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Abstract— A common approach for video transrating (bit rate
reduction) is to requantize the transform coefficients. Optimal
requantization aims to find a set of new step-sizes that achieve
the target bit rate while introducing minimal distortion. Since the
state of the art H.264 standard coder constrains requantization
by limiting the amount of change in the quantization step-size
from one macroblock to the next, the common Lagrangian opti-
mization approach cannot be applied. We propose a solution to
this dependency problem by extending each Lagrangian iteration
with a constrained dynamic programming stage. Further, in
order to reduce the computational load of evaluating the rate
and distortion at each macroblock for multiple step-sizes, we
suggest analytic models that can be applied for this purpose.
The developed models are suitable for requantization and are
matched to the context-adaptive entropy coding used in H.264.
The proposed algorithm performs the requantization in the
compressed domain and currently supports inter coded frames
only. It reduces the run-time by a factor of 4, as compared to
the full exhaustive optimization, and achieves up to 1[dB] gain
in PSNR, as compared to a simple one-pass algorithm.

I. INTRODUCTION

In previous standards, like MPEG-2, the optimal requan-
tization problem is defined as finding a set of optimal new
step-sizes, where optimality is in the sense of minimizing the
total distortion, subject to a given bit-rate constraint:

min
{QPi}

D, subject to R ≤ Rtarget (1)

where D =
∑NB

i=1 di(QPi) and R =
∑NB

i=1 ri(QPi),
NB - number of macroblocks in the frame, QPi - quantization
parameter for the i-th macroblock, di - distortion caused to
the i-th macroblock, ri - number of bits produced by the i-th
requantized macroblock.

A common approach [1] is to convert the constrained
optimization problem to an unconstrained one:

min
{QPi}

J, J = D + λ(R−Rtarget) (2)

where λ is the Lagrangian parameter. The main advantage of
solving the unconstrained problem is that the cost J can be
broken into a sum of independent costs for each macroblock.
Given a λ value, the set of quantization steps {QP ∗i }NB

i=1

that minimizes the set of independent costs is found and the
corresponding average rate is calculated by

∑NB

i=1 ri(QP ∗i ).
Then, the λ parameter is altered, using for instance, bisection

iterations, until an average rate that is close enough to the
target is obtained.

Unlike other standard coders, the H.264 standard limits the
quantization step-size change from one macroblock to the next.
Specifically, the quantization parameter at macroblock #i+1,
QPi+1, can only take the values
QPi+1 ∈ {QPi−2, QPi−1, QPi, QPi+1, QPi+2} (where an
increase of 2 in QP corresponds to a step-size factor of about
1.26). We will denote this constraint as the ∆QP limitation.
This constraint poses a problem for the common rate-distortion
Lagrangian optimization algorithm, since the total cost cannot
be broken into independent costs for each macroblock.

As a result, previous works on quantization (or requan-
tization) in H.264 have chosen simple solutions, such as a
uniform step-size for the whole frame [2], or a one-pass
algorithm [3]. In section 2, we propose an algorithm for
optimal requantization for inter coded frames that overcomes
the dependency problem. At this point, intra coded frames
weren’t handled as the spatial prediction in H.264 introduces
further macroblocks’ dependencies. In section 3, we propose
using new rate models at the macroblock level for H.264 to
reduce the optimization computational load.

II. OPTIMAL REQUANTIZATION

Due to the ∆QP limitation in H.264, our optimization
problem has an extra constraint:

min
{QPi}

D subject to R ≤ Rtarget and |∆QP | ≤ 2

(3)
Since the choices of quantization step sizes for different
macroblocks are no longer independent, the whole set of
quantization step-sizes {QP ∗i } should be found at once, while
keeping the ∆QP constraint. We propose to solve this problem
by extending each Lagrangian iteration with a constrained
dynamic programming stage. The external Lagrangian itera-
tions change the Lagrangian parameter λ to improve the rate
guess. At each examined value of λ, the constrained dynamic
programming algorithm finds an optimal QP path by solving:

min
{QPi}

J subject to |∆QP | ≤ 2 (4)

where J = D + λ(R−Rtarget).
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The dynamic programming algorithm is defined over the set
of states {(QP, i)} , where i is the macroblock index and QP
is the quantization index, see Fig. 1. Each state (QP, i) has its
cost-value ji(QP ) = di(QP )+λri(QP ) and the total frame’s
cost along a path is J =

∑NB

i=1 ji(QP ).
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Fig. 1. Dynamic programming path illustration. Horizon-
tal axis: macroblock number, vertical axis: the quantiza-
tion parameter QP. Each circle denotes a state, and each
column corresponds to a macroblock stage. The arrows
show a path example, where the change in QP from one
macroblock to the next is within ±2 units.

The optimal path up to the state (QP, i) is the path that
has the minimal accumulated cost, Vi(QP ∗), over all possible
paths that end at that state. There are at most 5 possible
paths that end at the previous macroblock (#i-1) and that can
be continued to the current state (QP, i), due to the ∆QP
limitation. We choose among these by minimizing the value
function of the current state:

Vi(QP ) = Vi−1(QPPrev) + ji(QP ) + cost(QPPrev, QP )
(5)

QPPrev ∈ {QP − 2, QP − 1, QP, QP + 1, QP + 2}.
It is the sum of the cost of the path until the previous
macroblock Vi−1(QPPrev), plus the cost of the current state
ji(QP ), plus the cost of moving from state (QPPrev, i − 1)
to (QP, i), where in our case the later is

cost(QPPrev, QP ) =
{

0 |QP −QPPrev| ≤ 2
∞ else

Or, in other words, the best path up to state (QP, i) is
continued from state (QP ∗Prev, i− 1), where

QP ∗Prev = arg min
QPP rev

{Vi−1(QPPrev) + cost(QPPrev, QP )}
(6)

The corresponding value function update is then:
Vi(QP ) = Vi−1(QP ∗Prev) + ji(QP ).
At each stage i of the dynamic programming algorithm (from
the first to the last macroblock), the best paths for all (QP, i)
states are found and kept as lists of pointers, along with their
values. When the algorithm reaches the last stage (i = NB),

the optimal path is the optimal path over the entire frame:

BestPathEnd = argmin
QP

VNB (QP ) (7)

The algorithm then traces back the optimal frame path us-
ing the chosen list of pointers, to obtain the optimal path:
{QP ∗i }NB

i=1.

III. ρ DOMAIN RATE-DISTORTION MODELING

The optimization algorithm described above requires the
evaluation of the rate and distortion obtained by requantizing
each macroblock at multiple step-sizes. If no prior knowledge
is used, such rate assessment involves the simulation of the
actual requantization followed by entropy coding. As this
procedure must be repeated multiple times, the optimization
becomes computationally expensive. The computational com-
plexity can be greatly reduced by using an analytic model for
the relation between rate and quantization step-size, for each
macroblock. In this section, we will elaborate on the model-
based evaluation of the rate and the distortion.

A. Previous work

Different models in the literature suggest different relations
for rate vs. quantization step size. In [4] [5], the ρ-domain
source model is suggested, where ρ is the percentage of
zero coefficients among the quantized transformed coefficients
in a frame. The model states that there is a strong linear
relation between ρ and the actual frame’s bit rate: coarser
quantization step-sizes generate more zero coefficients (and
hence increase ρ) while decreasing the rate. Therefore, the
suggested rate − ρ relation is r(ρ) = θ · (1 − ρ), where θ
is the graph’s slope. According to this equation, for ρ = 1
all the quantized coefficients are zeroed and thus the coding
rate should approach zero. It is also argued that the rate− ρ
model is more robust than a rate− quantization-step model:
the observed rate-ρ curves for both I and P frames share a
very similar pattern, whereas the rate− quantization step-size
curves change between different frame types.

The distortion too is more conveniently described in the
ρ domain than in the quantization step-size domain as it’s
defined within the finite range of 0 ≤ ρ ≤ 1 and follow a
more robust and regular behavior. In [6], an exponential-linear
model for the MSE distortion in the ρ domain was suggested
as d(ρ) = σ2 · e−α·(1−ρ), where σ2 is the variance and α > 0
is a model parameter. Again, as ρ → 1 and all the quantized
coefficients are zeroed, the distortion approaches the σ2 bound.

These models were derived for describing the rate and the
distortion at the frame level, and were found quite accurate in
[4], [5], [6], when tested for standards such as MPEG-2 and
H.263 and were also used in [2], [3] for H.264. Since we aim
to use the rate-ρ models for macroblock-level optimization as
described in section 2, we suggest modified models for H.264
at the macroblock level to improve the accuracy.
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B. H.264 context adaptive entropy coding

The H.264 context adaptive entropy coding with VLC tables
(CAVLC), is designed to take advantage of the sparse (compact
energy) characteristics of the quantized transform coefficients
[7]. To this end, it uses a set of syntax elements, that includes
both the customary run-level representation and additional
overhead counts that mainly describe the zero valued coeffi-
cients distribution. On top of that, it switches between several
VLC tables for each syntax element, in a context adaptive
manner.

Though the run and level are encoded separately, their
encoding is efficient due to the context based VLC tables
switching. The additional overhead counts consist of two
symbols. One describes the combination of the number of non-
zero coefficients and the high-frequency trailing-ones (±1 at
the end of the block). It’s referred to as (TotalCoefficients,
TrailingOnes). The other symbol, called TotalZeros, denotes
the number of zeroed coefficients from the DC coefficient to
the highest frequency non-zero coefficient. Both of which use
multiple VLC tables. Fig. 2 shows an example for a 4x4 zig-
zag scanned block, with 6 non-zero coefficients, 2 trailing-
ones, and 2 TotalZeros (that are marked in gray).

Highest frequency
coefficient

Zig-zag
scanned
block:

-2 4 3 -3 0 0 -1 1 0 0 0 0 0 0 0 0

DC
coefficient

Trailing-ones

Highest frequency
non-zero coefficient

Fig. 2. An example of the additional overhead syntax
elements in H.264.

C. Models for H.264 requantization

Examination of the rate − ρ relation at the macroblock
level has shown that a linear relation isn’t a good descriptor of
the empirical data. Therefore, and in light of the new entropy
coding features, we suggest a different rate− ρ model at the
macroblock level. We decompose the rate into ”data” and
”overhead” components, where the ”data” stands for the bits
spent on coding the run-level, and the ”overhead” designates
the bits spent on coding the new syntax elements. For the
model parameters estimation we use prior information, such
as the original input quantized transform coefficients and
their encoded rate.

”Data” Component
For the ”data” component rate − ρ relation, we suggest a
closed-form model:

rdata(ρ) = θ · ln(1 + (1− ρ)η) (8)

where θ ≥ 0, η ≥ 1. The θ parameter controls the scale
of the graph, whereas the η parameter changes its shape.
Now, given this component’s original input encoded rate of

a macroblock, rdata
in (ρin), we can fit one of the parameters.

Since this model requires fitting two parameters, we fit its
shape parameter η using the input ensemble {rdata

in (ρin)}
of all the frame macroblocks, while the scale parameter θ
is matched to each macroblock separately. An example of
normalized rdata(ρ) relations of one frame’s macroblocks is
depicted in Fig. 3
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Fig. 3. Normalized rdata(ρ) relation of one frame’s
macroblocks (blue dots) and its normalized fit with the
common shape parameter η (red line).

”Overhead” Component
The ”overhead” component rate − ρ relation is very noisy
due to two reasons. One is that the overhead syntax elements
values (e.g. (TotalCoefficients, TrailingOnes)=(6,2) and
TotalZeros=2 in the example of Fig. 2) aren’t uniquely
defined by the local block’s ρ. The other is the use of
multiple VLC tables for each syntax element, which means
that the number of bits spent on coding the same syntax
element value changes with the context. As a result, fitting
a closed-form model for it becomes practically impossible.
However, due to the partial dependency in the local ρ, we
chose to use a statistical model to characterize the average
code length at the 4x4 block level, and then average over the
16 blocks in the macroblock.

Each 4x4 block has a local percentage of zeroed coefficients,
ρb, which is related to the local total non-zero coefficients
count TCb, by ρb = 1 − TCb

16 . The macroblock’s level ρ

is simply the average of these local ρb’s: ρ = 1
16

∑16
b=1 ρb.

Using the statistical model that follows, we calculate once
the average code lengths c(TC,Tr)(ρb|context − prior) and
cTZ(ρb|input−prior) of the (TotalCoefficients, TrailingOnes)
and TotalZeros syntax elements, respectively. These average
lengths are kept in look-up tables and the rate ”overhead”
component is obtained by averaging over all the blocks in the
macroblock:
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roverhead(ρ) =
1
16

16∑

b=1

c(TC,Tr)(ρb|context− prior)

+
1
16

16∑

b=1

cTZ(ρb|input− prior)

(9)

We assume that the quantized transform coefficients are
not correlated and follow a Laplacian distribution. Another
assumption is that all ±1 quantized coefficients appearances
occur at the highest nonzero frequencies, and are thus con-
sidered as high-frequency trailing-ones. Using the Laplacian
distribution, the probability that the magnitude of a quantized
transform coefficient will take the value k is:

Pr.(|l| = k) =

{
ρ k = 0
(1−ρ)2kρ(2−ρ)

1−ρ k > 0
(10)

and therefore the probability of a trailing-one coefficient,
given that it’s non-zero is:
Pr.(TR) = Pr.(|l| = 1||l| > 0) = ρ(2− ρ).

We define a binomial random variable that denotes the
number of trailing-ones appearances given ρb and sum over
the joint (TotalCoefficients, TrailingOnes) code length tables
(there are 4 different tables) to obtain the average VLC tables
c(TC,Tr)(ρb|context− prior). We switch between these four
average VLC tables by predicting the number of non-zero
coefficients from the neighboring blocks, in accordance with
the standard’s context-based encoding.

Since the quantized blocks are typically sparse and most of
the energy is concentrated at low frequencies, there is usually
a tail of zeros at the end of the scanned block (see example in
Fig. 4). So, instead of counting the TotalZeros syntax element,
TZ, as the number of zeroed coefficients from the DC coef-
ficient to the highest frequency non-zero coefficient, we can
count its complement, the tail, since TC + TZ + Ztail = 16.
As we increase the requantization step, the number of non-zero
coefficients, TC, decreases, and the tail length monotonically
increases. Therefore, TC + TZ monotonically decreases.

Zig-zag scanned block ( TC=6, TZ=2):

-2 4 3 -3 0 0 -1 1 0 0 0 0 0 0 0 0

Zeros TailTC-1 non-zero
coefficients in
TC+TZ-1 places

Fig. 4. The example of Fig. 2 with TC, TZ and the
zeros tail. There are TC=6 non-zero coefficients and
TZ=2 zeros counted from the DC coefficient to the
highest frequency non-zero coefficient (which is denoted
in black).

Given the input prior information (TCin, TZin), we find
the probability of having TZ TotalZeros given ρb. The av-
erage code length for each of the 15 (TCin, TZin) input

priors is evaluated by summing over the joint (TotalCoeffi-
cients,TotalZeros) code length tables.
Finally, the total rate− ρ relation is evaluated by:

r(ρ) = rdata(ρ) + roverhead(ρ) (11)

where rdata(ρ) and roverhead(ρ) are evaluated from (8) and
(9), respectively.

Distortion−ρ model
According to the distortion − ρ model suggested in [6],
ln(d(ρ)) should be linearly proportional to 1− ρ, where
d(ρ) = d(ρ)

σ2 is the normalized distortion. Examining this
relation at the macroblock level, we found that a linear model
doesn’t describe it with sufficient accuracy. We therefore sug-
gest to extend the model to an exponential-quadratic relation:

d(ρ) = σ2 · eα1·(1−ρ)2+α2·(1−ρ) (12)

that better matches the empirical data. The model’s accuracy
in terms of its relative error distribution is depicted in Fig. 5.
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Fig. 5. Distortion−ρ model relative error distribution.

IV. RESULTS

Our suggested algorithm currently supports inter coded
frames only, and its flow chart is depicted in Fig. 6. In order
to compare its performance with other transrating schemes
(including reencoding), all intra coded frames were fully
reencoded in our simulations. A SIF ’football’ sequence was
initially encoded at 2[Mbps] and its bit rate was reduced
using three different schemes for the inter coded frames: our
suggested algorithm, a one-pass algorithm and full reencoding.

Fig. 7 depicts the quality vs. the transrated bit rate using
two different quality measures. The upper graph shows the
PSNR measure, whereas the lower graph shows the subjective
VQM measure [8], which denotes the probability that a
human observer will notice artifacts. For both measures, our
suggested algorithm performance is consistently better than
the one pass algorithm, with a PSNR gain of up to 1[dB]. The
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full reencoding scheme performs better than our algorithm,
since it’s free to make new coding decisions (such as motion
vectors), more suitable for the lower rate so that it could
allocate more bits for the transform coefficients coding.

Input Features Extraction
Extract {ρin, r

data
in(ρin), TCin+TZin}i

Models Parameters Evaluation
- Rate-ρ: η, {θ}i

- Distortion-ρ: {σ2, α1, α2}i

Rate-Distortion Databases Evaluation
For each (QP, i) state:
- Estimate ρ(QPi) (by a histogram count)

- Evaluate the rate ri(QPi) (by the rate-ρ model)
- Evaluate the distortion di(QPi) (by the distortion-ρ model)

Set initial λ guess

Constrained Dynamic Programming Algorithm
For a fixed λ find the optimal QP path,
- Define the cost function at state (QP, i) by:
   ji(QP)=di(QP)+λri(QP)
- Follow  the ∆QP limiter
- Sum the total rate Rλ

Rλ  > Rtarget ?

Increase
λ

Yes

D
ecrease
λ

No

Fig. 6. Model-based optimal requantization flow chart.
The details of the first three building blocks (’Input
Features Extraction’, ’Models Parameters Evaluation’,
’Rate-Distortion Databases Evaluation’) are described in
section III.C. The details of the ’Constrained Dynamic
Programming Algorithm’ building block are described in
section II.

Another aspect is the computational complexity savings
obtained using our suggested models. We evaluated this saving
by comparing the run time of the optimization algorithm, once
based on the full rate and distortion evaluation and once using
our models. In our simulations, the incorporation of the new
models reduces the run time by a factor of 4, as compared to
a full exhaustive optimization.

V. CONCLUSION

A model-based optimal requantization algorithm for H.264
inter coded frames is proposed. It extends the common La-
grangian iterations with a constrained dynamic programming
algorithm to account for the H.264 step-size change limitation.
It achieves better performance compared to a simple one-pass
requantization algorithm, both objectively and subjectively.
Rate models suitable for H.264 requantization were developed,
by which we reduced the computational complexity, as com-
pared to a full exhaustive optimization, by a factor of 4. Future
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Fig. 7. Top: PSNRY vs. transrated bit rate, bottom: VQM
vs. transrated bit rate. Star: reencoded, square: suggested
algorithm, diamond: one-pass algorithm.

work will examine the selective change of coding decisions
and extend the algorithm to intra coded frames.
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