (m)

1 (|017]| - ‘0i7k|) 4E [Zmeoi,j,feoi,k aAj(m) aAk(f)N’%[N]%} -

=1 (‘Oid| - ‘0i7k|) 4o, Lm0 .f0; O ;(m) %Ay (f)
Finally, the cross-product expectation is obtained as follows:

[dG( ) -d0 (k)] = 0.5%c (1,2 O +0.5 Enco, 0t m) O )

+05 Zmeo,”k aA,-(m) aAk(m) + 05 ZmEOLk aAj(m) aAk(m) + 1+
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, ) ZmEOi,prOi,k aAj(m) QA (f)

+1(|0i,| =10

And the cross-variance term for a General patch kernel is given by:

0.5x+40.5 ZmeOi,j 04, (m) aAj(m)"'

),k eSS : Cov [dG( i, dG(k)] E[dG( )-dS (k)| —1

+05 ZmEOi’k aAi(m) aAk(m) + 05 ZmEOj,k aAj(m) (XAk(m)+
+1(|0i5] = Oik|) Emeo,,.re0,, %, (m %ac(s)

(B.9)

For the Uniform patch kernel, we use o = p2Vl € [1, p?

corresponding cross-variance term is obtained by:

], that is k¥ = p*2, and the

!0u| 0]

|Oﬂ<‘

Vj, k€SP : Cov dU( B dU(k)] 2~|- +

2p

T+

+1(|0, |_\0,k|

O]
(B.lO)
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C. Statistical Properties of The
estimated variance For Different

Cases of Patches Overlap

In this appendix we analyze the statistical properties of the estimated variance of the normal-
ized dissimilarity elements within a given search region, arranged in a vector form. These

properties are used to set an S} set per pixel, as explained in section 5.4.

C.1. Case 1: Correlation Between Dissimilarities of
Patches That Do Not Overlap

In sub-section 5.1.2, we defined the estimated mean of the normalized dissimilarity elements
within a given search region S; as B= 1 Y- d; (¥£ (1)), where WL is the set of global in-
dices sorted by order of ascending normalized dissimilarities. The (unbiased) estimated
variance is defined using the estimated mean as V = ﬁ ZIL:1 (d~l (‘I’IL (1 )) — B)z. In prac-
tice, the estimated mean and estimated variance are computed for the sorted dissimilarity
elements. We refer to the statistical properties of these variables at the variance threshold
crossover point, i.e., when L represents the cardinality of the corresponding adaptive search

region.
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We start with the analytic development of the statistical properties of the estimated mean
and then continue with the estimated variance. The development is conducted using the

General patch-kernel and then simplified for the Uniform patch-kernel.

Notation: We distinguish between the notation of the estimated mean computed using the
General patch-kernel and the Uniform patch-kernel, and refer to them as B¢, BY respec-
tively. In a similar manner, we distinguish between the corresponding estimated variances,

denoted VY, VU respectively.

Estimated mean Analysis:

The expectation of the estimated mean is obtained by:

E[BS] = JE [T} df (¥ (1) | = £F B[O (PF())| =1

For the computation of the variance of the estimated mean, we analyze the second moment
using the respective statistical properties of the dissimilarity vector (see eqns. (B.1), (B.2)).

We remind the reader that the following definition was used in Chapter 3 (eqn. (3.9)):

K=Y, e[1.07] a? , where o are the normalized patch-kernel coefficients.
) ~ 2
E[BO)" = E Tk df (W) | = [T dO (¥4 (1) + Eh Ty s dC (PE (1)) dO (¥E(0) | =

:é( lelE[d;G(‘P (1)) } Yo X lk;«élE[d (leLa))d:GCPlL(k))D -

=L (LERk+1)+L({L—-1)(05k+1))=LEKk+1

~

Now, the variance of the estimated mean is obtained by:

Var 8] = E[5)" — (E[59])” = 52

The estimated mean is a normal random variable as a linear combination of normal random
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variables, thus the following applies:

+3
G L
B~ (1,—2 x) (C.1)

The estimated mean that corresponds to the dissimilarity elements that were computed using

the Uniform patch-kernel is obtained by assigning of, = 1%’ Vs € [1,p?], thatis, k = p—2.

Estimated variance Analysis:

The expectation of the estimated variance is obtained by:
. ~ 2 ~ 2
B(79] = 148 £ (42 (40) - 89)°| = 5 Xk B[40 (#h)] - 4B (5 =

=L 2k +1-L3k—1) =

[NMION]
A

Analyzing the variance of the estimated variance in this domain, denoted the Correlation
domain, is complicated due to the need to compute statistical properties of high order cor-
relation terms. In order to avoid the analysis of these terms, we need to transform the cor-
related dissimilarity variables to another domain, in which they are uncorrelated, denoted
the Transform domain. This transform is actually a whitening procedure of the covariance

matrix.

DEFINITION C.1 [46]: The Whitening Transform converts a given covariance matrix, of
a Gaussian zero mean data Z of dimensions L X b, to a unit diagonal matrix. This process
is also known as de-correlation. The transform is given by T = A=°>QT, where A is the
eigen-values (diagonal) matrix and Q is the respective eigen-vectors matrix whose columns

are the orthonormal eigen-vectors.

In our case, we wish to apply the whitening transform to the dissimilarity vector with sub-

tracted estimated mean, whose dimensions are L x 1, such that L € [2,]S;|]. The transformed

154



dissimilarity vector is defined as:

1

C=T. (&,.G — BG> — A 0507 <af . BG>

(C2)

The covariance matrix of the correlated dissimilarity elements, computed using a General

patch-kernel, is given by

As can be seen, this matrix is circulant, thus characterized with a unique structure.

2
0.5

|
0.5

0.5
2

0.5
0.5

|
2

LxL

The eigen-values matrix of dimensions L X L is given by:

A=Q'C5;0=05k

0

L+3

The eigen-vectors are defined as follows:

Vie(l,L]:
Vie[l,L-1]: Yt  0u=0

I=LVke[l,L]: Qu = ﬁ

L, 0% =1 (Orthonormality)

where Qy; is the k' element of the ' eigen-vector.
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Consequently, the transformed elements (eqn. (C.3)) are obtained by

Vle[lL—l] de (1) = 3KZk1[Qk1( (W (1) —BY)]

(C.6)
[=L:d°(L , (d9 (PE(1) —B%) =0

L+3

The whitening transform, in this case, reduces the dimensionality of the transformed dis-

similarity vector by 1 (d° (WX (L)) = 0).

We wish to verify that the statistical properties of the of the first L — 1 elements of the

transformed vector are characterized by a standard normal distribution:
E[d0 ()] = \/ & [Tk, OuE [d;G (¥ (1)) B9 =0

Var[d9 (1)) = E[dS (D] = &E [Lf_, QuE [d° (%F (1) ~ BC]]* =
= & Xk, GRE[dC (PF() —BG]2+

+ & XE TE | o QuQuE[(dF (¥F (1) — BO) (dF (WE(g)) —BO)]

We define the normal variable Ry = dC (WF (k)) —BC, k € [1,L] and wish to find its statis-

tical properties:
Vke[1,L]: E[R] =0
Vk e [1,1]: B[R] =E[dC (WL (k))]* +E [BC)® — 2B [BYdC (WF (k)] = 142k + 1+

+52 k= 2E | (A9 (PF(0)) 4 Ehoy o (¥ (1)) d (V1

-
—~
oQ
N~—
~—
| I
I
[NMIS8)
h
!
—_
A

Vk,f € [1,L], k# f: E[ReRs] =E[(d? (PF (k)) —BO) (d° (P (f)) —BC)] =

—E [d7 (W (k) d7 (W (£))] — 2B [d° (¥F (1)) B +E[BO]" = Jrx

Going back to the computation of the variance of the transformed dissimilarity element:

Var [d9 (%4 (1)] = & [Tk OFE [RE] + EEi Thy o4 QuQuE RiR,)| =
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L L L
_ 2 3 L— 3
=5 |35 Z Qu+srkY. Ou Y, Qu
k=1 k=1 g=lg#k
—— N —~—
=1 —_1

The relations Zézl Q,%l =1 and Zé:l Oul Z§:1, etk Q¢ = —1 are based on eqn. (C.6).

After verifying the characteristics of the whitening transform applied to the zero-mean dis-
similarity vector, we wish to return to the computation of the variance of the estimated vari-
ance variable. This variance is defined in matrix notation based on the inverse transform,

ie.:
d¥ — BC = QA%3dP (C.7)

Consequently, the estimated variance is obtained by:

00— ok (a7 -5 (& ~8%) = (@) ad¢ -

2

1 2 15
= 2(L3—1) kY (df (PF(0))"+ 2(LL+—31) k| dP (PP (L) | = 2(L3—1) k¥ (df (PF(0))
=0

In order to compute the variance of the term above, we need to analyze the second moment

of the estimated variance variable:

E[V9]° = 4(L91)21<2E[ L1 (45 (gh (1)))2]2:

= 2 E [TH (dF () 4 i) i (A0 (B ) (4 (#F ()] =

:4(21)2’<2 3L+ ll éllk;él [(dAG(‘PL(l))Y(dA,G(‘P,L(k))Y] =

.

= e BN+ L -1 (L -2) =
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1

1,VI#k, I,k € [1,L] is true due to the independency of the variables d” (PE(1)), d% (PE (k).

The relation E [(d;.G (WL (1)))* (dC (Wt (k))ﬂ =E [(d}G (Wt (l)))z} E [(d}G (¥ (k)))z] =

The variance of the estimated variance is obtained by:

Var[VG}:E[VG]Z_(EWGW: L1 2

9 —
K —zK =

1

L—-1

ENNC)
(ST]e-
A

—

To summarize, the statistical properties of the estimated variance of the dissimilarity ele-

ments, computed using a General patch-kernel, are as follows:

3
°1=2 (C.8)
K

E[V
Var\A/}

By assigning k = p~2, we obtain the statistical properties of the estimated variance of the

dissimilarity elements, computed using the Uniform patch-kernel.

C.2. Case 2: Correlation Between Dissimilarities of
Patches That Overlap Each Other, But Not The

Reference Patch

The analysis of the statistical properties of the estimated mean and variance for this case are

elaborated herein.

Estimated mean Analysis:

The expectation of the estimated mean is obtained by:
E[BC] = {E[Xi,d7 (P ()] = £Xim B[P (P ()] =1

For the computation of the variance of the estimated mean, we use the statistical propeties of

the corresponding dissimilarity vector (see eqns. (B.7), (B.8)). We define O, ; = {s|s €A ﬂAk}
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as the set of global indices that are associated with the region of overlap between similarity
patches A; and Ay, j.k € Sf , and denote the set cardinality ‘O ik ‘

2+Zl ya lkyéld (W (D) df (¥F (k))}:

)
)4 (¥ (1))]) =

1 1 L L
=1z (L2x+1)+L(L—1)(0.5x+1)) +57 Lis Zk:Lk;Al (Zfeo'{‘f(l).wf(k) aA‘P,-L(l)(f) OCA‘F[L(k)(f)) =

L

E[B9) = LE [xh,df (¥4 ())]° = 4E [Tk, (dF (¥F (1)
= & (Xh [B(d9 (%)) +Xhy b B[00 (%)

L+3
— K+ 2L2 Z le ],k?él <Zf€0‘{’L(l \};L( ) aA\PL<l)(f) aA\PiL(k) (f)) + 1

i

Now, the variance of the estimated mean is obtained by:

2
Var 5] = 8~ (8 [ 455 T T 1 (e @ 1)

The estimated mean is a normal random variable as a linear combination of normal random

variables, thus the following applies:

L L
G
BY ~ 4|1, TK—{— ﬁ Z Z Z aA‘PiL(l)(f)aA‘PlL(k)(f) (C.9

WL (1) Pk (k)

The estimated mean that corresponds to the dissimilarity elements that were computed using

the Uniform patch-kernel is obtained by assigning o, = 1%’ Vs € [1,p?], thatis k = p~2

The variance of the estimated mean consists of a supplement (the second term) that is based

on the relative location of the explored patches with respect to each other, and hence is

changed for different sub-sets of explored dissimilarities.
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Estimated variance Analysis:

The expectation of the estimated variance is obtained by:

A

E[V9] = 25E[Th, (4 (%) —B9)| = £ (T E (47 (¥ (1)) - LE [89]") =

L L+3 1 L vL _
r7 (2K 1-5rK—1) - 2L(L—1) ~I=1 =1 k1 (ZfEO‘P,-LU)»PL(k) OCA‘P%O)(][) At 4 (f)> a

1

1

_ 3. 1 L L
-2 K ZL(Lfl) =1 Zk:Lk?’él (ZfeO‘PlL(l)‘I—’lL(k) aA\y[L([)(f) aAlyiL(k) (f))

The analysis of the variance of the estimated variance in the Correlation domain is compli-
cated as stated for the former case. Its analysis in the Transform domain is not trivial as

well, due to the form of the covariance matrix:

2 05 .. 05
o 05 2 .. 05
Co = E |7 (@) =« +050
l I
0.5 0.5 2
where,
0 ZmEO\{Jf‘(l)‘PL(L) 27\ L(1>(M)aATII,(1‘)(m)
0— Zmeowf(n,w%(z) Pt 1) (m) F g ) (m) |
| y |
L ZmeO\P{‘(L),‘PL(I) aA‘{—’lL(L)(m) aA‘{,lL(l)(m) 0

(C.11)

Each explored pixel is associated with a different covariance matrix for different L values.
The eigen-decomposition of this matrix yields different eigen-values in contrast to the sim-
plified structure of the covariance matrix in Case 1. Consequently, the analysis of this matrix

is impractical and will not be further developed.
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To conclude, the mean of the estimated variance, in this case, for the General patch-kernel

18:

5G] _ 3 i L vL
E[VO] =3k~ SLIL=T) Li=1 Lk=1k#l (ZfeokpiL(WiL(k) aAwle(f)O!ATlL(k)(f)) (C.12)

To obtain the mean of the estimated variance for the Uniform patch-kernel, we assign o =

p 2 Vs e [l,pz] , hence k = p~2

U 3 L L
e T _Z (o m— (C.13)

As explained in section 5.2.2, the correlation term due to to overlap between the patches is
smaller by at least one order of magnitude than the variance mean that corresponds to Case

1,1.e., 1.5k.

C.3. Case 3: Correlation Between Dissimilarities of
Patches That Overlap Each Other and The

Reference Patch

The analysis of the statistical properties of the estimated mean and variance for this case are

elaborated herein.

Estimated mean Analysis:

The expectation of the estimated mean is obtained by:
E[BC] = {E[Ll_,df (PF ()] = 1 X EldP (PF ()] =1

For the computation of the variance of the estimated mean, we use the statistical properties
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of the respective dissimilarity vector (see eqns. (B.9), (B.10)).

E[B9) = LE[xh,d9 (% (0))]” = 4B [k, (dF (¥F ()] +

B[ Th Thy 0 (WH(1) dF (WF(K) | =

= 25 (Th [E(d9 (%F(1)))’| + i T4 B [dF (1 () dF (¥H(W)] ) =

:ﬁ(L(z’H‘l)‘FZleZfeoi’ O, ()0, ()T L(L 1)(051<—|—1))+

why £230)

Oai(m) OA .,

£220)

2L22 1Zk 1k#j (Zmeoi‘ wk (1)

+Zm€0 ‘I’L(k) aA,‘(m) (XA‘I’iL(k) (m)) +
2L2 Z lzk Lk#j (ZmeowL(z).w[L(k) aA‘PiL(l) (m) aA‘PiL(k) (’")> +

317 X Tho i (21 (}OL‘P{.‘(Z)‘ = ’Oi){’l‘ D Zmeo (€0, ()O‘ATZ_L(”(m)O‘AW_L(k)(f)) =

l

— L+3 K+ L2 Zl IZfEO OCA (f)aAlyL(l)(f) + 1+

2Lzz 1Zk 1,k+#j (Zmeq

Opi(m)CA,,

! m(m) + ZmGOi‘\PiL(k) aAi(m) aA‘PiL(k) (m)) +

£220)

2L2 Y Y 1k j (ZmEO W) 7} wi () (m )O‘ATlL(k)(m)) +

I
AETEPY YN (21 (‘Oi,wf(o‘ = )Oi,‘{’L D Lm0, g )0, ()O‘AW,L(”(m)O‘Aq,L(k)(f))

Now, the variance of the estimated mean is obtained by:
Gl _ G112 G1\2 _ L+3 L
Var [B9] = E[B%]" - (E [B%])" = 52k + 5 £f Lreo Ly OAN) B ()T

oz Y T 1kt (Zmeo A (m) O, )+):meol.7wk> aA,-(m)aAlP_L(k)(m))‘i_

()
2L2 Z 1Zk Lk#j (ZmeowL(z) whk) aAqJ.L(l)(m)aAlyiL(k) (m)> +

In contrast to the two other explored cases, the estimated mean, here, is not a normal random

variable since the dissimilarity elements are not distributed normally.
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The estimated mean that corresponds to the dissimilarity elements that are computed using

the Uniform patch-kernel is obtained by assigning o, = 1%’ Vs € [1,p?], hence k = p—2.

To conclude, the statistical properties of the estimated mean for the General patch-kernel

are:

E[B°] =1
G| _ L+3 1 yvL
Var [B } =35 K+ ﬁzlzlzfeq,\yl;(,) aAi(f)aA\yL([)(f)+

1 L L
52 Lie1 Xke1 ke <Zm€0i'q,lL Ota; (m) OA
T

0 () + ZmeOi’\PiL(k) O om) g (m)) +
1 L L
37 LIt k=1.k#] Zmeol}’iL(l),lPiL(k) aA\PlL(z)(m) aA‘PiL(k) (m)) +

1 vL L
T Lis Zk:hk%j 1 (‘Oiv‘{'iL(l)‘ - ‘Oi»‘PiL(k) D Zmeoi,wiL(z) SEO; L) aA\yiL(l)(m) aA\yiL(k) (f)
(C.14)

The statistical properties of the estimated mean for the Uniform patch-kernel are obtained

by assigning o, = p~2, Vs € [1,p?] , thatis k = p~2:

E[BY] =1

+ﬁ Vi1 Xk (‘Oi}I’iL(l)‘ + ’Q‘){J}(k)‘ + ‘O\P,.L(Z),W,L(k)‘ +21 (‘Oi}I‘iL(l)’ = ‘Oﬁk‘{‘f(k)‘) ‘Oi}I’iL(l)D
(C.15)

The variance of the estimated mean consists of a supplement that is based on the relative
location of the explored patches with respect to each other and the reference patch, and

hence is changed for different sub-sets of explored dissimilarities.

Estimated variance Analysis:

The expectation of the estimated variance is obtained by:
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Appendix C

E[V

Y = 7B [£h, (4 (¥ <z>> 59| = ( LR[S (k)] - LB [B9)7) =

L L 3 1 L
L2+ 1-5Rk— 1)+ vk 1Zfeo Olu,(f) Ota,, ()(f)_L(L—l)Zl:lZfEO,-.uyﬁ[)a

Zz DYy <Zm€0 Ota (m) %A1, )+Zmeoi’wk> aAi(m)OCA,{,L(k)(m)) -

w0

1 L L

_L(

= 3Kk+1Y 1):feo

11 Lh 1 et ( <‘0i,\y§(z)‘ = ‘Oi,lyf( ‘) Lm0, gt /<0, gt i) Py (m) O‘A\P_L(k)(f)) =

L

l) z(f) aAlylL([)(f)_

Zz 1Zk 1 kAL <Zm€0 )aA\yiL(z)(m) +Zm€0i,~yL(k) A (m) O‘A\PI_L(k)(m)) -

1 L L
2L(L—1) Yo Zkzhk?el (ZmEO‘PiL(l),‘PiL(k) aA‘PiL(l)(m) aAwlL(k) (m))

1
T LIL-1)

L L —
=1 Xi= 1,41 (1 <‘0i7‘1‘5(1)‘ - ‘OL‘P,-L(k) ‘) Zmeoi,‘PiL(l)’feoi,‘PlL(k) aA\yiLa)(”’) (XA‘PiL(k)(f))

The analysis of the variance of the estimated variance in the Correlation domain is compli-

cated as stated for cases 1 and 2. Its analysis in the Transform domain is not trivial as well,

as this case is a more general, thus much more complicated version of Case 2. In a similar

manner to Case 2, each pixel is associated with a different covariance matrix for different

L values (see eqns. (B.9), (B.10) for the cross-variance terms), thus its computation and

eigen-decomposition analysis are impractical, hence will not be further developed.

To conclude, the mean of the estimated variance for the General patch-kernel is as follows:

-

E[VY] =3k + 1% Lreo,y

1

L L
_ —ZL(L— ]) =1 Zk:] 7k7él (ZmeOl'\PlLu) aA,(m) aA‘P{‘U) (m) + ZmEOiﬁ‘},L(k) OCAI(m) aA‘{JlL(k) (m)) —

L L
2L(L—1) Yoy Yk (ZmeowiL(/),\piL(k) aA\PiL(z) (m) aAwL<k> (m))

1 L vL
LIL—-1) 1= L= k£l <1 <‘0i,‘I‘iL(1)’ = ‘Oi,lPL D ZmGO /€0, ()O‘ATL(,)(M) O‘Almk)(f))

(C.16)
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The mean of the estimated variance for the Uniform patch-kernel is obtained by assigning

oy = p~2, Vs € [1,p?], thatis k = p~2

~ 2
E[VV] =3k+ X 1‘01% ‘—
2
_2L(_’£ Lflzé—u;éz(‘al\w ’+‘O,q¢ ‘Jr)Oq,L WL (k D (C.17)
2
(fl 1Zk lk;éz( (’0i,‘PiL(l)‘_‘0i,‘PL ‘)‘Olqi D
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D. Block-Matching 3D (BM3D)

In Chapter 7, we propose to combine the model-based adaptive search region with the
BM3D [9] denoising scheme. Here, we present a detailed overview of the BM3D algo-
rithm, that consists of two main consecutive phases. Refer to Figure 7.1 for a schematic

description of the algorithm flow.

D.1. Phase |

The reference noisy patch is denoted A; (marked as R in Figure 7.1) and its size is p#¥9 x

pH ard .

Grouping

The original noisy image Y is searched in a A;-centered M%"¢ x MHd peighborhood, de-
noted S;, for patches similar to the reference patch. The set of similar patches is simply

defined by:

GHard (A;) = {Aj; JE Si\dpﬂanz (A,',Aj) < TH‘”d}

_ lran-v(4)3

(D.1)
deard (AMA/) = (pHard)z
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where 7% s the distance threshold for d pHard (A,-,A j) under which two patches are as-
sumed similar. d,ar (Ai,A j) is the normalized quadratic distance between patches, that is
measured in the transform domain, y(A;) is a hard-thresholding operator applied in trans-
form domain with a corresponding threshold of leD‘” 46,, and o, is the noise STD (see eqn.
(2.1)). In this manner, only transformed values above the defined threshold QL{ID‘” e, are used
for the dissimilarity computation. The 3D group, which is built by stacking up the patches
matched to A;, is denoted G797 (A;). Patches in GH¥? (A;) are sorted in an ascending order

of dissimilarity (d pHard (Ai,A j)> such that the most BZ44 similar patches are chosen and

Hard Hard % BHard.

the dimensions of the 3D group are p X p

Collaborative Filtering

Once the 3D-block G79"¢ (A;) is built, the collaborative filtering is applied. A 3D isometric
linear transform is applied to the group, followed by a shrinkage of the transform spectrum.

Finally the inverse linear transform is applied to estimate each patch in the 3D group

A -1
GHard (Az) — (T?’%ard) {,}/ <T31-gzrd {GHard (Az) }) } (D2)
where 7 is a hard thresholding operator with threshold l{]D‘”d Oy :

0 if |x| < HardGn
y(x) = P (D.3)

x  Otherwise

For practical purposes, the 3D transform ng”d is made up of two separable transforms: a
2D transform denoted by Tz%“’d applied on each patch in the group G794 (A;), and a 1D
transform denoted by Tﬁ)‘” 4 applied along the third dimension of the 3D group. The choice

of these transforms is discussed in [20].
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Appendix D

Aggregation

Once the collaborative filtering is completed, we get an estimate for each patch in a 3D
group. Each patch can be associated with several groups and since patches can overlap, each
pixel is associated with different patches. Therefore, each pixel possess several estimates.
In this stage, all the estimates of a given pixel are aggregated using a weighted average, with

the following weights:

—1
2 pHard . Hard
G2KH ) if KHard > |
Wi = (25} A (D.4)

1 Otherwise

where KZ @rd i5 the number of non-zero coefficients of the 3D group in the transform domain.

This weighting scheme assigns a priority to homogeneous patches (characterized by small
value of KZW ) such that patches that contain an edge are assigned with a smaller weight
compared to homogeneous ones. Dabov et. al [9] found that a satisfactory choice for ag-
gregation weights would be ones that are inversely proportional to the total sample variance
of the corresponding block-wise estimates. Thus, noisier block-wise estimates should be

awarded smaller weights.

The result is an artifact reduction around the edges that avoids the classic ringing effects
that is observed in transform threshold methods. The basic estimate after this first phase is

given by:

Hard AHard (;
ZiEGH“’d(Aj) WAja” ZAkGGHWd(Ak)Ak ar (l)

Hard
Licgtard (4) WA_fW

xpasic = (D.5)

where AkH ard () is the basic estimate of pixel i that is associated to patch A;. The external

sum goes over all the 3D groups that include pixel i and the internal sum goes over all
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the patches of the corresponding groups and uses the basic estimate of pixel i from these

patches.

D.2. Phase |l

The size of the patches in this phase is p"iener x pWiener,

Grouping

Given the basic estimate X5%¢ of the true image, obtained in phase 1, the denoising can
be improved by performing grouping within this basic estimate and collaborative empirical
Wiener filtering. Because the noise of the basic estimate is assumed to be significantly
attenuated, the thresholding-based distance described in eqn. (D.1) is replaced with the

normalized squared /»-distance computed within the basic estimate itself.

GXIVg;léer (Ai) — {A?Iard| deiener <AA{-Iard’AA§1ard> < ,L.Wiener}
AHard _ jHard ||2 (D.6)
d Wiener (AAHard AAHard> == —HAi - _Aj - ||2
i )

(pWiener)2

p

where 777"’ ig a set dissimilarity threshold. The group G)y/“*" (A;) is a 3D structure that
consists the basic estimate blocks. Another 3D group is constructed by using the corre-
sponding noisy blocks, i.e.,

G}’\‘}’g%’;" (Al) _ {AJ| deiener (A{-Iard,Aijlard) < ‘L'Wiener} (D.7)
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Appendix D

Collaborative Filtering

The empirical Wiener shrinkage coefficients are defined by using the energy of the 3D trans-

form coefficients of the basic estimate group GLV;%” (Aj):

2
Wiener __ ‘ TWlener }){V;er’;lier (Ai) } |

Y Gl o+ o

(D.8)

Then, the collaborative Wiener filtering of G} ’¢"¢"

Nosy (Ai) is realized as the element-by-element

multiplication of the 3D transform coefficients of the noisy data T35¢"*" {G]V\‘,’éf?ye’ (A )} with

the Wiener shrinkage coefficients WX; iener - Subsequently, the inverse transform produces the

group of estimates

éWiener (A ) ( Wlener) { Wtener . T3WD/iener {G]V\[//éig;r Az) }} (D9)

The choice of the transform T3%ie"e’ is discussed in [20].

Aggregation

In a similar manner to the first phase, each patch, and therefore each pixel, have several
estimates that need to be aggregated. The weights are chosen to be inversely proportional to

the total sample variance, such that:

WXiener _ (G,% ||W£/i€nerH§> ! (D.10)

The final estimate after this second phase is given by:

ZleGWlener (A ) Aj Wiener ZAkeGWuner (Ay) A}{)Viener (l)

OWiener Noisy Noisy
X; - y. wWiener (D.11)
Gy (a) A

170



where AkWie”e’ (i) is the final estimate of pixel i that is associated to patch Ay.
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