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Abstract

Internet audio streaming, based on MPEG-Audio coders such as MP3, has become

very popular in recent years. However, since internet delivery doesn’t guarantee

quality of service, data packets are often delayed or discarded during network

congestions, causing gaps in the streamed media. Each such gap, unless concealed

in some way, produces an annoying disturbance. The common approach for dealing

with such cases is to reconstruct the missing signal, approximating the original

waveform, so that a human listener will not notice the disturbance. However, the

gap created by even a single lost packet is relatively wide (around 1000 samples) and

is therefore difficult to interpolate. Previous works start from simple techniques,

such as noise substitution, waveform substitution and packet repetition, on to

advanced techniques that use interpolation in the compressed domain for MPEG

audio coders.

In this work we present a new algorithm for audio packet loss concealment,

designed for MPEG-Audio streaming, based only on the data available at the

receiver. The algorithm reconstructs the missing data in the DSTFT (Discrete

Short-Time Fourier-Transform) domain using either GAPES (Gapped-data Ampli-

tude and Phase Estimation) or MAPES-CM (Missing-data Amplitude and Phase

Estimation - Cyclic Maximization) algorithms. The GAPES algorithm uses an

adaptive filter-bank approach to estimate the spectral coefficients from the avail-

1



Abstract 2

able data and then reconstructs the set of missing samples so that their spectral

content will approximate the spectrum of the available data, in the least-squares

(LS) sense. The MAPES-CM algorithm is a newer version, which uses an ML-

estimator approach, and has slightly less complexity demands.

Since MPEG-Audio coders use the MDCT (Modified Discrete Cosine Trans-

form) domain for compression, the data has to be converted first to the DSTFT

domain. The conversion back and forth between the two domains is done using an

efficient procedure that was also developed in this work.

The algorithm was subjectively evaluated by a group of listeners, and was found

to perform better than previously reported methods, even at loss rates as high as

30%.
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Chapter 1

Introduction

1.1 Streaming Media and Packet Loss

With the growing popularity of the internet, and the advancement in modem tech-

nology there is an increasing interest in using the internet for broadcasting multi-

media such as audio and video. This kind of delivery over the internet is referred

to as streaming media, since the sound and picture data flows in a digital stream

from a server computer to the client computer, ready to be heard or viewed in real

time, without having to download all of the content before use.

Audio streaming operates by first compressing short segments of a digital audio

signal and then gathering them into small packets, which are consecutively sent

over the internet. When the packets reach their destination they are decompressed

and reassembled into a form that can be played by the user’s system. To maintain

seamless play, the packets are ”buffered” so a number of them are downloaded to

the user’s machine before playback. As those buffered packets are played, more

packets are being downloaded and queued up for playback. This way, the client

experiences only a small delay of a few seconds, waiting for the buffer to be built

up, instead of waiting a long time for the files to be downloaded completely.

However, since internet delivery doesn’t assure quality of service, data packets

8



1. Introduction 9

are often delayed or discarded during network congestions. When the stream of

arriving packets becomes too slow, a gap is created in the streamed media and

the client’s audio player has nothing to play. Each such gap, unless concealed in

some way, produces an annoying disturbance. The common approach for dealing

with such cases is to interpolate the gap, approximating the original waveform,

so that a human listener will not notice the disturbance. However, since typical

audio packets correspond to 20-30 msec of audio, the gap created by even a single

lost packet is relatively wide (882-1323 samples at 44.1 kHz sampling rate) and is

therefore difficult to interpolate.

Packet loss concealment algorithms are usually divided into two categories:

receiver-based methods where only the data available at the receiver is used for

the concealment and sender-based methods, where the sender changes the encoded

bitstream, adding some redundancy or additional side information that the receiver

can later use for the concealment process. This work focuses on a receiver-based

solution.

Previous works on receiver-based audio packet loss concealment [1, 2, 3] start

from simple techniques, such as noise substitution, waveform substitution [4] and

packet repetition, on to advanced techniques that use interpolation in the com-

pressed domain for MPEG audio coders [5, 6] or interpolation using sinusoidal

(parametric) audio modelling [7].

1.2 Research Goals and Main Results

The goal of this research work is to develop a new way to interpolate gaps created

by lost packets in a streamed audio signal. The new solutions are designed for

streaming applications that use MPEG-audio coders, where the implementations
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and simulations are performed using an MP3 coder.

The main results of this work include a new algorithm for packet-loss con-

cealment, which reconstructs the missing data in the DSTFT domain, using an

algorithm for reconstruction of complex signals: either GAPES [8] (Gapped-data

Amplitude and Phase Estimation) or MAPES-CM [9] (Amplitude and Phase Es-

timation - Cyclic Maximization) algorithms. Also, Since MPEG-audio coders com-

press the data in the MDCT domain, we developed a new procedure for efficiently

converting data from the MDCT domain to the DSTFT domain and vise versa.

The subjective experiments performed in this work show that the reconstruction

is almost transparent for 10% loss rate, and yields good quality at higher loss

rates, with an acceptable quality achieved even at 30%. Our tests also show that

the reconstruction performs better than previously reported advanced concealment

techniques such as Statistical Interpolation [6].

1.3 Thesis Outline

The thesis is organized as follows: Chapter 2 introduces the problem of packet loss

in internet streaming audio applications, along with some statistics concerning the

phenomenon. This chapter also explores some of the previous work in the area of

packet loss recovery of audio signals.

Chapter 3 gives a short introduction to MPEG-audio coders, specifically the

MP3 coder. This chapter focuses on the main features that were used in this work,

such as time-frequency analysis. Readers who wish to learn more about the MP3

coder can find a detailed description of it, along with some general information

about psychoacoustics, in Appendix A.

Chapter 4 examines the implications of packet loss on domains other than
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the MDCT, such as the time domain and the DSTFT domain and explores the

limitations and benefits of interpolating the packet-loss gaps in different domains.

Finally it explains our decision to conceal the packet loss in the DSTFT domain.

Chapter 5 described the theoretical background behind the APES [10] algo-

rithm (Amplitude and Phase Estimation), that lead to the development of the

GAPES [8] and the MAPES-CM [9] algorithms that are used in our concealment

algorithm, as described in Chapter 6. Chapter 6 also describes the procedure that

was developed in this work, for efficiently converting data between the MDCT and

the DSTFT domains.

Chapter 7 describes and compares the results of the subjective tests that were

performed on each of the proposed concealment methods, and Chapter 8 concludes

the thesis.



Chapter 2

The Packet Loss Problem and
Existing Solutions

Streaming media is currently poised to become the de facto global media broad-

casting and distribution standard, incorporating all other media, including televi-

sion, radio, and film. The low cost, convenience, worldwide reach, and technical

simplicity of using one global communication standard makes web broadcasting

irresistible to media distributers and consumers. There are currently more than a

dozen formats for streaming audio over the Web, from widely used formats, such

as RealNetworks’ RealAudio, streaming MP3, Macromedia’s Flash and Director

Shockwave, Microsoft’s Windows Media, and Apple’s QuickTime, to more recent

entries that synchronize sounds with events on a web page, such as RealMedia

G2 with SMIL and Beatnik’s Rich Music Format (RMF). Multimedia Streaming

Services (MSS) will also be used in 3rd generation mobile networks.

2.1 Streaming Protocols

According to [11], the big breakthrough that enabled the streaming revolution

was the adoption of a new internet protocol called the User Datagram Protocol

12



2. The Packet Loss Problem and Existing Solutions 13

(UDP) and new encoding techniques that compressed audio files into extremely

small packets of data. UDP made streaming media feasible by transmitting data

more efficiently than previous protocols from the host server over the internet to

the client player. More recent protocols such as the Real-Time Streaming Protocol

(RTSP) are making the transmission of data even more efficient.

UDP is a connectionless transport layer protocol. Meaning that the communi-

cation occurs between hosts with no previous setup: packets that are sent between

two hosts may take different routes. This provides a simple and unreliable message

service for transaction-oriented services. Unlike the TCP, it adds no reliability,

flow-control, or error-recovery functions to IP. Because of the UDP’s simplicity,

UDP headers contain fewer bytes and consume less network overhead than TCP

and are therefore more suitable for real-time transmissions. UDP protocol is also

referred to as packet switching and is used for optimization of the use of the band-

width available in a network and to minimize the latency. Also, UDP and RTSP

are ideal for audio broadcasting since they place a high priority on continuous

streaming rather than on absolute document security. Unlike TCP transmission,

when a UDP audio packet drops out, the server keeps sending information, causing

only a brief glitch instead of a huge gap of silence. TCP, on the other hand, keeps

trying to resend the lost packet before sending anything further, causing greater

delays and breakups in the audio broadcast.

The RTSP protocol in specific is designed to support real-time traffic by es-

tablishing and controlling either a single or several time-synchronized streams of

continuous media such as audio and video, and it also provides services such as

sequence numbering, time-stamping and delivery monitoring (in order to facili-

tate quality-of-service monitoring). The RTSP protocol does not actually deliver

the data, but works alongside existing delivery channels such as UDP, TCP, or
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IP-multicast.

Regardless of the advances in the transmission protocols, streaming media

would not be possible without the rapid innovation in encoding algorithms, that

compress and decompress audio and video data. Uncompressed audio files are

huge: One minute of playback of a CD-quality (16-bit, 44.1 kHz) stereo audio file

requires around 9 MB of data (approximately enough disk space to capture a small

library of books or a 200-page web site . . . ). Standard modem connections don’t

have the capacity to deliver pure, uncompressed CD-quality audio in high speed.

In order to stream across the limited bandwidth of the web, audio has to be com-

pressed and optimized with lossy codecs, which reduce the file size by discarding

some amount of data during the encoding process before it is sent over the internet.

In conclusion, the streaming internet protocols and the encoding procedures

enable the fast transmission of media files over the internet. However, they do

not ensure safe delivery of the packets nor do they provide other quality of service

(QoS) guarantees, but relies on lower-layer services to do so.

2.2 Packet Loss Statistics

As was just mentioned, networks such as the internet do not provide guaranteed re-

sources such as bandwidth or guaranteed performance measures such as maximum

delay or maximum loss rate. There are some control mechanisms that support

real-time applications over such networks, and they can help reduce packet losses,

but they do not prevent it entirely. In fact, the experience accumulated over the

internet indicates that audio packet losses are in large part responsible for the

second-rate quality of many audio transmissions over the network.

Packet losses can arise from several reasons:
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• Congestion on routers which creates buffer overflow, causing the routers to

discard some of the packets.

• In real-time applications such as video-conferencing or streaming audio/video,

a packet that is delayed too long would have to be discarded in order to meet

the application’s timing requirements, leading to the appearance of loss.

• Fading and interference in wireless links.

Reference [12] describes some characteristics of packet loss in audio streams sent

over the internet. The authors measured the audio loss process over a number of

connections (i.e. source-destination pairs) using the standard protocol stack of the

internet, i.e. IP/UDP/RTP. The main result of this research was that the number

of consecutively lost audio packets, i.e. the length of the gaps, is small, especially

when the network load is low or moderate. This result also agrees with previous

measurements obtained with non-audio UDP packets over different connections

over the internet [13].

Fig. 2.1 shows two of the measurements that were taken during the multicast

transmission. The upper graph represents the losses measured at 8:00 am, and

the lower graph represents the losses measured at 4:00 pm. Obviously, the total

number of losses is higher at 4:00 pm, when the network load is higher. Also, it can

be easily seen that most losses are isolated and contain a small number of packets.

This last observation is confirmed by the shape of the distribution function of the

number of consecutive losses, appearing in Fig. 2.2.

Reference [13] also contains a study of the loss rates in such cases, as a function

of the network load, expressed by the parameter δ , which indicates the constant

interval between the send times of two successive UDP packets. The source sends

probe packets at regular intervals (every δ msec), so naturally smaller δ means
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Figure 2.1: Evolutions of the number of consecutively lost packets at 8:00 am (top)

and 4:00 pm (bottom).

higher network load and the load decreases as δ increases. The results of these

experiments show that the packet losses are essentially random as long as the

traffic uses less than 10% of the available capacity of the connection over which

the packets are sent. At higher rates, the losses become more and more correlated,

since the router is more likely to experience buffer overflows, and given that packet

n is lost, (which means that the router’s buffer is occupied upon arrival of packet

n) there is a good chance that packet n+1 will be discarded too. Table 2.1 shows

these results.

Regarding loss rates in general, reference [14] reports that according to their

measurements, 50% of the receivers have a mean loss rate of about 10% or lower,

and around 80% of the receivers had some interval of the day where no loss was
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Figure 2.2: Distribution of the number of consecutively lost packets at 8:00 am

(top) and 4:00 pm (bottom).

observed. However, 80% of the measured sites reported also some interval during

the day when the loss rate was greater than 20%, which is generally regarded as

the threshold above which audio (speech in specific) becomes unintelligible and

intolerable.

In conclusion, we can safely assume that most of the audio-streaming clients will

experience some amount of packet loss during the connection: When the network’s

load is low it will be a small loss rate (below 10%) with mostly isolated gaps.

When the network’s load is high the gaps will be more frequent and wide, which

can even lead to the all-too-familiar connection drop-out that every internet user

has encountered.
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Table 2.1: Variations of conditional and unconditional loss probability for different

values of δ

δ (msec) 8 20 50 100 200 500

Unconditional loss probability:
Pr{ packet n is lost } 0.23 0.16 0.12 0.10 0.11 0.09
Conditional loss probability:
Pr{ packet n+1 is lost / packet n is lost } 0.6 0.42 0.27 0.18 0.18 0.09

2.3 Packet Loss Recovery Techniques

Although most packet losses are relatively small, each instance of loss, unless con-

cealed in some way, produces an annoying disturbance. This is because the human

hearing system is sensitive to the discontinuity that is created in the waveform by

lost packet. Ignoring the gap and splicing the ends of the gap together is not an ac-

ceptable solution since it introduces a timing mismatch in the playback buffer, and

might interfere with server-client synchronization in real time applications. There-

fore, for isolated packet losses and certainly for multiple consecutive packet losses,

the gap needs to be filled-in with samples approximating the original waveform.

There are numerous techniques for packet loss recovery [1, 2, 3], mostly de-

signed for speech signals. The various techniques can be roughly divided into

two categories: sender-based and receiver-based [2]. All techniques require the

help of the decoder at the receiving side, but the sender-based techniques also use

side-information from the encoder or change the bitstream format to improve the

results of the concealment process. Some of the sender-based techniques perform

error correction, creating an exact repair of missing packets, with no loss of the

signal’s audio quality, while all the receiver-based techniques (and also some of the

sender-based techniques) perform error concealment, where only an approximation

of the missing packets is achieved, resulting in some quality degradation: When
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designing a receiver-based algorithm for error concealment, the designer wishes to

interpolate the gap in a way that will sound natural: In the case of short gaps the

replacing signal should have characteristics similar to the lost signal, so that the

listener won’t even notice it was replaced. Since audio signals are in many cases

short-term stationary, these characteristics can be estimated from the surrounding

packets, assuming they are available. In the case of long gaps, or gaps that are

very close to each other, where it is impossible to perfectly restore the character-

istics of the lost segment, it is usually demanded that the replacement should at

least sound smooth rather than annoying. Another point, which is not treated in

this work, is that the reconstructed signal might be used as input for more post

processing, as in the case of speech recognition [15].

Since this research focuses on a receiver-based solution, the receiver-based cat-

egory is explored in details in the next sub-section.

In the sender-based category, one can find the Forward Error Correction (FEC)

mechanism which is based on the transmission of redundant information alongside

with the original information, so that at least some of the lost data can be recovered

from the redundant information. The main flaw of this technique is that it increases

the network’s congestion, leading to a worsening of the problem which it was

originally intended to solve. Other techniques in this category are Layer Encoding,

which is included in the new HILN standard for MPEG-4 parametric audio coding

tool [16] and Interleaving, where basic data units (packets or even data samples

[17]) are reorganized before transmission and then returned to their original order

at the receiver. This operation enables better handling of burst-losses, since after

the reordering, a wide gap of several lost data units turns into several smaller gaps

which are easier to handle.
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2.3.1 Receiver-Based Techniques

As was already mentioned, receiver-based techniques are usually less effective than

sender-based techniques, since they don’t have any information from the encoder to

rely on, besides the corrupted bit stream itself. Most of the work made in this area

was related to speech signals (concerning VoIP or video conferencing applications),

and only recently articles are being published about work related to general audio

signals.

The different algorithms can be divided into 3 main categories, ordered with

increasing complexity and performance:

Insertion-based techniques: These techniques repair losses by inserting a fill-in

packet. The creation of this fill-in is a very simple data-independent procedure,

which doesn’t involve any signal processing. Silence or Noise Substitution are very

common, as is the Repetition of previous packet, which is suggested in the MP3

standard [18]. These schemes are very easy to implement but give relatively poor

performance, which makes them appropriate only to very small loss rates (up to

5%) and unacceptable for higher loss rates.

Time-Domain Interpolation-based techniques: The concealment techniques

in this category attempt to replace the lost packet by a similar copy, which is

achieved using time-domain interpolation based on the packets surrounding the

loss. The advantage of this category over the previous one is that it takes into

account the content of the lost segment when trying to recover it, thus it achieves

better performance (reasonable quality up to 10% loss rate), though at the expense

of higher complexity. Among the techniques in this category are Waveform Sub-

stitution [4], Pitch Waveform Replication [19, 20], and Time-Scale Modification

[21, 22].
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Compressed-Domain, Model-based Interpolation techniques: The model-

based interpolation techniques usually involve a great deal of signal processing

and the use of the statistics and models that exist for audio signals (especially for

speech signals). As a result, these techniques are usually higher in complexity but

also achieve better performance. In many cases these techniques are applied in the

compressed domain, instead of on the waveform samples. Among the techniques in

this category are: Interpolation Using Compressed Domain Parameters for CELP

speech coders [23, 24, 25] and for MPEG audio coders [6], and Model-based In-

terpolation [17, 26, 7]. In work [17], the authors represent speech signals using

an AR model and estimate the missing samples based on a multi-rate state-space

representation of the AR process. Work [26], which also refers to speech, uses

an HMM model to estimate the lost signal, and in [7] general audio signals are

represented using a sinusoidal model which is also used for reconstruction of the

lost data.

As described in Chapter 7, the algorithm developed in this work was compared

with two previously reported concealment techniques: Packet Repetition [18] and

Statistical Interpolation [6], therefore we chose to describe these techniques next:

The packet repetition technique is simply replacing the lost packet with a copy

of the packet that has arrived last. This operation usually maintains the statistical

characteristics of the waveform (especially in parametric coders, such as CELP

speech coders or HILN audio coder) since speech and audio signals are in many

cases quasi-stationary, but there are times where it will perform poorly, for example

in cases where there is a rapid change in the signal’s statistics like in the case of

voiced-unvoiced transition in a speech signal, or the appearance of a fast transient

in audio signals.
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The idea behind the statistical interpolation technique is to apply a samples-

restoration algorithm, originally intended for time-domain signals, on the MDCT

domain coefficients which are also real-valued. The advantage of this approach is

that a gap of thousands of samples in time domain (for one or more lost packets) is

translated into a smaller gap, which is easier to handle, of only few samples at each

frequency bin in the MDCT domain along time (this concept is further explained

in section 3.2.2). Another advantage to this approach is that it is not necessary to

estimate all the bins, since in a typical music piece most of the energy is located

in the lower frequency bins, where the highest bins are usually very close to zero,

and therefore can be ignored. There are also some limitations to this approach:

First, an estimation error in a single frequency bin will affect all the time samples

in that packet, due to the inverse-MDCT procedure that is performed after the

restoration (during the decoding process). The second limitation is the problem

of handling different frequency resolutions in consecutive packets, due to the fact

that MPEG-Audio coders use different window types (this problem is explained in

section 4.1).

The statistical interpolation algorithm (or in short, SI) assumes that the MDCT

coefficients along time, for a given frequency bin, are a realization of an auto-

regressive (AR) process. For a given frequency bin, a missing coefficient is esti-

mated by a linear combination of the available coefficients at the same frequency

bin, taken from surrounding packets.

The restoration algorithm is an iterative algorithm, consecutively repeating the

following two steps:

- Estimate the AR coefficients vector from all the set of samples: available and

estimated ones (in the first iteration the values of the missing samples are
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arbitrarily set to zero).

- Estimate the set of lost samples based on the AR coefficients that were cal-

culated in the previous step.

The restoration algorithm is computationally efficient for small loss intervals: The

vector of AR coefficients is determined so it minimizes the expected variance of the

statistical restoration error using the Levinson-Durbin algorithm, and the rest of

the calculations use small matrices. For losses of more than 5 consecutive packets,

the authors suggest using simple repetition (with attenuation applied) since the

computational overhead becomes high and the poor results of the SI algorithm in

that case do not justify it. However, the algorithm has also some limitations: For

an AR model of order p, the algorithm requires at least p available samples at the

ends of the segment, in order to get a meaningful estimation of the AR coefficients

using the covariance or autocorrelation method, which cannot be guaranteed in

random packet losses. And finally, there is no evidence that MDCT coefficients of

audio signals behave according to AR models, and therefore there is no justification

for choosing this model over other possible models.

The complexity of the SI algorithm is O(L2) + O(P 3
m) where L is the AR order

and Pm = 2Q is the number of missing samples.



Chapter 3

MPEG-Audio Coding

In recent years, MP3 audio coder has become the number one tool for internet

audio delivery and is now known in most households as an efficient way to store

audio files. The reasons for its success include the fact that MP3 is an open, well

defined, standard, along with the fact that it is supported by most hardware man-

ufacturers (sound-cards, CD-ROMs, CD-Writers etc.) and that numerous versions

of its encoder and decoder are available on the internet as shareware. But the most

important reason of all is the fact that MP3 gives good quality with a small file

size, since the quality degradation arising from the MP3 lossy compression process

is almost negligible at typical rates. Tests show [27] that at a 6:1 compression ratio

(as is the case for a 48 kHz sampled stereo signal represented by 16 bits per sample

and encoded into a 256 kbps MP3 file) and under optimal listening conditions,

expert listeners could not distinguish between coded and original audio clips with

statistical significance.

The MPEG-1 Audio coder compresses signals sampled at rates of 32, 44.1 or

48 kHz, to rates in the range of 32 to 320 kbps. The standard offers a choice

of three independent layers of compression, with increasing codec complexity and

audio quality. The most interesting among them is MPEG-1 Layer 3, a.k.a. MP3.

24
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MP3 and its successors (such as MPEG-2/4 AAC) are part of a family called

perceptual audio coders. These coders achieve relatively high compression by ex-

ploiting the characteristics and limitations of the human auditory system, such as

the frequency masking property, the temporal masking property, and the absolute

threshold of hearing. When a signal is coded, a psychoacoustic model is applied

to it in order to determine the signal-to-mask ratio (SMR) based on these three

properties. Then, compression is achieved by a quantization process that shapes

the quantization noise so it is always underneath the masking threshold, and hence

is unnoticeable by a human listener. Needles to say, that the quality of the psy-

choacoustic model has a great impact on the quality and efficiency of the encoding

process.

This chapter explores the MP3 coder, mainly focusing on the time-frequency

mapping, since it is relevant to this work. The interested reader can find more

about the MP3 coding process and psychoacoustics in general, in Appendix A.

3.1 The MP3 Coder

3.1.1 Encoder

Figure 3.1 in the next page, is a block-diagram of the MP3 encoding procedure,

which is described next:

The signal in the input of the encoder is divided into frames of 576 samples

each. Each such frame passes through 32 filters of a uniform filter-bank, creating 32

equal-width sub-bands. Then, each sub-band is further divided into 18 frequency

lines by applying an MDCT to each of the sub-band signals.

Parallel to this, the psychoacoustic model is applied on the signal in order to

calculate, for each frame, the SMR in every critical band of the human auditory

system. The model also determines for each frame the type of window to be used
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Figure 3.1: Block diagram of an MP3 encoder

in the MDCT process, according to the frame’s short- or long-term characteristics

(this is further explained in section 3.2.2).

Next, the 576 MDCT coefficients (one for each frequency line) are arranged

into groups, each group corresponding to a single critical-band, and each of them

is quantized separately. The quantization step for each of the critical-band groups

is determined by an iterative algorithm that compares the ratio between the energy

of the un-quantized signal and the quantization noise in each critical-band to the

SMR ratio that was determined for that band. This iterative algorithm controls

both the bit-rate and the distortion level, so that the perceived distortion is as

small as possible, within the limitations of the desired bit-rate. The quantized

values and other side information (such as the window type for the MDCT) are

encoded using Huffman code tables to form a bit-stream.

Every two segments of 576 samples form a single MP3 packet.
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3.1.2 Decoder

The block diagram of a typical MP3 decoder appears in Fig. 3.2. The decoder de-

ciphers the coded bit-stream, restoring the quantized MDCT coefficient values and

the side information related to them, such as the window type that was assigned to

each frame. After all this data is available, the coefficients are transformed back to

the sub-band domain by applying an inverse-MDCT on the coefficients of each of

the equal-width sub-bands. Finally, the waveform samples are reconstructed using

filter bank summation on all the sub-bands.
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Figure 3.2: Block diagram of the MP3 decoder

3.2 Time-Frequency Mapping in the MP3

The filter bank that is used in the MP3 coder belongs to the class of hybrid filter

banks. It is built by cascading two different kinds of filter banks: first a polyphase

filter bank and then an additional Modified Discrete Cosine Transform (MDCT).
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3.2.1 Polyphase Filter Bank

The polyphase filter bank is common for all layers of MPEG-1 audio compression.

Polyphase structures are computationally very efficient because a DCT can be used

in the filtering process (or DFT, in the complex case), and they are of moderate

complexity and low delay (more about the implementation is in appendix A) . The

polyphase filter bank divides the audio signal into 32 equal-width frequency sub-

bands, where for every frame of 576 samples, the output of the filtering process is

18 new samples for each of the 32 sub-bands.

Each filter originally has 512 coefficients, where the impulse response of each

sub-band filter, hk(n), is obtained by multiplying the impulse response of a single

prototype low-pass filter, h0(n), by a modulation function which shifts the low-pass

response to the appropriate sub-band frequency range:

hk(n) = h0(n) · ej·ϕ(k,n), 0 ≤ k ≤ 63 (3.1)

Where in the case of the MP3 standard, h0(n) is a simple filter in the shape of a

sinc function.

This is the way to build a bank of 64 complex filters. In order to get real-valued

filters, every two symmetric complex filters are added together. Since every two

symmetric complex filters are the complex-conjugate of one another, the imaginary

part vanishes and we are left with 32 real-valued filters:

h̃k(n) = hk(n) + h63−k(n) = h0(n) · cos[ϕ(k, n)], 0 ≤ k ≤ 31 (3.2)

In the case of MPEG-1:

ϕ(k, n) =
(2k + 1) · (n− 16) · π

64
, 0 ≤ k ≤ 31 (3.3)
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The resulting filters have center frequencies at odd multiples of π
64

fs where fs is

the sampling frequency, and each has a nominal bandwidth of π
32

fs. Although the

prototype filter is relatively simple, it provides good time resolution with reasonable

frequency resolution. However, the design of the polyphase filter bank has three

notable disadvantages [27]:

• The filter bank and its inverse are not lossless transformations. Even with-

out quantization, the inverse transformation cannot perfectly reconstruct the

original signal. However, the design of the prototype filter assures that the

error introduced by the filter bank is small and inaudible.

• Consecutive filter bands overlap at the edges, so a signal at a single frequency

can affect two adjacent filter bank outputs. This effect can harm the efficiency

of the compression since one signal might be ”compressed twice”. The fact

that the filters overlap also introduces aliasing, since the filter outputs are

decimated in the critical rate. The MP3 standard specifies a method of post-

processing the MDCT coefficients, before the quantization, in order to cancel

that aliasing completely.

• The equal widths of the sub-bands do not accurately reflect the human au-

ditory system’s critical bands: at lower frequencies a single sub-band covers

several critical bands, while at higher frequencies one critical band can spread

over a number of sub-bands (see more about this in appendix A). For that

reason, Layer 3 extended the frequency partition further by using an MDCT

transform in each of the sub-bands. This partition results in 576 frequency

bins, which are later grouped according to the critical bands of the human

auditory system for the quantization process.



3. MPEG-Audio Coding 30

3.2.2 MDCT

The MDCT transform is defined as:

XMDCT [k] =
2N−1∑
n=0

x[n] ·h[n] ·cos
(

π
N
· (n + N+1

2

) · (k + 1
2

))
, 0 ≤ k ≤ N−1 (3.4)

where x[n] is the original signal and h[n] is a window function.

The inverse transform is defined as:

x̂[n] =
2

N

N−1∑

k=0

XMDCT [k] · cos
(

π
N
· (n + N+1

2

) · (k + 1
2

))
, 0 ≤ n ≤ 2N −1 (3.5)

From the definitions it can be seen that 2N samples in the time-domain are trans-

formed into only N real-valued coefficients in the MDCT domain. Hence it is a

lossy transform, and the output of the inverse transform includes aliasing in the

time-domain:

x̂[n] =

{
x[n] · h[n]− x[N − n− 1] · h[N − n− 1], 0 ≤ n ≤ N − 1
x[n] · h[n] + x[3N − n− 1] · h[3N − n− 1], N ≤ n ≤ 2N − 1

(3.6)

In order to perfectly reconstruct the signal, this aliasing effect has to be cancelled.

Aliasing cancellation can be achieved when the MDCT transform is applied along

time, on segments that have 50% overlap between them (as shown in Fig. 3.4) and

under certain conditions:

1. The analysis window and the synthesis window are the same window, h[n].

2. The window is symmetric: h[n] = h[2N − 1− n].

3. h2[n] + h2[n + N ] = 1.
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For example, one of the window functions that the MP3 uses, for which the

conditions above hold, is the sinusoidal window function in (3.7), also presented in

Fig. 3.3.

h[n] = sin
(

π
2N
· (n + 1

2

))
, 0 ≤ n ≤ 2N − 1 (3.7)
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Figure 3.3: MP3’s sinusoidal window
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Figure 3.4: 50% Overlapping sinusoidal windows

The aliasing cancellation is achieved in the following manner, also shown in

(3.8): Let’s denote each time-segment by the index p, where p ∈ Z. After the

inverse-MDCT is applied, the 2N aliased samples of segment p are multiplied by

the window function, h[n]. Then, each half-segment is merged with the overlapping
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section in the neighboring segment (the time-segments indexed (p−1) and (p+1))

using overlap-and-add (OLA) in order to restore the original samples. Hence, we

need a total of 3 consecutive MDCT frames in order to perfectly reconstruct a

whole segment of 2N samples.

x(p)[n] =





x̂(p−1)[n + N ] · h[N − n− 1] + x̂(p)[n] · h[n] 0 ≤ n ≤ N − 1

x̂(p)[n] · h[2N − n− 1] + x̂(p+1)[n−N ] · h[n−N ] N ≤ n ≤ 2N − 1

(3.8)

The next section explains the logic behind the aliasing cancellation procedure:

From the expression in (3.6) it can be seen that the aliasing in the first half of

the inverse-transformed samples is independent of the aliasing in the second

half. This property is important, since it allows to change the shape of the next

window, without influencing the values in the current one (this concept is clarified

in the sequel).

Because of the 50% overlap, one segment of N samples participates in the

MDCT of two consecutive frames. Hence, each such segment is expressed twice

after the inverse-MDCT transform: Once as the last N samples of the first window,

x̂(p)[N : 2N−1], and thereafter as the first N samples of the next window, x̂(p+1)[0 :

N − 1]. Looking again at (3.6) it can be seen that x̂(p)[N : 2N − 1] is the sum

and x̂(p+1)[0 : N − 1] is the difference of the same N samples, where in each case

the signal is multiplied by different window sections. This concept is illustrated in

Fig. 3.5.

Since the window function h[n] is symmetric (condition No. 2), the alias cancel-

lation is achieved by an overlap-and-add procedure: Each aliased output segment is

multiplied by its matching half-window and the two overlapping results are added
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together. The Mirrored parts (see Fig. 3.5), which are identical - only with oppo-

site signs, cancel each other. Condition No. 3 (h2[n] + h2[n + N ] = 1) guarantees

that the effect of the window multiplication is cancelled too, leaving the original

samples restored.

More information about the MDCT can be found in [28, 29].
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utive windows

Using MDCT With Different Window Functions

As was already mentioned, the fact that the aliasing is independent for each half

of the MDCT segment is important: In the case of MP3, this fact enables to

dynamically change the time-frequency resolution.

In order to use different window functions for different segments, the condi-

tions for perfect reconstruction are expanded to the general case: Let us assume
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that there are two consecutive overlapping window functions: h[n] and g[n]. The

conditions for perfect reconstruction in this case are the following:

1. The analysis window and the synthesis window of a certain segment are the

same window.

2. h[n + N ] · h[2N − n− 1] = g[n] · g[N − n− 1].

3. h2[n + N ] + g2[n] = 1.

Note that for the particular case where h[n] , g[n], the conditions stated earlier

agree with the ones defined here.

The MP3 standard defines four different types of window functions, shown in

Fig. 3.6, in order to match the different nature of each coded frame:

Long (type 0) a long sinusoidal window, which provides better frequency reso-

lution for stationary frames.

Start (type 1) a transition window, to be used after a Long window and before

a Short window.

Short (type 2) provides better time resolution, for frames containing rapidly

varying signals or fast transients. This window is actually built of 3 short

sub-windows.

Stop (type 3) a transition window, to be used after a Short window and before

a Long window.

These four window types are designed to satisfy the last two conditions, so per-

fect reconstruction is guaranteed, and they enable the coder to change the time-

frequency resolution of the windows during the process, in order to get a better
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representation of the coded signal. However, in order to make sure that the two

conditions are satisfied, a transition window must always come between Short and

Long windows. The different windows are presented in Fig. 3.6 and a possible

ordering of the windows is shown in Fig. 3.7.

The windows of type 0,1 and 3 use a long MDCT transform, turning 36 samples

into 18 coefficients. The Short window (type 2) uses 3 short MDCT transforms,

where 12 samples are transformed into 6 coefficients: a short transform on each

short sub-window. In total, all the windows have a constant length of 2N = 36

samples and result in N = 18 coefficients after the MDCT transform is applied.
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Figure 3.6: The four window types defined by the MP3 standard

As can easily be seen, these four different window functions are actually built

from only 3 basic half-window units, described in Fig. 3.8, that are used in direct

or reverse form. This fact is exploited in this work, as described in section 6.1.

Note that the 3 half-window units are of different lengths: the ’long’ and ’short-
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Figure 3.7: A possible ordering of the different windows

to-long’ halves are 18 samples long, where the ’short’ half is only 6 samples long.

The middle section of the ’short-to-long’ half is identical to a ’short’ half.
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Figure 3.8: The three basic half-window units: (a) long, (b) short-to-long, (c) short

The use of MDCT in the MP3 standard

In the MP3 encoder, the MDCT is performed on the output samples of each of the

sub-band filters, taking overlapping segments of 36 samples in the sub-band do-

main: the 18 outputs of the current analysis frame and another 18 are the output

of the previous frame. Every segment of 36 samples is multiplied by its best-suiting

window (the decision of the suitable window type is made by the psychoacoustic

model, see appendix A) and then it is transformed to the MDCT domain, result-
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ing in 18 frequency coefficients. Since there is a 50% overlap, the total number of

MDCT values is hence the same as the number of samples. The MDCT coefficients

are then quantized and sent to the decoder.

In the decoder, the values of the MDCT coefficients are restored, and an inverse

transform is performed on each sub-band, after which the sub-band samples are

restored by using the aliasing-cancellation OLA procedure that was described be-

fore. Finally, the waveform samples are reconstructed using filter-bank summation

on all the sub-bands.

It’s worth noting that since quantization is performed, the reconstruction in the

decoder’s side is not perfect, and the restored signal might suffer from an effect

called ”pre-echo”, due to the fact that it still contains some aliased quantization

noise that was not cancelled.



Chapter 4

Choosing the Concealment

Domain

As was already described in section 2.3, there are many techniques for packet loss

concealment. The most intuitive approach is to use interpolation in the time-

domain, i.e., interpolate the waveform samples. However, in some cases there

might be a benefit in interpolating the data in other domains, such as in the

compressed domain, or the spectral domain. This chapter deals with the subject

of choosing the interpolation domain that best suits this work: The first section

presents the benefits and limitations of interpolating in each domain. The second

section presents an analysis of pure sinusoidal signals in both the MDCT and the

DSTFT domains, since our solution is implemented in these domains.

4.1 Different Concealment Domains

In the case of audio coding, two concealment domains come immediately to mind:

the time-domain, and the compressed domain. In the case of MPEG-audio coders,

the audio signal is compressed in the MDCT domain. Specifically, the MP3 encoder

turns each segment of 576 samples in time into 576 MDCT coefficients. Each MP3

packet contains two such segments, therefore a single lost MP3 packet creates a

38
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gap of at least 1152 samples: Considering also the fact that due to the loss, the

aliasing in the segment preceding the loss cannot be cancelled and therefore this

segment is corrupted, then the gap actually becomes of 1728 samples. This is quite

a wide gap and is hence very difficult to handle. However, looking at the loss from

the point-of-view of the MDCT domain, a loss of a single packet is translated to

a gap of only two coefficients per frequency bin. Since such a gap is easier to

interpolate, it seems reasonable to prefer doing the interpolation in the MDCT

domain, rather than in the time domain, as suggested in [6]. In that work, the

missing MDCT coefficients were reconstructed separately for each frequency bin,

based on the coefficients available from neighboring packets at the same frequency

(see section 2.3.1 for more details about that work).

Working in the MDCT domain also introduces some difficulties, compared to

working in the time domain: The main problem arises from the fact that the

MPEG-Audio coders use different type of window functions during the MDCT

transform, in order to allow for a better representation of the signal’s characteristics

(as described in section 3.2.2). When a packet is lost, the information about the

window type is lost too. Using the incorrect type of window will prevent the aliasing

from being cancelled which will result in undesired artifacts, in addition to those

introduced by the reconstruction process. However, in some cases this problem can

be overcome: As was already explained in section 3.2.2, switching between Long

and Short window types is not instantaneous and requires a transition window to

come between them. This fact can be utilized in case of a packet loss, since for

a single packet loss, the window types of the lost segments can be recovered in

most cases by observing the window types of neighboring packets. For example:

Long-missing1-missing2-Stop could only match a single possible pattern, where

missing1 is a Start window and missing2 is a Short window.



4. Choosing the Concealment Domain 40

In other cases, where there is an ambiguity regarding the type of the windows

that were originally used, it is enough to choose a window type that will comply

with the packets available at the edges of the loss. For example: Long-missing1-

missing2-missing3-missing4-Long could arise from a sequence of 6 consecutive

Long windows, or from the following pattern: Long-Start-Short-Short-Stop-

Long, or from other possible patterns. Since the first half of the Start window is

identical to the first half of the Long window, choosing either one of the possibil-

ities guarantees that the aliasing in the frame preceding the loss will be cancelled

correctly (assuming of course, that we achieved perfect reconstruction of the lost

MDCT coefficients of the first lost frame). Assuming that the receiver doesn’t

have any side information regarding the characteristics of the signal that was rep-

resented by the lost packets, it is not capable to prefer one possibility over the

other, hence its decision will be arbitrary.

There are two more limitations to the MDCT domain which can’t be overcome

that easily. The first one also results from the use of different window functions:

Since different window types have different frequency resolutions, the MDCT co-

efficients of two consecutive segments at a certain frequency bin might represent

different resolutions. For example, consider the case where the first of two consec-

utive segments uses a Start window while the second uses a Short window. Since

the Short window supports 3 short MDCT transforms, each of the coefficients rep-

resents 1
6

of the frequency band. However, each of the coefficients of the Start

window represents 1
18

of the band. Since the data is not represented at the same

resolution, it would not make sense to estimate the coefficients of one segment from

the other.

The second limitation is the fact that the MDCT coefficients typically show
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rapid sign changes from frame to frame, at each frequency bin, which makes it

more difficult to interpolate them. These sign changes reflect phase changes in the

complex spectral domain [30].

A possible way to cope with the first limitation above would be to convert the

MDCT coefficients back into the time domain and then again to the frequency

domain, this time using the same window length for all segments. A solution to

the second limitation would be to work in a domain that has a less fluctuating rep-

resentation of the signal, thus providing better interpolation results. Interpolation

in the Discrete Short-Time Fourier-Transform (DSTFT) domain overcomes both

limitations and therefore was chosen as our concealment domain.

In order to work in the DSTFT domain one has to first convert the data from

the domain it is compressed in: in this case, the MDCT domain. The simplest

way to do this is by first converting the data back to the time domain, using

an inverse-MDCT transform and an OLA procedure on the MDCT coefficients in

each sub-band, and to then transform the resulting samples in each sub-band to

the Fourier-domain using a window function of fixed length.

For the purpose of this work, it makes sense to use the same time-segments

originally used by the MDCT transform, so the data is equally represented in both

domains. In the case of MP3, this means segments of 2N = 36 samples from each

sub-band, overlapping by 50%. As was mentioned before, the benefits of using

this domain are that it has a smoother representation of the signal, and that by

using a window function of constant length it is guaranteed that all the coefficients

have a fixed resolution. However, the conversion also introduces a few limitations:

First of all, the procedure itself adds some complexity to the decoder, which is

problematic. For this reason we developed a computationally efficient procedure

for the conversion, which is described in section 6.1. Second, due to the overlap
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between the MDCT segments, a single segment of 2N samples is reconstructed from

3 consecutive MDCT frames, as shown in Fig. 4.1. In the case of packet loss this

means that a lost frame affects the reconstruction of not only its corresponding

segment, but its two closest neighbors too. The result is that the gap at each

frequency bin in the DSTFT domain is bigger than the gap in the MDCT domain

by two frames, since the neighbors at the edges of the gaps can’t be properly

restored. This concept is illustrated in Fig. 4.2.

 

(i-1)N iN 

M-DCT(i-1) M-DCT(i+1) 

M-DCT(i-2) M-DCT(i) M-DCT(i+2) 

(i+1)N (i+2)N (i-2)N 
Samples 

Figure 4.1: One segment of 2N samples is reconstructed using the relevant MDCT

segment and also the MDCT segments on both its sides (in dotted brackets)

There is one more option that should be mentioned regarding MP3 coding: It

is also possible to work in the semi-compressed domain, i.e., in the sub-band do-

main. The advantage of this domain is the same as in the time domain, only the

gaps at each sub-band are shorter. Also, since the signal in each band represents a

narrower spectrum, it is spectrally less complicated than the general signal and can

be assumed to approximately comply with simpler models, such as the AR model

[5]. The disadvantages in this case are that although the gap in each sub-band is

smaller than in the time-domain, is still relatively wide for interpolation, and more

important - that a concealment algorithm designed for this domain will be suitable

only to MP3 coders, and not for its successors, since (as mentioned in the end of

appendix A) more advanced standards abandoned the use of hybrid filter-bank and

use pure MDCT instead.



4. Choosing the Concealment Domain 43

 

In the DSTFT domain 

In the MDCT domain 

• MDCT frame = N coefficients. 
• Each frame  

represents 2N samples. 

• Time segment = 2N samples. 
• 50% overlap between segments. 
• 2 lost MDCT frames � 

3N samples are affected. 
 

In the time domain 

Time 
N samples  
are missing 

2N samples 
contain aliasing 

• DSTFT frame =  
2N conjugate-symmetric 
coefficients.  

• Each frame represents 
2N samples. 

• 2 lost MDCT frames �  
2 missing + 2 corrupted 
DSTFT frames. 

 

MDCT frames along time 

Two missing 
MDCT frames 

i 

i+
1 

Time F
req 

…
 

DSTFT frames along time 

…
 

…
 

i 

i+
1 

i+
2 

Time F
req 

Missing 
frames 

Corrupted 
frames 

…
 

…
 

i-1 

…
 

Figure 4.2: Propagation of error: 2 lost MDCT frames affect the reconstruction of

2+2=4 DSTFT frames

To conclude, here is a summarized list of the benefits and limitations of each

concealment domain:

Time Domain

Benefits:

• Interpolation is applied directly to the waveform, regardless of coder type.

Limitations:

• The gap that has to be interpolated is very wide and is hence very difficult

to handle: Q consecutive lost packets result in (2Q + 1) · 576 consecutive

missing samples.

• Audio signals can’t be described by simple models that might have been used

for the interpolation (as opposed to speech signals).
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Sub-band Domain

Benefits:

• Time-domain interpolation techniques can be used.

• Since each signal represents a single sub-band, the signal is less complicated

and therefore can be assumed to approximately comply with simpler models,

such as an AR model.

Limitations:

• Still relatively wide gap: Q consecutive lost packets result in (2Q + 1) · 18

consecutive missing samples in each of the 32 sub-bands.

• Interpolation should be performed for each of the sub-bands (32 times).

• Since more advanced MPEG-audio coders don’t use hybrid filter-banks any-

more, working in this domain is limited only for the MP3 standard.

MDCT Domain

Benefits:

• A small gap which is easier to interpolate: Q consecutive lost packets result

in 2Q consecutive missing coefficients at each frequency bin.

Limitations:

• Interpolation should be performed for each frequency bin, i.e., 576 times

(although higher frequency bins, which contain almost no energy could be

ignored).

• The coefficients in this domain has rapid sign changes, which makes it harder

to interpolate them.
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• Different resolutions for different frames.

DSTFT Domain

Benefits:

• The gap is slightly widened relatively to the MDCT domain, but still small:

Q consecutive lost packets result in 2Q + 2 consecutive missing coefficients

at each frequency bin.

• The representation of the signal is smoother than in the other mentioned

domains.

• All the frames has the same spectral resolution (as opposed to the MDCT

domain).

Limitations:

• As in the MDCT domain, the interpolation process is performed separately

for each frequency bin.

• The conversion process adds complexity to the decoder.

4.2 Analysis of Pure Sinusoids in Different Con-

cealment Domains

As was mentioned in the previous section, one of the reasons that the DSTFT

domain was chosen as our concealment domain is that its signal representation is

less fluctuating. For verification, the algorithm was implemented also in the MDCT

domain and indeed showed less satisfying results than the DSTFT implementation

(see Chapter 7). Therefore, this section compares the representations of a pure

sinusoid, which is a basic signal, in both domains: MDCT vs. DSTFT. Also, since
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this work uses a reconstruction algorithm that uses spectral estimation, then as a

preface to Chapter 5, we examine and compare the spectrum of the coefficients in

each domain, as they vary along time.

The development of all the mathematical expressions that are presented here

can be found in Appendix C.

4.2.1 Representation of Pure Sinusoids in Different Do-

mains

We define a sinusoidal signal:

x[n] = A · cos(ω0n + φ0) , n ∈ Z (4.1)

The frequency is defined as:

ω0 , 2π

2N
(K0 + ∆0) (4.2)

Where K0 is an integer number: 0 ≤ K0 < 2N and ∆0 is a fractional number:

0 ≤ ∆0 < 1. Hence, x[n] can be written as:

x[n] = A · cos
(

2π
2N

(K0 + ∆0) n + φ0

)
, n ∈ Z (4.3)

Without loss of generality we assume that the overlapping 2N -sample segments

to which the MDCT and DSTFT transforms are applied to, are located on the time-

axis at integer multiples of N . Therefore, the p’th segment, where p ∈ Z, will be

denoted as:

x(p)[n] , {x[pN + n]}2N−1
n=0 ∀p ∈ Z (4.4)

Applying an MDCT transform

For simplicity, let’s assume that a single type of window (Long) is used for the
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MDCT of all the segments. Using the MDCT’s definition in (3.4) and the definition

of the Long window in (3.7) we have:

XMDCT

(p) [k] =
2N−1∑
n=0

x [pN + n] · h [n] · cos
(

π
N

(
n + N+1

2

) (
k + 1

2

))
, 0 ≤ k ≤ N − 1

= A

2N−1∑
n=0





cos
(

2π
2N

(K0 + ∆0) (pN + n) + φ0

)

·sin (
π

2N

(
n + 1

2

)) · cos
(

π
N

(
n + N+1

2

) (
k + 1

2

))



 (4.5)

Applying a DSTFT transform

The window which is used for the DSTFT is an even-length Hann window:

w[n] = sin
(

π
2N
· (n + 1

2

))2
, 0 ≤ n ≤ 2N − 1 (4.6)

Applying a DSTFT transform to the signal we have:

XDSTFT

(p) [k] =
2N−1∑
n=0

x [pN + n] · w [n] · ej 2π
2N

nm , 0 ≤ k ≤ 2N − 1 (4.7)

= A

2N−1∑
n=0

cos
(

2π
2N

(K0 + ∆0) (pN + n) + φ0

) · sin (
π

2N

(
n + 1

2

))2 · ej 2π
2N

nm

Next, we explore the behavior of the coefficients along time for each transform

and different values of ∆0:

I. ∆0 = 0

In this case the frequency is located exactly in the middle of one of the frequency

bins defined by the transforms.
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In this case the MDCT coefficients get the following form:

XMDCT

(p) [k] |∆0=0 =
NA

2
(−1)p·K0·




sin
(

π(N+1)
2N

k + π(N+2)
4N

+ φ0

)
· δ [K0 + k + 1]

+ sin
(
−π(N+1)

2N
k − π

4
− φ0

)
· δ [K0 + k]

+ sin
(

π(N+1)
2N

k + π(N+2)
4N

− φ0

)
· δ [K0 − k − 1]

+ sin
(
−π(N+1)

2N
k − π

4
+ φ0

)
· δ [K0 − k]




(4.8)

The DSTFT coefficients get the following form:

XDSTFT

(p) [k] |∆0=0 =
NA

2
(−1)p·K0·




ejφ0 · δ [K0 − k] + e−jφ0 · δ [K0 + k]

−1
2
ejφ0+j π

2N · δ [K0 − k + 1]− 1
2
e−jφ0+j π

2N · δ [K0 + k − 1]

−1
2
ejφ0−j π

2N · δ [K0 − k − 1]− 1
2
e−jφ0−j π

2N · δ [K0 + k + 1]




(4.9)

As can be seen in both cases, for a fixed frequency bin, indexed k, the change in

time is reflected by the factor of (−1)p·K0 . Hence, in this particular case there is

no reason to prefer the DSTFT domain over the MDCT domain.

II. ∆0 6= 0

In this case the frequency is not located exactly in the middle of a frequency bin,

and therefore we tend to get fluctuations in the envelope of the resulting coefficients

along time.

In this case the MDCT coefficients have the general form:

XMDCT

(p) [k] |∆0 6=0 = A1 (k) sin (αp + β1 (k)) + A2 (k) sin (αp + β2 (k)) (4.10)
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And the DSTFT coefficients have the general form:

XDSTFT

(p) [k] |∆0 6=0 = B1 (k) e−j(αp+γ2(k)) + B2 (k) ej(αp+γ1(k)) (4.11)

Where:

α , π(K0 + ∆0)

A1 (k) , A
4

sin (π∆0) ·
[
sin

(
π

2N
(K0 + ∆0 + k)

)−1
+ sin

(
π

2N
(K0 + ∆0 + k + 1)

)−1
]

A2 (k) , A
4

sin (π∆0) ·
[
sin

(
π

2N
(K0 + ∆0 − k − 1)

)−1
+ sin

(
π

2N
(K0 + ∆0 − k)

)−1
]

B1 (k) , A
4

sin (π∆0) ·
[
sin

(
π

2N
(K0 + ∆0 + k)

)−1 − 1
2
sin

(
π

2N
(K0 + ∆0 + k + 1)

)−1

−1
2
sin

(
π

2N
(K0 + ∆0 + k − 1)

)−1
]

B2 (k) , A
4

sin (π∆0) ·
[
sin

(
π

2N
(K0 + ∆0 − k)

)−1 − 1
2
sin

(
π

2N
(K0 + ∆0 − k + 1)

)−1

−1
2
sin

(
π

2N
(K0 + ∆0 − k − 1)

)−1
]

(4.12)

The expressions for β1(k), β2(k), γ1(k) and γ2(k) can be found in Appendix C.

By observing expressions (4.10)-(4.12), we can conclude that the signal’s represen-

tation in the DSTFT domain is usually less fluctuating than its MDCT represen-

tation: Note that all the gain functions (Ai, Bi, i = 1, 2) have the same structure,

which defines that when k → K0 the values of the gain functions A1(k) and B1(k)

becomes very high. Same goes for A2(k) and B2(k), when k → (2N−K0). When k

is far from these values, the values of the corresponding functions decreases quickly

towards zero. Hence, in most cases, at a fixed value of k, one of the gain functions
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(i.e., i = 1, 2) will be much more dominant than the other. In these cases the ex-

pression can be approximated by only one signal component (a single sine function

in case of XMDCT

(p) [k], and a single exponent in case of XDSTFT

(p) [k]) and therefore the

gain value will be almost constant along time. This fact is better reflected in the

DSTFT domain, where the absolute value of the coefficients along time is almost
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Figure 4.3: An example of MDCT coefficients vs. DSTFT coefficients along time,

using a signal that contains 2 sinusoids, at: for K0 = 5, ∆0 = 0.15 and φ0 = 0.7,

K1 = 3, ∆1 = 0.34 and φ1 = 0. (a) The MDCT coefficients, (b) The MDCT

amplitude at frequency bin k = K0, (c) The DSTFT coefficients, (d) The DSTFT

amplitude at frequency bin k = K0



4. Choosing the Concealment Domain 51

constant, as opposed to the coefficients in the MDCT domain (where the absolute

value of the coefficients along time tends to fluctuate because the gain functions

are multiplied by a sine function). Figure 4.3 shows an example of that.

This applies, of course, to most k and K0 values. However, in the cases where k is

positioned at the same distance from K0 and (2N −K0), both gain functions have

the same effect on the coefficient’s value. In this special case, the absolute value

of the coefficients along time in both domains have significant fluctuations along

time.

Finally, regarding the parameter φ0 (initial phase of the input sinusoid), all the

expressions that were presented so far show clearly that the effect of φ0 on the

behavior of the envelope of the coefficients in both domains, along time, is very

small.

4.2.2 The Spectrum of the Coefficients in Each Domain

Since the reconstruction algorithm that was chosen in this work (the algorithm is

introduced in Chapter 5) uses spectral estimation, we explore the spectral behavior

of the coefficients in the MDCT and DSTFT domains, as they vary in time. By

that we mean that the coefficients at a fixed frequency bin, k, along the time axis

(represented by p), are considered as a time-signal, and we explore the spectrum

of this signal.

Looking at the expressions in (4.10)-(4.11) it is clear that the spectrum of such

signals contains only delta functions. In the case of the MDCT coefficients, each

sinusoid is mapped into two delta functions in the spectral domain. In the case of

DSTFT coefficients, each exponent is mapped into a single delta function in the

spectral domain. The difference becomes more obvious when the original waveform

contains more than one sinusoid: a superposition of several sinusoidal signals leads
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to a complicated spectral image, especially if the frequencies of these sinusoids are

close to each other, as is the case presented in Figures 4.4 and 4.5: Figure 4.4

shows the two spectral images, when estimated from a large data sequence. Figure

4.5 shows a more realistic situation, where the spectral images are estimated based

on a very short segment of data. Clearly, the images are less clear in this case,

however the MDCT spectral image that contains more delta functions looks more

like a wide-band spectrum than the DSTFT’s spectral image.

The combination of K0 and ∆0 determines the location of the delta functions

in the spectrum.
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(b) Spectrum of the DSTFT coefficients

Figure 4.4: The spectrum of the coefficients in the MDCT vs. DSTFT domains,

at bin k = 4: (a) MDCT, (b) DSTFT. The same signal is used as in Figure 4.3.
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Figure 4.5: Same as in Figure 4.4, this time using only a 16-point DFT.



Chapter 5

Reconstruction Algorithms for

Complex Signals

This chapter introduces the GAPES [8, 31] and MAPES-CM [9] reconstruction

algorithms, that are used in this work. The GAPES algorithm was chosen because

of several of its qualities: As opposed to the Statistical Interpolation algorithm,

suggested in [6], the GAPES algorithm assumes no parametric modelling of the

signal. It can deal with more loss patterns than [6], because it is less limited, and

can be applied to both complex and real signals. The MAPES-CM algorithm is a

more advanced version published recently, which has all of GAPES’s advantages

but can handle more loss patterns than GAPES can and has less complexity. Older

methods for estimating the spectrum of an incomplete data sequence include [32]:

direct spectral calculation, substituting zeroes instead of the lost samples, averag-

ing or using models (such as the AR model).

Since both reconstruction algorithms are derived from the APES [10, 33] algorithm

(Amplitude and Phase EStimation), it will be described first. Then, the GAPES

algorithm is described and after it the MAPES-CM algorithm. Finally, we compare

the two reconstruction algorithms. Note that only the Forward version of GAPES

54
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and APES is introduced here, although there exist also a Forward-Backward version

of the algorithms. In the Forward-Backward version the data is run through the

filters both forward and backward, instead of using forward-filtering only. Unfortu-

nately, this method did not show any significant improvement in our simulations,

to justify its complexity.

5.1 The APES Algorithm

This section introduces the APES algorithm for spectral estimation of complete

data sequences. We mention the adaptive filter-bank interpretation of this algo-

rithm, which later leads to the derivation of GAPES, and the interpretation as an

ML estimator, which later leads to the derivation of MAPES-CM.

Let {xn}P−1
n=0 ∈ CP denote a discrete-time data sequence of length P . We wish

to estimate the spectral component at frequency ω0, denoted α(ω0), of this data

sequence. For the frequency of interest, ω0, we model xn as:

xn = α(ω0) · ejω0n + en(ω 6= ω0) (5.1)

where en(ω 6= ω0) denotes the residual term which includes the un-modelled noise

and the interference from frequencies other than ω0.

5.1.1 Adaptive Filter-Bank Interpretation

In order to estimate α(ω0), a data-dependent narrow-band filter, h(ω0), is designed

by requiring that its output will be as close as possible, in the LS sense, to a

sinusoid with frequency ω0. I.e., the filter h(ω0) should pass the frequency ω0

without distortion, and at the same time attenuate all the other frequencies as
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much as possible. The estimated spectral coefficient, α̂(ω0), is hence obtained by

first filtering the data sequence, {xn}P−1
n=0 and then calculating the DFT coefficient

of the filtered data at frequency ω0.

Let h(ω0) denote the impulse response of an M-tap narrow-band FIR filter

centered at frequency ω0 ([·]T denotes the transpose):

h(ω0) , [h1(ω0), h2(ω0), . . . , hM(ω0)]
T (5.2)

Let {y
l
}L−1

l=0 denote the L = P −M + 1 overlapping sub-vectors (data snapshots)

of the full data sequence {xn}P−1
n=0 :

y
l

, [xl, xl+1, . . . , xl+M−1]
T , l = 0, 1, . . . , L− 1 (5.3)

= α(ω0) · a(ω0) · ejω0l + el(ω0)

where a(ω0) , [1, ejω0 , . . . , ejω0(M−1)]T and el(ω0) , el(ω 6= ω0) are the data snap-

shots of the residual terms: el(ω0) , [el(ω0), el+1(ω0), . . . , el+M−1(ω0)]
T . Both

vectors are of size M × 1.

Using (5.3) the act of passing the samples of {xn}P−1
n=0 through the h(ω0) filter,

can be written as:

hH(ω0) · yl
= α(ω0) · [hH(ω0) · a(ω0)] · ejω0l + el(ω0) , l = 0, 1, . . . , L− 1 (5.4)

where [·]H denotes the conjugate-transpose.

Since h(ω0) is a narrow-band filter centered at ω0, (5.4) becomes:

hH(ω) · y
l
' α(ω) · ejωl , l = 0, 1, . . . , L− 1 (5.5)

Now, the desired spectral component, α(ω0), can be estimated using DFT on the

filtered data.
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In conclusion to all mentioned above, the process of estimating the spectral

coefficient, α(ω), of any given frequency, ω, can be defined by the following mini-

mization problem:

min
1

L

L−1∑

l=0

|hH(ω) · y
l
− α(ω) · ejωl|2 , subject to hH(ω) · a(ω) = 1

h(ω),α(ω)

(5.6)

where the constraint is added in order to prevent the problem from converging to

the trivial solution (where everything is zeroed), while maintaining the demand for

passing frequency ω undistorted.

Minimizing the criterion function with respect to α(ω) gives:

α̂(ω) = hH(ω) · Y (ω) (5.7)

where:

Y (ω) , 1

L

L−1∑

l=0

y
l
· e−jωl (5.8)

Substituting (5.7) in (5.6) yields the following minimization problem:

min hH(ω)Ŝ(ω)h(ω) , subject to hH(ω) · a(ω) = 1
h(ω)

(5.9)

where:

Ŝ(ω) , R̂− Y (ω) · Y H(ω) (5.10)

and R̂ is the sample-covariance matrix:

R̂ , 1

L

L−1∑

l=0

y
l
· yH

l
(5.11)
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This problem is also known as the problem of finding a minimum-variance distor-

tionless response beamformer [34]. The solution to this minimization problem is

achieved by using Lagrange multipliers [35], and is given by:

h(ω) =
Ŝ−1 (ω) · a (ω)

aH (ω) · Ŝ−1 (ω) · a (ω)
(5.12)

5.1.2 Maximum-Likelihood Estimator Interpretation

The APES algorithm can also be explained from another point of view, as an

algorithm that mimics a maximum-likelihood (ML) estimator.

Using the same value of M , we return to (5.3) where we assume that {el(ω)}L−1
l=0

are zero-mean circularly symmetric complex Gaussian random vectors that are

statistically independent of each other and that have the same unknown covariance

matrix:

E[ei(ω) · eH
j (ω)] = Q(ω) · δ[i, j] (5.13)

where E[·] denotes the expectation and δ[i, j] is the kronecker delta. Note that

since these vectors contain overlapping data, they are obviously not statistically

independent of each other, hence APES is not an exact ML estimator, but only

an approximate one.

Under these assumptions, and also using (5.3), we can determine the ML esti-

mator of the {y
l
}L−1

l=0 vectors as:

max log
(
Pr

{
{y

l
}L−1

l=0 |α(ω),Q(ω)
})

Q(ω),α(ω)

(5.14)

where the expression of the conditional probability is of L uncorrelated random

gaussian vectors of length M . By using the normalized log-likelihood function of
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these vectors, the following ML criterion can be written:

max − ln |Q(ω)| − 1

L

L−1∑

l=0

[
y

l
− α(ω) · a(ω) · ejωl

]H

·Q−1(ω)
[
y

l
− α(ω) · a(ω) · ejωl

]

Q(ω),α(ω)

(5.15)

Maximizing this criterion with respect to Q(ω) yields that the ML estimate of α(ω)

can be obtained by minimizing the following cost function:

F =
∣∣∣Q̂ML(ω)

∣∣∣ =

∣∣∣∣∣
1

L

L−1∑

l=0

[y
l
− α(ω) · a(ω) · ejωl] · [y

l
− α(ω) · a(ω) · ejωl]H

∣∣∣∣∣ (5.16)

Minimizing this cost function with respect to α(ω) yields:

α̂(ω) =
aH (ω) · Ŝ−1 (ω) · Y (ω)

aH (ω) · Ŝ−1 (ω) · a(ω)
, (5.17)

which is same as the solution given by (5.7), where a(ω), Y (ω) and Ŝ(ω) are all

defined in the previous sub-section.

5.2 The GAPES Reconstruction Algorithm

This section contains a description of the GAPES algorithm according to [8,

31], and explains its connection to APES. Then, we give an example to GAPES

performance in the MDCT and DSTFT domain, using the numerical example given

in Chapter 4.
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5.2.1 Description of GAPES

Let {xn}P−1
n=0 ∈ CP denote again a discrete-time data sequence of length P , only

this time some of the samples are missing. Let xm denote the vector of Pm missing

samples and xa the vector of Pa = P − Pm available samples.

By adapting the spectral estimation problem using the filter-bank approach de-

scribed in section 5.1.1, to the case of missing data, we reconstruct the missing data

assuming that it has the same spectral content as the available data surrounding

it. The problem can be described by the following minimization problem:

min
K−1∑

k=0

L−1∑

l=0

|hH(ωk) · y(l)− α(ωk) · ejωkl|2

xm,{h(ωk),α(ωk)}K−1
k=0

(5.18)

,subject to hH(ωk) · a(ωk) = 1

where {ωk}K−1
k=0 is a pre-defined frequency grid.

The GAPES algorithm suggests an iterative solution to the problem above,

where each iteration contains two main steps:

1. Estimate the spectral parameters {h(ω), α(ω)} for a pre-defined frequency

grid {ωk}K−1
k=0 , based both on the available samples and the on estimated

samples from the previous iteration, using the APES algorithm (the first

initiation of the lost samples will be described in the sequel). At the end of

this step we have the set {h(ωk), α(ωk)}K−1
k=0 .

2. Reconstruct the missing samples so that their spectral content will approx-

imate the estimated spectrum, described by {h(ωk), α(ωk)}K−1
k=0 , in the LS

sense. xm is determined by requiring that the output signal, resulting from
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filtering the complete data sequence (built from both available and estimated

samples) with each of the filters h(ωk), will be as close as possible (in the

least-squares sense) to a sine with a complex amplitude equal to α(ωk).

Since the first step (using APES) is already described in the previous section, we

continue with the description of the second step:

The expression in (5.18) can be written using matrices in the following way:

min
K−1∑

k=0

|Hk · x− α(ωk) · bk|2 , subject to hH(ωk) · a(ωk) = 1

xm,{h(ωk),α(ωk)}K−1
k=0

(5.19)

where x ∈ CP×1 is the vector containing all the samples (available and missing),

bk , [1, ejωk , . . . , ej(L−1)ωk ]T ∈ CL×1, and:

Hk ,




hH (ωk)
hH (ωk)

hH (ωk)
. . .

hH (ωk)



∈ CL×P (5.20)

Let’s define the matrices Ak and Bk from Hk via the following equation:

Hk · x = Ak · xa + Bk · xm (5.21)

where Ak ∈ CL×Pa and Bk ∈ CL×Pm .

Using these notations, (5.19) becomes:

min
K−1∑

k=0

|Bk · xu − (α(ωk) · bk −Ak · xa) |2

xm,{h(ωk),α(ωk)} ,subject to hH(ωk) · a(ωk) = 1

(5.22)
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Minimizing it with respect to xm gives:

x̂m =

(
K−1∑

k=0

BH
k ·Bk

)−1

·
(

K−1∑

k=0

(
BH

k α (ωk) bk −BH
k Akxa

)
)

(5.23)

Finally, regarding the first iteration:

Two options are suggested in [8], depending on the number and pattern of the

missing samples in the data sequence. The first option is to assume that all the

missing samples have zero values. The second option, which according to our

simulations performs better, suggests ’ignoring’, during the first iteration only, the

y
l
vectors that contain one or more missing samples. These vectors are ’ignored’

by simply replacing them with zero vectors and by dividing the sums that appear

in (5.12) and in (5.11) by L′ instead of L, where L′ ≤ L is the number of y
l

containing only available samples (i.e., the ones that weren’t ignored). Note that

this initialization dictates that for some loss patterns, all (or almost all) of the y
l

vectors will be replaced by zero vectors, which makes the estimation useless and

unstable.

This is the reason why we say that GAPES is more limited than MAPES-CM when

it comes to dealing with various loss patterns.

5.2.2 Comparing GAPES’s Performance in Different Do-

mains

On simple signals, such as single sinusoids, using GAPES in both the MDCT and

the DSTFT domains show good results. However, there are some cases, where the

advantages of the DSTFT domain, as were described in section 4.2, make a big

difference.
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Figure 5.1-5.2 shows such a case: we use the same numerical example presented

in section 4.2. The signal was divided to 20 frames, that represent 50% overlapping

segments of 36 samples each. The frames were transformed to the MDCT domain

and to the DSTFT domain. For each domain, 6 frames were considered missing and

then reconstructed by applying GAPES separately on each frequency bin. Then,

the waveform was restored by transforming each frame back to the time domain

and using overlap and add.
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Figure 5.1: GAPES in MDCT vs. GAPES in DSTFT: Example 1: Frames 10-15

are missing. The estimated signal is marked by a dotted line.

Figure 5.1 presents the estimation results when frames 10 to 15 are missing.

Figure 5.2 shows the case were frames 3-6 and 15-16 are missing. For reference,

applying the same two examples on a simple signal containing only one of the

sinusoids (K0 = 5, ∆0 = 0.15 and φ0 = 0.7) gives good results in both domains.

This case is presented in figure 5.3.
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Figure 5.2: GAPES in MDCT vs. GAPES in DSTFT: Example 2: Frames 3-6 and

15-16 are missing. The estimated signal is marked by a dotted line.

5.3 The MAPES-CM Reconstruction Algorithm

Three versions of the MAPES algorithm are described in the literature: MAPES-

EM1,2 (Expectation Maximization) [36] and MAPES-CM (Cyclic Maximization)

[9]. As in the GAPES algorithm, these three algorithms are designed for spectral

estimation of a sequence with missing data, only that these algorithms are derived

from the APES algorithm using the maximum-likelihood (ML) interpretation, as

described in sub-section 5.1.2. However, among these three MAPES algorithms,

only MAPES-CM reconstructs the missing samples as part of the spectral estima-

tion process (as GAPES does) and hence is more suitable for our needs.

The spectral estimation problem is adapted again to the case of a discrete-time

sequence with missing samples, as was described in the previous section, only this

time using the ML estimator approach. Using this direction, we obtain an extended
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Figure 5.3: GAPES in MDCT vs. GAPES in DSTFT, this time with a signal

containing a single sinusoid.

version of the ML criterion that was presented in (5.15):

max
K−1∑

k=0





− ln |Q(ωk)|

− 1
L

L−1∑

l=0

[
y

l
− α(ωk)a(ωk)e

jωkl
]H

Q−1(ωk)
[
y

l
− α(ωk)a(ωk)e

jωkl
]





xm,
{Q(ωk),α(ωk)}K−1

k=0

(5.24)

Similar to GAPES, the MAPES-CM algorithm suggests an iterative solution to

the problem above, where each iteration contains two main steps:
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1. Estimate the spectral parameters {Q(ω), α(ω)} for a pre-defined frequency

grid {ωk}K−1
k=0 , based both on the available samples and the on estimated

samples from the previous iteration, using the APES algorithm (the values

of the missing samples are set to zero before the first iteration). At the end

of this step we have the set {Q(ωk), α(ωk)}K−1
k=0 .

2. Reconstruct the missing samples so that they will comply with the max-

imum likelihood criterion, assuming that the set of spectral parameters,

{Q(ω), α(ω)}K−1
k=0 , is available.

Again, since the first step is already described in section 5.1, only the second

step is described here:

The expression in (5.24) can be written using matrices in the following way:

max
K−1∑

k=0




− ln |Dk|

− 1
L

[
ỹ − α(ωk)ρ(ωk)

]H
D−1

k

[
ỹ − α(ωk)ρ(ωk)

]





xm,
{Q(ωk),α(ωk)}K−1

k=0

(5.25)

where ỹ is an LM × 1 column-stack vector obtained by concatenating all the data

snapshots, {y
l
}L−1

l=0 :

ỹ ,




y
0

y
1
...

y
L−1


 ∈ C

LM×1 (5.26)

and:
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Dk ,




Q (ωk)
Q (ωk)

Q (ωk)
. . .

Q (ωk))



∈ CLM×LM (5.27)

ρ(ωk) ,




a (ωk)
ejωka (ωk)

...
ej(L−1)ωka (ωk)


 ∈ C

LM×1 (5.28)

Assuming that the set of spectral parameters, {Q(ωk), α(ωk)}K−1
k=0 , is available, the

criterion in (5.25) can be re-written as:

min
K−1∑

k=0

{[
ỹ − α(ωk)ρ(ωk)

]H
D−1

k

[
ỹ − α(ωk)ρ(ωk)

]}

xm

(5.29)

Since the data snapshots {y
l
}L−1

l=0 overlap, a single sample might appear in ỹ more

than once. The locations of each sample’s instances in ỹ can be described by the

following equation:

ỹ = Sa · xa + Sm · xm (5.30)

where Sa ∈ {0, 1}LM×Pa and Sm ∈ {0, 1}LM×Pm are the corresponding selection

matrices for the available and missing data vectors, respectively.

Using these notations, (5.29) becomes:

min
K−1∑

k=0

{[
Sm · xm − (α(ωk)ρ(ωk)− Sa · xa)

]H
D−1

k

[
Sm · xm − (α(ωk)ρ(ωk)− Sa · xa)

]}

xm

(5.31)
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Note that this expression has a structure similar to (5.22), which was received in

the GAPES development, only here we have also a weight matrix.

Minimizing it with respect to xm gives:

x̂m = [ST
mDsSm]−1 · [ST

mDv − ST
mDsSaxa] (5.32)

where:

Ds ,
K−1∑

k=0

D−1
k (5.33)

Dv ,
K−1∑

k=0

D−1
k α(ωk)ρ(ωk) (5.34)

5.4 Comparing GAPES and MAPES-CM

The two algorithms are compared according to three categories: capabilities, com-

plexity and performance. The next sub-sections describe each category, where the

performance are demonstrated using the numerical example from Chapter 4.

5.4.1 Capabilities

The two algorithms are both iterative algorithms, derived from the APES algorithm

and both of them use this algorithm as the first step of each iteration.

According to [36], since GAPES is an adaptive-filtering based method, it can

deal much better with consecutively lost samples (i.e., gaps) than with scattered

losses. MAPES-CM, on the other hand, should work well for both gaps and arbi-

trary loss patterns.
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5.4.2 Complexity

The complexity was calculated according to our C implementation of both GAPES

and MAPES-CM algorithms, where in the case of MAPES-CM, several of the al-

gorithm’s steps were efficiently implemented.

For example, by using D−1
k = IL×L ⊗Q (ωk)

−1 it turns out that we can invert an

M ×M matrix instead of an LM × LM matrix. Q (ωk)
−1 is obtained using the

matrix inversion lemma [37] which leaves the algorithm with the need to invert

only the M ×M sample-covariance matrix, R, once every iteration (this lemma is

applied in a similar way also in the GAPES implementation). Also, multiplying

Sm and Sa matrices by other matrices is implemented using only additions, since

these matrices contain only zero and one values.

We refer here to the complexity per a steady-state iteration (i.e., not the first

iteration), assuming the samples are real-valued:

GAPES takes a total of

M2L + M3 + M(K · log[K]) + K(4M2 + 20M + 12 + 2LP + 2LPm + 4LP 2
m + 4L) +

4P 3
m + 4P 2

m multiplications and 2K complex divisions per iteration.

MAPES-CM takes a total of

M2L+M3 +M(K · log[K])+K(22M2 +20M +12+4LM)+2LMPm +4P 3
m +4P 2

m

multiplications and 3K complex divisions per iteration.

To refresh one’s memory: P is the length of the data-sequence, containing both

available and missing samples, where Pm is the number of missing samples. K is

the size of the frequency grid which is used for the spectral estimation, and the

data-sequence is partitioned into L = P −M +1 overlapping data snapshots, each

containing M samples, as explained in sub-section 5.1.1.
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From these expressions it is hard to determine which algorithm is more compli-

cated, and indeed it depends on the values of the different parameters mentioned

above. Let’s take a typical case of our application as an example, where: K = P ,

M = P
4
, hence L ' 3

4
P . In this case, by comparing the number of multiplications

per iteration that GAPES requires to the number required by MAPES-CM, we

get:
GAPES

MAPES−CM
' 29P + 48P 2

m

35P + 6Pm

So, for example, for P = 16 and Pm = 4, GAPES requires twice the number

of multiplications that MAPES-CM requires. The differences become smaller as

Pm << P .

5.4.3 Performance

Our simulations show that in the simple cases, where the missing samples are

surrounded by plenty of available samples, both algorithms perform well. However,

since our application can tolerate only short segments of data (since long segments

require a lot of storing space and/or a large delay in the system) we needed to test

it under more difficult conditions.

Presented here are results of two simulations, comparing GAPES and MAPES-

CM reconstruction capabilities: We use the same signal as in section 4.2 (the one

presented in figures 4.3-4.5), containing two sinusoids at close frequencies, this

time coded in MP3 format. After going through a channel, with simulated packet-

losses, the received MP3 file is decoded and the lost segments are reconstructed

in the DSTFT domain, using the proposed concealment algorithm, as described in

the next chapter (Chapter 6). The reconstruction was done twice: once by using

GAPES and then by using MAPES-CM, in order to compare between them. The
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figures show the reconstruction results in the MDCT domain, at bin No. 5 (which

was also taken as an example in section 4.2).

Figure 5.4 shows a case where 3 consecutive packets (i.e., 6 consecutive MDCT

frames) are missing. The estimation is based on a data sequence of length P = 18.

The filter’s length is M = 5. Here GAPES is used with its special initialization. As

can be seen, MAPES-CM achieves better estimation results in this case, although

GAPES had a better starting position (the result of the first iteration was closer

to the target signal). The MSE for GAPES is 5.77 · 10−4 and for MAPES-CM it is

9.66 · 10−5.

Figure 5.5 shows a different case, where there are 3 short and very close gaps. The

estimation is based on a data sequence of length P = 22. In this case, GAPES

cannot use its special initialization to handle this loss pattern and is forced to

use simple zero substitution instead (as MAPES-CM uses). Again, MAPES-CM

converges closer to the right values than GAPES does. The MSE for GAPES is

2.02 · 10−4 and for MAPES-CM it is 6.41 · 10−5.

It’s important to note that although these results agree with previously reported

ones [36, 9] (although, without a direct comparison between GAPES and MAPES-

CM). However, the results of our subjective tests (reported in Chapter 7) show that

by dividing the concealment process into several sessions (as described in section

6.2.1), corresponding to loss patterns that GAPES can handle, and using its special

initialization (see section 5.2.1), GAPES’s average performances are slightly better

than those of MAPES-CM, where the differences become smaller as the loss rate

increases.
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Figure 5.4: MAPES vs. GAPES, Example 1: Samples No. 8-13 are missing.
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Chapter 6

Proposed Packet Loss

Concealment Algorithm

This chapter describes the proposed algorithm for packet loss interpolation in the

DSTFT domain. We describe here two versions of the algorithm that are based on

the two reconstruction algorithms: GAPES and MAPES-CM, that were introduced

in Chapter 5. Also, the possibility of using a similar algorithm in the MDCT

domain is explored. The chapter is organized as follows: The first section describes

a procedure that was developed in this work, and that is part of the algorithm, for

efficiently converting data from the MDCT domain to the DSTFT domain, and

vise versa. The Second section describes the algorithm and the location of the

concealment block within the MPEG decoder.

6.1 Converting Data from the MDCT to the DSTFT

and Vice Versa

In this work we chose to use interpolation in the DSTFT domain. In order to

convert the data from MPEG’s compression domain to the concealment domain,

we developed expressions for direct conversion from MDCT to DSTFT, and vice

74
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versa. The conversion procedure is presented here, while the full mathematical

development can be found in Appendix B.

As was mentioned in section 4.1, the conversion uses the same time-segments

originally used by the MDCT, each of length 2N samples with 50% overlap between

consecutive segments. Since applying a strait-forward DFT on the signal (i.e., using

a rectangular window function) introduces boundary effects, it is better to multiply

the signal by a window function that will attenuate the edges of the segment prior

to applying the DFT. In general, the only requirement of such a window function

is that it has to be a symmetric window that has two halves that complement

each other to the value of 1. This requirement arises from the need to make the

conversion reversible, i.e., to allow for perfect reconstruction of the signal after

the inverse-DFT using an OLA procedure. Our implementation uses a symmetric

(even length) Hann window:

w[n] = sin2
(

π
2N

(
n + 1

2

))
, 0 ≤ n ≤ 2N − 1 (6.1)

As Fig. 4.1 showed, a reconstruction of a single whole segment of 2N samples

requires 3 consecutive MDCT blocks. Only then can we apply a DSTFT on this

segment. The conversion back from the DSTFT domain to the MDCT domain

requires an OLA procedure in a similar manner. Since the MPEG standard defines

4 possible window types to be used during the MDCT, and considering the allowed

ordering of the windows, we could theoretically have 12 different expressions for the

conversion of 3 consecutive MDCT segments into one DSTFT segment. But, after

changing the order of summations and applying some algebraic manipulations, all

these expressions converge into one general structure. The same happens in the

conversion of DSTFT segments back to the MDCT domain.

The expressions for both conversion directions use four functions: g1
d, g1

r , g2
d
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and g2
r , which we refer to as ”building-block” functions: Each of these functions

is chosen among 3 possible complex functions, according to the window type of

the segment that we wish to convert and on the window types of the neighboring

segments. These functions are based on the 3 half-window units that form the

MP3 window types (presented in Fig. 3.8) and in total there are 12 such possible

functions. The assignment of the ”building-block” functions for the different cases

in the direct and reversed conversions respectively, is given in Table 6.1 and 6.2,

and the functions themselves are described in section 6.1.1.

The general expression for the conversion from the MDCT domain to the

DSTFT domain is:

XDSTFT
(p) [m] =

N−1∑

k=0

XMDCT
(p) [k] · (g1

d[m, k] + (−1)m · g2
r [m, k])

+
N−1∑

k=0

XMDCT
(p−1) [k] · g2

d[m, k] (6.2)

+
N−1∑

k=0

XMDCT
(p+1) [k] · ((−1)m · g1

r [m, k]) , 0 ≤ m ≤ N

Where p ∈ Z is the current block time-index, and (p − 1),p,(p + 1) denote 3

consecutive MDCT blocks. Since the DSTFT is performed on a 2N real-valued

sequence, the output is conjugate-symmetric in the frequency domain. Therefore,

it suffices to calculate only the first half of the output, as done in (6.2).

In a similar manner, the conversion from the DSTFT domain back into the

MDCT domain can also be expressed as a general expression of a sum of products,

while in this case we need to calculate only the real part of the result, since the

MDCT coefficients are real-valued. The expression is given below, where * denotes
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a complex-conjugate value, and Nblock is the length of the MDCT that is applied

on the frame (i.e., N in the case of long windows (types 0,1 and 3) and Ns = N
3

in

the case of a short window (type 2)).

XMDCT
(p) [k] =

1

N ·Nblock

2N−1∑
m=0

XDSTFT
(p) [m] · ((g1

d[m, k]∗ + g1
r [m, k]∗) + (−1)m · (g2

d[m, k]∗ + g2
r [m, k]∗))

+
1

N ·Nblock

2N−1∑
m=0

XDSTFT
(p−1) [m] · (−1)m · (g1

d[m, k]∗ + g1
r [m, k]∗) (6.3)

+
1

N ·Nblock

2N−1∑
m=0

XDSTFT
(p+1) [m] · (g2

d[m, k]∗ + g2
r [m, k]∗) , 0 ≤ k ≤ N − 1

Table 6.1: Function assignment for the direct conversion

PPPPPPPPPWindow type

Function
g1

d[m, k] g1
r [m, k] g2

d[m, k] g2
r [m, k]

Long g1
d long g1

r long g2
d long g2

r long

Start g1
d long g1

r short g2
d long g2

r short2long

Short g1
d short

Next window is Stop: Previous window is Start:

g2
r short

g1
r short2long g2

d short2long

Next window is Short: Previous window is Short:

g1
r short g2

d short

Stop g1
d short2long g1

r long g2
d short g2

r long

The fact that there is one general expression for each direction of the conversion

can be used to create an efficient procedure to convert between the two domains:

Each general expression can be optimized into an efficient computer-function, while

the ”building-block” functions can be calculated and stored off-line. The same 12

”building-block” functions are used for both conversion directions. Each function

can be represented by 2N2 real values that need to be calculated off-line and stored.
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Table 6.2: Function assignment for the reverse conversion

PPPPPPPPPWindow type

Function
g1

d[m, k] g1
r [m, k] g2

d[m, k] g2
r [m, k] Nblock

Long g1
d long g1

r long g2
d long g2

r long N
Start g1

d long g1
r long g2

d short2long g2
r short2long N

Short g1
d short g1

r short g2
d short g2

r short Ns = N
3

Stop g1
d short2long g1

r short2long g2
d long g2

r long N

6.1.1 The ”Building-Block” Functions

Introduced here are the expressions for some of the functions that were mentioned

in section 6.1 as the ”building-block” functions for the direct and reverse conver-

sions, where 0 ≤ m ≤ N and 0 ≤ k ≤ N − 1. The rest of the functions and the

full mathematical development can be found in Appendix B.

g1
d long[m, k] =

N−1∑
n=0

cos
[

π
N
· (n + N+1

2

) · (k + 1
2

)]·hlong[n]·w[n]·e−j π
N

nm (6.4)

g1
r long[m, k] = (6.5)

N−1∑
n=0

cos
[

π
N
· (n + N+1

2

) · (k + 1
2

)] · hlong[n] · w[N − n− 1] · e−j π
N

nm

g2
d long[m, k] = (6.6)

N−1∑
n=0

cos
[

π
N
· (n + N + N+1

2

) · (k + 1
2

)] · hlong[N − n− 1] · w[n] · e−j π
N

nm

g2
d long[m, k] = (6.7)

N−1∑
n=0

cos
[

π
N
· (n + N + N+1

2

) · (k + 1
2

)] · hlong[N − n− 1] · w[N − n− 1] · e−j π
N

nm
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g1
d/r short2long[m, k] and g2

d/r short2long[m, k] are the same as the functions g1
d/r long[m, k]

and g2
d/r long[m, k], respectively, except that they use the window function hshort2long

instead of hlong. The expression for g1
d/r short[m, k] and g2

d/r short[m, k] are more cum-

bersome and are therefore given in appendix B.

6.1.2 Complexity Comparison

Besides the benefit of having a single expression instead of 12 for each conversion

direction, our conversion scheme is also more efficient than the traditional proce-

dure of using inverse-MDCT, OLA, and only then applying a DFT on the restored

samples. Table 6.3 compares the complexity of each procedure. This calculation

takes into account that fast fourier transform (FFT) could not have been applied,

since the length of the DFT segments is not an integer power of 2. The table

shows that our conversion is more efficient than the traditional conversion: From

the MDCT domain to the DSTFT our procedure requires 1.6 times less the number

of multiplications required by the traditional procedure, and from the DSTFT to

the MDCT it requires 3.5 times less, so in total we have a factor of around 5 less.

Table 6.3: Comparing the complexity of conversion schemes

Efficient Conversion Traditional Conversion
Mults Adds Mults Adds

MDCT to DSTFT 6N2 8N2 10N2 10N2

DSTFT to MDCT 8N2 20N2 28N2 26N2

6.2 The Concealment Algorithm

As was already mentioned, this work focuses on a receiver-based solution. Hence,

the concealment algorithm is applied during the decoding process and uses only
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data available at the receiver. Figure 6.1 shows the block diagram of an MP3

decoder, after adding the concealment block. In the decoder, every new MP3

packet is decoded up to the MDCT level (i.e., de-quantized) resulting in two MDCT

frames.

 

De-
quantization  

MP3 
Bitstream 

MDCT frame 

Audio 
samples 
ready to  
be played 

      

A Buffer of P MDCT frames 

n n-1 … …   n - 
(P-1) 

… (576 MDCT 
Coefficients) 
 

Continue MP3 
decoding 
process 

MDCT  
frame 

(576 MDCT 
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from buffer 
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Estimate lost frame from 
neighboring frames using a 
reconstruction algorithm 
(GAPES or MAPES-CM) 

Concealment Block 

MDCT frame 
 (576 MDCT 

Coefficients) 

Figure 6.1: A diagram of the proposed decoding process that includes a conceal-

ment block

The P most recent MDCT frames are stored in a buffer, indexed from 0 to P−1.

Their associated data (i.e., each frame’s window type) is also stored separately. If

a packet is lost, the corresponding MDCT values are set to zero and a flag is

raised, indicating that this frame is actually missing. The window type of each

of the missing frames is determined so that they comply with the window types

of neighboring frames (as described in section 4.1). Then, the next frame to be

played (according to the system’s delay, if such delay exists) is copied from the

buffer and decoded into waveform samples. In the case where that particular frame

is actually a missing frame, we estimate its MDCT coefficients before continuing

with the decoding process. Due to packet loss, several MDCT frames in the buffer
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may be missing, so in order to save the computational overhead that results from

activating the concealment block for each missing frame separately, usually several

missing frames are concealed together. Hence, we refer to a concealment of one or

more MDCT frames at once as a concealment session.

Figure 6.2 shows an example to the process that takes place in a concealment

session: In this example, 2 MDCT frames are missing in the buffer. The MDCT

frames in the buffer are converted to the DSTFT domain, where the data along the

time axis at each frequency bin is considered as an independent complex signal,

and a single iteration of the reconstruction algorithm is applied separately on each

of these signals. After that, the data is converted back to the MDCT domain and

then back again to the DSTFT domain, in order to merge the estimated MDCT

frames with the available ones, using the OLA procedure that is incorporated in

the conversion expressions. The process above is iterated until the difference be-

tween two consecutive reconstructions is sufficiently small. The estimated MDCT

coefficients replace the coefficients of the lost frame and the MP3 decoding process

continues.

It has already been mentioned in the previous section that in order to convert

an MDCT frame into the DSTFT domain we need to have both the previous

and the next MDCT frames, and in order to convert that DSTFT frame back to

the MDCT domain we need the next DSTFT frame too. This implies that the

algorithm has to maintain a delay of at least two MDCT frames at all times, i.e.,

at least one MP3 packet. Adding more delay is not necessary, but can improve the

performance of the reconstruction algorithms, since the estimation of the lost data

will then be based on data both from the past and the future. The extra delay will

not have much significance to the listener, since adding delay of a few packets will

only postpone the beginning of the whole streaming session by less than a second.
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Figure 6.2: The flow of the proposed algorithm for estimating lost MDCT frames
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The buffer of length P , which holds the most recent MDCT frames, should

not be too short, so there is enough data for the estimation, and too long either,

since as the buffer grows longer, the frames at both ends will have less correlation

with the missing frames around the middle, and hence it will be less effective to

include them in the estimation. In the case of MP3, each MDCT frame contains

576 MDCT coefficients: N = 18 coefficients for each of the 32 uniform sub-bands.

Hence, this buffer can be viewed as a real-valued matrix of 576 rows and P columns

(as shown in Figure 6.2).

Let’s assume that there are Pm ≤ P missing frames in the buffer in some general

loss pattern. Since we are dealing with a streaming application, we can assume that

by the time we need to conceal a lost frame, all the frames prior to it had already

been reconstructed, and therefore they are considered as part of the available data.

As was already mentioned, concealing more than one frame at a time can reduce

the computational overhead of the whole concealment process. We can either

choose to conceal all the missing frames in the buffer in one concealing session, or

a smaller number according to a certain heuristic criterion: for example, lost frames

that are gathered closely together will be concealed in one concealing session and

distant frames will be concealed in separate sessions. The issue of choosing the

number of frames to be concealed in one concealing session also depends on the

reconstruction algorithm that is used, since as was stated in chapter 5, GAPES

can successfully deal with fewer loss-patterns than MAPES-CM can. Therefore,

when using GAPES, it is sometimes better to restrict the concealing session to a

selected area inside the buffer which contains a loss pattern that GAPES can deal

with by applying its special initialization. This option is discussed in section 6.2.1.

Currently, for simplicity, let us assume that all the missing frames in the buffer are

concealed in the same concealing session, based on all the available frames in the
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buffer. Since each MP3 packet contains 2 MDCT frames, one concealment session

always contains at least 2 concealed frames (i.e., 2 ≤ Pm < P ).

In the first stage of the algorithm, all the MDCT frames in the buffer are

converted to the DSTFT domain, since all of them participate in the reconstruction.

The conversion is done separately for each of the 32 sub-bands, and after the

conversion is completed we have a complex-valued matrix of (P − 2) columns and

36 · 32 rows of DSTFT coefficients: 2N = 36 coefficients for each of the 32 uniform

sub-bands. The DSTFT frames are indexed from 1 to (P − 2). Since the DSTFT

coefficients of each transform are conjugate-symmetric it is enough to store only

19 (0 to N) coefficients of each sub-band, i.e., the matrix can be downsized into

19 · 32 rows.

At this point, each row in the DSTFT matrix, that represents the DSTFT

coefficients at some fixed frequency bin along the time axis, is considered as an

independent complex signal with missing samples. The missing samples of each

row vector are estimated from the available samples by applying a single iteration

of the GAPES or MAPES-CM algorithm, as described in sections 5.2 and 5.3,

respectively. Note that the locations of the missing samples in the vector are

actually the indices of the missing MDCT frames in the buffer, since every sample

in the row vector corresponds to a single MDCT frame in the buffer. However,

due to the fact that the DSTFT frames closest to the lost frames contain aliasing

(as was explained in section 4.1) one might consider to treat these frames too as

missing data during the first iteration, although this creates a wider gap which is

more difficult to handle. Our simulations show that in the case of MAPES-CM

this procedure gives a better starting point to the following iterations and therefore

better results.

After a single iteration of the reconstruction algorithm is applied on each of



6. Proposed Packet Loss Concealment Algorithm 85

the DSTFT matrix’s row vectors, we have an estimate of the DSTFT coefficients

of the missing frames. Since each DSTFT frame represents data from overlapping

segments, we need to merge the data from consecutive frames. The merging process

achieves two goals: First, by merging the data we get a smoother waveform that

sounds better. Second, we can use the merging process to improve the estimation:

re-calculating the lost DSTFT frames using the information stored in the available

MDCT frames that are closest to the loss will give a better basis for the next

iteration, and in addition, the estimated MDCT frames along with the available

MDCT frames can be used for reducing the aliasing in the DSTFT frames closest

to the loss by re-calculating them too. In our scheme, this merging is achieved

by converting the estimated DSTFT frames back to the MDCT domain, and then

re-calculating the lost DSTFT frames and their nearest neighbors by converting

the corresponding MDCT frames back to the DSTFT domain. It is important to

note, though, that in order to merge the data, one doesn’t have to go as far as to

the MDCT domain, but may perform it directly in the time domain. The benefit

of using conversion to and from the time domain would be simpler conversion

schemes (only DFT and inverse DFT). The limitation of such a conversion would

be the need for more memory space, and more data structures in order to hold the

time-samples of the frames that require merging.

The final stage of the algorithm is to decide whether the estimation is good

enough. As a stopping criterion for the concealment algorithm, we use a threshold

over the average squared difference per sub-band, as defined in (6.8). This ratio is

calculated over all rows in the DSTFT matrix corresponding to a sub-band (each

sub-band contains 19 rows):

Dsb =
1

19

19∑
i=0

(
1

S

∑
j∈S

∣∣x̂NEW
i,j − x̂OLD

i,j

∣∣2
∣∣x̂OLD

i,j

∣∣2
)

(6.8)
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Where 0 ≤ sb ≤ 31, S is the set of indices of the Pm lost MDCT frames that

are concealed in this session: |S| = Pm and x̂i,j are the reconstructed DSTFT

coefficients. Dsb is compared to a pre-defined threshold. If it is smaller than the

threshold, then the estimation is sufficiently good, so we can stop the reconstruc-

tion of this sub-band at this point and continue with the MP3 decoding process. If

it is larger than the threshold, then we apply another iteration on this sub-band,

as shown in Figure 6.2. In addition, it is recommended to limit the number of

iterations in order to deal with cases where the convergence is very slow, or where

the average difference values are ”stuck” in a limit cycle.

To conclude, we can describe the algorithm in 5 main steps, applied to each

sub-band of the uniform filter-bank:

1. Initialization:

- Store zero values in place of each lost MDCT frame.

- Determine the parameters for the next concealment session: P , the

length of buffer section, Pm, the number of frames to be reconstructed

and M (See explanation in section 6.2.1).

- Convert the MDCT buffer to the DSTFT domain (as described in sec-

tion 6.1).

2. Estimate the DSTFT coefficients of the lost frames:

- Treat each sequence of DSTFT coefficients at a certain frequency bin,

along the time axis, as a complex signal with missing samples.

- Estimate the lost samples by applying a single iteration of the recon-

struction algorithm (GAPES or MAPES-CM) on each sequence (as de-
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scribed in chapter 5).

3. Reconstruct the values of the lost MDCT frames:

Convert the corresponding DSTFT frames into the MDCT domain (as de-

scribed in section 6.1).

4. Re-calculate the values in the DSTFT domain:

Re-calculate the values of the lost frames and their closest neighbors by con-

verting the corresponding MDCT frames to the DSTFT domain (as described

in section 6.1).

5. Check the stopping criterion, per sub-band (according to (6.8)):

If it is satisfied, stop the algorithm for this sub-band and use the MDCT

frames that were obtained last. If not, return to (2) for another iteration.

6.2.1 The Differences Between Using GAPES and MAPES-

CM

As was already mentioned, the algorithm can be activated using either the GAPES

or the MAPES-CM reconstruction algorithms. Since both algorithms use APES

as the first step of each iteration all that needs to be done is to apply the second

step according to the desired algorithm, as described in sections 5.2-5.3.

However, as explained in the end of section 5.2.1, GAPES performs better with

a special initialization that can’t fit any loss pattern (as opposed to MAPES-CM,

where the lost samples are simply set to zero before the first iteration). Hence, in

case that GAPES is the chosen reconstruction algorithm, our solution is to divide

the concealment process into several sessions, where in each session the parameters:

P , Pm, and M , are redefined to contain only part of the loss, a part that GAPES
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can handle (the reminder of the lost will be concealed in the next session). This is

obtained by selecting a section in the original buffer that contains only part of the

missing samples and their closest neighbors and using it during the concealment

session. For example, let’s assume that we have a buffer of P = 16 frames, where

frames 7-8 and 13-16 are missing. Choosing a value of the filter length, M > 2,

results in a large number of zeroed y
l
vectors in comparison to the total number

of y
l

vectors (which is L = P − M + 1). For example, using M = 4 results

in 9 zeroed vectors out of 13! However, limiting the buffer to only the first 12

frames and estimating only 2 lost frames at once, instead of the whole 6, results

in 5 zeroed vectors out of 9, which is more balanced. I.e., the parameters of the

concealment session will be redefined to P = 12 and Pm = 2. This promises better

interpolation results, but requires more concealing sessions in order to conceal the

remaining frames.

6.2.2 Applying The Concealment Algorithm in the MDCT

Domain vs. The DSTFT Domain

Although this work describes an algorithm that is applied in the DSTFT domain, it

is important to note that we also considered applying the reconstruction algorithms

directly in the MDCT domain. The benefit of such configuration is that it requires

fewer calculations since there is no need to convert the data to any other domain,

and since the signal is real-valued. The limitations of this configuration, however,

are those mentioned in section 4.1: The problem of dealing with windows having

different resolutions, and the rapid sign changes. Our subjective tests, reported at

Chapter 7, showed that this configuration is inferior to the DSTFT configuration,

especially at high loss rates. Next, we compare the complexity of the algorithm

when it is implemented in the MDCT domain, versus its implementation in the
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DSTFT domain.

The first aspect is the effect of using complex signals in the DSTFT domain,

versus using real-valued signals in the MDCT domain. Using the parameters of

the proposed algorithm, i.e., P , Pm and M , where K = P and L = P −M + 1,

and by taking the same typical case from section 5.4.2 as an example, it turns

out that using GAPES with a complex signal costs around ' 1.24 times more

multiplications per iteration than using it with a real-valued signal. In the case of

MAPES, the ratio is complex
real

' 37P+12Pm

32P+6Pm
, which for typical parameter values is also

' 1.2.

The second aspect to be compared is the need to convert the data between the

two domains in the DSTFT implementation. This procedure is done once every

iteration and involves all the frequency bins inside a single sub-band (which in the

case of MP3 is N = 18). The conversion from MDCT to DSTFT requires 6N2

multiplications per sub-band, and the conversion from DSTFT to MDCT requires

8N2 multiplications per sub-band.

In total, we need to compare the two implementations by looking at a single

iteration applied on a whole sub-band:

The DSTFT implementation requires to convert the data to the DSTFT domain,

then to activate GAPES or MAPES-CM: on (N − 1) complex signals and 2 real-

valued signals (the DC coefficients), and last, to convert back to the MDCT domain.

DSTFT implementation ' 14N2 + (N − 1) · complex GAPES/MAPES

+2 · real GAPES/MAPES

' 14N2 + 1.2N · real GAPES/MAPES

On the other hand, using the algorithm in the MDCT domain is simply activating
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GAPES or MAPES-CM on N real-valued signals.

MDCT implementation ' N · real GAPES/MAPES

Taking into account that the complexity of both GAPES and MAPES-CM at our

typical parameter values is in the order of O(N3), the addition of 14N2 is not very

significant, and hence both implementations have similar complexity.



Chapter 7

Description and Analysis of

Concealment Results

To evaluate the quality of the proposed algorithm, we had to compare it with pre-

viously reported algorithms for packet loss concealment, designed for wide-band

audio signals encoded by an MPEG audio coder. In order to do so we considered

several measures, both objective and subjective. Since simple objective measures,

such as MSE (Mean Squared Error), do not reflect the sensation created in a hu-

man listener, we had to look for other alternatives. There exists an algorithm for

objective assessment of the perceptual quality of wide-band audio signals (PEAQ

- Perceptual Evaluation of Audio Quality [38]). However, after using it to test

our files we realized that PEAQ’s results didn’t correlate with the results of the

subjective tests and were in many cases inconsistent, especially at high loss rates.

The reason for this behavior is probably since the PEAQ algorithm, as other sim-

ilar standards such as PESQ (Perceptual Evaluation of Speech Quality [39]), is

incapable of accurately assessing the perceptual effect of artifacts caused by packet

loss and packet loss concealment applications. Specifically, the PEAQ standard is

based on the BS.1116 standard [40], which is designed for detecting small cod-

ing impairments and may produce inaccurate results when applied to signals with
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large and obvious impairments, such as in the case of high-rate packet loss. For this

reason, we finally chose to compare the different algorithms, using only subjective

listening tests, where the comparison is given in terms of listeners’ preference. The

first section of this chapter contains some details about the testing environment.

The results of the subjective tests are reported next, in section 2.

In addition, the third section compares the performance of the proposed algo-

rithm in different activation modes, i.e., using MAPES-CM as the reconstruction

algorithm versus using GAPES. Also, we examine the option of using the recon-

struction in the MDCT domain instead of in the DSTFT domain. Finally, we

conclude the chapter.

7.1 Testing Environment

The subjective tests were carried out by informal listening. All the participants are

inexperienced listeners with normal hearing and in the age range of 24-35 years.

Each of the listeners was asked to compare pairs of audio files, where the packet

losses in each file were concealed by a different method, and to decide which of the

two he, or she, prefers. The audio files that were used in the tests are specified

in Table 7.1. All the files are stereo signals ,15-17 seconds long each, sampled at

44.1 kHz and coded by the LAME MP3 [41] encoder at a bit-rate of 128 kbps per

channel. The methods were tested for 10%, 20% and 30% loss rates. The packet

losses were simulated using random patterns, with the largest possible gap allowed

being 3 packets.
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Table 7.1: Examined files

No. File Name Nature of Music

1 Beatles17.wav Pop music
2 Piano10.wav A single piano
3 Bream1.wav Guitar with violins
4 Jazz6.wav Jazz music
5 Flute2.wav Flute and piano

7.2 Comparing the Proposed Algorithm to Pre-

viously Reported Algorithms

16 listeners were asked to compare pairs of files, as described in the previous

section, where in this test we examine the performance of the proposed algorithm

versus previously reported works: packet repetition, suggested in the MP3 standard

[ [18], annex E], and statistical interpolation (SI), suggested in [6]. The results are

presented in Table 7.2, where in the first three tables the numbers for each pair

indicate how many listeners voted in favor of the method. The forth table presents

the overall distribution, averaged over all the files. The results clearly show that

the proposed algorithm performs better than the two previously reported methods.

Moreover, when compared to the uncorrupted signal (i.e., after conventional MP3

decoding) at 10% loss rate, the proposed solution performed so well, that some of

the listeners confused the concealed signal with the original one.

It is important to note that the SI method was extended in order to deal with

random loss patterns, so that when the conditions weren’t suitable for using the

original algorithm we used packet repetition instead. Also, in this test the proposed

algorithm was activated using the GAPES reconstruction algorithm.

The packet repetition method introduces no delay since the decoder simply

replaces a lost MDCT frame with the previous frame. In the proposed algorithm
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Table 7.2: Comparative test results of GAPES-in-DSTFT vs. Previously reported

works. The numbers indicate how many listeners voted in favor of each method.

Proposed Solution vs. Repetition
File No. 1 File No. 2 File No. 3 File No. 4 File No. 5

Loss
Rate

Proposed
Solution

Rep. Proposed
Solution

Rep. Proposed
Solution

Rep. Proposed
Solution

Rep. Proposed
Solution

Rep.

10% 14 2 15 1 16 0 10 6 16 0
20% 16 0 16 0 15 1 14 2 15 1
30% 16 0 15 1 12 4 14 2 14 2

Proposed Solution vs. SI
File No. 1 File No. 2 File No. 3 File No. 4 File No. 5

Loss
Rate

Proposed
Solution

SI Proposed
Solution

SI Proposed
Solution

SI Proposed
Solution

SI Proposed
Solution

SI

10% 16 0 16 0 15 1 15 1 16 0
20% 16 0 16 0 16 0 16 0 16 0
30% 16 0 16 0 14 2 16 0 16 0

Proposed Solution vs. Uncorrupted Original
File No. 1 File No. 2 File No. 3 File No. 4 File No. 5

Loss
Rate

Proposed
Solution

Original Proposed
Solution

Original Proposed
Solution

Original Proposed
Solution

Original Proposed
Solution

Original

10% 4 12 5 11 2 14 2 14 2 14

Distribution of votes
Proposed Solution vs. Repetition Proposed Solution vs. SI Proposed Solution vs.

Uncorrupted Original

Loss Rate Proposed Solution Repetition Proposed Solution SI Proposed Solution Original

10% 88.75% 11.25% 97.5% 2.5% 18.75% 81.25%
20% 95% 5% 100% 0%
30% 88.75% 11.25% 97.5% 2.5%

and in the SI method, a buffer of 9 MP3 packets, i.e., a buffer length of P = 18,

was used: 3 packets from the past, the current packet for decoding and 5 packets

from the future, creating a delay of about 130 msec at a sampling rate of 44.1 kHz.

Also, the stopping criteria threshold that was used in both methods was fixed to
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D(sb) = 10−2 (see (6.8)), and the number of iterations was limited to a maximum

of 6 iterations. The window function that was used for the DSTFT was an even

length Hann window that can be expressed as:

w[n] = sin2
(

π
2N

(
n + 1

2

))
, 0 ≤ n ≤ 2N − 1 (7.1)

which is equal to the square of the ’Long’ window type used in the MP3 standard.

7.3 Comparing Different Activation Modes of the

Proposed Algorithm

The first test reported in this section compares the performance of the proposed

scheme, when used in the MDCT domain, versus using it as described in chapter

6, in the DSTFT domain. This test was done using GAPES as the reconstruction

algorithm. 8 listeners were asked to compare pairs of files, each concealed by

a different method and to determine which of the two file versions sounds less

disturbing. The results are presented in Table 7.3 where in the first table the

numbers for each pair indicate how many listeners voted in favor of the method

and the second table shows the averaged distribution. The results show clearly

that the algorithm performs better in the DSTFT domain, especially at high loss

rates.

The next test compares the two possibilities of activating the proposed scheme,

using the two reconstruction algorithms that were described in chapter 5: GAPES

and MAPES-CM. Similar to the previous test, 8 listeners were asked to compare

pairs of files, each concealed using the proposed algorithm but with a different

reconstruction method. It is important to note that the listeners who participated

in this particular test reported that it was much harder than previous tests, since in

many of the cases the two files sounded very much the same. However, the results,
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presented in Table 7.4, show that in most cases GAPES performs slightly better

than MAPES-CM, where the differences become smaller as the loss rate increases.

Table 7.3: Comparative test results of using the algorithm in the MDCT domain

vs. using it in the DSTFT domain. The numbers indicate how many listeners

voted in favor of each method.

File No. 1 File No. 2 File No. 3

Loss Rate MDCT DSTFT MDCT DSTFT MDCT DSTFT

10% 2 6 3 5 2 6
20% 0 8 0 8 1 7
30% 0 8 0 8 0 8

Distribution of votes

Loss Rate MDCT DSTFT

10% 29.1% 70.9%
20% 4.1% 95.9%
30% 0% 100%

Table 7.4: Comparative test results of GAPES vs. MAPES-CM. The numbers

indicate how many listeners voted in favor of each method.

File No. 1 File No. 2 File No. 3 File No. 4 File No. 5

Loss
Rate

GAPES MAPES GAPES MAPES GAPES MAPES GAPES MAPES GAPES MAPES

10% 7 1 4 4 8 0 5 3 6 2
20% 8 0 1 7 8 0 5 3 7 1
30% 6 2 4 4 5 3 5 3 6 2

Distribution of votes

Loss Rate GAPES MAPES

10% 75% 25%
20% 72.5% 27.5%
30% 65% 35%
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7.4 Conclusion

Several subjective tests were held in order to test the proposed algorithm: First

it was compared to two other concealment methods that were previously reported

in the literature. The results of this comparison proves that the proposed solution

performs considerably better, even up to 30% loss rate.

Then, we compared the algorithm’s different activation modes: The tests showed

that although MAPES-CM can handle more loss patterns and has lower complex-

ity demands, using GAPES gives better performance in most examined cases. And

finally, the DSTFT domain proved to outperform the MDCT domain as the pre-

ferred concealment domain.



Chapter 8

Summary and Future Directions

8.1 Summary

A new algorithm for packet loss concealment was developed in this work. The

algorithm is receiver-based and is designed for wide-band audio signals encoded by

MPEG-audio coders. The reconstruction of the lost data is done in the DSTFT

domain using either GAPES or MAPES-CM reconstruction algorithms. Evaluated

by comparative subjective listening tests, the algorithm outperforms previously

reported concealment methods, even at high loss rates.

We began by presenting internet audio streaming and the packet loss problem.

The main issue was that the length of the gap, created by even a single lost audio

packet, is wide (about 1000 samples long) and is therefore difficult to interpolate.

The goal of the packet loss concealment process is to interpolate the gap so it won’t

be noticed by a human listener. However, most of the receiver-based concealment

techniques that were reported so far in the literature are suitable only for speech

signals, which have a relatively simple model to work by. In the category of general

audio signals, such as music, there are very few receiver-based solutions reported.

Two of them, which are suitable for signals coded with MPEG-audio coders, are

the packet repetition method and the statistical interpolation (SI) method, which
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we compared our solution to.

After exploring the structure of the MPEG-audio coder and getting familiar

with the concept of compression in the MDCT domain, it seemed reasonable to

perform the concealment in the MDCT domain, as done in the SI technique. How-

ever, there are some flaws in working in the MDCT domain: First, the MDCT

coefficients, much like DCT coefficients, show rapid sign changes along time. Sec-

ond, the use of windows with different frequency resolutions makes estimation

based on the gap’s closest surroundings unreasonable. The solution we suggested

to these two problems was to switch to the DSTFT domain, using windows of

constant resolution, and perform the interpolation in this domain. Switching to

the DSTFT domain causes a minor expansion of the gap: in case of Q lost pack-

ets, we get 2Q consecutive lost DSTFT coefficients at each frequency bin plus one

corrupted neighbor in each side of the loss, instead of 2Q consecutive lost MDCT

coefficients.

The GAPES algorithm, which our algorithm is based on, is an iterative al-

gorithm which reconstructs the missing data assuming it has the same spectral

content as the available data, using an adaptive filter-bank approach. The algo-

rithm is a gapped-data version of the APES algorithm for spectral estimation. The

MAPES-CM algorithm is a newer version that uses an ML-estimator approach to

reconstruct the missing data. This version has slightly less complexity and is able

to successfully deal with more loss patterns than GAPES does.

The proposed solution includes a concealment block that is situated in the

MPEG-audio decoder, right after the de-quantization of the received data into

MDCT coefficients: If a packet was lost, the missing MDCT frames are recon-

structed and the decoding process continues as usual. The concealment algorithm

itself is an iterative algorithm, where at each iteration the MDCT data is converted
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to the DSTFT domain, where a single iteration of GAPES or MAPES-CM is ap-

plied separately in each frequency bin. After all the coefficients are reconstructed

they are converted back to the MDCT domain, where a stopping criteria is applied.

If more iterations are needed, the data is converted again to DSTFT domain and

the whole process is repeated.

As mentioned before, the proposed algorithm was compared to two previously

reported concealment methods: Packet Repetition and SI. The comparison was

done using comparative subjective listening tests, with various music types and at

10% - 30% loss rates. The tests show that the proposed algorithm performs better

than previously reported concealment methods.

8.2 Main Contributions

Using the DSTFT domain for packet loss concealment

Unlike SI, the DSTFT was chosen as the concealment domain. The frequency do-

main has the benefit of representing well music signals, under the model of sines

plus noise. The DSTFT coefficients along time at each frequency bin have a less

fluctuating representation of the signal’s amplitude, as compared to the MDCT

coefficients along time.

Efficient conversion between MDCT and DSTFT domains

A process is developed in this work that enables efficient conversion of the data

between the different domains, using a single expression for each conversion di-

rection. The different window types are expressed by building-block functions

which can be calculated off-line. This conversion has less complexity than using

the straight-forward procedure of inv-MDCT and then DFT, assuming that FFT

(radix-2) cannot be applied in this case.



8. Summary and Future Directions 101

Applying GAPES and MAPES-CM to the packet loss problem

A novel scheme is presented where these two algorithms are adjusted to solve the

problem of audio packet loss.

8.3 Future Directions

Applying psychoacoustic rules in the interpolation process

In a perceptual coder, such as MP3, using psychoacoustic rules in the concealment

process is called for. One option is to reduce the number of iterations on the

basis of psychoacoustic considerations, by setting different stopping thresholds to

different critical bands, according to SMR that was determined for each band at

the encoder: A smaller SMR value indicates a high masking level relatively to the

signal’s energy. Hence, it can be assumed that this band can also tolerate more

”reconstruction noise”, i.e., less accurate reconstruction, and vice versa.

Assuming that MPEG-audio coders quantize the signal according to the SMR ra-

tios, we can get a rough estimate of these ratios at the decoder, from the lost

packet’s closest neighbors: the quantization step size in each critical band gives an

indication on the allowed level of noise, and the energy of the quantized signal in

each band can be used to estimate the original signal’s energy in the band.

Exploiting frequency bins inter-correlation in the interpolation process

In this work the proposed solution interpolated the lost DSTFT coefficients in

each frequency bin separately, exploiting only the correlation along the time axis.

However, since the signals in adjacent frequency bins are correlated, this inter-bin

correlation can be used to improve the interpolation. Two-dimensional GAPES

and MAPES-CM can be considered for this purpose.
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Adding side-information at the encoder

Switching to a sender-based solution, by adding side information to the coded sig-

nal, can improve the reconstruction results. The side information can be added

by means of data-hiding or simply as a separate field in the bit-stream. Such

information can include, for example, information about the signs of the MDCT

coefficients, or a polynomial approximation of the coefficients (along time, or along

frequency).

Making proper adjustments for a Real-Time platform

Since the proposed algorithm is computationally demanding in terms of nowadays

technology, certain adjustments are required in order to implement the algorithm

on a real-time platform. Such adjustments can include using numerical shortcuts,

especially with regard to matrix and vector calculations. Another aspect is to

create a sub-optimal version of GAPES and MAPES-CM having less complexity.

This can be done by, for example, reducing the size of the pre-defined frequency

grid (K), or using the autocorrelation method to estimate the sample-covariance

matrix, R̂, and the levinson-durbin algorithm to invert it.



Appendix A

A Guide to Psychoacoustics and

MP3 coding

The MPEG-1 standard [18] was defined in 1992 by the ISO/IEC standardization

body. The name, which is the first initials of Moving Pictures Experts Group,

represents a group that has been set up by the ISO/IEC standardization body in

1988 to develop generic standards for coding video: i.e., moving pictures, associated

audio and their combination. Since 1988 ISO/MPEG has been undertaking the

standardization of compression techniques for video and audio, and now there exist

also MPEG-2, MPEG-4 and soon MPEG-7 and MPEG-21 standards.

MPEG-1 Audio offers a choice of three independent layers of compression, with

increasing codec complexity and compressed audio quality: Layer 1 is the simplest,

best suiting bit rates above 128 kbps per channel. Layer 2 has an intermediate

complexity and targets bit rates around 128 kbps per channel. Layer 3 is the most

complex one, but offers the best audio quality, especially for bit rates around 64

kbps per channel. MP3 is the nickname for MPEG-1 layer 3.

MP3 has several qualities that make it flexible and suitable for different ap-

plication scenarios. First of all, MP3 has four operating modes: single channel

(mono), dual channel (two independent channels, for example containing different

103



A. A Guide to Psychoacoustics and MP3 coding 104

language versions of the audio), stereo and joint stereo (which is used for more effi-

cient combined coding of the left and right channels of a stereophonic audio signal).

Second, MP3 supports compression of different sampling frequencies. MPEG-1 de-

fines audio compression at 32 kHz, 44.1 kHz and 48 kHz. MPEG-2 extends this to

half rates, i.e., 16 kHz, 22.05 kHz and 24 kHz. This coding standard has found its

way into many different applications, such as digital audio broadcasting (on the

internet and in wireless networks), internet streaming (which is discussed in this

work), portable audio and for storage and exchange of music files on computers.

This appendix, along with Chapter 3, gives a detailed description of the MP3

coding process and implementation, based on existing literature [42, 27] and on an

MP3 source-code example that is available in the net (under the name ’dist10.tgz’).

In addition, this appendix gives a background to the theory of psychoacoustics, and

describes psychoacoustic model 2, which is the one used in the MP3 coder. Finally,

there is also reference to more advanced versions of MPEG-Audio coders.

A.1 MP3 Encoder

The general description of the MP3 encoder is already given in Chapter 3 (see sec-

tion 3.1.1). Chapter 3 also covers most of the subject of time-frequency mapping

in the MP3 (section 3.2), therefore this appendix discusses only the implemen-

tation of the polyphase filter-bank. In addition, this section covers the rest of

the encoder’s parts: The psychoacoustic model, the quantization loop and the

bit-stream formatting.
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A.1.1 Polyphase Filter-Bank Implementation

As already described in section 3.2.1, the polyphase filter-bank divides the signal

into 32 sub-bands of equal width. Each of the filters, hk(n), is 512-points long

and is obtained by multiplying the impulse response of a single prototype low-pass

filter, h0(n), by a modulation function which shifts the low-pass response to the

frequency range of the appropriate sub-band, as described in (3.1).

The filtering procedure can be described by a simple convolution:

sk[n] =
511∑
τ=0

x[n− τ ] · hk[τ ] , 0 ≤ k ≤ 31 (A.1)

Where k is the index of the sub-band. Such a direct implementation will require

32 · 512 = 16384 multiplies and 32 · 511 = 16352 additions. Naturally, we can do

better than that...

Substituting the explicit expression for hk(n) we get:

sk[n] =
511∑
τ=0

x[n− τ ] · h0[τ ] · cos( π
64
· (τ − 16) · (2k + 1)) , 0 ≤ k ≤ 31 (A.2)

Examining the cosine expression it can be seen that for every k, it has a period of

128 samples, hence that every 64 samples the phase is reversed. This periodicity

can be used in the calculations and therefore, only the first 64 values of the cosine

function for each sub-band have to be stored. Using τ , 64j + i we can write:

sk[n] = (A.3)

7∑
j=0

63∑
i=0

x[n− (64j + i)] · h0[64j + i] · (−1)j · cos( π
64
· (i− 16) · (2k + 1)) , 0 ≤ k ≤ 31
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Let’s denote:

C[n] , h0[n] · (−1)b
n
64
c 0 ≤ n ≤ 511 (A.4)

M [k][i] , cos( π
64
· (i− 16) · (2k + 1)) , 0 ≤ k ≤ 31 , 0 ≤ i ≤ 63

Where M [k][i] is a real-valued matrix of dimensions 32×64 and C[n] is a 512-point

window function. Then (A.3) can be written as:

sk[n] =
63∑
i=0

M [k][i] ·
7∑

j=0

x[n− (64j + i)] · C[64j + i] , 0 ≤ k ≤ 31 (A.5)

Implementing this way requires only 64 · 8 + 32 · 64 = 2560 multiplies and 7 · 64 +

32 · 63 = 2464 additions. This is also the place to note that the M [k][i] coefficients

are similar to the coefficients used by a 32-point, un-normalized inverse discrete

cosine transform (IDCT) and by a simple manipulation of the data, this fact can

be used to further optimize the calculations.

A.1.2 The Psychoacoustic Model

The quality of the psychoacoustic model has a great influence on the quality of the

encoding process. A lot of additional work has gone into this part of in the encoder

since the standard [18] was written. In the next section, some background on the

human auditory system will be given and the psychoacoustic principles that can be

used for efficient compression will be introduced. Later, the psychoacoustic model

2, that was implemented in ISO/IEC source-code example is explored in details.

Introduction to psychoacoustics

Since it was established, the field of psychoacoustics [43] has made significant

progress towards characterizing human auditory perception and particularly the
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time-frequency analysis process in the inner ear.

Perceptual coders for high quality audio coding have been a research topic

since the late 70’s, with most activity occurring at late 80’s, where J. D. Johnston

[44] introduced the theory of perceptual entropy (PE), a quantitative estimate of

the fundamental limit of transparent audio signal compression. Perceptual audio

coders achieve compression by exploiting the fact that the signal contains some

amount of irrelevant information that is not detectable even by a well trained or

sensitive listener.

The first definition in this context is of the sound pressure level (SPL) which is

a standard metric that gives the intensity level of sound pressure in decibels (dB)

relative to an internationally defined reference level, i.e.:

LSPL = 20log10

(
p

p0

)
[dB] (A.6)

Where p is the sound pressure of the acoustic stimulus (in units of Newtons per

square meter) and p0 is the standard reference level. The dynamic range of the

intensity for the human auditory system is between 0 to 150 dB-SPL.

The absolute threshold of hearing characterizes the amount of energy needed

for a pure tone to be detected by a listener in a noiseless environment (see Fig-

ure A.1). The SPL reference level is calibrated such that the frequency-dependent

absolute threshold of hearing in quiet is measured to be around 0 dB-SPL. When

applied to signal compression, the absolute threshold of hearing could be inter-

preted naively as a maximum allowable energy level for coding distortions, such

as quantization noise, introduced in the frequency domain. Unfortunately, on its

own, the absolute threshold is of limited value in the coding context: the thresh-

olds are associated with pure tone stimuli, while the quantization noise tends to

be spectrally complex rather than tonal. The detection threshold in this case is a
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Figure A.1: The absolute threshold of hearing in quiet

modified version of the absolute threshold, also considering the fact that stimuli

are in general time-varying, and therefore the detection threshold should also be a

time-varying function of the input signal.

In order to estimate this threshold one must consider the way that the human

ear performs spectral analysis: The inner ear is filled with fluid and is composed

of two canals separated by a membrane, all of which is wound into the form of

a spiral. The nerve-endings, scattered along the membrane separating the two

canals, are receptors. Since the spiral membrane is long and narrow, we can refer

to the position of a small group of nerve-endings as a single coordinate. Very tiny

nerve fibers coming from the main auditory nerve are fanned out so as to reach

each of these nerve endings. The arrangement of the nerve fibers is similar to the

arrangement of wires in a telephone cable which are fanned out and connected to

the telephone switch board. Each one of these tiny nerve-endings acts like a tele-

phone transmitter. A sound wave that enters the human ear system is translated

into mechanical vibrations that induce travelling waves along the length of the

basilar membrane. The travelling waves generate peak responses at frequency spe-



A. A Guide to Psychoacoustics and MP3 coding 109

cific membrane positions, so different nerve receptors react to different frequency

bands according to their locations (see Figure A.2), hence a frequency-to-place

transformation is taking place. Once they are triggered by the sound waves com-

ing into the inner ear, the nerve-endings transmit an electrical current which goes

to the brain and causes the sensation of hearing. From a signal-processing point

 

Figure A.2: Position of the response to different frequencies along the membrane

according to maximum response to pure tones

of view, this frequency-to-place transformation can be viewed as a bank of highly

overlapping band-pass filters, with asymmetric and nonlinear frequency response,

and non-uniform bandwidth: the bandwidths of the different filters increase as

a direct ratio of the center frequency of each filter. These frequency bands are

usually referred to as critical bands. The different bands can be viewed in Table

A.1. The critical bands are also responsible for the masking phenomenon, which

is used by modern perceptual audio coders. Masking refers to a process where one

sound is rendered inaudible because of the presence of another sound. Regarding

the human hearing system, we refer to two kinds of masking: simultaneous and

non-simultaneous masking.

Simultaneous masking may occur when two or more stimuli are simultaneously
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Table A.1: Critical band filter bank

Band Center Band Band Center Band
No. Frequency Width No. Frequency Width

[Hz] [Hz] [Hz] [Hz]
1 50 0-100 14 2150 2000-2320
2 150 100-200 15 2500 2320-2700
3 250 200-300 16 2900 2700-3150
4 350 300-400 17 3400 3150-3700
5 450 400-510 18 4000 3700-4400
6 570 510-630 19 4800 4400-5300
7 700 630-770 20 5800 5300-6400
8 840 770-920 21 7000 6400-7700
9 1000 920-1080 22 8500 7700-9500
10 1175 1080-1270 23 10500 9500-12000
11 1370 1270-1480 24 13500 12000-15500
12 1600 1480-1720 25 19500 15500-∼20000
13 1850 1720-2000

presented to the auditory system. From a frequency-domain perspective, the am-

plitude and shape of the spectrum of these two signals will determine who will

be the masker and who the maskee, and to what extent. From a time-domain

perspective, phase relationships between stimuli can also affect masking results. A

simplified explanation to this phenomenon is that the presence of a strong masker

signal creates an excitation on the basilar membrane at the critical band loca-

tion, which is strong enough to block the detection of the weaker signal. For

the purpose of audio coding it is convenient to define three types of simultaneous

masking: Noise-Masking-Tone (NMT), Tone-Masking-Noise (TMN) and Noise-

Masking-Noise (NMN). The two first ones are presented in Figure A.3.

Noise-Masking-Tone: A case where a narrow-band noise with bigger ampli-

tude masks a weaker tone within the same critical band. The minimum difference

between the intensity of the masker and maskee (in dB-SPL units) is called signal-

to-mask ratio (SMR) and depends on the locations of the two sound components.
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In this case, the minimal SMR is achieved when the frequency of the masked tone

is close to the center frequency of the masking noise.

Tone-Masking-Noise: In this scenario, a pure tone with higher intensity occur-

ring at the center of a critical band masks noise located within the same critical

band. Again, the minimal SMR is achieved when the frequency of the masker tone

is close to the center frequency of the masked noise.

Noise-Masking-Noise: Similarly, in this case one narrow-band noise is masking

another narrow-band noise. The SMR here is harder to calculate because of the

influence of phase relationships between the masker and maskee [45].

As can be seen in Figure A.3, TMN and NMT are a-symmetric: for tone masker

and noise masker of the same amplitude level, the SMR values are different. In fact,

knowledge of all three masking types is critical to successfully shape the coding

distortion so it will be inaudible. For each analyzed segment in time, the perceptual

model should identify, across the frequency spectrum, the noise-like and tone-like

components in the audio signal so that the quantization could be held according

to the appropriate masking relationships. Another property of the simultaneous

masking is that it is not limited to the boundaries of a single critical band. Inter-

band masking also occurs: i.e., a masker centered within one critical band has

some predictable effect on the detection thresholds in adjacent critical bands. This

effect is also known as the spread of masking and is often modelled by a triangular

spreading function, as illustrated in Figure A.4.

Figure A.4 can also be viewed as an example case: in this case, there is a single

masking tone located in the center of a critical band. The masking tone generates

an excitation along the basilar membrane that is modelled by a spreading function

and a corresponding masking threshold. For the band under consideration, the

minimum masking threshold denotes the lowest level of the spreading function
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within the boundaries of the band. Assuming the masker is quantized using an m-

bit uniform scalar quantizer (in the domain of dB-SPL) noise might be introduced

at the level m (marked in a dotted line). The SMR (signal-to-mask ratio) and

NMR (noise-to-mask ratio) denote the logarithmic distances from the minimum

masking threshold to the masker and to the noise level, respectively.
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Figure A.3: Simultaneous masking: (a) Noise-Masking-Tone, (b) Tone-Masking-

Noise.

 

Figure A.4: A schematic representation of simultaneous masking and the spreading

function

After the critical band analysis is finished and the spread of masking has been

accounted for, the masking thresholds are established, usually in decibel relations:

TMN: Thr = ET − 14.5− Band’s central bark value , ET −OTMN

NMT: Thr = EN − Constant value , EN −ONMT
(A.7)
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where ET and EN are the critical band energies of the tone and noise masker

respectively. Each time-frame usually contains a collection of both masking types,

which are combined together to form a global masking threshold. The global

masking threshold is used, along with the absolute threshold of hearing to create

an estimate of the level at which quantization noise becomes ”just noticeable”.

The other type of masking is non-simultaneous masking, also denoted as temporal

masking since for a masker of finite duration, this type of making occurs both

prior to the masker’s onset (”pre-masking”) as well as after the masker decayed

(”post-masking”), as shown in Figure A.5. Pre-masking tends to be very short (1-2

msec) while the duration of post-masking is longer, depending upon the strength,

frequency and duration of the masker (50-300 msec). Temporal masking is used in

several audio coding algorithms, including MPEG-1 and MPEG-2 Audio. In layer

 

Figure A.5: Non-simultaneous masking

3, the psychoacoustic model also calculates the perceptual entropy (PE) for each

analyzed time frame. The PE, defined in (A.18), is a measure of the perceptually

relevant information that an audio record contains. It is expressed in bits per

sample and represents the theoretical limit on the compressibility of a particular

audio signal. Here, the PE is used for deciding the type of window function that

will be used for each frame during the MDCT transform.
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The psychoacoustic model of MP3

The MPEG-1 standard provides two example implementations of the psychoacous-

tic model. However, only model 2 includes specific modifications for layer 3 and

therefore the standard recommends using it with MP3. A detailed description of

model 1 can be found in [45]. Model 2 is described next:

Psychoacoustic model 2 contains a few main steps: spectral analysis, calcula-

tion of the unpredictability measure, switching to the perceptual domain and the

calculation of the offset and then the masking threshold for each critical band.

When used in layer 3 it contains another final stage of PE calculation and window

decision.

Step 1 - spectral analysis

This step obtains a high-resolution spectral estimate of the input signal. The input

signal is divided into segments of length N = 1024 samples each, with an overlap of

75% between consecutive segments (this division is fixed for all the sampling rates

supported by MP3). The spectrum is divided in two ways: The first division is

according to a long, 1024-point FFT that is performed on the segment after it was

multiplied by a 1024-samples Hann window. The frequency domain is divided into

1024 equal width frequency lines, each has a bandwidth of fs

1024
. The second division

is according to three short, 256-point FFT that are performed on three sub-frames,

defined in the middle of the main segment, with an overlap of 50% between them

(see Figure A.6), each multiplied by a 256-samples Hann window. In this division

the time-resolution is improved at the expense of the frequency-resolution.

Step 2 - calculate the unpredictability measure for each frequency line

The unpredictability measure: upmj, 0 ≤ j ≤ 511, is basically the normalized

prediction error, based on linear prediction of a single spectral coefficient from
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0         128       256       384      512                    768                   1024 

Figure A.6: Schematic description of the locations of the three short sub-frames

the same spectral coefficients in neighboring frames. Since tonal components are

more predictable than noise components, their unpredictability measure should be

smaller. The unpredictability measure is used for estimating the tonality index,

which is later used for determining whether the frequency component is more tone-

like or noise-like.

This measure is calculated for each frequency line separately, according to the

following procedure (illustrated in Figure A.7):

- For the six lowest frequency lines (index 0-5), where the frequency resolution

should be kept high, the long-FFT division is used. For each frequency line,

its value is predicted based on the values in the previous two frames using

linear prediction.

- In the next two-hundred frequency lines (index 6-205), the frequency res-

olution could be relaxed, so instead, the short-FFT division is used. The

predictability measure for each line is calculated, by predicting the FFT

value in the middle sub-frame based on the two neighboring sub-frames.

Since each short-division frequency line covers 4 consecutive long-division

frequency lines, the resulting value of unpredictability measure is assigned to

the corresponding line quartet.

- The remaining high-frequency lines are ignored (assigned with a constant

arbitrary value).
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Figure A.7: Frequency division and prediction procedure for different frequency

lines

Step 3 - process the spectral values into the perceptual domain

In order to simplify the calculations and to process the data in a perceptual domain,

the long-FFT frequency lines are processed in groups.

In the Bark domain, a single bark unit represents a single critical band. The

frequency location of each frequency line , i∆f, 0 ≤ i ≤ 511 where ∆f = fs

1024
, is

mapped into the Bark domain, bi , 0 ≤ i ≤ 511, and the frequency lines are then

divided into 63 groups, each representing ∼ 1
3

Bark, or in other words - one third

critical bandwidth.

The mapping of each frequency line to the bark domain is obtained by using

the values in Table A.1: The integer part of bi is the index of the critical band that

contains the frequency i∆f , and the fractional part of bi represents its location

inside the critical band. for example, f = 1020Hz is translated into 9.625 Bark,

since the frequency is in the range of critical band No. 9 (that has the bandwidth

920-1080 Hz), and f−920
1080−920

= 0.625.

For each group, its power is calculated by summing the energy of all the lines
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in the group:

Pi =
∑

j∈∆Bi

pj , 0 ≤ i ≤ 62 (A.8)

And also the energy-weight unpredictability measure:

PUM
i =

∑
j∈∆Bi

upmj · pj , 0 ≤ i ≤ 62 (A.9)

Where pj is the absolute value of the FFT coefficient in frequency line j, upmj is the

unpredictability measure calculated for each line and ∆Bi is the set of frequency

lines in the i ’th group.

In order to complete the picture in the perceptual domain, the influence of the

spreading function is also calculated. The spreading function, as was mentioned

before, is used in order to estimate the effects of masking across different critical

bands. Here, the value si,k describes the effect of a tonal component centered

in band i on another component in band k. the general shape of the spreading

function is presented in Figure A.4. The energies and unpredictability of each

group are convolved with the spreading function, in order to get the spread critical

band spectrum:

Psi =
62∑

k=0

si,k · Pk, PsUM
i =

62∑

k=0

si,k · PUM
k (A.10)

Step 4 - Calculate the offset for each group

For each group a tonality index 0 ≤ αi ≤ 1 is calculated according to A.11:

αi = log10

(
Psi

2 · PsUM
i

)
(A.11)



A. A Guide to Psychoacoustics and MP3 coding 118

The resulting values are clipped to the limits of [0, 1].

The tonality index represents the nature of the frequency components of each

band: αi −→ 1 indicates that the band contains tone-like components, and αi −→ 0

indicates that the components within that band are more noise-like. The model

assumes that when the frequency component is tone-like the prediction error will

be very small, resulting in a large value of αi (which will be clipped to 1), on

the other hand, trying to predict a noise-like component gives, in most cases, a

prediction error of large scale, of the order of the component itself.

Next, we use the tonality index to calculate the threshold offset for each group,

interpolating between TMN offset and NMT offset, according to the tone- or noise-

like nature of each band:

Oi = OTMN
i · αi + ONMT

i · (1− αi) (A.12)

Where OTMN
i and ONMT

i are defined in (A.7).

Since the offset is given in units of dB-SPL, in the power domain it is:

P offset
i = 10

Oi
10 (A.13)

Step 5 - calculate the masking threshold for each critical band

The spread critical band spectrum power is divided by the offset power to yield

the spread threshold estimate:

Tsi =
Psi

P offset
i

, 10(log10(Psi)−Oi
10 ) (A.14)

In order to convert the spread threshold back to the bark domain, the convolution

of the spreading function must be undone. Since the de-convolution process is

numerically unstable, re-normalization is used instead [44]. The spread threshold
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in each band is divided by the spread function gain:

Ti =
Tsi∑62
j=0 si,j

(A.15)

Next, and only for layer 3, there is a pre-echo control process: Pre-echo might occur

when a signal with a sharp attack is introduced near the end of an analysis segment

containing mostly regions of low energy. Even when the quantization is performed

under the limitations of the masking thresholds, time-frequency uncertainty dic-

tates that when the signal is inverted back to the time domain, the quantization

distortion will spread evenly in time throughout the reconstructed block. At the

decoder, this results in an unmasked distortion throughout the whole low-energy

region preceding the attack. One way to handle this issue is by window switch-

ing (see section 3.2.2, on MDCT). Another precaution is to compare the masking

threshold in each band to the thresholds that were calculated in preceding time

frames, for the same band: if the masking threshold in the previous time-frame is

much lower, even considering the incline due to the fast attack, it would be logical

to reduce the threshold value for the current frame:

T ′
i [n] = min{Ti[n], 2 · Ti[n− 1], 16 · Ti[n− 2]} (A.16)

Where n is the time index and i is the group’s index.

The final stage is to compare the masking thresholds to the absolute threshold

of hearing in quiet, in order to make sure that the thresholds don’t introduce too

severe demands, since the absolute threshold is considered as the lower bound on

the audibility of sound. If the calculated noise threshold in a certain band, is lower

than the absolute threshold, this value is replaced by the value of the absolute

threshold in that band. At high and low frequencies, where the absolute threshold
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varies inside the group’s band, the average value is used instead.

Thri = max{T ′
i , T

ABS
i } (A.17)

Layer 3 addition

The PE is calculated by measuring the actual number of quantizer levels, given a

quantizer’s step size that will result in noise energy equal to the audibility thresh-

old. The quantization energy is assumed to spread evenly across all the frequency

lines in a certain group.

PE =
62∑

j=0

max

{
0, log

(
1 + Pj

1 + Thrj

)}
· |∆Bj| (A.18)

If the PE value exceeds a certain predetermined threshold, then it is assumed that

this frame contains an attack and a short window type is decided. The type of

the previous time-frame is updated accordingly: for example, if it was a regular

Long window, then it becomes a Start window. If the value doesn’t exceed the

predetermined threshold, one of the other three is used, according to the window

type in the previous time-frame. Figure A.8 shows the state-machine of the window

switching logic and the window functions are presented in section 3.2.2.

At this point, the bark domain is re-divided into wider non-overlapping bands,

called the scale-factor bands. Each one of these bands might include one group or

more, or a portion of it (among the 63 groups defined ealier in step 3). For each

scale-factor band, the energy is re-calculated by a weighted-sum of the energies

of the groups that are included (as whole or as part) in its territory. Same goes

for the threshold re-calculation. In the case of a long window there are 21 scale-

factor bands, and in the case of short window there are 12 scale-factor bands, for

each of the three sub-windows (see the window’s shape in Figure 3.6). Finally, the

threshold-to-energy ratios are calculated for each of the scale-factor bands.
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Figure A.8: The window switching state machine

In the case of MP3, the psychoacoustic model returns, for each encoded frame,

the following parameters: the perceptual entropy, the window type and the scale-

factor band ratios.

A.1.3 Quantization

The quantization and bit-allocation process determine the number of code bits

allocated for each scale-factor band, based on the information from the psychoa-

coustic model. The MP3 standard uses an iterative procedure to determine the

quantization step. The non-uniform quantization is done in the MDCT domain.

The quantization loop is the most time consuming part of the MP3 encoding al-

gorithm: It depends on the variation of audio signal and doesn’t have a fixed

execution time. The quantization process can be divided into three levels: The top

level of the quantization process is the iteration loop subroutine. This subroutine

calls the outer loop subroutine which controls the distortion level. This subroutine,

on its turn, calls the inner loop subroutine which controls the bit-rate. The bit

allocation procedure is illustrated in Figures A.9 - A.11, and is described next.
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Iteration Loop

The iteration-loop has several responsibilities: the calculation of the allowed dis-

tortion for each scale-factor band, the calculation of the initial quantizer step-size,

the determination of the scale-factor selection information (scfsi, in short) and the

maintenance of the bit reservoir.
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Figure A.9: A flow diagram describing iteration loop

• The calculation of the allowed distortion for each scale-factor band is done

using:

xmin[sb] = ratio[sb] · Esb

∆Bsb

(A.19)
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where sb is the index of the scale-factor band, ratio is the value that was

calculated by the psychoacoustic model for that band, Esb is the energy

within the band and ∆Bsb is its bandwidth.

• The scale-factor selection information determines which scale-factor values

of the first frame within a packet can be used for the second frame as well.

These values are therefore not transmitted, and the spare bits can be used

later in the coding process. The information is determined by applying some

heuristic rules, regarding the level of energy and masking threshold in both

frames.

• The bit reservoir mechanism controls the number of unused bits accumulated,

since it is not possible for the encoder to always compress the data exactly

to a certain number of bits. For example, a frame containing almost quiet

signal will need fewer bits compared to a frame containing fast attack, or some

other fast transient, so in that case there are a few unused bits left after the

coding. The encoder keeps track of the remaining extra bits in case the next

frames will need to use them, through the bit reservoir mechanism. However,

since this mechanism introduces delay in the encoder, it is restricted: Only

a certain number of bits may be accumulated, extra bits above the size limit

will be discarded as stuffing bits.

During the work of the outer-loop, the scale-factors, for each scale-factor

band, are increased in small increments until the quantization noise is below

xmin or until the scale factors cannot be increased any more. After the outer-

loop finishes its job, the data is quantized and the remaining bits are added

to the reservoir buffer.
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Outer Loop - distortion control loop

The outer-loop controls the quantization noise produced by the quantization of the

MDCT coefficients inside the inner-loop. The quantization noise is colorized by

multiplying the MDCT lines, within each scale-factor band, by the actual scale-

factors before the quantization takes place. When it is called, outer-loop calls
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Figure A.10: A flow diagram describing outer loop

inner-loop in order to quantize the data according to the current parameters. After

the quantization is completed, the amount of distortion in each scale-factor band

is calculated by comparing the original values with the quantized ones. At this

stage, the current quantization setup (parameters and results) is saved, and then
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there is an attempt to check if it can further be improved:

First, the Pre-emphasis is switched on if the actual distortion in all the upper

four scale-factor bands exceeds the threshold. The pre-emphasis option provides

the possibility to amplify the upper part of the spectrum according to the pre-

emphasis tables, defined in the standard. This operation enables an additional

improvement in the resolution of the quantizer (besides the scale-factors) at higher

frequencies.

Second, the scale-factors are amplified: The spectral values of the scale-factor

bands which exceeds the allowed distortion are amplified by a constant factor

(which can be 2 or
√

2, depending on the implementer’s choice). The scale-factor

value of each amplified band is increased by one. Section A.2 explains how these

values are used in the decoder during the de-quantization process.

The loop will continue to a new iteration, unless one of three conditions occurs:

1. None of the scale-factor bands exceeds the allowed distortion level.

2. All scale-factor bands have already been amplified.

3. The amplification of at least one band exceeds the upper limit which is de-

termined by the transmission format of the scale-factors (more details about

that in section A.1.4).

If one of the above conditions is satisfied, the algorithm gives up and returns to

the previously-stored quantization setup.

Inner Loop - rate control loop

The inner loop does the actual quantization of the spectral coefficients and cal-

culates the number of bits required for encoding the data into bit-stream format.
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The bit-stream formatting is done using entropy coding implemented by Huffman

code tables.

The quantization of the vector of MDCT coefficients is done according to:

xquantized = sign(x) · round

[( |x|
2

∆q
4

)0.75

− 0.0946

]
(A.20)

where ∆q is the quantization step’s exponent. The quantizer raises its input to

the 3
4

power before quantization to provide a more consistent signal-to-noise ratio

over the range of quantizer values. The de-quantizer in the decoder inverses this

operation by raising its output to the 4
3

power.
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Figure A.11: A flow diagram describing inner loop

Next, the number of bits required for the encoding is calculated: the quantized

values are divided into three zones: zero values, small values with amplitude ≤ 1,

and big values. The zone partition is illustrated in Figure A.12.
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576 0 

rzero count1 bigvalues 

region0 region1 region2 

Figure A.12: The different encoding zones

Zero values: The rzero counter counts the number of consecutive zero-valued

pairs, starting from the higher frequencies, since they usually contain less

energy.

Small values: When reaching the first value which is not zero, the algorithm

starts to count the number of consecutive quartets of quantized values with

an amplitude equal or less than one (i.e., quantized to 0,1 or -1). The number

of the quartets is stored in the counter count1. Each quartet is encoded

by one Huffman codeword. There are two different Huffman code books

with corresponding code length tables, and the one that gives the minimum

number of bits is chosen.

Big values: The remaining values represent the area of values with higher ampli-

tudes. The number of pairs in this area is counted by the bigvalues counter.

The scale-factor bands in this area are further divided into three regions,

where the split strategy is up to the implementer. Each region is coded sepa-

rately and each pair within the region is encoded using a Huffman code table.

There are 32 different Huffman code tables available, that differ from each

other in the maximum value that can be coded with them and in the signal

statistics they are optimized for. The Huffman tables can code values of up

to 15. For higher values, the remaining portion is encoded using a linear
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PCM codeword (each Huffman table has an option for a corresponding PCM

field of limited length).

The total number of bits for the different zones is summed up. If it exceeds the

number of available bits, than the quantizer step size is widened and a new iteration

takes place. If it is less than the available bit number, the process ends and the

subroutine returns to its caller.

A.1.4 Bit-Stream Formatting

The last block of the MP3 encoder is the one that turns the quantized data into

MPEG-Audio Layer III compliant bit-stream. An MP3 packet includes data of

two consecutive frames, each have 576 encoded MDCT coefficients. The general

structure of an MP3 packet includes a header section, side information section and

the main data section, as shown in Figure A.13. If error protection is specified,

then the header block is immediately followed by a 16-bit CRC check word. Also,

it is possible to add an optional ancillary data section, at the expense of the main

data section.
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Figure A.13: (a) The structure of an MP3 packet. (b) MP3 bit-stream diagram

The purpose of the header section is to allow the receiver to establish synchro-

nization and to determine the basic coding parameters anytime during a broadcast.
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It contains key parameters, such as layer number (1-3), version number (MPEG-

1/2), sampling frequency, operating mode (mono, stereo etc.) and the existence of

error protection codes. The header’s length is fixed to 32 bits, and its format is

the same to all MPEG-1 layers.

The side information section includes information that is required for the de-

quantization and synthesis process of each frame. Among the data coded in this

section are: the chosen window type, the indices of the chosen Huffman tables,

information about the quantization step and the scale-factors for each band. The

length of the side information section is fixed too: 136 bits in case of mono signal

and 256 in case of stereo.

The packet’s main data section includes the scale-factors and the Huffman

encoded MDCT values for each of the two frames (and for each channel, in case of

stereo signal). As was already mentioned in section A.1.3, since it’s not possible

for the encoder to compress each frame exactly to the desired bit rate, there might

be some leftover bits in this section. These extra bits can be used as additional

space for ancillary data (if such exists), or - if the application allows for some delay

in the encoder - for the use of the next frames that are going to be coded, since the

MP3 standard allows for the main data section of a single packet to be spread over

several of the previous packets, as shown in Figure A.13. If neither of the cases

happen, the extra bits are simply stuffed with zeroes.

There are 21 scale-factor bands in the case of long window types (type 0, 1 or 3)

and 12 · 3 scale-factor bands in case of a short window (type 2). Each scale-factor

band has a corresponding scale-factor, which is encoded and stored in the ”main

data” section. The scale-factor bands are divided into two predefined regions, and

each region is allocated with a fixed number of bits for each scale-factor values

in it, denoted as slen1 and slen2. There are 16 possibilities for the values of the
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slen-couple, defined in the standard. The scale-factor values are stored simply in

their binary representation, hence the value of the maximum scale-factor in the

first region is limited to [0, 2slen1] and the same goes for the second region. The

outer-loop (see section A.1.3) should make sure that one of the 16 coding options

matches the scale-factor values.

The 576 MDCT coefficients of each frame are also quantized and coded accord-

ing to the Huffman tables that were selected during the work of the bit-allocation

loop.

Tables A.2 and A.3 form a small ”MP3-dictionary” that specifies the size and

meaning of each of the parameters in the header and side information sections,

respectively.

Table A.2: Specification of parameters and format of the header section

Parameter’s Length Possible meaning
name (in bits) values

Sync word 12 0xfff Indicates the beginning of new packet, used for synchronization.
Version 1 0-1 1 means MPEG-1, 0 means MPEG-2
Layer 2 1-3 The layer number: I, II or III

Error protection 1 0-1 Indicates the existence of a CRC field in the bit-stream.
Bit-rate index 4 0-14 Index of the coding bit-rate, chosen from 15 possible values.

For MP3, indices 1-14 indicate varying bit-rates from 32 kbps
to 320 kbps. ’0’ value indicates ”free format”, which enables
using some other user-defined fixed bit-rate.

Sampling 2 1-3 Index of the sampling frequency. For MPEG-1 layer 3 there are
frequency three possible values: 32 kHz, 44.1 kHz or 48 kHz.
Padding 1 0-1 This field is active only for signals with sampling rate of 44.1 kHz.

Value of ’1’ indicates that this packet includes an extra slot,
necessary for maintaining a fixed bit-rate, otherwise its value is ’0’.

Extension 1 0-1 Currently not used.
Mode 2 0-3 Mode of operation:

0 - Stereo, 1 - Joint Stereo, 2 - Dual Channel, 3 - Mono
Mode 2 0-3 Active only for Joint Stereo mode. Specifies the coding method

extension used for this special case.
copyright 1 0-1 1 - the file contains copyright protection, 0 - no such protection.
original 1 0-1 Some indication of the originality of the file.

emphasis 2 0,1,3 Indicates the type of de-emphasis that shall be used:
0 - no emphasis, 1 - 50/15 microsec. emphasis, 3 - CCITT J.17
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Table A.3: Specification of parameters and format of the side-information section

Parameter’s Length Possible meaning
name (in bits) values

main data begin 9 unsigned Indicates the start position of the ”main data” section
of the current frame, as a negative offset from the frame’s header.

private bits 3 or 5 5 bits in case of mono, 3 bits else. For private use, not used by ISO.
Scfsi 4 for 0-1 for Scale-factor selection information. The scale factor bands are

each each bit divided into 4 groups, and a value is set for each group.
channel 0 indicates that there are different scale factors for each frame,

1 indicates common values.
In case of short window all the values are set to zero.

part2 3 length 12 for each unsigned Indicates the number of bits in the ”main data” section. This
channel information helps to find the starting point of the ”ancillary data”

and frame section, if such section exists.
big values 9 bits, unsigned As was mentioned before (section A.1.3), the values in

same as the ”big values ”region are coded as pairs. This field indicates
above the number of pairs in the ”big values” coding area.

global gain 8 bits, same unsigned Information about the quantization step.
as above

scalefac compress 4 bits, same unsigned Information about the number of bits allocated
as above for the coding of the scale factors.

window switching 1 bit, 0-1 ’1’ indicates the use of a window type which is not the
flag same as usual ”long” type (either short, start or stop window types).

above Otherwise, the value is set to ’0’.
The following 4 fields exist only for when ”window switching flag” is equal to 1:

block type 2 bits, same 1-3 Assuming the window type is not 0 (”long”), this field
as above specifies the type of window used in each frame.

mixed block flag 1 bit, 0-1 When a short window is selected, there is a possibility to use it only in
same as the higher sub-bands, where in the lower bands a long window is used:
above 0 - short window in all the spectrum,

1 - long window in lower bands and short in all the rest.
2 x 2 · 5 bits, 0-31 This field specifies which Huffman table is used for each region,

table select same as in case of not-long window type (see details two table-cells down).
above

3 x 3 · 3 bits, unsigned Indicates the gain-offset, from the global gain,
subblock gain same as for each short-window sub-block.

above
The following 3 fields exist only for when ”window switching flag” is equal to 0:

3 x 3 · 5 bits, 0-31 The three regions that form the ”big values” area are
table select same as coded each separately. This field specifies which Huffman

above table (among the 32 possible) is used for each region.
region0 count 4 bits, same unsigned This field specifies the size of the first region within the

as above ”big values” coding area.
region1 count 3 bits, same unsigned This field specifies the size of the last region within the

as above ”big values” coding area.
preflag 1 bit, same 0-1 Indicates whether the pre-emphasis is used or not:

as above 1 - used, 0 - not used.
scalefac scale 1 bit, same 0-1 Indicates whether the scale-factor amplification is used with

as above base of 2 or
√

2
count1table select 1 bit, same 0-1 This field specifies which Huffman table (among the two

as above possible) is used for the coding of the quartets in the area
of small values (values with amplitude).

A.2 MP3 Decoder

A general description of the MP3 decoder with a block diagram are given in section

3.1.2. Here we present a more detailed description of the decoding process:
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Synchronization and decoding of the bit-stream:

First, the information from the header section is extracted, and the packet’s di-

mensions are calculated according to it. Next, the side information data is read,

and the start position of the main data section is identified according to it. The

side information also includes the data necessary for deciphering the main data

section. In the end, the scale-factors and the quantization values of the quantized

MDCT coefficients are restored from the main data section. If the user added any

ancillary data, it is recovered at this stage too.

Inverse quantization:

The MDCT values are reconstructed using the quantization parameters extracted

from the side information section and from the main-data section.

For spectral line i, where 0 ≤ i ≤ 575, the de-quantization process is done by:

X̂MDCT [i] = gain[i] · sign(q[i]) · abs(q[i])
4
3 (A.21)

where q[i] is the quantized value in each line.

The gain value for each MDCT value, is calculated by:

gain[i] = 2g exp(i) (A.22)

Where in the case of a long window (type 0, 1 or 3), assuming that b(i) is the

scale-factor band that line i belongs to:

g exp(i) = 1
4
·∆Q− 1

2
· (1 + scalefac scale)

· (scalefactor [b (i)] + (preflag · preemphasis [b (i)]))
(A.23)

And in the case of short window (type 2) it also considers the sub-block gain for

each of the three sub-blocks of a short window type:

g exp(i) =
∆q
4
− 2 · subblock gain[sub-window(i)]− 1

2
· (1 + scalefac scale)

· (scalefactor [sub-window (i)] [b (i)] + preflag · preemphasis [b (i)])
(A.24)
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The ∆q parameter, which is the same as the parameter appearing in the quanti-

zation formula (A.20), is obtained from the global gain field in the side information

section (see table A.3). The parameters scalefac scale, preflag and subblock gain

also appear as fields in this section. The global gain and subblock gain values af-

fect all values within one time frame. scalefac scale and preflag further adjust the

gain within each scalefactor band. The pre-emphasis values of the short and long

windows are taken from a table defined in the standard, and the scale-factors and

quantization indices are taken from the main-data section.

Inverse MDCT and aliasing cancellation:

At this point two things take place: First the filter-bank aliasing reduction that was

performed in the encoder (due to the overlapping in the bands of the filter-bank)

is reversed, in order to ensure a correct reconstruction of the signal. Then, the 576

frequency lines are re-arranged into their original sub-band form, where there are 18

coefficients for each of the 32 equal-width sub-bands. Every 18 such coefficients are

transformed back into the sub-band domain using the Inverse-MDCT transform,

resulting in an aliased version of the values. The aliasing is then cancelled by

the overlap-and-add procedure that was described in section 3.2.2, resulting in the

reconstructed samples of the sub-band domain.

Filter-bank summation:

Finally, 32 samples, one from each sub-band, are applied to the synthesis polyphase

filter bank and 32 consecutive audio samples are calculated. This procedure is done

18 times, until the whole frame is reconstructed.

A.3 Advanced MPEG Audio Standards

Since MP3 was defined, research on perceptual audio coding has progressed and

codecs with better compression efficiency became available. This section gives a
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short look on the more advanced versions of MPEG standards.

MPEG-2 denotes the second phase of MPEG, which introduced a lot of new

concepts in video coding. The original MPEG-2 Audio standard [46], finalized

in 1994, includes only two extensions to MPEG-1 Audio: multi-channel coding

and coding at half sampling frequencies: 16 kHz, 22.05 kHz and 24 kHz. Both

extensions don’t contain new coding algorithms over MPEG-1 Audio, and were

backward compatible.

MPEG-2 AAC verification tests in early 1994 showed that using new coding

algorithms and giving up on the backward compatibility to MPEG-1 promised a

significant improvement in coding efficiency. This led to the definition of MPEG-

2 Advanced Audio Coding (AAC) [47], which is considered as the successor of

MPEG-1 Audio. The AAC coder has better capabilities: it is able to handle more

channels than MP3, and it can handle higher sampling frequencies than MP3 (up

to 96 kHz). The AAC coder uses the coding tools already present in MP3, but in a

better way: the filter bank is a pure MDCT instead of a hybrid filter bank, the long

windows are nearly twice as long as the ones in MP3 providing better frequency

resolution, and the short windows are smaller than the ones in MP3, providing

better transients handling and less pre-echo. AAC coder also presents some new

tools, such as Temporal Noise Shaping [48] (TNS) which is a tool designed to

control the location, in time, of the quantization noise by transmission of filtering

coefficients, and a prediction tool, designed to enhance compressibility of stationary

signals.

MPEG-4 this standard, on its different versions, intends to become the next

major standard in the world of multimedia. Unlike MPEG-1 and MPEG-2, the

emphasis in MPEG-4 is on new functionalities rather than better compression

efficiency. MPEG-4 Audio facilitates a wide variety of applications which could



A. A Guide to Psychoacoustics and MP3 coding 135

range from intelligible speech to high quality multi-channel audio, and from nat-

ural sounds to synthesized sounds. In particular, it supports the highly efficient

representation of audio objects consisting of general audio signal, speech signals,

synthetic audio and synthesized speech. Coding of general audio ranging from very

low bit-rates up to high quality is provided by transform coding techniques, cov-

ering a wide range of bit-rates and bandwidths. For higher bit-rates an improved

version of the MPEG-2 AAC technology is used. This version is backward compati-

ble to MPEG-2 AAC and includes two new modules: Long Term Prediction (LTP),

which replaces the MPEG-2 AAC prediction tool, gives the same performance level

with less computational power, and Perceptual Noise Substitution (PNS), which

allows replacing coding of noise-like parts of the signal by some noise generated in

the decoder side.

Although the focus is on new features, MPEG-4 does introduce two new items

for improving audio coding efficiency even further: Bandwidth extension and Para-

metric coding for low bit-rate coding (HILN [16]).

More details about the various MPEG standards can be found in the MPEG

official website [49]. More details about other perceptual coders can be found in

[45].



Appendix B

Converting the MDCT to the

DSTFT domain and vice versa

This appendix describes in details the mathematical development of the expressions

presented in section 6.1.

B.1 Basic Terms and Assumptions

Before describing the mathematical process, there is a need to establish a few basic

terms and assumptions that are used in this process:

1. Since this work is implemented using an MP3 coder, both conversion expres-

sions refer to the four window types defined in the MP3 standard and rely

on the connections between them (regarding shape and size). Therefore, it is

not recommended to use these expressions if the MDCT transform uses other

window families. However, a similar conversion for other window families,

with similar relationships between them, can easily be created using the same

techniques described here.

2. The conversion assumes that the location and size of the time-segments that

the DFT is applied on, are the exact same ones that the MDCT uses. Each

136
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such segment contains 2N samples and there is a 50% overlap between con-

secutive segments.

As already mentioned in section 6.1, the window function that is being used during

the DSTFT is required to be symmetric, with length of 2N samples and its two

parts should also complement each other to the value of 1. Since it is symmetric,

we refer only to its first half, denoted as w[n] where 0 ≤ n ≤ N − 1. The second

condition can be written as: w[n] + w[N − n− 1] = 1 for 0 ≤ n ≤ N − 1.

As described in section 3.2.2, all the MDCT window types have the same length in

total: 2N samples, same as the segments they are designed to multiply. But, these

four windows are built from 3 basic half-window units. Therefore, we prefer here

also to refer to these units instead of to the whole window. The three units are

denoted hlong[n], hshort2long[n] and hshort[n] where the first two are N = 18 samples

long and the last one is Ns = 6 samples long:

hlong[n] = sin
(

π
2N
· (n + 1

2

))
, 0 ≤ n ≤ N − 1 (B.1)

hshort[n] = sin
(

π
2Ns

· (n + 1
2

))
, 0 ≤ n ≤ Ns − 1 (B.2)

hshort2long[n] =





0 0 ≤ n ≤ Ns − 1
hshort[n−Ns] Ns ≤ n ≤ 2Ns − 1
1 2Ns ≤ n ≤ N − 1

(B.3)

Comparing Figure 3.6 with Figure 3.8 it can be seen that:

Long[n] =

{
hlong[n] 0 ≤ n ≤ N − 1
hlong[2N − n− 1] N ≤ n ≤ 2N − 1

(B.4)

Start[n] =

{
hlong[n] 0 ≤ n ≤ N − 1
hshort2long[2N − n− 1] N ≤ n ≤ 2N − 1

(B.5)
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Stop[n] =

{
hshort2long[n] 0 ≤ n ≤ N − 1
hlong[2N − n− 1] N ≤ n ≤ 2N − 1

(B.6)

The Short window is actually built of 3 sub-windows, each of length 2Ns, where

Ns = N
3

is the length of the corresponding half-window unit. The locations of the

sub-windows, in reference to the long window types, can be described by:

Short1[n] =





0 0 ≤ n ≤ Ns − 1
hshort[n−Ns] Ns ≤ n ≤ 2Ns − 1
hshort[N − n− 1] 2Ns ≤ n ≤ N − 1
0 N ≤ n ≤ 2N − 1

(B.7)

Short2[n] =





0 0 ≤ n ≤ 2Ns − 1
hshort[n− 2Ns] 2Ns ≤ n ≤ N − 1
hshort[N + Ns − n− 1] N ≤ n ≤ N + Ns − 1
0 N + Ns ≤ n ≤ 2N − 1

(B.8)

Short3[n] =





0 0 ≤ n ≤ N − 1
hshort[n−N ] N ≤ n ≤ N + Ns − 1
hshort[N + 2Ns − n− 1] N + Ns ≤ n ≤ N + 2Ns − 1
0 N + 2Ns ≤ n ≤ 2N − 1

(B.9)

In the next sections, consecutive time segments are marked by consecutive indices,

p ∈ Z, as is the case in the MDCT and DSTFT domains:

An MDCT frame is denoted XMDCT
(p) [k], where 0 ≤ k ≤ N − 1.

A DSTFT frame is denoted XDSTFT
(p) [m], where 0 ≤ m ≤ N (here only the first

part is considered, since the coefficients are conjugate-symmetric).

B.2 Conversion from MDCT to DSTFT

Let’s assume that we have a sequence of MDCT frames, each frame contains N

real-valued MDCT coefficients that represent a segment of 2N time-samples. Our
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goal is to obtain the DSTFT representation (2N conjugate-symmetric coefficients)

of a single time-segment, indexed p, based on the data in the MDCT domain.

B.2.1 Using A Single Window Type

For simplicity we will first describe the procedure assuming all these MDCT frames

use a single long window type. The more general case is introduced in the next sub-

section. The corresponding half-window will be denoted here as h[n] , 0 ≤ n ≤ N .

By using an Inverse-MDCT transform on that frame we get 2N time-aliased

samples:

x̂(p)[n] =
2

N

N−1∑

k=0

XMDCT
(p) [k]·cos

(
π
N
· (n + N+1

2

) · (k + 1
2

))
, 0 ≤ n ≤ 2N−1 (B.10)

In order to cancel the aliasing and get the original samples we have to use the

OLA procedure, described in section 3.2.2: An inverse-MDCT is applied on each

of the frame’s two closest neighbors. Then, each of the resulting aliased segments is

multiplied by its corresponding window function and the overlapping time segments

are added together, to restore the original samples:

x(p)[n] =





x̂(p−1)[n + N ] · h[N − n− 1] + x̂(p)[n] · h[n] 0 ≤ n ≤ N − 1

x̂(p)[n] · h[2N − n− 1] + x̂(p+1)[n−N ] · h[n−N ] N ≤ n ≤ 2N − 1

(B.11)

Now that the original samples are restored, a DFT transform of length 2N is ap-

plied on them, not before the samples are multiplied by DSTFT window function

(represented by it’s first half: w[n]):
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XDSTFT
(p) [m] =

N−1∑
n=0

x(p)[n] · w[n] · e−j 2π
2N

mn +
2N−1∑
n=N

x(p)[n] · w[2N − n− 1] · e−j 2π
2N

mn

=
N−1∑
n=0

x(p)[n] · w[n] · e−j 2π
2N

mn , 0 ≤ m ≤ N (B.12)

+ (−1)m

N−1∑
n=0

x(p)[n + N ] · w[N − n− 1] · e−j 2π
2N

mn ,

where after changing the summation variable, one of the exponents could be re-

duced to (−1)m and could be taken out of the sum.

Now, by substituting (B.11) into (B.12):

XDSTFT
(p) [m] =

N−1∑
n=0

(
x̂(p−1) [n + N ] · h [N − n− 1] + x̂(p) [n] · h [n]

) · w [n] · e−j 2π
2N

mn

+ (−1)m
N−1∑
n=0

{ (
x̂(p) [n + N ] · h [N − n− 1] + x̂(p+1) [n] · h [n]

)

·w [N − n− 1] · e−j 2π
2N

mn

}

(B.13)
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Thus, by substituting (B.10) into (B.13) we obtain:

XDSTFT
(p) [m] =

2

N

N−1∑
n=0

N−1∑

k=0

{
XMDCT

(p−1) [k] · cos
(

π
N
· (n + N + N+1

2

) · (k + 1
2

))

·h [N − n− 1] · w [n] · e−j 2π
2N

mn

}

+
2

N

N−1∑
n=0

N−1∑

k=0

{
XMDCT

(p) [k] · cos
(

π
N
· (n + N+1

2

) · (k + 1
2

))

·h [n] · w [n] · e−j 2π
2N

mn

}
(B.14)

+(−1)m 2

N

N−1∑
n=0

N−1∑

k=0

{
XMDCT

(p) [k] · cos
(

π
N
· (n + N N+1

2

) · (k + 1
2

))

·h [N − n− 1] · w [N − n− 1] · e−j 2π
2N

mn

}

+(−1)m 2

N

N−1∑
n=0

N−1∑

k=0

{
XMDCT

(p+1) [k] · cos
(

π
N
· (nN+1

2

) · (k + 1
2

))

·h [n] · w [N − n− 1] · e−j 2π
2N

mn

}

Then, after changing the order of the summations:

XDSTFT
(p) [m] =

N−1∑

k=0

XMDCT
(p−1) [k]

[
2

N

N−1∑
n=0

cos
(

π
N
· (n + N + N+1

2

) · (k + 1
2

))

·h [N − n− 1] · w [n] · e−j 2π
2N

mn

]

+
N−1∑

k=0

XMDCT
(p) [k]

[
2

N

N−1∑
n=0

cos
(

π
N
· (n + N+1

2

) · (k + 1
2

))

·h [n] · w [n] · e−j 2π
2N

mn

]
(B.15)

+(−1)m

N−1∑

k=0

XMDCT
(p) [k]

[
2

N

N−1∑
n=0

cos
(

π
N
· (n + N N+1

2

) · (k + 1
2

))

·h [N − n− 1] · w [N − n− 1] · e−j 2π
2N

mn

]

+(−1)m

N−1∑

k=0

XMDCT
(p+1) [k]

[
2

N

N−1∑
n=0

cos
(

π
N
· (nN+1

2

) · (k + 1
2

))

·h [n] · w [N − n− 1] · e−j 2π
2N

mn

]

Each of the expressions in the square brackets will be denoted as a function of two

parameters: m, k. The expressions containing the direct form of w[n] are marked

with ’d’ and those with the reversed form, w[N −n−1], are marked with ’r’. Also,

the expressions that use the direct form of h[n] are marked by the number ’1’ and

the ones that use the reverse form, h[N − n − 1], are marked by the number ’2’.
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In total, we have: g1
d, g1

r , g2
d and g2

r .

We obtain:

XDSTFT
(p) [m] =

N−1∑

k=0

XMDCT
(p) [k] · (g1

d[m, k] + (−1)mg2
r [m, k]

)
(B.16)

+
N−1∑

k=0

XMDCT
(p−1) [k] · g2

d[m, k] +
N−1∑

k=0

XMDCT
(p+1) [k] · (−1)m · g1

r [m, k]

Where:

g1
d[m, k] =

2

N

N−1∑
n=0

cos
(

π
N

(
n + N+1

2

) (
k + 1

2

))·h [n]·w [n]·e−j 2π
2N

mn (B.17)

g1
r [m, k] =

2

N

N−1∑
n=0

cos
(

π
N

(
nN+1

2

) (
k + 1

2

))·h [n]·w [N − n− 1]·e−j 2π
2N

mn (B.18)

g2
d[m, k] =

2

N

N−1∑
n=0

{
cos

(
π
N

(
n + N + N+1

2

) (
k + 1

2

)) · h [N − n− 1]

·w [n] · e−j 2π
2N

mn

}
(B.19)

g2
r [m, k] =

2

N

N−1∑
n=0

{
cos

(
π
N
· (n + N N+1

2

) · (k + 1
2

)) · h [N − n− 1]

·w [N − n− 1] · e−j 2π
2N

mn

}
(B.20)

B.2.2 Using Different Window Types

The main difference in this case is that the type of the MDCT window, h[n],

depends on the frame, i.e., it is also a function of p: each MDCT frame can use a

different window. However, considering the four window types defined by the MP3,

we can observe that some of the cases are easier than others: For example, when

converting a frame that uses a Long window there might be an overlap between the

Long window and a Start window, or an overlap between a Stop window and the
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Long window. In such a case, the overlapping sections in each window function are

the direct and reverse form of the same window function, hlong[n] (see (B.4)-(B.6))

and therefore coincide with the ’single window’ example that was described before.

The cases of converting a frame that uses a Start or a Stop window, which

means overlapping with a Short window are less trivial: For example, the case

of an overlap between a Start and a Short window, is translated into an overlap

between a Start and a Short1 window, as defined in (B.7). A quick look at these

windows shows that the overlapping sections in these windows are not symmetric,

and therefore this case requires special handling. Same goes for the case of an

overlap between a Short and a Stop window, which is translated into an overlap

between a Short3 window, as defined in (B.9) and a Stop window.

The most complicated case is converting a frame that uses a Short window type,

since it can be followed by either a Stop window or by another Short window, and

preceded by either a Start window or by another Short window. Each of the cases

defines a different expression.

Another thing which is important to note regarding the short window type, is

that in the short window case the MDCT coefficients are organized differently than

in a long window, since these coefficients represent 3 short MDCT transforms. In

the short window case, the functions also take into account the ordering of the

coefficients. Fig. B.1 shows how the coefficients are organized in the output of the

MDCT function at the encoder (and respectively, in the input of the Inverse-MDCT

function at the decoder).

The rest of this section explores the different cases, and presents the mathemat-

ical development of several chosen examples. The full picture, i.e., the assignments

for each possible case, are given in Table 6.1.
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Figure B.1: (a) Long window (type 0,1,3) - coefficients arranged in ascending order:

1-18. (b) Short window (type 2) - interleaving the coefficients of the 3 short MDCT

transforms: A-C, according to their ascending order: 1-6.

Converting a Long frame

As already mentioned, this is the easiest case which actually coincides with the

particular case described in section B.2.1, since all the overlapping segments use

hlong. By replacing all the instances of h in equations B.17-B.20 with hlong we

obtain the functions g1
d/r long[m, k] and g2

d/r long[m, k] that are defined in section

6.1.1.

Converting a Start frame

Following the rules defined in the MP3 standard, in the case of a Start frame the

preceding frame uses a Long window type, and the following frame uses a Short

window type.

After applying an inverse-MDCT on the current frame and on its two closest

neighbors we have the aliased samples. Since the current and previous frames

(marked in index p and p − 1, respectively) use a long MDCT transform, the

expression for their inverse transform is given in (B.10). Regarding the next frame,

which uses 3 short MDCT transforms, there are overlapping segments within the
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frame itself:

x̂(p+1)[n] = 0 , 0 ≤ n ≤ Ns − 1 (B.21)

x̂Short1
(p+1) [n] =

2

Ns

Ns−1∑

k=0

XMDCT

(p+1) [3k] · cos
(

π
Ns

(
n−Ns + Ns+1

2

) (
k + 1

2

))

, Ns ≤ n ≤ N − 1

x̂Short2
(p+1) [n] =

2

Ns

Ns−1∑

k=0

XMDCT

(p+1) [3k + 1] · cos
(

π
Ns

(
n− 2Ns + Ns+1

2

) (
k + 1

2

))

, 2Ns ≤ n ≤ N + Ns − 1

x̂Short3
(p+1) [n] =

2

Ns

Ns−1∑

k=0

XMDCT

(p+1) [3k + 2] · cos
(

π
Ns

(
n + N + Ns+1

2

) (
k + 1

2

))

, N ≤ n ≤ N + 2Ns − 1

x̂(p+1)[n] = 0 , N + 2Ns ≤ n ≤ 2N − 1

The samples of the Start frame that we wish to convert, are restored using the

first half of the Short frame following it, and the second half of the Long frame
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preceding it, in the following manner:

x(p)[n] = (B.22)





x̂(p−1)[n + N ] · hlong[N − n− 1] + x̂(p)[n] · hlong[n] , 0 ≤ n ≤ N − 1

x̂(p)[n] · hshort2long[2N − n− 1] , N ≤ n ≤ N + Ns − 1

x̂(p)[n] · hshort2long[2N − n− 1]

+x̂Short1
(p+1) [n−N ] · hshort[n−N −Ns] , N + Ns ≤ n ≤ N + 2Ns − 1

x̂(p)[n] · hshort2long[2N − n− 1]

+x̂Short1
(p+1) [n−N ] · hshort[2N − n− 1]

+x̂Short2
(p+1) [n−N ] · hshort[n−N − 2Ns] , N + 2Ns ≤ n ≤ 2N − 1

Applying the DSTFT on the restored samples gives the following expression:

XDSTFT
(p) [m] = (B.23)

N−1∑
n=0

(x̂(p−1)[n + N ] · hlong[N − n− 1] + x̂(p)[n] · hlong[n]) · w[n] · e−j 2π
2N

mn

+(−1)m

N−1∑
n=0

x̂(p)[n + N ] · hshort2long[N − n− 1] · w[N − n− 1] · e−j 2π
2N

mn

+(−1)m

2Ns−1∑
n=Ns

x̂Short1
(p+1) [n] · hshort[n−Ns] · w[N − n− 1] · e−j 2π

2N
mn

+(−1)m

N−1∑
n=2Ns

{
(x̂Short1

(p+1) [n] · hshort[N − n− 1] + x̂Short2
(p+1) [n] · hshort[n− 2Ns])

·w[N − n− 1] · e−j 2π
2N

mn

}
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By substituting the explicit expressions for the inverse-MDCT we obtain:

XDSTFT
(p) [m] = (B.24)

2

N

N−1∑
n=0

N−1∑

k=0

XMDCT

(p−1) [k] · cos
(

π
N

(
n + N + N+1

2

) (
k + 1

2

)) · hlong[N − n− 1] · w[n] · e−j 2π
2N

mn

+
2

N

N−1∑
n=0

N−1∑

k=0

XMDCT

(p) [k] · cos
(

π
N

(
n + N+1

2

) (
k + 1

2

)) · hlong[n] · w[n] · e−j 2π
2N

mn

+(−1)m 2

N

N−1∑
n=0

N−1∑

k=0




XMDCT

(p) [k] · cos
(

π
N

(
n + N + N+1

2

) (
k + 1

2

))

·hshort2long[N − n− 1] · w[N − n− 1] · e−j 2π
2N

mn




+(−1)m 2

Ns

2Ns−1∑
n=Ns

Ns−1∑

k=0




XMDCT

(p+1) [3k] · cos
(

π
Ns

(
n−Ns + Ns+1

2

) (
k + 1

2

))

·hshort[n−Ns] · w[N − n− 1] · e−j 2π
2N

mn




+(−1)m 2

Ns

N−1∑
n=2Ns

Ns−1∑

k=0




XMDCT

(p+1) [3k] · cos
(

π
Ns

(
n−Ns + Ns+1

2

) (
k + 1

2

))

·hshort[N − n− 1] · w[N − n− 1] · e−j 2π
2N

mn




+(−1)m 2

Ns

N−1∑
n=2Ns

Ns−1∑

k=0




XMDCT

(p+1) [3k + 1] · cos
(

π
Ns

(
n− 2Ns + Ns+1

2

) (
k + 1

2

))

·hshort[n− 2Ns] · w[N − n− 1] · e−j 2π
2N

mn



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The next steps are to change the order of the summations, and to change the

variants in the short summations:

XDSTFT
(p) [m] = (B.25)

N−1∑

k=0

XMDCT

(p−1) [k]

[
2

N

N−1∑
n=0

cos
(

π
N

(
n + N + N+1

2

) (
k + 1

2

)) · hlong[N − n− 1] · w[n] · e−j 2π
2N

mn

]

+
N−1∑

k=0

XMDCT

(p) [k]

[
2

N

N−1∑
n=0

cos
(

π
N

(
n + N+1

2

) (
k + 1

2

)) · hlong[n] · w[n] · e−j 2π
2N

mn

]

+(−1)m

N−1∑

k=0

XMDCT

(p) [k]


 2

N

N−1∑
n=0





cos
(

π
N

(
n + N + N+1

2

) (
k + 1

2

))

·hshort2long[N − n− 1] · w[N − n− 1] · e−j 2π
2N

mn








+(−1)m

Ns−1∑

k=0

XMDCT

(p+1) [3k]




2

Ns

Ns−1∑
n=0





cos
(

π
Ns

(
n + Ns+1

2

) (
k + 1

2

)) · hshort[n]

·w[N − (n + Ns)− 1] · e−j 2π
2N

m(n+Ns)





+

2

Ns

Ns−1∑
n=0





cos
(

π
Ns

(
n + Ns + Ns+1

2

) (
k + 1

2

)) · hshort[Ns − n− 1]

·w[N − (n + 2Ns)− 1] · e−j 2π
2N

m(n+2Ns)








+(−1)m

Ns−1∑

k=0

XMDCT

(p+1) [3k + 1]


 2

Ns

Ns−1∑
n=0





cos
(

π
Ns

(
n + Ns+1

2

) (
k + 1

2

))

·hshort[n] · w[N − (n + 2Ns)− 1] · e−j 2π
2N

m(n+2Ns)








Again, as in the previous section, each of the summations in the square brackets will

be denoted as a function, besides the short summations of the next frame, XMDCT

(p+1) ,

which are gathered up to form a single function, defined for 0 ≤ n ≤ N − 1,

and described by (B.26). The rest of the functions that are used in (B.27) are

introduced in section 6.1.1.
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g1
r short[m, k] =





Ns−1∑
n=0




cos
[

π
Ns

(
n + Ns+1

2

) (bk
3
c+ 1

2

)] · hshort[n] · w[N − 1− (n + Ns)] · e−j π
N

(n+Ns)m

+ cos
[

π
Ns

(
n + Ns + Ns+1

2

) (bk
3
c+ 1

2

)] · hshort[Ns − n− 1]

·w[N − 1− (n + 2Ns)] · e−j π
N

(n+2Ns)m




k = 0, 3, 6, . . . , N − 3
Ns−1∑
n=0

cos
[

π
Ns

(
n + Ns+1

2

) (bk
3
c+ 1

2

)] · hshort[n] · w[N − 1− (n + 2Ns)] · e−j π
N

(n+2Ns)m

k = 1, 4, 7, . . . , N − 2
0 k = 2, 5, 8, . . . , N − 1

(B.26)

XDSTFT
(p) [m] =

N−1∑

k=0

XMDCT

(p) [k] · (g1
d long[m, k] + (−1)mg2

r short2long[m, k]
)

+
N−1∑

k=0

XMDCT

(p−1) [k] · g2
d long[m, k] (B.27)

+
N−1∑

k=0

XMDCT

(p+1) [k] · (−1)m · g1
r short[m, k]

Converting a Short frame

The most difficult task is to convert an MDCT frame that uses a Short window

type. Besides for the number of inverse-MDCT transform that participate in this

conversion (since each Short window means 3 short transforms), there is also the

aspect of the types of the preceding and following frames: Since in the case of a

Short window type, there are several possibilities. By the ordering defined by the
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MP3 standard, a Short window type can follow either a Start or a Short window

type. Also, the frame following a Short window type can use either a Short or

a Stop window type. Hence, in this case there are 4 options for a sequence of 3

consecutive windows.

Since the case of a Start window overlapping a Short window was already cov-

ered in the previous subsection, we show here an example of the other two cases: a

Short window overlapping a Short window, and a Short window overlapping a Stop

window. Hence we chose to describe the development of the conversion procedure

for a Short window, assuming it is preceded by a Short window and is followed by

a Stop window type: Short→Short→Stop.

Following (B.21) which introduces the aliased samples in the case of a Short

window, the original samples in this case are restored by:

x(p)[n] = (B.28)





x̂Short2
(p−1) [n + N ] · hshort[Ns − n− 1] + x̂Short3

(p−1) [n + N ] · hshort[n] , 0 ≤ n ≤ Ns − 1

x̂Short3
(p−1) [n + N ] · hshort[2Ns − n− 1] + x̂Short1

(p) [n] · hshort[n−Ns] , Ns ≤ n ≤ 2Ns − 1

x̂Short1
(p) [n] · hshort[N − n− 1] + x̂Short2

(p) [n] · hshort[n− 2Ns] , 2Ns ≤ n ≤ N − 1

x̂(p+1)[n−N ] · hshort2long[n−N ] + x̂Short3
(p) [n] · hshort[n−N ]

+x̂Short2
(p) [n] · hshort[N + Ns − n− 1] , N ≤ n ≤ N + Ns − 1

x̂(p+1)[n−N ] · hshort2long[n−N ]

+x̂Short3
(p) [n] · hshort[N + 2Ns − n− 1] , N + Ns ≤ n ≤ N + 2Ns − 1

x̂(p+1)[n−N ] · hshort2long[n−N ] , N + 2Ns ≤ n ≤ 2N − 1
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Applying the DSTFT gives the following expression:

XDSTFT
(p) [m] = (B.29)

Ns−1∑
n=0

(
x̂Short2

(p−1) [n + N ] · hshort[Ns − n− 1] + x̂Short3
(p−1) [n + N ] · hshort[n]

)
· w[n] · e−j 2π

2N
mn

+
2Ns−1∑
n=Ns

(
x̂Short3

(p−1) [n + N ] · hshort[2Ns − n− 1] + x̂Short1
(p) [n] · hshort[n−Ns]

)
· w[n] · e−j 2π

2N
mn

+
N−1∑

n=2Ns

(
x̂Short1

(p) [n] · hshort[N − n− 1] + x̂Short2
(p) [n] · hshort[n− 2Ns]

)
· w[n] · e−j 2π

2N
mn

+
N+Ns−1∑

n=N





(
x̂(p+1)[n−N ] · hshort2long[n−N ] + x̂Short3

(p) [n] · hshort[n−N ]

+x̂Short2
(p) [n] · hshort[N + Ns − n− 1]

)
· w[2N − n− 1] · e−j 2π

2N
mn





+
N+2Ns−1∑
n=N+Ns





(
x̂(p+1)[n−N ] · hshort2long[n−N ]

+x̂Short3
(p) [n] · hshort[N + 2Ns − n− 1]

)
· w[2N − n− 1] · e−j 2π

2N
mn





+
2N−1∑

n=N+2Ns

x̂(p+1)[n−N ] · hshort2long[n−N ] · w[2N − n− 1] · e−j 2π
2N

mn
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By substituting the explicit expressions for the inverse-MDCT, and changing

the variants in some of the summations we obtain:

XDSTFT
(p) [m] = (B.30)

Ns−1∑
n=0





(
Ns−1∑

k=0

XMDCT

(p−1) [3k + 1] · cos
(

π
Ns

(
n + Ns + Ns+1

2

) (
k + 1

2

)) · hshort[Ns − n− 1]

+
Ns−1∑

k=0

XMDCT

(p−1) [3k + 2] · cos
(

π
Ns

(
n + Ns+1

2

) (
k + 1

2

)) · hshort[n]

)
· w[n] · e−j 2π

2N
mn





+
Ns−1∑
n=0





(
Ns−1∑

k=0

XMDCT

(p−1) [3k + 2] · cos
(

π
Ns

(
n + Ns

Ns+1
2

) (
k + 1

2

)) · hshort[Ns − n− 1]

+
Ns−1∑

k=0

XMDCT

(p) [3k] · cos
(

π
Ns

(
n + Ns+1

2

) (
k + 1

2

)) · hshort[n]

)

·w[n + Ns] · e−j 2π
2N

m(n+Ns)





+
Ns−1∑
n=0





(
Ns−1∑

k=0

XMDCT

(p) [3k] · cos
(

π
Ns

(
n + Ns + Ns+1

2

) (
k + 1

2

)) · hshort[Ns − n− 1]

+
Ns−1∑

k=0

XMDCT

(p) [3k + 1] · cos
(

π
Ns

(
n + Ns+1

2

) (
k + 1

2

)) · hshort[n]

)

·w[n + 2Ns] · e−j 2π
2N

m(n+2Ns)





+(−1)m

N−1∑
n=0

N−1∑

k=0

XMDCT

(p+1) [k] · cos
(

π
N

(
n + N+1

2

) (
k + 1

2

)) · hshort2long[n] · w[N − n− 1] · e−j 2π
2N

mn

+(−1)m

Ns−1∑
n=0





(
Ns−1∑

k=0

XMDCT

(p) [3k + 2] · cos
(

π
Ns

(
n + Ns+1

2

) (
k + 1

2

)) · hshort[n]

+
Ns−1∑

k=0

XMDCT

(p) [3k + 1] · cos
(

π
Ns

(
n + Ns + Ns+1

2

) (
k + 1

2

)) · hshort[Ns − n− 1]

)

·w[N − n− 1] · e−j 2π
2N

mn





+(−1)m

Ns−1∑
n=0

Ns−1∑

k=0

{
XMDCT

(p) [3k + 2] · cos
(

π
Ns

(
n + Ns + Ns+1

2

) (
k + 1

2

))

·hshort[Ns − n− 1] · w[N − (n + Ns)− 1] · e−j 2π
2N

m(n+Ns)

}
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And after switching the order of the summations and re-arranging the arguments

we have:

XDSTFT
(p) [m] = (B.31)

Ns−1∑

k=0

XMDCT

(p−1) [3k + 1]
Ns−1∑
n=0

{
cos

(
π

Ns

(
n + Ns + Ns+1

2

) (
k + 1

2

)) · hshort[Ns − n− 1]

·w[n] · e−j 2π
2N

mn

}

+
Ns−1∑

k=0

XMDCT

(p−1) [3k + 2]
Ns−1∑
n=0





cos
(

π
Ns

(
n + Ns+1

2

) (
k + 1

2

)) · hshort[n] · w[n] · e−j 2π
2N

mn

+ cos
(

π
Ns

(
n + Ns

Ns+1
2

) (
k + 1

2

)) · hshort[Ns − n− 1]

·w[n + Ns] · e−j 2π
2N

m(n+Ns)





+
Ns−1∑

k=0

XMDCT

(p) [3k]
Ns−1∑
n=0





cos
(

π
Ns

(
n + Ns+1

2

) (
k + 1

2

)) · hshort[n] · w[n + Ns] · e−j 2π
2N

m(n+Ns)

+ cos
(

π
Ns

(
n + Ns + Ns+1

2

) (
k + 1

2

)) · hshort[Ns − n− 1]

·w[n + 2Ns] · e−j 2π
2N

m(n+2Ns)





+
Ns−1∑

k=0

XMDCT

(p) [3k + 1]
Ns−1∑
n=0





cos
(

π
Ns

(
n + Ns+1

2

) (
k + 1

2

)) · hshort[n] · w[n + 2Ns]

·e−j 2π
2N

m(n+2Ns) + (−1)m cos
(

π
Ns

(
n + Ns + Ns+1

2

) (
k + 1

2

))

·hshort[Ns − n− 1] · w[N − n− 1] · e−j 2π
2N

mn





+(−1)m

Ns−1∑

k=0

XMDCT

(p) [3k + 2]
Ns−1∑
n=0





cos
(

π
Ns

(
n + Ns+1

2

) (
k + 1

2

)) · hshort[n] · w[N − n− 1]

·e−j 2π
2N

mn + cos
(

π
Ns

(
n + Ns + Ns+1

2

) (
k + 1

2

))

·hshort[Ns − n− 1] · w[N − (n + Ns)− 1] · e−j 2π
2N

m(n+Ns)





+(−1)m

N−1∑

k=0

XMDCT

(p+1) [k]
N−1∑
n=0

cos
(

π
N

(
n + N+1

2

) (
k + 1

2

)) · hshort2long[n] · w[N − n− 1] · e−j 2π
2N

mn
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Again, as in the previous case, the short summations are gathered up to form

a single function, defined for 0 ≤ n ≤ N − 1.

XDSTFT
(p) [m] =

N−1∑

k=0

XMDCT

(p−1) [k] · g2
d short[m, k] (B.32)

+
Ns−1∑

k=0

XMDCT

(p) [3k] · (g1
d short[m, k] + (−1)m · g2

r short[m, k]
)

+
N−1∑

k=0

XMDCT

(p+1) [k] · (−1)m · g1
r short2long[m, k]

Where g1
r short2long[m, k] is introduced in section 6.1.1 and g2

d/r short[m, k] and g1
d short[m, k]

are introduced in (B.33)-(B.35).

g2
d short[m, k] =





0 k = 0, 3, 6, . . . , N − 3
Ns−1∑
n=0

cos
[

π
Ns

(
n + Ns + Ns+1

2

) (bk
3
c+ 1

2

)] · hshort[Ns − n− 1] · w[n] · e−j π
N

nm

k = 1, 4, 7, . . . , N − 2

Ns−1∑
n=0




cos
[

π
Ns

(
n + Ns+1

2

) (bk
3
c+ 1

2

)] · hshort[n] · w[n] · e−j π
N

nm

+ cos
[

π
Ns

(
n + Ns + Ns+1

2

) (bk
3
c+ 1

2

)] · hshort[Ns − n− 1]

·w[n + Ns] · e−j π
N

(n+Ns)m




k = 2, 5, 8, . . . , N − 1

(B.33)
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g2
r short[m, k] =





0 k = 0, 3, 6, . . . , N − 3
Ns−1∑
n=0

cos
[

π
Ns

(
n + Ns + Ns+1

2

) (bk
3
c+ 1

2

)] · hshort[Ns − n− 1] · w[N − n− 1] · e−j π
N

nm

k = 1, 4, 7, . . . , N − 2

Ns−1∑
n=0




cos
[

π
Ns

(
n + Ns+1

2

) (bk
3
c+ 1

2

)] · hshort[n] · w[N − n− 1] · e−j π
N

nm

+ cos
[

π
Ns

(
n + Ns + Ns+1

2

) (bk
3
c+ 1

2

)] · hshort[Ns − n− 1]

·w[N − 1− (n + Ns)] · e−j π
N

(n+Ns)m




k = 2, 5, 8, . . . , N − 1

(B.34)

g1
d short[m, k] =





Ns−1∑
n=0




cos
[

π
Ns

(
n + Ns+1

2

) (bk
3
c+ 1

2

)] · hshort[n] · w[n + Ns] · e−j π
N

(n+Ns)m

+ cos
[

π
Ns

(
n + Ns + Ns+1

2

) (bk
3
c+ 1

2

)] · hshort[Ns − n− 1]

·w[n + 2Ns] · e−j π
N

(n+2Ns)m




k = 0, 3, 6, . . . , N − 3
Ns−1∑
n=0

cos
[

π
Ns

(
n + Ns+1

2

) (bk
3
c+ 1

2

)] · hshort[n] · w[n + 2Ns] · e−j π
N

(n+2Ns)m

k = 1, 4, 7, . . . , N − 2
0 k = 2, 5, 8, . . . , N − 1

(B.35)

Converting a Stop frame

This conversion is done in the same manner as in the case of the Start frame, using

the expressions that were already demonstrated in previous sub-sections.
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B.3 Conversion from DSTFT to MDCT

Let’s assume that we have a sequence of DSTFT frames, each frame contains

2N conjugate-symmetric coefficients that represent a segment of 2N time-samples.

Our goal is to obtain the MDCT representation (N real-valued coefficients) of a

single time-segment, indexed p, based on the data in the DSTFT domain.

As in the conversion from MDCT to DSTFT, the process here is also based on

the simple procedure of using an inverse-DFT on the frame that we wish to convert

and on its two closest neighbors in order to reconstruct the original samples using

a simple overlap-and-add. Then, an MDCT transform is applied on the restored

samples, not before they are multiplied with one of the four window types. The

length of the MDCT transform is determined by the window type that was chosen

(3 short transforms in a Short window type or one long transform for all other

types).

Using some algebraic manipulations we obtain the general expressions and the

functions that were introduced in section 6.1. Luckily, the functions that were

defined for the direct conversion could be applied here as well.

The first step is to restore the 2N original samples using an inverse-DFT and

an overlap-and-add that involves three consecutive DSTFT frames:

x(p)[n] = (B.36)





1
2N

2N−1∑
m=0

XDSTFT

(p−1) [m] · ej 2π
2N

m(n+N) + 1
2N

2N−1∑
m=0

XDSTFT

(p) [m] · ej 2π
2N

mn , 0 ≤ n ≤ N − 1

1
2N

2N−1∑
m=0

XDSTFT

(p) [m] · ej 2π
2N

mn + 1
2N

2N−1∑
m=0

XDSTFT

(p+1) [m] · ej 2π
2N

m(n−N) , N ≤ n ≤ 2N − 1

Then, the restored samples are multiplied by the corresponding MDCT window
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type and an MDCT transform is applied.

Converting into a Long frame

In the case of a Long window type, the window is expressed using two instances

of the corresponding half-window unit, hlong[·], as shown in (B.4). The MDCT

coefficients are therefore given by:

XMDCT

(p) [k] =
2

N

N−1∑
n=0

x(p)[n] · hlong[n] · cos
(

π
N

(
n + N+1

2

) (
k + 1

2

))
(B.37)

+
2

N

2N−1∑
n=N

x(p)[n] · hlong[2N − n− 1] · cos
(

π
N

(
n + N+1

2

) (
k + 1

2

))

By substituting (B.36) into (B.37) and using a change of variants we have:

XMDCT

(p) [k] = (B.38)

1

N2

N−1∑
n=0

2N−1∑
m=0

XDSTFT

(p−1) [m] · ej 2π
2N

mn · (−1)m · hlong[n] · cos
(

π
N

(
n + N+1

2

) (
k + 1

2

))

+
1

N2

N−1∑
n=0

2N−1∑
m=0

XDSTFT

(p) [m] · ej 2π
2N

mn · hlong[n] · cos
(

π
N

(
n + N+1

2

) (
k + 1

2

))

+
1

N2

N−1∑
n=0

2N−1∑
m=0





XDSTFT

(p) [m] · ej 2π
2N

mn · (−1)m · hlong[N − n− 1]

·cos
(

π
N

(
n + N + N+1

2

) (
k + 1

2

))





+
1

N2

N−1∑
n=0

2N−1∑
m=0





XDSTFT

(p+1) [m] · ej 2π
2N

mn · hlong[N − n− 1]

·cos
(

π
N

(
n + N + N+1

2

) (
k + 1

2

))




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After changing the order of the summations:

XMDCT

(p) [k] = (B.39)

1

N2

2N−1∑
m=0

XDSTFT

(p−1) [m] · (−1)m

N−1∑
n=0

cos
(

π
N

(
n + N+1

2

) (
k + 1

2

)) · hlong[n] · ej 2π
2N

mn

+
1

N2

2N−1∑
m=0

XDSTFT

(p) [m]
N−1∑
n=0

cos
(

π
N

(
n + N+1

2

) (
k + 1

2

)) · hlong[n] · ej 2π
2N

mn

+
1

N2

2N−1∑
m=0

XDSTFT

(p) [m] · (−1)m

N−1∑
n=0





cos
(

π
N

(
n + N + N+1

2

) (
k + 1

2

))

·hlong[N − n− 1] · ej 2π
2N

mn





+
1

N2

2N−1∑
m=0

N−1∑
n=0

XDSTFT

(p+1) [m]





cos
(

π
N

(
n + N + N+1

2

) (
k + 1

2

))

·hlong[N − n− 1] · ej 2π
2N

mn





Checking the last equation we can see that the expressions multiplying the

DSTFT coefficients are very similar to the functions introduced in section 6.1.1,

with one difference: the function in section 6.1.1 are multiplied by the window

function w[·]. But, since we originally demanded that w[n] + w[N − n − 1] = 1

than the desired expressions can be expressed by adding together the direct and

reverse form of each function. Hence, the conversion expression can be downsized



B. Converting the MDCT to the DSTFT domain and vice versa 159

to:

XMDCT

(p) [k] = (B.40)

1

N2

2N−1∑
m=0

XDSTFT

(p) [m] · [(g1
d long[m, k]∗ + g1

r long[m, k]∗) + (−1)m(g2
d long[m, k]∗ + g2

r long[m, k]∗
)]

+
1

N2

2N−1∑
m=0

XDSTFT

(p−1) [m] · (−1)m · (g1
d long[m, k]∗ + g1

r long[m, k]∗
)

+
1

N2

2N−1∑
m=0

XDSTFT

(p+1) [m] · (g2
d long[m, k]∗ + g2

r long[m, k]∗
)

Converting into a Start or a Stop frame

The conversion in this case is very similar to the case of the Long window type.

Both the Start and the Stop windows are expressed using one instance of hlong[·]
and one instance of hshort2long[·], as shown in (B.5)-(B.6). By substituting the corre-

sponding half-window units we arrive to the same expressions: using g1
d/r long[m, k]

with g2
d/r short2long[m, k] in the case of a Start window, and g1

d/r short2long[m, k] with

g2
d/r long[m, k] in the case of a Stop window, as specified in Table 6.2.

Converting into a Short frame

In the case of Short window type, 3 short MDCT transforms are applied instead

of one long transform: the samples are multiplied by each of the 3 sub-window

functions, located as described in (B.7)-(B.9). Then, a short MDCT transform

is applied on each of the resulting, 2Ns-samples long, windowed segments. The
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MDCT coefficients in this case are given by:

XMDCT

(p) [k] = (B.41)





2
Ns

Ns−1∑
n=0

x(p)[n + Ns] · hshort[n] · cos
(

π
Ns

(
n + Ns+1

2

) (
k + 1

2

))

+ 2
Ns

Ns−1∑
n=0

x(p)[n + 2Ns] · hshort[Ns − n− 1] · cos
(

π
Ns

(
n + Ns + Ns+1

2

) (
k + 1

2

))

, k = 0, 3, 6, . . . , Ns − 3

2
Ns

Ns−1∑
n=0

x(p)[n + 2Ns] · hshort[n] · cos
(

π
Ns

(
n + Ns+1

2

) (
k + 1

2

))

+ 2
Ns

Ns−1∑
n=0

x(p)[n + N ] · hshort[Ns − n− 1] · cos
(

π
Ns

(
n + Ns + Ns+1

2

) (
k + 1

2

))

, k = 1, 4, 7, . . . , Ns − 2

2
Ns

Ns−1∑
n=0

x(p)[n + N ] · hshort[n] · cos
(

π
Ns

(
n + Ns+1

2

) (
k + 1

2

))

+ 2
Ns

Ns−1∑
n=0

x(p)[n + N + Ns] · hshort[Ns − n− 1] · cos
(

π
Ns

(
n + Ns + Ns+1

2

) (
k + 1

2

))

, k = 2, 5, 8, . . . , Ns − 1
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By substituting (B.36) into (B.41) we have:

XMDCT

(p) [k] = (B.42)





1
N ·Ns

Ns−1∑
n=0

(
2N−1∑
m=0

XDSTFT

(p−1) [m] · (−1)m · ej 2π
2N

m(n+Ns) +
2N−1∑
m=0

XDSTFT

(p) [m] · ej 2π
2N

m(n+Ns)

)

·hshort[n] · cos
(

π
Ns

(
n + Ns+1

2

) (
k + 1

2

))

+ 1
N ·Ns

Ns−1∑
n=0

(
2N−1∑
m=0

XDSTFT

(p−1) [m] · (−1)m · ej 2π
2N

m(n+2Ns) +
2N−1∑
m=0

XDSTFT

(p) [m] · ej 2π
2N

m(n+2Ns)

)

·hshort[Ns − n− 1] · cos
(

π
Ns

(
n + Ns + Ns+1

2

) (
k + 1

2

))

, k = 0, 3, 6, . . . , Ns − 3

1
N ·Ns

Ns−1∑
n=0

(
2N−1∑
m=0

XDSTFT

(p−1) [m] · (−1)m · ej 2π
2N

m(n+2Ns) +
2N−1∑
m=0

XDSTFT

(p) [m] · ej 2π
2N

m(n+2Ns)

)

·hshort[n] · cos
(

π
Ns

(
n + Ns+1

2

) (
k + 1

2

))

+ 1
N ·Ns

Ns−1∑
n=0

(
2N−1∑
m=0

XDSTFT

(p) [m] · (−1)m · ej 2π
2N

mn +
2N−1∑
m=0

XDSTFT

(p+1) [m] · ej 2π
2N

mn

)

·hshort[Ns − n− 1] · cos
(

π
Ns

(
n + Ns + Ns+1

2

) (
k + 1

2

))

, k = 1, 4, 7, . . . , Ns − 2

1
N ·Ns

Ns−1∑
n=0

(
2N−1∑
m=0

XDSTFT

(p) [m] · (−1)m · ej 2π
2N

mn +
2N−1∑
m=0

XDSTFT

(p+1) [m] · ej 2π
2N

mn

)

·hshort[n] · cos
(

π
Ns

(
n + Ns+1

2

) (
k + 1

2

))

+ 1
N ·Ns

Ns−1∑
n=0

(
2N−1∑
m=0

XDSTFT

(p) [m] · (−1)m · ej 2π
2N

m(n+Ns) +
2N−1∑
m=0

XDSTFT

(p+1) [m] · ej 2π
2N

m(n+Ns)

)

·hshort[Ns − n− 1] · cos
(

π
Ns

(
n + Ns + Ns+1

2

) (
k + 1

2

))

, k = 2, 5, 8, . . . , Ns − 1
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By changing the order of the summations:

XMDCT

(p) [k] = (B.43)





1
N ·Ns

2N−1∑
m=0

XDSTFT

(p−1) [m] · (−1)m





Ns−1∑
n=0

hshort[n] · cos
(

π
Ns

(
n + Ns+1

2

) (
k + 1

2

)) · ej 2π
2N

m(n+Ns)

+
Ns−1∑
n=0

hshort[Ns − n− 1]

·cos
(

π
Ns

(
n + Ns + Ns+1

2

) (
k + 1

2

)) · ej 2π
2N

m(n+2Ns)





+ 1
N ·Ns

2N−1∑
m=0

XDSTFT

(p) [m]





Ns−1∑
n=0

hshort[n] · cos
(

π
Ns

(
n + Ns+1

2

) (
k + 1

2

)) · ej 2π
2N

m(n+Ns)

+
Ns−1∑
n=0

hshort[Ns − n− 1] · cos
(

π
Ns

(
n + Ns + Ns+1

2

) (
k + 1

2

))

·ej 2π
2N

m(n+2Ns)





, k = 0, 3, 6, . . . , Ns − 3

1
N ·Ns

2N−1∑
m=0

XDSTFT

(p−1) [m] · (−1)m

Ns−1∑
n=0

hshort[n] · cos
(

π
Ns

(
n + Ns+1

2

) (
k + 1

2

)) · ej 2π
2N

m(n+2Ns)

+ 1
N ·Ns

2N−1∑
m=0

XDSTFT

(p) [m]





Ns−1∑
n=0

hshort[n] · cos
(

π
Ns

(
n + Ns+1

2

) (
k + 1

2

)) · ej 2π
2N

m(n+2Ns)

+(−1)m

Ns−1∑
n=0

hshort[Ns − n− 1]

·cos
(

π
Ns

(
n + Ns + Ns+1

2

) (
k + 1

2

)) · ej 2π
2N

mn





+ 1
N ·Ns

2N−1∑
m=0

XDSTFT

(p+1) [m]
Ns−1∑
n=0

hshort[Ns − n− 1] · cos
(

π
Ns

(
n + Ns + Ns+1

2

) (
k + 1

2

)) · ej 2π
2N

mn

, k = 1, 4, 7, . . . , Ns − 2

1
N ·Ns

2N−1∑
m=0

XDSTFT

(p) [m] · (−1)m





Ns−1∑
n=0

hshort[n] · cos
(

π
Ns

(
n + Ns+1

2

) (
k + 1

2

)) · ej 2π
2N

mn

+
Ns−1∑
n=0

hshort[Ns − n− 1]

·cos
(

π
Ns

(
n + Ns + Ns+1

2

) (
k + 1

2

)) · ej 2π
2N

m(n+Ns)





+ 1
N ·Ns

2N−1∑
m=0

XDSTFT

(p+1) [m]





Ns−1∑
n=0

hshort[n] · cos
(

π
Ns

(
n + Ns+1

2

) (
k + 1

2

)) · ej 2π
2N

mn

+
Ns−1∑
n=0

hshort[Ns − n− 1] · cos
(

π
Ns

(
n + Ns + Ns+1

2

) (
k + 1

2

))

·ej 2π
2N

m(n+Ns)





, k = 2, 5, 8, . . . , Ns − 1



B. Converting the MDCT to the DSTFT domain and vice versa 163

As in the previous cases, the expressions here can also be represented by the func-

tions introduced in (B.26) and (B.33)-(B.35), in the following way:

XMDCT

(p) [k] =
1

N ·Ns

2N−1∑
m=0

XDSTFT

(p−1) [m] · (−1)m
(
g1

d short[m, k]∗ + g1
r short[m, k]∗

)
(B.44)

+
1

N ·Ns

2N−1∑
m=0

XDSTFT

(p) [m]





(g1
d short[m, k]∗ + g1

r short[m, k]∗)

+(−1)m (g2
d short[m, k]∗ + g2

r short[m, k]∗)





+
1

N ·Ns

2N−1∑
m=0

XDSTFT

(p+1) [m]
(
g2

d short[m, k]∗ + g2
r short[m, k]∗

)



Appendix C

Analysis of pure sinusoids in the

MDCT and DSTFT domains

This Appendix presents the mathematical development of the expressions pre-

sented in section 4.2.1.

We start from a single sinusoidal signal:

x[n] = A · cos
(

2π
2N

(K0 + ∆0) n + φ0

)
, n ∈ Z (C.1)

Where K0 is an integer number: 0 ≤ K0 < 2N , ∆0 is a fractional number: 0 ≤
∆0 < 1 and φ0 is the initial phase.

As described in section 4.2.1, we assume that both the MDCT transform and

the DSTFT transform are applied on 50% overlapping segments, each 2N samples-

long. The segments are indexed by p ∈ Z, hence, the p’th segment will be denoted

as:

x(p)[n] , {x[pN + n]}2N−1
n=0 (C.2)

C.1 Applying the MDCT Transform

The MDCT transform is applied with a window function:

h[n] = sin
(

π
2N

(
n + 1

2

))
, 0 ≤ n ≤ 2N − 1 (C.3)
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Applying the MDCT transform on the signal we have:

XMDCT

(p) [k] =
2N−1∑
n=0

x [pN + n] · h [n] · cos
(

π
N

(
n + N+1

2

) (
k + 1

2

))
, 0 ≤ k ≤ N − 1

= A

2N−1∑
n=0





cos
(

2π
2N

(K0 + ∆0) (pN + n) + φ0

)

·sin (
π

2N

(
n + 1

2

)) · cos
(

π
N

(
n + N+1

2

) (
k + 1

2

))



 (C.4)

C.1.1 The case of ∆0 = 0

XMDCT

(p) [k] |∆0=0 = (C.5)

A

2N−1∑
n=0

cos
(

2π
2N

K0 (pN + n) + φ0

) · sin (
π

2N

(
n + 1

2

)) · cos
(

π
N

(
n + N+1

2

) (
k + 1

2

))

Next, the sine and cosine functions are replaced by the explicit exponent expres-

sions:

XMDCT

(p) [k] |∆0=0 = (C.6)

A

8j

2N−1∑
n=0

[
ej( π

N
K0(pN+n)+φ0) + e−j( π

N
K0(pN+n)+φ0)

]
·
[
ej( π

2N (n+ 1
2)) − e−j( π

2N (n+ 1
2))

]

·
[
ej( π

N (n+N+1
2 )(k+ 1

2)) + e−j( π
N (n+N+1

2 )(k+ 1
2))

]

By opening the brackets inside the exponent expressions we have:

XMDCT

(p) [k] |∆0=0 = (C.7)

A

8j

2N−1∑
n=0

[
ej(πK0p+ π

N
K0n+φ0) + e−j(πK0p+ π

N
K0n+φ0)

]
·
[
ej( πn

2N
+ π

4N ) − e−j( πn
2N

+ π
4N )

]

·
[
ej( π

N
nk+ πn

2N
+

π(N+1)k
2N

+
π(N+1)

4N ) + e−j( π
N

nk+ πn
2N

+
π(N+1)k

2N
+

π(N+1)
4N )

]
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Since K0 is an integer number, then ejπK0p = e−jπK0p = (−1)pK0 . Opening some

more brackets:

XMDCT

(p) [k] |∆0=0 = (C.8)

(−1)pK0
A

8j

2N−1∑
n=0

[
ej( πn

2N
+ π

4N ) − e−j( πn
2N

+ π
4N )

]
·




ej( π
N

(K0+k)n+ πn
2N

+
π(N+1)k

2N
+

π(N+1)
4N

+φ0)

+ej( π
N

(K0−k)n− πn
2N
−π(N+1)k

2N
−π(N+1)

4N
+φ0)

+e−j( π
N

n(K0−k)− πn
2N
−π(N+1)k

2N
−π(N+1)

4N
+φ0)

+e−j( π
N

(K0+k)n+ πn
2N

+
π(N+1)k

2N
+

π(N+1)
4N

+φ0)




Opening more brackets:

XMDCT

(p) [k] |∆0=0 = (C.9)

(−1)pK0
A

8j

2N−1∑
n=0




ej( π
N

(K0+k+1)n+
π(N+1)k

2N
+

π(N+2)
4N

+φ0) − e−j( π
N

(K0+k+1)n+
π(N+1)k

2N
+

π(N+2)
4N

+φ0)

+ej( π
N

(K0−k)n−π(N+1)k
2N

−π
4
+φ0) − e−j( π

N
(K0−k)n−π(N+1)k

2N
−π

4
+φ0)

+e−j( π
N

(K0−k−1)n−π(N+1)k
2N

−π(N+2)
4N

+φ0) − ej( π
N

(K0−k−1)n−π(N+1)k
2N

−π(N+2)
4N

+φ0)

+e−j( π
N

(K0+k)n+
π(N+1)k

2N
+π

4
+φ0) − ej( π

N
(K0+k)n+

π(N+1)k
2N

+π
4
+φ0)




Taking the expressions that don’t depend on n out of the summation, we get:

XMDCT

(p) [k] |∆0=0 = (−1)pK0
A

8j
(C.10)

·




ej(π(N+1)k
2N

+
π(N+2)

4N
+φ0)

2N−1∑
n=0

ej π
N

(K0+k+1)n − e−j(π(N+1)k
2N

+
π(N+2)

4N
+φ0)

2N−1∑
n=0

e−j π
N

(K0+k+1)n

+e−j(π(N+1)k
2N

+π
4
−φ0)

2N−1∑
n=0

ej π
N

(K0−k)n − ej(π(N+1)k
2N

+π
4
−φ0)

2N−1∑
n=0

e−j π
N

(K0−k)n

+ej(π(N+1)k
2N

+
π(N+2)

4N
−φ0)

2N−1∑
n=0

e−j π
N

(K0−k−1)n − e−j(π(N+1)k
2N

+
π(N+2)

4N
−φ0)

2N−1∑
n=0

ej π
N

(K0−k−1)n

+e−j(π(N+1)k
2N

+π
4
+φ0)

2N−1∑
n=0

e−j π
N

(K0+k)n − ej(π(N+1)k
2N

+π
4
+φ0)

2N−1∑
n=0

ej π
N

(K0+k)n



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And by using the fact that
∑2N−1

n=0 ej π
N

kn =
∑2N−1

n=0 e−j π
N

kn = 2N · δ[k] we have:

XMDCT

(p) [k] |∆0=0 = (C.11)

(−1)pK0
NA

4j




(
ej(π(N+1)k

2N
+

π(N+2)
4N

+φ0) − e−j(π(N+1)k
2N

+
π(N+2)

4N
+φ0)

)
· δ [K0 + k + 1]

+
(
e−j(π(N+1)k

2N
+π

4
−φ0) − ej(π(N+1)k

2N
+π

4
−φ0)

)
· δ [K0 − k]

+
(
ej(π(N+1)k

2N
+

π(N+2)
4N

−φ0) − e−j(π(N+1)k
2N

+
π(N+2)

4N
−φ0)

)
· δ [K0 − k − 1]

+
(
e−j(π(N+1)k

2N
+π

4
+φ0) − ej(π(N+1)k

2N
+π

4
+φ0)

)
· δ [K0 + k]




By combining every pair of exponents into one sine function we have the final

expression, presented in (4.8):

XMDCT

(p) [k] |∆0=0 = (−1)pK0
NA

2




sin
(

π(N+1)k
2N

+ π(N+2)
4N

+ φ0

)
· δ [K0 + k + 1]

−sin
(

π(N+1)k
2N

+ π
4
− φ0

)
· δ [K0 − k]

+sin
(

π(N+1)k
2N

+ π(N+2)
4N

− φ0

)
· δ [K0 − k − 1]

−sin
(

π(N+1)k
2N

+ π
4

+ φ0

)
· δ [K0 + k]




(C.12)

C.1.2 The case of ∆0 6= 0

XMDCT

(p) [k] |∆0 6=0 = (C.13)

A

2N−1∑
n=0

cos
(

2π
2N

(K0 + ∆0) (pN + n) + φ0

) · sin (
π

2N

(
n + 1

2

)) · cos
(

π
N

(
n + N+1

2

) (
k + 1

2

))
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The sine and cosine functions are replaced by the explicit exponent expressions:

XMDCT

(p) [k] |∆0 6=0 = (C.14)

A

8j

2N−1∑
n=0

[
ej( π

N
(K0+∆0)(pN+n)+φ0) + e−j( π

N
(K0+∆0)(pN+n)+φ0)

]
·
[
ej( π

2N (n+ 1
2)) − e−j( π

2N (n+ 1
2))

]

·
[
ej( π

N (n+N+1
2 )(k+ 1

2)) + e−j( π
N (n+N+1

2 )(k+ 1
2))

]

By opening the brackets we get:

XMDCT

(p) [k] |∆0 6=0 =
A

8j

2N−1∑
n=0




ej(π(K0+∆0)p+ π
N

(K0+∆0+k+1)n+φ0+
π(N+2)

4N
+

π(N+1)k
2N )

+ej(π(K0+∆0)p+ π
N

(K0+∆0−k)n+φ0−π
4
−π(N+1)k

2N )

−ej(π(K0+∆0)p+ π
N

(K0+∆0+k)n+φ0+π
4
+

π(N+1)k
2N )

−ej(π(K0+∆0)p+ π
N

(K0+∆0−k−1)n+φ0−π(N+2)
4N

−π(N+1)k
2N )

+e−j(π(K0+∆0)p+ π
N

(K0+∆0−k−1)n+φ0−π(N+2)
4N

−π(N+1)k
2N )

+e−j(π(K0+∆0)p+ π
N

(K0+∆0+k)n+φ0+π
4
+

π(N+1)k
2N )

−e−j(π(K0+∆0)p+ π
N

(K0+∆0−k)n+φ0−π
4
−π(N+1)k

2N )

−e−j(π(K0+∆0)p+ π
N

(K0+∆0+k+1)n+φ0+
π(N+2)

4N
+

π(N+1)k
2N )




(C.15)
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Since some of the exponent parts do not depend on n, they can be taken out of

the summation:

XMDCT

(p) [k] |∆0 6=0 =
A

8j




ej(π(K0+∆0)p+φ0+
π(N+2)

4N
+

π(N+1)k
2N )

2N−1∑
n=0

ej π
N

(K0+∆0+k+1)n

−e−j(π(K0+∆0)p+φ0+
π(N+2)

4N
+

π(N+1)k
2N )

2N−1∑
n=0

e−j π
N

(K0+∆0+k+1)n

+ej(π(K0+∆0)p+φ0−π
4
−π(N+1)k

2N )
2N−1∑
n=0

ej π
N

(K0+∆0−k)n

−e−j(π(K0+∆0)p+φ0−π
4
−π(N+1)k

2N )
2N−1∑
n=0

e−j π
N

(K0+∆0−k)n

+e−j(π(K0+∆0)p+φ0+π
4
+

π(N+1)k
2N )

2N−1∑
n=0

e−j π
N

(K0+∆0+k)n

−ej(π(K0+∆0)p+φ0+π
4
+

π(N+1)k
2N )

2N−1∑
n=0

ej π
N

(K0+∆0+k)n

+e−j(π(K0+∆0)p+φ0−π(N+2)
4N

−π(N+1)k
2N )

2N−1∑
n=0

e−j π
N

(K0+∆0−k−1)n

−ej(π(K0+∆0)p+φ0−π(N+2)
4N

−π(N+1)k
2N )

2N−1∑
n=0

ej π
N

(K0+∆0−k−1)n




(C.16)
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It is known that a sum of a finite geometrical series is:
∑2N−1

n=0 an = 1−a2N

1−a
. And

since k and K0 are integer numbers we have:

XMDCT

(p) [k] |∆0 6=0 =
A

8j




ej(π(K0+∆0)p+φ0+
π(N+2)

4N
+

π(N+1)k
2N ) 1−ej2π∆0

1−ej π
N

(K0+∆0+k+1)

−e−j(π(K0+∆0)p+φ0+
π(N+2)

4N
+

π(N+1)k
2N ) 1−e−j2π∆0

1−e−j π
N

(K0+∆0+k+1)

+ej(π(K0+∆0)p+φ0−π
4
−π(N+1)k

2N ) 1−ej2π∆0

1−ej π
N

(K0+∆0−k)

−e−j(π(K0+∆0)p+φ0−π
4
−π(N+1)k

2N ) 1−e−j2π∆0

1−e−j π
N

(K0+∆0−k)

+e−j(π(K0+∆0)p+φ0+π
4
+

π(N+1)k
2N ) 1−e−j2π∆0

1−e−j π
N

(K0+∆0+k)

−ej(π(K0+∆0)p+φ0+π
4
+

π(N+1)k
2N ) 1−ej2π∆0

1−ej π
N

(K0+∆0+k)

+e−j(π(K0+∆0)p+φ0−π(N+2)
4N

−π(N+1)k
2N ) 1−e−j2π∆0

1−e−j π
N

(K0+∆0−k−1)

−ej(π(K0+∆0)p+φ0−π(N+2)
4N

−π(N+1)k
2N ) 1−ej2π∆0

1−ej π
N

(K0+∆0−k−1)




(C.17)

By taking e±jπ∆0 outside of the brackets of each nominator, the equation can be

written as:

XMDCT

(p) [k] |∆0 6=0 =
A

4
sin (π∆0)




−ej(π(K0+∆0)p+φ0+
π(N+2)

4N
+

π(N+1)k
2N ) ejπ∆0

1−ej π
N

(K0+∆0+k+1)

−e−j(π(K0+∆0)p+φ0+
π(N+2)

4N
+

π(N+1)k
2N ) e−jπ∆0

1−e−j π
N

(K0+∆0+k+1)

−ej(π(K0+∆0)p+φ0−π
4
−π(N+1)k

2N ) ejπ∆0

1−ej π
N

(K0+∆0−k)

−e−j(π(K0+∆0)p+φ0−π
4
−π(N+1)k

2N ) e−jπ∆0

1−e−j π
N

(K0+∆0−k)

+e−j(π(K0+∆0)p+φ0+π
4
+

π(N+1)k
2N ) e−jπ∆0

1−e−j π
N

(K0+∆0+k)

+ej(π(K0+∆0)p+φ0+π
4
+

π(N+1)k
2N ) ejπ∆0

1−ej π
N

(K0+∆0+k)

+e−j(π(K0+∆0)p+φ0−π(N+2)
4N

−π(N+1)k
2N ) e−jπ∆0

1−e−j π
N

(K0+∆0−k−1)

+ej(π(K0+∆0)p+φ0−π(N+2)
4N

−π(N+1)k
2N ) ejπ∆0

1−ej π
N

(K0+∆0−k−1)




(C.18)
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Applying the last step again on each denominator, we have:

XMDCT

(p) [k] |∆0 6=0 =
A

8j
sin (π∆0)




e
j(π(K0+∆0)p+φ0+

π(N+2)
4N

+
π(N+1)k

2N )
sin( π

2N
(K0+∆0+k+1))

· ejπ∆0

ej π
2N

(K0+∆0+k+1)

− e
−j(π(K0+∆0)p+φ0+

π(N+2)
4N

+
π(N+1)k

2N )
sin( π

2N
(K0+∆0+k+1))

· e−jπ∆0

e−j π
2N

(K0+∆0+k+1)

+ e
j(π(K0+∆0)p+φ0−π

4−
π(N+1)k

2N )
sin( π

2N
(K0+∆0−k))

· ejπ∆0

ej π
2N

(K0+∆0−k)

− e
−j(π(K0+∆0)p+φ0−π

4−
π(N+1)k

2N )
sin( π

2N
(K0+∆0−k))

· e−jπ∆0

e−j π
2N

(K0+∆0−k)

+ e
−j(π(K0+∆0)p+φ0+ π

4 +
π(N+1)k

2N )
sin( π

2N
(K0+∆0+k))

· e−jπ∆0

e−j π
2N

(K0+∆0+k)

− e
j(π(K0+∆0)p+φ0+ π

4 +
π(N+1)k

2N )
sin( π

2N
(K0+∆0+k))

· ejπ∆0

ej π
2N

(K0+∆0+k)

+ e
−j(π(K0+∆0)p+φ0−

π(N+2)
4N

−π(N+1)k
2N )

sin( π
2N

(K0+∆0−k−1))
· e−jπ∆0

e−j π
2N

(K0+∆0−k−1)

− e
j(π(K0+∆0)p+φ0−

π(N+2)
4N

−π(N+1)k
2N )

sin( π
2N

(K0+∆0−k−1))
· ejπ∆0

ej π
2N

(K0+∆0−k−1)




(C.19)

Gathering the pairs together we get:

XMDCT

(p) [k] |∆0 6=0 =
A

8j
sin (π∆0) · (C.20)




sin
(

π
2N

(K0 + ∆0 + k + 1)
)−1 ·





ej(π(K0+∆0)p+φ0+
π(N+2)

4N
+

π(N+1)k
2N ) · ejπ∆0

ej π
2N

(K0+∆0+k+1)

−e−j(π(K0+∆0)p+φ0+
π(N+2)

4N
+

π(N+1)k
2N ) · e−jπ∆0

e−j π
2N

(K0+∆0+k+1)





+ sin
(

π
2N

(K0 + ∆0 − k)
)−1 ·





ej(π(K0+∆0)p+φ0−π
4
−π(N+1)k

2N ) · ejπ∆0

ej π
2N

(K0+∆0−k)

−e−j(π(K0+∆0)p+φ0−π
4
−π(N+1)k

2N ) · e−jπ∆0

e−j π
2N

(K0+∆0−k)





+ sin
(

π
2N

(K0 + ∆0 + k)
)−1 ·





e−j(π(K0+∆0)p+φ0+π
4
+

π(N+1)k
2N ) · e−jπ∆0

e−j π
2N

(K0+∆0+k)

−ej(π(K0+∆0)p+φ0+π
4
+

π(N+1)k
2N ) · ejπ∆0

ej π
2N

(K0+∆0+k)





+ sin
(

π
2N

(K0 + ∆0 − k − 1)
)−1 ·





e−j(π(K0+∆0)p+φ0−π(N+2)
4N

−π(N+1)k
2N ) · e−jπ∆0

e−j π
2N

(K0+∆0−k−1)

−ej(π(K0+∆0)p+φ0−π(N+2)
4N

−π(N+1)k
2N ) · ejπ∆0

ej π
2N

(K0+∆0−k−1)







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And since each pair in the parentheses also forms a sine function:

XMDCT

(p) [k] |∆0 6=0 =
A

4
sin (π∆0) · (C.21)




sin
(

π
2N

(K0 + ∆0 + k + 1)
)−1 · sin (

π (K0 + ∆0) p + φ0 + π
4

+ π
2
k + π∆0 − π

2N
(K0 + ∆0)

)

+ sin
(

π
2N

(K0 + ∆0 − k)
)−1 · sin (

π (K0 + ∆0) p + φ0 − π
4
− π

2
k + π∆0 − π

2N
(K0 + ∆0)

)

− sin
(

π
2N

(K0 + ∆0 + k)
)−1 · sin (

π (K0 + ∆0) p + φ0 + π
4

+ π
2
k + π∆0 − π

2N
(K0 + ∆0)

)

− sin
(

π
2N

(K0 + ∆0 − k − 1)
)−1 · sin (

π (K0 + ∆0) p + φ0 − π
4
− π

2
k + π∆0 − π

2N
(K0 + ∆0)

)




More gathering up yields the following expression:

XMDCT

(p) [k] |∆0 6=0 = (C.22)

A

4
sin (π∆0) ·




sin
(
π (K0 + ∆0) p + φ0 + π

4
+ π

2
k + π∆0 − π

2N
(K0 + ∆0)

)

·
{

sin
(

π
2N

(K0 + ∆0 + k + 1)
)−1 − sin

(
π

2N
(K0 + ∆0 + k)

)−1
}

+ sin
(
π (K0 + ∆0) p + φ0 − π

4
− π

2
k + π∆0 − π

2N
(K0 + ∆0)

)

·
{

sin
(

π
2N

(K0 + ∆0 − k)
)−1 − sin

(
π

2N
(K0 + ∆0 − k − 1)

)−1
}




Which is the expression described by (4.10) in section 4.2.1.

C.2 Applying the DSTFT Transform

The DSTFT transform is applied with a window function:

w[n] = sin
(

π
2N

(
n + 1

2

))2
, 0 ≤ n ≤ 2N − 1 (C.23)

Applying the DSTFT transform on the signal we have:

XDSTFT

(p) [k] =
2N−1∑
n=0

x [pN + n] · w [n] · e−j 2π
2N

nk , 0 ≤ k ≤ 2N − 1 (C.24)

= A

2N−1∑
n=0

cos
(

2π
2N

(K0 + ∆0) (pN + n) + φ0

) · sin (
π

2N

(
n + 1

2

))2 · e−j 2π
2N

nk
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C.2.1 The case of ∆0 = 0

XDSTFT

(p) [k] |∆0=0 = A

2N−1∑
n=0

cos
(

2π
2N

K0 (pN + n) + φ0

)·sin (
π

2N

(
n + 1

2

))2·e−j 2π
2N

nk

(C.25)

Next we use: sin2(α) = 1
2
− 1

2
cos(2α)

XDSTFT

(p) [k] |∆0=0 =
A

2

2N−1∑
n=0

cos
(

2π
2N

K0 (pN + n) + φ0

)·[1− cos
(

2π
2N

(
n + 1

2

))]·e−j 2π
2N

nk

(C.26)

The cosine functions are replaced by the explicit exponent expressions:

XDSTFT

(p) [k] |∆0=0 =
A

4

2N−1∑
n=0





[
ej( π

N
K0(pN+n)+φ0) + e−j( π

N
K0(pN+n)+φ0)

]

·
[
1− 1

2
ej( π

N (n+ 1
2)) − 1

2
e−j( π

N (n+ 1
2))

]
· e−j π

N
nk





(C.27)

Since K0 is an integer number, then ejπK0p = e−jπK0p = (−1)pK0 . The expression

can be reduced to:

XDSTFT

(p) [k] |∆0=0 =
A

4
·(−1)pK0

2N−1∑
n=0





[
ej( π

N
K0n+φ0) + e−j( π

N
K0n+φ0)

]

·
(
1− 1

2
ej( π

N (n+ 1
2)) − 1

2
e−j( π

N (n+ 1
2))

)
· e−j π

N
nk





(C.28)
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By opening the brackets:

XDSTFT

(p) [k] |∆0=0 = (C.29)

A

4
· (−1)pK0

2N−1∑
n=0





ej( π
N

(K0−k)n+φ0) + e−j( π
N

(K0+k)n+φ0)

−1
2
ej( π

N
(K0−k+1)n+ π

2N
+φ0) − 1

2
e−j( π

N
(K0+k−1)n− π

2N
+φ0)

−1
2
ej( π

N
(K0−k−1)n− π

2N
+φ0) − 1

2
e−j( π

N
(K0+k+1)n+ π

2N
+φ0)





And, as in the case of MDCT, using
∑2N−1

n=0 ej π
N

kn =
∑2N−1

n=0 e−j π
N

kn = 2N · δ[k], we

have the final expression, presented in (4.9):

XDSTFT

(p) [k] |∆0=0 = (C.30)

AN

2
· (−1)pK0

2N−1∑
n=0





ejφ0 · δ [K0 − k] + e−jφ0 · δ [K0 + k]

−1
2
ej( π

2N
+φ0) · δ [K0 − k + 1]− 1

2
ej( π

2N
−φ0) · δ [K0 + k − 1]

−1
2
e−j( π

2N
−φ0) · δ [K0 − k − 1]− 1

2
e−j( π

2N
+φ0) · δ [K0 + k + 1]





C.2.2 The case of ∆0 6= 0

XDSTFT

(p) [k] |∆0 6=0 = A

2N−1∑
n=0

cos
(

2π
2N

(K0 + ∆0) (pN + n) + φ0

)·sin (
π

2N

(
n + 1

2

))2·e−j 2π
2N

nk

(C.31)

Again, by substituting sin2(α) = 1
2
− 1

2
cos(2α), and using the explicit exponent

expressions instead of the cosine functions we get:

XDSTFT

(p) [k] |∆0 6=0 =
A

4

2N−1∑
n=0





[
ej( π

N
(K0+∆0)(pN+n)+φ0) + e−j( π

N
(K0+∆0)(pN+n)+φ0)

]

·
[
1− 1

2
ej( π

N (n+ 1
2)) − 1

2
e−j( π

N (n+ 1
2))

]
· e−j π

N
nk





(C.32)
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And after opening the brackets:

XDSTFT

(p) [k] |∆0 6=0 =
A

4

2N−1∑
n=0





ej(π(K0+∆0)p+ π
N

(K0+∆0−k)n+φ0)

+e−j(π(K0+∆0)p+ π
N

(K0+∆0+k)n+φ0)

−1
2
ej(π(K0+∆0)p+ π

N
(K0+∆0−k+1)n+ π

2N
+φ0)

−1
2
e−j(π(K0+∆0)p+ π

N
(K0+∆0+k−1)n− π

2N
+φ0)

−1
2
ej(π(K0+∆0)p+ π

N
(K0+∆0−k−1)n− π

2N
+φ0)

−1
2
e−j(π(K0+∆0)p+ π

N
(K0+∆0+k+1)n+ π

2N
+φ0)





(C.33)

Taking the parts that does not depend on n outside of the summation we have:

XDSTFT

(p) [k] |∆0 6=0 =
A

4
·





ej(π(K0+∆0)p+φ0)

2N−1∑
n=0

ej π
N

(K0+∆0−k)n

+e−j(π(K0+∆0)p+φ0)

2N−1∑
n=0

e−j π
N

(K0+∆0+k)n

−1
2
ej(π(K0+∆0)p+ π

2N
+φ0)

2N−1∑
n=0

ej π
N

(K0+∆0−k+1)n

−1
2
e−j(π(K0+∆0)p− π

2N
+φ0)

2N−1∑
n=0

e−j π
N

(K0+∆0+k−1)n

−1
2
ej(π(K0+∆0)p− π

2N
+φ0)

2N−1∑
n=0

ej π
N

(K0+∆0−k−1)n

−1
2
e−j(π(K0+∆0)p+ π

2N
+φ0)

2N−1∑
n=0

e−j π
N

(K0+∆0+k+1)n





(C.34)
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Again, using sum of a finite geometrical sequence, and since k and K0 are integer

numbers we have:

XDSTFT

(p) [k] |∆0 6=0 =
A

4
·





ej(π(K0+∆0)p+φ0) 1−ej2π∆0

1−ej π
N

(K0+∆0−k)
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(C.35)

By taking a part of the exponent out of the brackets in each nominator and de-

nominator, as was done in the MDCT, we have:
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Grouping all the exponent into a single one, we get:

XDSTFT

(p) [k] |∆0 6=0 =
A

4
sin (π∆0) · (C.37)
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As can easily be seen, the expressions in each side of the parenthesis share the

same nominator. Therefore, the expression can be written as:

XDSTFT

(p) [k] |∆0 6=0 =
A

4
sin (π∆0) · (C.38)
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Which is the expression described by (4.11) in section 4.2.1.



Bibliography

[1] X. S. B.W. Wah and D. Lin, “A survey of error-concealment schemes for

real-time audio and video transmissions over the internet,” in International

Symposium on Multimedia Software Engineering. Proceedings., pp. 17 – 24,

December 2000.

[2] O. H. C. Perkins and V. Hardman, “A survey of packet loss recovery techniques

for streaming audio,” IEEE Network, vol. 15, no. 5, pp. 40–48, 1998.

[3] G. Carle and E.W.Biersack, “Survey of error recovery techniques for ip-based

audio-visual multicast applications,” IEEE Network, vol. 11, no. 6, pp. 24–36,

1997.

[4] O. D.J.Goodman, G.B.Lockhart and W.Wong, “Waveform substitution tech-

niques for recovering missing speech segments in packet voice communi-

cations,” IEEE Transactions on Acoustics, Speech, and Signal Processing,

vol. 34, no. 6, pp. 1440–1448, 1986.

[5] P. Lauber and R. Sperschneider, “Error concealment for compressed digital

audio,” in AES 111th convention, (NY), pp. 1–11, September 2001.

[6] S. Quackenbush and P. Driessen, “Error mitigation in mpeg-audio packet com-

munication systems,” in AES 115th convention, (NY), pp. 1–11, October 2003.

178



Bibliography 179

[7] J. Lindblom and P. Hedelin, “Packet loss concealment based on sinusoidal

extrapolation,” in ICASSP ’02. Proceedings., pp. 173–176, May 2002.

[8] P. Stoica and E. Larsson, “Adaptive filter-bank approach to restoration and

spectral analysis of gapped data,” The Astronomical Journal by the American

Astronomical Society, vol. 120, pp. 2163–2173, 2000.

[9] J. L. Y. Wang and P. Stoica, “Two-dimensional nonparametric spectral anal-

ysis in the missing data case,” in ICASSP ’05. Proceedings., pp. 397–400,

March 2005.

[10] P. S. H. Li and J. Li, “A new derivation of the apes filter,” IEEE Signal

Processing Letters, vol. 6, no. 8, pp. 205–206, 1999.

[11] J. Beggs and D. Thede, Designing Web Audio, Chapter 5. CA: O’Reilly &

Associates, Inc., 2001.

[12] H. C. J-C Bolot and A. Garcia, “Analysis of audio packet loss in the internet,”

in Workshop on Network and Operating Sys. Support for Digital Audio and

Video. Proceedings., pp. 163–174, April 1995.

[13] J.-C. Bolot, “Characterizing end-to-end packet delay and loss in the internet,”

Journal of High-Speed Networks, vol. 2, no. 3, pp. 305–323, 1993.

[14] M. Handley, “An examination of mbone performance.” USC Information of

Science Institute Research Report: ISI/RR-97-450, 1997.

[15] B.Milner and A.James, “Robust speech recognition over mobile and ip net-

works in burst-like packet loss,” IEEE Transactions on Audio, Speech and

Language Processing, vol. 14, pp. 223–231, 2006.



Bibliography 180

[16] B. E. H. Purnhagen and N. Meine, “Error protection and concealment for

hiln mpeg-4 parametric audio coding,” in AES 110th convention, pp. 1–7,

May 2001.

[17] Y.Chen and B.Chen, “Model-based multi-rate representation of speech signals

and its application to recovery of missing speech packets,” IEEE Trans. On

ASSP, vol. 5, pp. 220–231, 1997.

[18] “Mpeg-1: Coding of moving pictures and associated audio for digital storage

media at up to 1.5 mbit/s, part 3: Audio,” International Standard IS 11172-3,

ISO/IEC JTC1/SC29 WG11, 1992.

[19] C. O.J.Wasem, D.J.Goodman and H.G.Page, “The effects of waveform sub-

stitution on the quality of pcm packet communication,” IEEE Transactions

on Acoustics, Speech, and Signal Processing, vol. 36, no. 3, pp. 342–348, 1988.

[20] ITU-T Recommendation G.711 Appendix I: A high quality low-complexity al-

gorithm for packet loss concealment with G.711.

[21] R. A.Stenger, K.B.Younes and B.Girod, “A new error concealment technique

for audio transmission with packet loss,” in European Signal Processing Con-

ference. Proceedings., pp. 1–4, September 1996.

[22] K. H.Sanneck, A.Stenger and B.Girod, “A new technique for audio packet

loss concealment,” in IEEE Global Telecommunications Conference, pp. 48–

52, November 1996.

[23] ITU-T Recommendation G.723.1: Dual rate speech coder for multimedia com-

munications transmitting at 5.3 and 6.3 Kbit/s.



Bibliography 181

[24] ITU-T Recommendation G.728 Annex I: Frame or packet loss concealment for

LD-CELP decoder.

[25] ITU-T Recommendation G.729: Coding of speech at 8 kbit/s using Conjugate-

Structure Algebraic-Code-Exited Linear-Prediction (CS-ACELP).

[26] S. C.A.Rodbro, M.N.Murthi and S.H.Jensen, “Hidden markov model-based

packet loss concealment for voice over ip,” IEEE Transactions on Audio,

Speech, and Language Processing, pp. 1–15, 2005.

[27] D. Pan, “A tutorial on mpeg/audio compression,” IEEE Multimedia, vol. 2,

no. 2, pp. 60–74, 1995.

[28] Y. Wang and M. Vilermo, “Modified discrete cosine transform-its implica-

tions for audio coding and error concealment,” AES Journal, vol. 51, no. 1/2,

pp. 52–61, 2003.

[29] M. V. Y. Wang, L. Yaroslavsky and M. Vaananen, “Some peculiar proper-

ties of the mdct,” in IEEE 5th International Confrence on Signal Processing.

Proceedings., pp. 61–64, August 2000.

[30] J. Tribolet, “Frequency domain coding of speech,” IEEE Trans. On ASSP,

vol. 27, no. 5, pp. 512–530, 1979.

[31] P. S. E.G. Larsson and J. Li, “Amplitude spectrum estimation for two-

dimentional gapped data,” IEEE Transactions on signal processing, vol. 50,

pp. 1343–1354, 2002.

[32] W.H.Foy, “Comparison of methods for spectral estimation with interrupted

data,” IEEE Transactions on ASSP, vol. 41, pp. 1449–1453, 1993.



Bibliography 182

[33] P. Stoica and J. Li, “An adaptive filtering approach to spectral estimation

and sar imaging,” IEEE Transactions on Signal Processing, vol. 44, no. 6,

pp. 1469–1484, 1996.

[34] H. C. R. Zeskind and M. Owen, “Robust adaptive beamforming,” IEEE Trans-

actions on Signal Processing, vol. 35, no. 10, pp. 1365 – 1376, 1987.

[35] S. Haykin, Adaptive Filter Theory. New Jersey: Prantice-Hall, third ed., 1986.

[36] J. L. Y. Wang, P. Stoica and T. Marzetta, “Nonparametric spectral analysis

with missing data via the em algorithm,” Digital Signal Processing, no. 15,

pp. 191–206, 2005.

[37] P. Stoica and R. Moses, Introduction to Spectral Analysis. NY: Prentice-Hall,

1997.

[38] ITU-R Recommendation BS.1387.1: Method for Objective Measurments of

Perceived Audio Quality.

[39] ITU-T Recommendation P.862: Perceptual evaluation of speech quality

(PESQ): An objective method for end-to-end speech quality assessment of

narrow-band telephone networks and speech codecs.

[40] ITU-R Recommendation BS.1116-1: Methods for the Subjective Assessment of

Small Impairments in Audio Systems Including Multichannel Sound Systems.

[41] The LAME Project: An open source of an MP3 coder:

http://lame.sourceforge.net.

[42] K. Brandenburg, “Mp3 and aac explained,” in AES 117th International Con-

ference on High Quality Audio Coding, pp. 1–17, September 1999.



Bibliography 183

[43] H. Fletcher, “Auditory patterns,” Reviews of Modern Physics, vol. 12, pp. 47–

65, 1940.

[44] J. Johnston, “Transform coding of audio signals using perceptual noise crite-

ria,” IEEE Journal on selected areas in communications, vol. 6, no. 2, pp. 314–

323, 1988.

[45] T. Painter and A. Spanias, “Perceptual coding of digital audio,” Proceedings

of the IEEE, vol. 88, no. 4, pp. 451–515, 2000.

[46] “Information technology - generic coding of moving pictures and associ-

ated audio, part 3: Audio.,” International Standard IS 13818-3, ISO/IEC

JTC1/SC29 WG11, 1994.

[47] “Mpeg-2 advanced audio coding, aac,” International Standard IS 13818-7,

ISO/IEC JTC1/SC29 WG11, 1997.

[48] J. Herre, “Temporal noise shaping, quantization and coding methods in per-

ceptual audio coding: A tutorial introduction,” in AES 17th Int. Conf. on

High Quality Audio Coding, pp. 1–14, August 1999.

[49] “The official mpeg site: http://www.chiariglione.org/mpeg/,”


