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Abstract

Many speech processing systems are based on statistical modeling of speech signals, thus

requiring relatively large-scale data-sets for training. As technology advances, compu-

tational effort and memory footprint are less of a problem for such systems, while the

amount of data available for training is still challenging in many limited-data applications

such as under-documented languages, speech of children, and mobile applications, where

most users are not willing to invest much time and effort in recording themselves. For this

setup we address two major speech processing tasks: a voice conversion task, in which a

sentence said by a source speaker is converted to sound as if said by a target speaker, and

a keyword spotting (KWS) task of detecting whether a given keyword was said or not, in

a speech utterance.

Common voice conversion systems are based on a Gaussian Mixture Model (GMM),

thus requiring at least several dozens of recorded sentences for training. The trained

conversion function is linear, often producing muffled synthesized signals due to over-

smoothing of the converted spectral envelope. We present a method for voice conversion

for low data-resource applications, where the conversion process is expressed as a sequen-

tial estimation problem of tracking the target spectrum based on the observed source

spectrum. To improve the quality of the converted synthesized signals, we also present

methods for enhancing the global variance of the converted signal.

Most voice conversion systems require a parallel training set, in which the two speak-

ers say the same text. In this work we also address the non-parallel setup, where no

assumptions are made regarding the uttered text of the training set. In this setup, in

addition to training a conversion function, the source-target correspondence also needs

to be evaluated. We present here a generalized version of an existing method, by using

temporal context vectors to improve the source-target matching process and prove that

1



2 ABSTRACT

it converges.

Standard KWS methods require medium-large phonetically segmented sets for train-

ing, and therefore are not adequate for limited-data environments. In this work we propose

a new KWS method, suitable for this setup, based on discriminative classifiers for words

and sentences. We present a new histogram representation for words, obtained with re-

spect to a pre-trained Gaussian Mixture Model (GMM). Sentences are represented by

a fixed-length global feature vector, extracted from the response curve obtained by the

word classifier. Dataset for training the GMM can be easily obtained since no annotation

or labeling is required.

Non-keyword recordings can be easily obtained, as opposed to speech including the

keyword, which needs to be specifically provided for each keyword, so a highly biased

training set is a reasonable scenario. To avoid biased classifiers, we use bagging predictors

for training both word and sentence classifiers. According to our experiments, the pro-

posed KWS system performs better than an HMM benchmark system for small training

sets, and is more robust to highly variable signals, such as speech of children, and to noisy

conditions - specifically, babble and car noise in a wide range of SNR values.



Notation

Al(m) amplitude of the l-th sinusoid at frame m

fl(m) frequency of the l-th sinusoid at frame m

f0(m) fundamental frequency - pitch at frame m

F a conversion function

L(t) number of sinusoids at time t

L1 amount of bagging predictors for word classification

L2 amount of bagging predictors for sentence classification

M GMM parameters

p
(

xt|yk
t

)

likelihood probability of the source spectrum given the target spectra

p (yt|x1:t) posterior probability of the target spectrum given the source spectra

θ0l (m) phase of the l-th sinusoid at frame m

ut an indicator vector for the Gaussian inM, leading to the maximal poterior at

time t

v a histogram representation of a word

x scalar

x spectral feature vector related to a source speaker

X1:T a sequence of feature vectors related to the source speaker

y spectral feature vector related to a target speaker

Y1:T a sequence of feature vectors related to the target speaker

Z̃1:T a sequence of converted and enhanced feature vectors

zt a posterior vector related to the time frame t

3
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DTW Dynamic Time Warping
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Chapter 1

Introduction

Modern speech processing systems often require large scale resources in terms of training set size, com-

putational effort and memory footprint, which present an engineering challenge when implemented in

low resource environments. As technology evolves, the computational and memory abilities become less

limiting but the training set size is still challenging. In mobile applications for example, typical users are

willing to record themselves saying just few sentences, therefore providing a very small data set for train-

ing. Also, in cases of under-documented languages, large-scale data sets with or even without phonetic

labelling are not available for training. In this work we concentrate on two speech processing tasks: a

voice conversion task and a keyword spotting task.

Common voice conversion systems are based on modeling of the source and target spectra using a

Gaussian Mixture Model (GMM), [2, 3], which requires several dozens of recorded sentences. In this

method the trained conversion function is a linear function that over-smoothes the converted spectral

envelopes, which results in muffled output signals, [4,5]. Recently, a different approach aiming to capture

the temporal evolution of the spectral envelope was presented [6], where the Global Variance (GV) of the

spectral features was considered in the trained statistical model. In this work we propose two methods

for improving the quality of converted signals through enhancement of the global variance of the spectral

features: 1) a GMM-based conversion method with a GV constraint (CGMM) 2) a modular enhancement

block, independent of the conversion process and applied on converted signals as a post-processing block.

Our subjective evaluations show that these enhancement methods significantly improve the quality of the

synthesized outputs and also improve their similarity to the target signal (individuality), compared to

the GMM-based conversion method.

Most voice conversion methods, including the GMM-based conversion methods mentioned above, are

trained using parallel sentences where the source and target speakers are recorded saying the same text.

This requirement of having dozens of parallel sentences for training is rather limiting in general, and not

feasible in case of mobile users wanting their own voice to be the source/target speaker.

In this work we present a method for voice conversion for low resource environments, called a Grid-

Based (GB) voice conversion, which can be successfully trained using just 5-10 sentences. The conversion

7



8 CHAPTER 1. INTRODUCTION

process is expressed as a sequential estimation problem of tracking the target spectrum based on the

observed source spectrum. The converted spectra are sequentially evaluated as a discrete sum of the

target training vectors, used as grid-points. In an extreme setup of using just 10 sentences for training,

objective evaluations show that the GB method leads to lower spectral distance and to higher variability

than the GMM-based conversion method, at the same time.

To improve the perceived quality of the synthesized output signals, we applied our GV enhancement

block to converted signals obtained by the GB method and by the GMM conversion. In our subjective

evaluations comparing the output signals three systems: enhanced GB, enhanced GMM and CGMM,

the Enhanced GB system was marked highest in terms of individuality, and comparable to the enhanced

GMM system, in terms of quality (CGMM was rated as best).

We also address a non-parallel setup, where no assumptions are made regarding the text uttered by

the source and target speakers. In such setup, in addition to training a conversion function, the source

and target correspondence is evaluated using the training data alone, based on a statistical model, [7],

or on a nearest neighbor search [1]. In the nearest neighbor approach called Iterative combination of a

Nearest Neighbor search step and a Conversion step Alignment method (INCA), a source-target matching

and a conversion function are iteratively evaluated. The matching process is applied using single feature

vectors, so it is often that two a source vector and a target vector are matched, even though they do not

relate to the same phonetic context, or even to the same phoneme, which degrades the performance of

the conversion function since it is relies on these matched pairs, [1].

In our proposed approach, a generalized version of INCA called Temporal Context-INCA (TC-INCA),

sequences of vectors are matched, and therefore their temporal context during the matching process is

considered, instead of matching feature vectors one-by-one. Additionally, we show that the generalized

iterative process (and therefore also its particular case - INCA), is in fact an alternating minimization

procedure which minimizes a joint cost function including the matching and conversion functions. Our

experiments results show that TC-INCA raises the accuracy of matching and, and a consequence, improves

the quality and individuality of the synthesized output signals, compared to INCA.

Standard keyword spotting methods use Hidden Markov Models (HMMs) to statistically model sub-

word units [8,9]. They require phonetically labelled recordings for training and therefore are not applicable

in a limited-data setup. Other approaches avoid using phonetic labeling for training, by representing the

searched keyword as a template signal and compare it against a similar representation of a given speech

utterance. A posterior representation, with respect to various statistical models have been proposed for

creating keyword templates, [8, 10–12]. The posterior representation of the template and test signals do

not match in length, since the natural rate of speech varies with speakers and context. Therefore many

of these methods use Dynamic Time Warping (DTW), which imposes a challenging computational load.

Many spotting approaches, including those mentioned above are generative methods, i.e., they aim to

model the generation process of the speech signals including the keyword. Inference is made by measur-

ing the correspondence of a given test utterance to the trained model. The main criticism against these
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approaches is that they are not trained directly to minimize detection errors. In recent years, some ap-

proaches based on discriminative classification have been proposed. These methods use machine learning

techniques for training of optimal classifiers between speech signals including keywords and not including

it. Keshet et al. proposed a new feature representation for speech utterances based on the estimated

duration of phonemes and transition times [13]. This method is trained using phonetically segmented

data at a medium size such as TIMIT, which consists of about 4 hours of recorded speech. Recently,

two methods dealing with very small training sets, without phonetic labeling, have been proposed using

features extracted from the time-frequency representation of speech signals [14, 15].

In this work we present a novel discriminative method for keyword spotting, which can be trained

using small and unlabeled data sets, and therefore suitable for a low resource environment. Our method

is based on two classifiers: an isolated word classifier trained using samples of the keyword and samples

of non-keywords speech, and a sentence classifier trained using sentences including the keyword, and

sentences not including it.

We propose a new fixed length representation for isolated words based on histograms, obtained

with respect to a pre-trained GMM, which captures the structure of the spectral feature vectors. We

use Expectation Maximization (EM) [16], an unsupervised method, for training the GMM. Therefore

even in the case of an under-documented speech, a large amount of data can be easily obtained since

no labelling is required for training. Moreover, the GMM is used for representing the entire spectral

structure of the spoken language and therefore does not need to be retrained for detection of other

keywords. Consequently, its training can be performed off-line on a distant server beforehand. Given a

sequence of spectral feature vectors related to a word, we extract the posterior probabilities for each time

frame with respect to the GMM. A histogram is obtained by counting the amount of times each Gaussian

component in the mixture leads to the highest posterior. We train a binary classifier for words, using

histograms related to utterances of the keyword and histograms related to utterances of other words.

We also propose a fixed length representation for sentences: given a sequence of spectral feature

vectors extracted from a sentence, we apply a sliding window to produce sequences of histograms, as

described above. Applying the word classifier on each histogram yields a response curve. Positive

sentences, i.e., those including the keyword, mostly lead to a distinct and positive maximum value, which

corresponds to the location of the keyword in the sentence, while negative sentences, i.e., not including

it, lead to a random-like, negative or close to zero values. We obtain a fixed length representation for

the given sentence by extracting a set of global features, such as maximal value, dynamic range, etc.

A binary classifier for sentences is trained using these global feature vectors obtained from positive and

negative sentences.

While negative examples are easily obtained, positive examples are much harder to acquire since, as

mentioned above, mobile users are willing to record themselves saying a keyword just a limited number

of times. In this setup, the amount of positive examples available for training is much smaller than the

negative one, so the training process may result in a classifier that is biased towards negativity. We avoid
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this situation, and still exploit the diversity of the negative training set by using bootstrap aggregating,

also referred to as bagging predictors [17]. According to this approach, a series of classifiers are trained,

each using uniformly sampled subsets of the larger set and the smaller set; inference is made by applying

all trained classifiers and taking the majority decision. We applied this concept for classification of both

words and sentences.

To demonstrate the advantages of the proposed method we performed experiments on speech of both

adults and children, in several challenging conditions considering: training set size and background noise.

We followed a previously suggested experiment for keyword spotting on speech signals of adults and

showed that our system outperformed the methods presented by [14, 15]. For clean speech signals of

children, our method is significantly better than an HMM-keyword spotter, when trained using very few

positive samples (5-10). When tested on noisy speech (car and babble), our method outperforms the

benchmark HMM system in all the examined cases regardless of training set size, SNR value or noise

type.

1.1 Thesis Structure

The rest of the thesis is organized as follows: in Ch. 2 we provide a short theoretical background dealing

with speech modeling. Common methods used for voice conversion are presented in Ch. 3. In Ch. 4 we

present our proposed methods for GV enhancement. A new method for voice conversion in low resource

environments, called Grid-Based voice conversion is proposed in Ch. 5. In Ch. 6 we present our method

for non-parallel training of a voice conversion system. Our novel keyword spotting approach is presented

in Ch. 7. In Ch. 8 we conclude by summarizing the main contributions of this work and propose further

research directions.



Chapter 2

Speech Modeling

2.1 Sinusoidal-Based Models

A speech signal can be modelled by an excitation signal passing through a time varying linear filter. The

most familiar form of this representation models the speech signal as an auto-regressive (AR) signal [18],

where the filter is assumed time-invariant at each analysis frame. The excitation signal is taken as a

pulse train, in case of a voiced frame, or noise for an unvoiced frame. The Sinusoidal Model (SM) [19] is

a sum of sinusoids representing both types of excitation signal. Assuming, again, time-invariance of the

filter during a processing frame, the output also takes the form of a SM:

s(t) =

L(t)
∑

l=1

Al(t)e
jθl(t), θl(t) = 2πfl(t)t+ θ0l (2.1)

where L(t) is the number of sinusoids at time t and Al(t), fl(t), θ
0
l are the amplitude, frequency and

phase, correspondingly, of the l-th sinusoid. The Harmonic Model (HM), used for voices frames, is a

particular case of the SM. It assumes an harmonic relation between the sinusoids:

fl(t) = l · f0(t). (2.2)

In practice, in each time frame the speech signal is assumed to be stationary, so the model parameters -

{Al (m) , fl (m) , f0 (m) , θl (m)}, where m is the frame index, are estimated as constants, at each frame.

The most popular speech model for voice conversion is the Harmonic Plus Noise Model (HNM) [20].

The speech signal is taken as a sum of two signals - harmonic and stochastic, where the harmonic part,

sh(t), is a sum of several harmonics of the pitch frequency:

s(t) = sh(t) + sn(t)

sh(t) =

L(t)
∑

l=1

Al(t)e
j2πl·f0(t)t, (2.3)

and the stochastic part, sn(t), is modelled as an AR process:

sn(t) = h(t, τ) ∗ e(t) (2.4)

11
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where ∗ denotes convolution, e(t) is white Gaussian noise and h(t, τ) is assumed to be a time-invariant all

pole filter during a single frame, but may vary from frame to frame. During analysis of a voiced frame, the

harmonic parameters are first estimated. The stochastic part is then taken as the model-representation

residual signal of the estimated harmonic part, ŝh(t):

ŝn(t) = s(t)− ŝh(t) (2.5)

Finally, the filter h(t, τ) is estimated from ŝn(t), regarded as an AR signal, as described in [18]. Unvoiced

frames are modelled as purely stochastic.

2.2 Spectral Envelope Modeling

The spectral envelope of a speech signal is an important part of the speaker’s identity, so it plays an

important role in speaker identification and conversion methods. These algorithms mostly operate on

feature vectors, each representing the spectral envelope in a certain voiced frame. Selection of a suitable

feature space to represent the spectral envelopes is very important, since it can dramatically affect the per-

formance of a speech processing algorithm. Feature properties such as good interpolation characteristics,

numerical stability and dimensionality should be considered.

The harmonic amplitudes defined in the HNM are usually not used as the actual feature vectors, since

their dimensionality varies according to the pitch frequency, and is usually relatively high. Instead, the

harmonic amplitudes, defined in eqn. (2.3), are used to evaluate feature vectors. Two of the most popular

feature representations used for voice conversion are Mel Frequency Cepstrum Coefficients (MFCC), [21],

and Line Spectral Frequencies (LSF’s) [22]. Once the processing stage is completed, the amplitudes are

reconstructed from the processed vectors, and are used for synthesizing the output speech signal. In this

work the speech signals are analyzed and synthesized using the HNM, with MFCC’s as feature vectors

that represent the spectral envelope in every voiced frame.

During spectral envelope conversion, the spectral feature vectors related to a source speaker are

converted, to match the spectral envelope characteristics of the target speaker, and new harmonic am-

plitudes are evaluated to reconstruct the converted harmonic signal. The stochastic part is usually not

converted. There has been an attempt to convert also the spectral representation of the stochastic part,

but no significant improvement was attained, and sometimes it even damaged the quality of the converted

signal [23].



Chapter 3

Background On Voice Conversion

3.1 Problem Formulation

3.1.1 Prosody Modification

The identity of the speaker is related to the spectral envelope of the speech signal, and to its prosody

parameters: pitch, energy and duration. Most voice conversion methods aim to transform the spectral

envelope of the source speaker, to the spectral envelope of a target speaker, as described in Sec. 3.1.2. The

duration of the converted speech signal can be adjusted to the mean rate of target speaker using paramet-

ric methods as suggested in [24], or non-parametric methods such as Time-Domain Pitch-Synchronous

Overlap and Add (TD-PSOLA), proposed in [25].

The simplest pitch conversion method is based on a linear transformation evaluated by the global

mean values of the pitch frequency: (see [2]):

f̃0
y
= µ(f

y
0 ) +

σ(f
y
0 )

σ(f0x)

(

f0
x − µ(f0

x)
)

(3.1)

where f0
x and f0

y are the source and target speakers pitch values, respectively, µ and σ are the corre-

sponding global mean and standard deviation. This method does not change the general shape of the

pitch contour, but its offset and scale.

More sophisticated methods for pitch conversion have been proposed, among them: high order poly-

nomial mapping [26], GMM mapping [27], piecewise linear conversion [28] and contour conversion based

on codebook prediction [26,27]. Still, most voice conversion methods use the linear conversion described

in eqn. (3.1) for its simplicity and its fair results.

3.1.2 Spectral-Envelope Conversion

Let {xq}Q
x

q=1 ∈ R
P be a set of feature vectors, representing the spectral characteristics of a set of sentences

said by a source speaker, and {yq}Q
y

q=1 ∈ R
P a similar set corresponding to a target speaker. In case where

13
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the two sets are assumed to be originated from a parallel training set, meaning that the two speakers said

the same text, a time alignment is commonly performed to attain a one-to-one correspondence between

the source and target feature vectors, so Qx = Qy = Q. Given a training set (parallel or not), and a

new feature vector related to the source speaker, the goal of spectral envelope conversion is to evaluate

the corresponding feature vector related to the target speaker. This evaluation is also referred to as a

conversion function F :

ỹ = F{x} (3.2)

3.1.3 Objective Performance Measures

Log Spectral Distortion (LSD)

The mean spectral distance between a converted signal and the target signal is commonly evaluated in

terms of Log Spectral Distortion (LSD). Given two time aligned sequences of feature vectors:

X1:T = {x1,x2, ...,xT} (3.3)

Y1:T = {y1,y2, ...,yT}, (3.4)

their LSD in dB is defined by:

LSD
(

{X}(1...T ), {Y}(1...T )
)

=
10

T

T
∑

m=1

√

1

2π

∫ π

−π

(

log10 |Am
x (θ)|2 − log10

∣

∣Am
y (θ)

∣

∣

2
)2

dθ, (3.5)

where Am
x (θ) and Am

y (θ) are the spectral envelopes evaluated from the feature vectors xm and ym,

accordingly.

The feature vectors used in this work are MFCC’s. Using this parametrization, the LSD between

two spectral envelopes, Ax (θ) and Ay (θ), can be estimated using the Euclidean distance between their

corresponding feature vectors, x and y, [2] :

LSD (x,y) ≈ 10

ln10

√

√

√

√2

P
∑

p=1

‖x (p)− y (p) ‖2, (3.6)

where x (p) and y (p) are the p-th elements of the source and target Cepstrum vectors correspondingly,

and P is the length of the cepstral feature vectors.

A Normalized Distortion (ND) is used to obtain a fair comparison between conversion sequences of

different source-target pairs: the mean spectral distortion between the converted and target signals is

normalized by the mean spectral distortion between the source and target signals [29]:

ND
(

Ỹ1:T ,Y1:T

)

=

∑T
m=1 LSD (ỹm,ym)

∑T
m=1 LSD (xm,ym)

, (3.7)

where Ỹ1:T ,
(

ỹ1, ỹ2, . . . , ỹT
)⊤

is the converted sequence.
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Normalized Global Variance (NGV)

The Global Variance (GV) of the p-th elements of a sequence, Ỹ1:T , representing a converted speech

utterance, is:

σ2
Ỹ1:T

(p) =
1

T

T
∑

m=1

(

ỹm (p)− 1

T

T
∑

τ=1

ỹτ (p)

)2

, (3.8)

In this work we use a Normalized Global Variance (NGV) to measure the variability of a sequence of

converted vectors:

NGV
{

Ỹ1:T

}

,
1

P

P
∑

p=1

σ2
Ỹ1:T

(p)

σ2
Y (p)

, (3.9)

where σ2
Y (p) is the empirical GV of the p-th elements of the target speaker, obtained from the target

training vectors:

σ2
Y (p) =

1

Qy

Qy
∑

k=1



yk (p)− 1

Qy

Qy
∑

n=1

yn (p)





2

. (3.10)

Note that the target GV defined in eqn. (3.10) is evaluated by averaging over the entire training cor-

pus. This evaluation of GV is different from the one proposed in [6] for spectral conversion and GV

enhancement, where the GV is separably evaluated for every utterance of the target speaker.

The desired values for these measures are ND → 0 and NGV → 1, indicating that the converted

outcome is close to the target signal in terms of spectral similarity and global variance.

3.1.4 Subjective Performance Measures

The objective measures presented above indicate trends in comparing the quality of the examined con-

version methods. Unfortunately, they do not always correspond to a subjective impression of a human

listener. It is common that two converted signals have the same objective measures, but one of them

would sound better. That is why it is customary to compare conversion methods by performing subjective

listening tests, in addition to objective measures.

Subjective listening tests usually include 10-15 listeners, presented with synthesized outputs of several

conversion methods. The listeners are asked to express their opinion regarding the quality and the

individuality (similarity to the target speaker) of the given signals. To avoid bias and achieve a statistical

validity, each test is repeated several times using different sentences in a randomly selected order.

Preference Tests

Preference tests are binary evaluations where the listeners are asked to choose between two synthesized

signals, each of a different conversion method. Two common preference tests are:

1. AB quality test - the listeners are asked to indicate which sentence (A or B) is of better quality.

2. ABX individuality test - the listeners are asked to indicate which sentence (A or B) is more similar

to a reference sentence, marked as X (the target speaker).
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Preference tests are most useful for comparing two conversion methods, as they clearly indicate

which of the examined methods is preferred by the listeners. However, when several methods are to be

compared, it could be tedious for the listeners to compare between each pair of the examined methods.

A Multi Stimulus test with Hidden Reference and Anchor (MUSHRA) [30] described next, provides a

more compact protocol for comparing several conversion methods.

MUSHRA

The purpose of the MUSHRA test [30] is to evaluate the quality of several processed signals compared to

a given high quality, usually unprocessed, reference signal. The listeners are presented with several test

signals including: outputs of the examined systems, a hidden anchor signal - usually a filtered version

of the reference signal, and a hidden reference. The test signals are randomly ordered, and the listeners

are not informed about the hidden reference and anchor signals being included in the test set. During

evaluation, the listeners are asked to compare the reference signal to the test signals and rate them

between 0 to 100, where at least one of the signals must be rated 100, because the hidden reference is

identical to the declared reference.

A MUSHRA format can also be used for rating the individuality of the synthesized signals, as

conducted by Godony et. al. [31]. The listeners are presented with several synthesized signals (including

the hidden reference) and are asked to rate their similarity to the reference signal, in terms of the speaker’s

identity, while ignoring their perceived quality.

3.1.5 Correspondence Between Objective And Subjective Mea-

sures

The objective measures presented above aim to reflect some properties of the subjective measures:

• ND - linked to individuality tests: as the ND increases, the converted and target spectra are

further, producing converted signals which are less similar to the target speaker.

• NGV - linked to quality preference tests - as the NGV decreases towards zero, the converted signal

sounds more muffled and therefore of lower quality.

As stated above, in some cases the objective and subjective evaluations do not agree, especially when the

examined conversion systems lead to similar objective performance.
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3.2 Common Spectral Conversion Methods

3.2.1 Data Driven Conversion Approaches

Code Book Methods

One of the earliest voice conversion methods, presented in [32], proposed a codebook based conversion.

The spectral envelopes the two speakers are represented by a parallel source-target codebook obtained

by Vector Quantization (VQ). Each of the source codewords is matched with a weighted sum of target

codewords, as its conversion outcome. The weights are determined according to the number of times each

source codeword was matched to each of the target codewords, in the training set. During conversion, a

test source vector is quantized by the source codebook and its conversion is the suitable target weighted

sum. Later, another codebook-based method was proposed in [33], where the spectral features of each

phoneme is represented by the centroid of its utterances that appeared in the training set. The conversion

output is a weighted sum of the target centroids, where the weights are determined considering the

resemblance of the corresponding source test vector to the source centroids. Speech signals produced by

these codebook-based methods are reported to suffer from poor quality due to temporal discontinuities

of the converted spectral envelope and deficient representation due to a limited target codebook.

Unit Selection Methods

Unit selection approaches use the training set related to the target speaker as a diverse codebook. In

addition to spectral resemblance to the target, they also consider the temporal continuity of the selected

vectors to achieve a smooth evolution of the converted spectra.

A simple unit-selection approach addressing this problem proposed selection by minimizing a cost

function, considering both spectral resemblance and temporal continuity of the selected feature vectors

[34]. Given a sequence of T source vectors x1:T and a target training set, {yk}Q1 , used as a codebook, the

conversion of the source sequence is obtained by selecting the target codewords minimizing the following

cost function:

ỹt = argmin
k∈{1,...,Q}

{α‖yk − xt‖2 + (1− α) ‖yk − ỹt−1‖2}, (3.11)

where ỹt−1 is the converted feature vector at the previous frame. This cost function aims to consider

both spectral resemblance and quality of the converted signal: it selects the entry that is most similar to

each input source vector, and also similar to the previously selected entry. The parameter α determines

the relative weight of similarity versus temporal continuity. Eqn. (3.11) uses the spectral vectors related

to the source speaker as reference signals. Obviously, this is not ideal since the two speakers may have

considerably difference. An improved approach, proposed by Dutoit et al. uses a converted version of

the source vectors as reference signals: instead of comparing the previously selected target vector to the

source vectors, they compare it to the converted vectors [35].



18 CHAPTER 3. BACKGROUND ON VOICE CONVERSION

Exemplar-Based Sparse Representation [36]

Exemplar-based conversion is a non-parametric (parallel) method that uses sparse representation to

describe a speech spectrogram as a linear combination of a basis spectra:

X ≈ A ·H s.t. H ≥ 0, (3.12)

where X ∈ R
F×M is a high resolution spectrogram extracted from M speech frames, using F dimensional

Fast Fourier Transform (FFT), A ∈ R
F×N is a fixed dictionary extracted from the source training set,

N is the amount of exemplars taken for this dictionary and H ∈ R
N×M is called an activation matrix.

The main assumption of this conversion method is that the source and target speakers share the same

activation matrix, if their dictionaries are parallel and aligned, so the converted spectrogram is evaluated

as:

Y ≈ B ·H, (3.13)

where Ŷ ∈ R
F×M is the converted spectrogram, and B ∈ R

F×N is a fixed dictionary extracted from

the target training set. Given a test sentence, a spectrogram X is extracted, the activation matrix H is

evaluated by minimizing the following cost function:

H = argmin
H≥0

d (X,AH) + λ ‖H‖1 , (3.14)

where d (·, ·) is the generalized Kullback-Leibler (KL) divergence and ‖·‖1 is added as a regularizer

encouraging sparsity. The minimizer of eqn. (3.14) is obtained by an iterative process according to a

multiplicative update rule:

H← H
⊗ A⊤ X

AH

A⊤ + λ
, (3.15)

where divisions are element-wise and
⊗

is an element-wise multiplication.

As opposed to codebook and unit selection methods, requiring large scale training sets to achieve a

reasonable quality, this method achieve high quality signals using just 10 sentences. The main disadvan-

tage of this method is its high computational complexity (45 times higher than the classical GMM-based

method described in 3.2.2) and memory footprint (295 times higher than GMM-based conversion).

3.2.2 GMM Conversion

The commonly used statistical voice conversion is based on training a Gaussian Mixture Model (GMM)

as a statistical model for the parallel training set [3]. Let zq denote the joint source-target spectral feature

vector:

zq =
(

(xq)T , (yq)
T
)T

, q = 1, ..., Q (3.16)

The joint vectors are divided into M classes, and the vectors in every class are assumed to be jointly

Gaussian:

p (zq) =

M
∑

m=1

p (wm)N (zq;µm,Σm), q = 1, ..., Q (3.17)
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where p (wm), is the probability of the class wm and N (·;µm,Σm) is a normal distribution with the

parameters:

µm =





µ(x),m

µ(y),m



 , Σm =





Σ(xx),m Σ(xy),m

Σ(yx),m Σ(yy),m



 (3.18)

µ(x),m, and µ(y),m are P × 1 vectors representing the source and target mean vectors of the m− th class

and Σ(··),m is a P ×P covariance matrix. These parameters are usually estimated using the Expectation

Maximization (EM) [16] algorithm fed with the parallel training set.

The conversion function can be interpreted as an estimator for a target vector, given a source vector -

E [y|x]. Since the joint feature vector, z, is modeled as a GMM, the estimator is a linear combination of

a simple linear predictor of each class:

F (Joint−GMM){x} =
M
∑

m=1

p (wm|x)
(

µ(y),m +Σ(yx),m(Σ(xx),m)−1
(

x− µ(x),m
))

(3.19)

where p (wm|x) is a conditional probability evaluated using the GMM parameters and Bayes’ theorem:

p (wm|x) =
p (wm)N

(

x;µ(x),m,Σ(xx),m
)

∑M
m=1 p (wm)N

(

x;µ(x),m,Σ(xx),m
)

(3.20)

In an earlier work presented be Stylianou et. al. [2], a GMM was trained using only the source

training set. The conversion function took the same linear form:

F (LS−GMM){x} =
M
∑

m=1

p (wm|x)
(

νm + Γm(Σ(xx),m)−1
(

x− µ(x),m
))

, (3.21)

where the missing conversion parameters, {Γm, νm}Mm=1, were evaluated using Least Squares (LS), so

that the mean Euclidian distance between the converted and target spectral features is minimized:

min
{Γm,νm}M

m=1

Q
∑

q=1

‖F (LS−GMM){xq} − yq‖2. (3.22)

More specifically, define the matrices P and D,

{P}m,q = p (wm|xq)

{D}m,q = p (wm|xq)
(

xq − µ(x),m
)T
(

(

Σ(xx),m
)−1

)T

m = 1, ...,M ; q = 1, ..., Q (3.23)

where {•}m,q denotes the (m, q) element. Define also the conversion parameters Γ and V:

Γ =
(

Γ1 · · · ΓM
)T

V =
(

ν1 · · · νM
)T

(3.24)

Where Γ and V are PM × P and M × P matrices correspondingly. Denote the target training matrix

Y:

Y =
(

y1 · · · yQ
)T

(3.25)
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So the conversion equations (3.21) can be formulated in a matricieal form:

Y =

(

P
... D

)

·











V

· · ·
Γ











, (3.26)

and the parameters are estimated using LS:











V̂

· · ·
Γ̂











=











PTP
... PTD

· · · · · ·

DTP
... DTD











−1









PTY

· · ·
DTY











(3.27)

Training a full covariance GMM involves estimation of M
(

P 2 + P
)

+ M parameters, so it requires a

large scale training set. The commonly used diagonal relaxation assumes that the spectral features

are statistically independent, so the covariance matrices Σ(xx),m are diagonal. In this case, there are

2PM + M parameters only to be evaluate, so the training process requires a much smaller training

set. In addition, the matrices {Γm}Mm=1 are also diagonal, so their evaluation defined in (3.22) can be

separated to P independent minimization problems - one for every coordinate, p = 1, ..., P :

min
{γm

p ,νm
p }M

m=1

Q
∑

q=1

‖F{xq
p} − yqp‖2 (3.28)

where {γm
p }Mm=1 are the (p, p) elements of {Γm}Mm=1, and {νmp }Mm=1 are the p-th elements of {νm}Mm=1.

3.2.3 Non-Parallel Conversion

Many voice conversion systems require parallel training sets of the source and target speakers, among

them the classical GMM method described in Sec. 3.2.2. Their training process is based on having some

prior knowledge regarding the correspondence between the source and target spectral feature vectors.

In a non-parallel setup, no assumptions are made regarding the content of the training sentences.

The source-target correspondence is not straightforward as in the parallel case, thus presenting a greater

challenge. Some non-parallel methods bypass this problem by modeling the two speakers separately and

perform alignment or adaptation of the model parameters [37, 38]. Some train a conversion using an

additional parallel set and adapt its parameters to the desired target speaker [39, 40].

A different approach for non-parallel training called Iterative combination of a Nearest Neighbor

search step and a Conversion step Alignment method (INCA), was recently proposed [1]. This approach

provides a framework for applying parallel training techniques using non-parallel training sets. It is based

on an iterative evaluation of an auxiliary conversion function and matching functions between the source

and target vectors. Convergence of this process was demonstrated using empirical evaluations, but, as

indicated by the authors of INCA, the alignment process is prone to phonetic mismatch. To smooth

these errors they train their auxiliary conversion function using the classical GMM-based method, which

is known to have over-smoothing characteristics.
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INCA

Let X =
{

xk
}Nx

k=1
, Y =

{

yj
}Ny

j=1
∈ R

P be two (non-parallel) training sets of feature vectors related to

source and target speakers. The training process is based on an iterative evaluation of a parallel auxiliary

conversion function, F (·), its inverse, and two matching functions between the source and target vectors:











p (k) = j if xk matches yj

q (j) = k if yj matches xk.

(3.29)

where k = 1, ..., Nx and j = 1, ..., Ny. Therefore, each vector x is matched through p to a single vector

at the target, and each vector y is matched through q to a single vector at the source.

The iterative process begins by initializing at t = 0 an auxiliary conversion function to be the identity

function: F0 (x) = x. In each iteration, the two matching functions, pt (·) and qt (·), are evaluated using

a nearest neighbor search between converted source vectors and the target vectors, and vice versa, based

on the previous auxiliary function Ft−1:

pt (k) = argmin
j

∥

∥Ft−1

(

xk
)

− yj
∥

∥

2

qt (j) = argmin
k

∥

∥xk −F−1
t−1

(

yj
)∥

∥

2
, (3.30)

These matching functions define a parallelized training set,
{(

xk,yp(k)
)

,
(

xq(j),yj
)}

, which reduces the

training process of the auxiliary function, Ft, to the parallel case. The simple nearest neighbor search

defined in eqn. (3.30) often leads to alignment errors, where vectors related to different phonemes are

matched. To reduce the influence of miss-aligned vectors, the classical GMM-based conversion, known

for its smoothing characteristics, is used to train the auxiliary function.

Convergence is measured via the mean squared-error (MSE) between the converted sets and the

original sets:

Dt =
1

Nx +Ny

(

Nx
∑

k=1

∥

∥

∥
Ft

(

xk
)

− ypt(k)
∥

∥

∥

2

+

Ny
∑

j=1

∥

∥

∥x
qt(j) −F−1

t

(

yj
)

∥

∥

∥

2
)

. (3.31)

Erro et al. [1] show that this measure converges empirically. Once convergence is achieved, the conversion

function in the last iteration is used for conversion. Alternatively, any other parallel conversion function

may be trained, based on the parallelized set using the final matching functions. The overall iterative

process is summarized in Table 3.1.

In Ch. 6 we formulate the training process as a minimization problem of a joint cost function,

considering both conversion and context-based matching functions. We propose an iterative solution for

this minimization problem and prove its convergence.
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Table 3.1: INCA - Training stage [1].

Input: a non-parallel training set {X,Y }

Initialization: set the initial conversion func-

tion to identity F0 (x) = x.

Main Iteration: for t = 1, 2... perform the fol-

lowing steps:

1. Evaluate the matching functions, pt, qt, using

eqn. (3.30).

2. Train an auxiliary conversion function using

the parallelized training set

3. Evaluate Dt using eqn. (3.31) and check con-

vergence.

Output: conversion and matching functions

Ft, pt, qt.



Chapter 4

Global Variance Enhancement

Due to the averaging process used in statistical modeling, GMM-based methods produce overly smoothed

spectral envelopes, leading to muffled synthesized outputs. Still, the classical GMM-based conversion

method trained either by LS estimation [2] or by joint GMM training [3] are two of the most popular

approaches for spectral voice conversion to date. Several modifications of the GMM-based conversion

have been proposed since [5, 41, 42]. Yet, these GMM-based conversion methods still produce muffled

output speech, apparently due to excessive smoothing of the temporal evolution of the spectral envelope.

Another GMM-based approach [6] aims to capture the temporal evolution of the spectral envelope.

It uses Maximum Likelihood (ML) estimation to train a conversion based on aligned sequences of the

source and target spectral feature vectors. This approach also enhances the Global Variance (GV) of the

spectral features, thus increasing their dynamic range, and hence decreasing the muffling effect.

In this work we present two methods dealing with GV enhancement (see Ch. 4): 1) using the frame-

work of the classical GMM training, while constraining the GV of the converted feature vectors to match

its evaluated value for the target speaker [43]. 2) a GV enhancement module, designed independently of

a specific conversion procedure [44]. Given a sequence of converted feature vectors, the module evaluates

their enhanced version by maximizing their GV, under a spectral distortion constraint.

4.1 Voice Conversion using GMM with Enhanced

Global Variance

In this section we present an approach for GV enhancement using the classical conversion proposed in [2].

We formalize the training process as a constrained least squares minimization problem: the mean distance

between the converted and target features is minimized under the constraint that the GV of the converted

features should match the GV of the target features. Objective tests show that compared to the classical

method, the proposed approach increases the GV of the spectral features, but the spectral similarity

to the target is somewhat reduced. Nevertheless, subjective evaluations indicate that the output of the

23
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constrained conversion is preferable in terms of both quality and similarity to the target.

4.1.1 Training Stage

As described in [2], a matrix form of (3.28) can be formulated as:

min
qp
‖Apqp − yp‖2, (4.1)

where Q is the amount of training vectors, M is the number of Gaussians in the trained GMM, yp is a

Q× 1 vector including the p-th element of all the target training vectors, Ap is a Q× 2M matrix defined

in (4.3), and qp is a 2M × 1 vector including the conversion parameters defined in (4.4).

yp ,

(

y1p · · · yQp

)T

, (4.2)

Ap ,

(

P
... Dp

)

{P}m,q = p (wm|xq)

{Dp}q,m = p (wm|xq)
1

σq,m

(

xq
p − µ(x),m

p

)

m = 1, ...,M ; q = 1, ..., Q (4.3)

qp ,

(

ν1p · · · νMp
... γ1

p · · · γM
p

)T

. (4.4)

The LS solution of (4.1) is given by:

q̂p =
(

ApTAp
)−1

ApTyp (4.5)

The GV of the p-th element of the target feature vectors can be evaluated by:

V ar{yp} ≃
1

Q

Q
∑

q=1

(

yqp −
1

Q

Q
∑

r=1

yrp

)2

(4.6)

where yp is the Q× 1 vector defined in (4.2). A matrix form of the r.h.s. of (4.6) is:

1

Q

Q
∑

q=1

(

yqp −
1

Q

Q
∑

r=1

yrp

)2

= ‖∆ · yp‖2 , c2p, (4.7)

where ∆ is a Q×Q matrix defined by:

∆ ,
1√
Q

( IQ×Q −
1

Q











1 · · · 1

... · · ·
...

1 · · · 1











) (4.8)

Similarly, the GV of the p-th element of the converted vectors can be evaluated by:

V ar{F{xq
p}} ≃ ‖∆ ·Apqp‖2 = ‖Bpqp‖2, (4.9)
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where Bp , ∆ ·Ap.

In order to enhance the GV of the converted elements, while minimizing the mean Euclidian distance

between the converted and target vectors, we propose a constrained formulation:

min
qp
‖Apqp − yp‖2

s.t. ‖Bpqp‖2 = c2p

; p = 1, ..., P (4.10)

where c2p is the evaluated GV of the target, defined in (4.7).

The P constrained minimization problems defined in eqn. (4.10) can be solved by using the Lagrange

Multiplier method and joint diagonalization of the pairs {Ap,Bp}Pp=1, as described in [45].

4.1.2 Experimental Results

Experiment Setup

We used two U.S. English male speakers from the CMU ARCTIC database [46]: 50 parallel sentences

were used for training and 50 other parallel sentences for testing, all sampled at 16kHz and phonetically

annotated. Analysis and synthesis were performed using the Harmonic Plus Noise Model (HNM) [20] by

the toolkit available at [47]. The first 24 Mel Frequency Cepstrum Coefficients (MFCC’s) were extracted

using the harmonic amplitudes as described in [21]. The analysis frames were time aligned and the feature

vectors were matched using a Dynamic Time Warping (DTW) algorithm based on the phonetic labeling

as described in [48].

The dynamic range of the cepstral coefficients in natural speech usually decreases as their order

increases, so enhancement of the high order coefficients in the converted signal is not as important as for

low order coefficients. The training stage described above includes high computational complexity when

solving the constrained minimization problems defined in eqn. (4.10), therefore, the GV was enhanced

only for cepstral coefficients lower than a specific threshold P0 = 12. For p > P0 the conversion parameters

were evaluated using the classical, unconstrained approach. Several GMM models were examined using

(4, 8, 16, 32, 64) mixtures and the final value was set to 32 as it lead to the lowest spectral distortion. The

pitch was converted linearly as described in eqn. (3.1).

The performance of our proposed conversion method was examined and compared to the performance

of classical conversion [2], using both objective and subjective measures. To reduce audible artifacts

converted outcomes by both methods were processed. Before synthesis, the temporal evolution of each

cepstral coefficient was filtered by µ + (1− µ) z−1, using µ = 0.5. After synthesis, the waveforms were

filtered using a low-pass filter having a 5kHz cut-off frequency.

4.1.3 Objective Evaluations

The similarity of the converted signals to the target signals was evaluated using mean LSD and NGV as

described in Sec. 3.1.3.
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As seen in Table 4.1, the proposed approach (noted as CGMM) increased the mean normalized GV

from 10% to 90% of its natural value, at the expense of a degradation of 1.1dB, in the LSD. The mean

normalized GV achieved by the constrained approach did not reach 100%, though it was constrained to

match the natural value of the target signal, since the test sentences were not included in the training

set. We trained the proposed approach by multiplying the target NGV in the constraint term with a

factor smaller than 1 (specifically, 0.3), to achieve an intermediate working point: the mean LSD was

increased just by 0.2dB compared to the classical GMM, but the NGV reached only to 30% of its natural

value. We used the proposed CGMM method with a factor equal to 1 for the subjective evaluation tests

presented in the next section, since this value leads to the best quality in our informal listening tests.

Table 4.1: Objective performance of the proposed approach (labeled as Constrained GMM)

compared to the Classical GMM-based method.

Conversion Method Mean LSD [dB] NGV

Classical GMM 6.2 0.1

CGMM with a factor 0.3 6.4 0.3

CGMM 7.3 0.9

4.1.4 Subjective Evaluations

Listening tests were used to evaluate the performance of the proposed constrained approach, compared

to the classical method, in terms of quality and individuality. We conducted two quality tests: an AB

preference test and a MUSHRA quality test [30], and an ABX individuality preference test as described

in Sec. 3.1.4. In every test, 10 different sentences were examined by 10 listeners which included 20-30

years old, non-experts, men and women.

In the quality AB preference test the examined signals were outputs of the proposed constrained

method and outputs of the classical conversion method. The results, presented in Fig. 4.2, indicate that

the enhanced output was almost always (about 95% of the time) preferred by the listeners.

In the MUSHRA quality tests the listeners were presented with 50 signals, overall. Ten on them were

the original (unprocessed) target sentences, used as reference signals. Four versions were presented as

test samples (10 sentences of each): (1) A converted outcome by the proposed method. (2) A converted

outcome by the classical method. (3) A hidden anchor - the target signal, low-pass filtered with a 3.5kHz

cut-off frequency. (4) A hidden reference - the original unprocessed target signal. All of the listeners

rated the hidden target signal as 100, and the anchor received a mean score of 80. The grades of the

converted outputs presented in Fig. 4.1(a), demonstrate the improved quality achieved by the proposed

constrained approach, compared to the classical approach.

In the ABX individuality test, the listeners were presented with two converted outputs (by the proposed
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Figure 4.1: The classical GMM conversion method [2] compared with the proposed

CGMM: (a) - MUSHRA quality test; (b) - preference quality test (AB).

and classical methods), randomly marked as A or B, and a processed version of the target signal, marked

as X. The target signal was processed by the same tools used for processing the converted outputs. First,

the target waveform was analyzed, and its cepstral coefficients were filtered by µ + (1− µ) z−1, using

µ = 0.5. Then the waveform was re-synthesized and filtered using a low-pass filter having a 5kHz cut-off

frequency. The results of the individuality preference test are presented in Fig. 4.2. They indicate that

in 75% of the tests the enhanced outputs were perceived as more similar to the target signal than those

obtained by the classical method, even though the constrained approach suffers from some degradation

in terms of mean spectral distance.
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Figure 4.2: ABX preference individuality test - the classical GMM conversion against

the proposed constrained conversion.
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4.2 Modular Global Variance Enhancement

In this section we present a method for GV enhancement, designed independently of a specific conversion

procedure. As opposed to other previously proposed methods, where the GV enhancement is intergraded

into the conversion process [6, 43], the proposed method is applied as a post-processing block. Given a

sequence of converted feature vectors, their enhanced version is obtained by maximizing their GV, under

a spectral distortion constraint. The GV of the enhanced sequences is increased up to the level where

the mean spectral distance between the converted sequence and its enhanced version reaches a preset

threshold value. This threshold enables the user to control the individuality-quality tradeoff: as the

allowed spectral distance increases, the GV can be further increased. Therefore, the GV enhancement

improves the quality of the synthesized output (sounds less muffled), at the expense of some degradation

in the individuality - the similarity of the converted signal to the target speaker. A naive approach to

increase the GV would be to just add white noise to the MFCC parameters with a variance determined

by a threshold. As expected, our informal listening tests showed that it results in noisy converted speech

and is not a viable approach.

We evaluated our GV enhancement method by applying it as a post-processing block on converted

outcomes of the classical GMM method [2]. The enhanced sentences were compared to the original

converted sentences, and also to sentences converted (with integrated enhancement) by the Constrained

GMM (CGMM) method [43]. Listening tests showed that the proposed GV enhancement method im-

proved the quality of sentences converted by the classical GMM method [2]. In addition, most listeners

preferred these results over converted sentences obtained by CGMM [43], both in terms of quality and

individuality.

4.2.1 GV Enhancement Module

Let Ỹ1:T be a T × P matrix consisting of a sequence of T converted feature vectors:

Ỹ1:T ,

(

ỹ1, ỹ2, . . . , ỹT

)⊤

, (4.11)

where {ỹt}T1 ∈ R
P .

Let Z̃1:T be a T × P matrix comprising the enhanced version of the converted sequence Ỹ1:T . We

set the enhanced sequence as the solution of the following problem:

Z̃1:T = argmax
Z1:T

{NGV{Z1:T }}

s.t LSD
(

Z1:T , Ỹ1:T

)

≤ θLSD, (4.12)

where LSD
(

Z1:T , Ỹ1:T

)

is the mean log-spectral distance (defined in (4.17) bellow) between the enhanced

and converted sequences, Ỹ1:T and Z1:T , correspondingly, and θLSD is a pre-set threshold for the mean

LSD in dB. If this threshold is set to zero, the constraint is disabled and the converted sequence remains
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unchanged. For any positive value, the NGV of the enhanced sequence is higher than the NGV of the

converted sequence Ỹ1:T , while the LSD between these two sequences is not higher than θLSD.

In order to obtain the enhanced sequence, we now further develop (4.12) in terms of explicit expres-

sions for NGV and LSD. Define C as a diagonal P ×P matrix, comprising the GV of the target spectral

features, evaluated by (3.10):

C , diag
(

σ2
Y (1)}, σ2

Y (2)}, . . . , σ2
Y (P )}

)

. (4.13)

Like in [43] we define a covariance operator, ∆T :

∆T ,
1√
T

( IT×T −
1

T
JT ) ∈ R

T×T , (4.14)

where JT is a T ×T matrix of all ones. Using (3.8), (4.13) and (4.14), we write the NGV of the converted

sequence Ỹ1:T as:

NGV{Ỹ1:T } =
1

P
‖∆T · Ỹ1:T ·C− 1

2 ‖22. (4.15)

If Mel Frequency Cepstral Coefficients (MFCCs) are used as spectral features, the mean LSD, between

each converted vector ỹt and its enhanced version z̃t can be evaluated using the Euclidian distance between

them (see eqn. (3.6):

LSD (z̃t, ỹt) ≈ κ‖z̃t − ỹt‖2 [dB], (4.16)

where ỹt (p) and z̃t (p) are the p-th element of the t-th time frame of the converted and enhanced sequences,

correspondingly, and κ , 10
√
2/ln10.

Therefore, the mean LSD between the two sequences is approximated by:

LSD
(

Z̃1:T , Ỹ1:T

)

≈ κ

T

T
∑

t=1

‖z̃t − ỹt‖2

=
κ

T
‖Z̃1:T − Ỹ1:T ‖2,1, (4.17)

where ‖ • ‖2,1 is the mixed ℓ2,1 norm:

‖Z̃− Ỹ‖2,1 =
T
∑

t=1

√

√

√

√

P
∑

p=1

(z̃t (p)− ỹt (p))
2. (4.18)

Using (4.15) and (4.17) we formulate (4.12) as:

Z̃1:T = argmax
Z1:T

‖∆TZ1:TC
− 1

2 ‖22

s.t. ‖Z1:T − Ỹ1:T ‖2,1 ≤
TθLSD

κ
. (4.19)

We solve the problem by minimizing the Lagrangian:

L (Z1:T ) = −‖∆TZ1:TC
− 1

2 ‖22 +

+ λ

(

‖Z1:T − Ỹ1:T ‖2,1 −
TθLSD

κ

)

(4.20)
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We diagonalize the covariance operator, ∆T = USV⊤, and denote:

Ψ , V⊤Z1:T

Φ , V⊤Ỹ1:T

Ω , Ψ−Φ (4.21)

Substituting (4.21) in (4.20) we get:

L (Ω) = −‖S (Ω+Φ)C− 1

2 ‖22 +

+ λ

(

‖Ω‖2,1 −
TθLSD

κ

)

=

= −
T
∑

t=1

P
∑

p=1

S2
t,t

Cp,p
(ωt (p)− φt (p))

2
+

+ λ
(

T
∑

t=1

√

√

√

√

P
∑

p=1

ω2
t (p)−

TθLSD

κ

)

(4.22)

where ωt (p) and φt (p) are the (t, p) elements of Ω and Φ, respectively. Taking the derivative of this

Lagrangian with respect to ωt (p) we get:

∂L
∂ωt (p)

= −2
S2
t,t

Cp,p
(ωt (p)− φt (p))

+ λ
ωt (p)

√

∑P
ρ=1 ω

2
t (ρ)

(4.23)

The optimal solution, obtained by setting ∂L
∂ωt(p)

= 0, is:

ωt (p) =
−φt (p)

1− λCp,p/2S2
t,t‖ωt‖2

. (4.24)

where ωt = (ωt (1) , ..., ωt (P ))
⊤
. Since ‖ωt‖2 depends on ωt (p), we use the constraint and set: ‖ωt‖2 =

θLSD/κ. One of the diagonal elements the matrix S is zero so to avoid ill conditioning we assume, without

loss of generality, that it is the last one and evaluate λ using only the first T − 1 vectors from (4.24):

(

T−1
∑

t=1

√

√

√

√

P
∑

p=1

ω2
t (p)

)

(λ) =
(T − 1) θLSD

κ
(4.25)

The Lagrange parameter, λ∗ can be evaluated by performing grid search and taking the minimal

positive value for which (4.25) is approximately sustained. The enhanced sequence is finally obtained by

setting Ψ (λ∗) = Ω (λ∗) +Φ and Z̃1:T (λ∗) = VΨ (λ∗).

During speech synthesis, each converted sequence is substituted by its-GV enhanced version. Con-

sequently, the GV is increased, while the mean LSD between the enhanced and the originally converted

sequence is constrained by θLSD[dB].
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4.2.2 Experimental Results

Experiment Setup

We used the same setup as described in Ch. 4.1.2. Three conversion schemes were examined: the

classical GMM-based conversion [2], the classical GMM-based conversion followed by the proposed GV

enhancement scheme, and CGMM [43], also described in Sec. 4.1. The synthesized outputs were evaluated

using both objective and subjective measures.

Objective Evaluations

We used two objective measures to evaluate the synthesized outputs: mean Log-Spectral Distortion (LSD)

between the converted and target signals and normalized GV (NGV). MFCCs were used as spectral

features, so the mean LSD between the converted and target signals was evaluated using (4.17), and

the NGV of the converted signals was evaluated using (4.15). The proposed enhancement method was

examined using three threshold values: 1dB, 2dB and 4dB. We also examined the CGMM method using

a relaxed GV constraint, by multiplying the target NGV in the constraint term with a factor smaller

than 1.

Table 4.2: Objective performance of the classical GMM-based method (LS-GMM) [2] com-

pared to its enhanced version by the proposed approach and compared to CGMM [43].

Conversion Method Mean LSD [dB] Mean Norm. GV

LS-GMM 6.2 0.1

Enhanced, θLSD = 1dB 6.4 0.2

CGMM with a factor 0.3 6.4 0.3

Enhanced, θLSD = 2dB 6.7 0.3

Enhanced, θLSD = 4dB 7.3 0.4

CGMM 7.3 0.9

As seen in Table 4.2, the proposed approach increases the NGV of the converted sentences at the

expense of their spectral similarity to the target. Allowing a higher distance between the converted and

enhanced signals leads to a further increase of the NGV of the enhanced output. In terms of the objective

measures we examined, our method was outperformed by CGMM [43]: for the same NGV of 0.3, CGMM

(with a factor) achieved a lower LSD than the proposed approach did, and for the same mean LSD

of 7.3dB, CGMM achieved a higher NGV than the proposed approach did. However, listening tests,

presented in the next subsection, showed that the proposed approach was preferable by the majority of

listeners in terms of both individuality and quality, when compared to the other examined approaches,
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including CGMM.

Subjective Evaluations

Listening tests were carried out to subjectively assess the performance of the examined methods. The

examined signals were compared using AB quality tests and ABX individuality tests, as described in Sec.

3.1.4. In each test, 10 different randomly ordered sentences were examined by 12 listeners. The group of

listeners comprised 20-30 years old non-experts men and women.

We utilized the controlled enhancement to select the best configuration, in terms of subjective quality.

We set θLSD = 2dB, as informal listening tests showed that the proposed enhancement approach produced

the best quality with this threshold value. As mentioned above, several working points were also examined

for CGMM using factors smaller than 1 multiplying the target NGV in the constraint term. Eventually,

we used the CGMM method with a factor equal to 1 since this value leads to the best quality in our

informal listening tests.

First, we report the impact of the proposed enhancement on the outputs of the classical conversion

method [2]. The results, presented in Fig.4.3(a) show that increasing the GV indeed improved the

perceived quality of the converted sentences. Interestingly, the similarity to the target signal was slightly

improved, as seen in Fig.4.3(b), even though objectively, the enhanced signal is less similar to the target

speaker in terms of mean LSD. This was probably caused by the difficulty of some of the listeners to

ignore the signals’ quality while rating their individuality.

(a) (b)

Figure 4.3: The classical GMM conversion method [2] compared with the classical con-

version followed by the the proposed enhancement: (a) - quality preference test; (b) -

individuality preference test.

Second, the overall output of the classical conversion followed by the proposed enhancement was com-

pared to the output of CGMM [43]. The proposed enhancement outperformed CGMM: it was preferred
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in 60% of the cases in terms of quality and in 70% of the cases in terms of similarity to the target, as

seen in Figs.4.4(a) and 4.4(b), respectively.

To conclude, the listeners preferred the outputs of the proposed method over the other two methods

both in terms of quality and similarity to the target.

(a) (b)

Figure 4.4: CGMM [43] compared with the classical GMM conversion followed by the the

proposed enhancement: (a) - quality preference test; (b) - individuality preference test.

4.3 Chapter Summary

The classical spectral envelope conversion approach is based on GMM modeling and linear conversion.

This method and several others that were suggested since, are reported to suffer from a muffling effect,

ascribed to excessive smoothing of the spectral envelopes.

In this chapter, we proposed two different methods for GV enhancement:

1. CGMM - based on the classical conversion method, where the enhancement process is integrated

within the training process of the conversion function.

2. A modular enhancement method, applied as a post-processing block, independent of the conversion

process.

The training stage of the CGMM approach formalized as a constrained LS problem. The spectral distance

between the converted and target signals is minimized, under a constraint that the GV of the converted

features should match the GV of the target sentences. Experimental results show that the CGMM

approach significantly increased the GV of the converted spectral features. However, the mean spectral

distortion obtained by the proposed approach is somewhat higher than the mean distance achieved by

the classical approach. Still, subjective evaluations indicate that the signals obtained by the proposed

approach are mostly preferred by the listeners in terms of both quality and similarity to the target

speaker, when compared to the converted outputs of the classical method.
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The modular enhancement block is designed independently of any specific conversion method. This

method is based on GV maximization under a spectral similarity constraint. The extent of enhancement

is controlled by tuning the allowed spectral distance between the enhanced and the originally converted

signal. We presented a novel formulation for the mean spectral distance between two sequences of

feature vectors, so that the threshold value for the spectral distance is specified in [dB]. Experimental

results showed that the new enhancement method improved the perceived quality and individuality of

the classical GMM conversion method.



Chapter 5

Grid-Based Voice Conversion

5.1 Background

Most training algorithms require parallel data sets, that is, prerecorded sentences of the source and

target speakers saying the same text. In such a setup, evaluation of a conversion function is based on

coupled feature vectors - source and target. Alternatively, some methods have been proposed, suggesting

training algorithms which avoid the need for pre-alignment altogether. These non-parallel methods need

to estimate the source-target correspondence, in addition to the conversion function itself such as TC-

INCA presented in Ch. 6 and others, [1, 7]. Although these methods were designed for a non-parallel

setup, they can be used in a parallel setup, when aligned data is unavailable.

Even when a parallel training set is available, matching an analysis frame of the source speaker to one

of the analysis frames of the target speaker is not straightforward, since the two speakers generally do not

pronounce the text at the exact same rate. A time alignment is usually carried out using Dynamic Time

Warping (DTW), constrained by starting and ending of speech utterances [48]. These time stamps are

commonly obtained by phonetic labeling, representing the beginning and ending of each phoneme. Since

the source and target training sentences are not spoken in exactly the same rate, DTW often replicates

or omits feature vectors, artificially producing a match. The importance of correct time alignment was

recently demonstrated as having a large influence on the quality of the synthesized converted speech [49].

A different approach was suggested by [50], where a statistical model for an eigen-voice was trained using

several parallel data-sets. The conversion function is trained using the eigen-voice model and speech

sentences related to a target speaker (not necessarily parallel to the source data-sets).

GMM-based conversion methods, using either parallel or non-parallel data, typically require several

dozens of sentences for training, and therefore when applied in a mobile environment impose a long

recording session on the user. Even the low delay GMM-based approach suggested by Toda at al. was

reported to be trained using 60-250 mixtures and 50 training sentences [51]. Therefore applying them in

a mobile environment would compel the user to a long recording session.

35



36 CHAPTER 5. GRID-BASED VOICE CONVERSION

In this chapter we propose a method for spectral conversion based on a Grid-Based (GB) approxi-

mation [52]. We express the spectral conversion process as a sequential Bayesian estimation problem of

tracking the target spectrum using observed samples from the source spectrum. We propose models for

evaluation of the evidence and likelihood probabilities needed for the GB formulation. Using these ap-

proximated probabilities the algorithm sequentially evaluates the converted spectrum as a weighted sum

of the target training vectors. Recently, we presented a similar method using GB approximation which

requires phonetic labeling during the test stage [53]. In this chapter we propose a modified version of this

method, which does not require any labeling for testing. Additionally, as in TC-INCA (Ch. 6), we use

context vectors instead of single vectors in order to improve the estimation of the likelihood probability.

Some approaches for training a conversion function that are not based on GMM have been pro-

posed, among them training using a state-space representation [54], and using exemplar-based sparse-

representation [36]. Since these methods are closely related to the proposed GB method, we address

them and discuss the differences between them and the GB approach in more details after describing the

proposed method in this work (see Sec. 5.4). Still, these method are also not suitable for mobile environ-

ment since they require several hundreds of parallel training sentences and/or very high computational

load during conversion and a substantial memory footprint.

Furthermore, as opposed to previously proposed methods that use parallel and time aligned training

sets, the GB conversion approach does not require a one-to-one correspondence between the source and

target training vectors. The training process uses parallel sentences but is based on soft correspondence

between the source and target vectors, obtained by phonetic labeling of the training sentences without

frame alignment, thus eliminating the need for DTW.

Unlike other GMM-based methods that use statistical modeling of the spatial structure of the source

and target spectra, the GB method is data-driven, so it is easily trained using merely 5-10 sentences.

Its training stage involves simple computations based on the Euclidean distance between the training

vectors.

Objective evaluations show that the GB conversion method proposed here leads to GV values that are

closer to the GV values of the target speaker than the classical GMM conversion method and to lowest (or

very close to it) spectral distance to the target spectra, at the same time. To further improve the quality

we applied our GV enhancement post-processing block (see Ch. 4.2). we present an overall scheme,

Enhanced-GB (En-GB), consisting of GB conversion, followed by GV enhancement. We used objective

measures and also performed extensive subjective evaluations, to compare our proposed En-GB scheme

to JGMM, [3], also followed by the same GV enhancement block (En-JGMM), and to CGMM presented

in Ch. 4.1.Objectively, En-GB leads to better performance than En-JGMM and CGMM in terms of both

spectral distance and GV, using 10 sentences. Listening tests show that in terms of similarity to the

target, En-GB outperforms the other examined methods. In terms of quality, CGMM was rated as best,

where En-GB was rated as comparable to En-GMM.
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5.2 Grid-Based Formulation

A brief formulation of sequential estimation using Bayesian tracking is presented in Sec. 5.2.1. In many

practical cases, applying this formulation yields a high computational load, which is sometimes unfeasible.

The GB method provides a discrete approximation for Bayesian tracking with much less computational

complexity, as described in Sec. 5.2.2.

5.2.1 Bayesian Tracking

Denote by yt a hidden state vector, following a first order Markov dynamics:

yt = ft (yt−1,ut) , (5.1)

where ft is a function (not necessarily linear) of yt−1 and of an i.i.d. noise sequence ut. The observed

signal, xt, depends on the hidden state and on an i.i.d. measurement noise,vt:

xt = ht (yt,vt) , (5.2)

where ht (·) may also be non-linear.

The Bayesian optimal estimate for the state vector yt in terms of minimizing the mean squared error,

given t vectors sequentially sampled from the observed process - x1:t , {x1, ...,xt}, is obtained by1:

ŷt = E [yt|x1:t] =

∫

p (yt|x1:t)ytdyt. (5.3)

The posterior probability p (yt|x1:t) can be obtained recursively in two stages:

1. Prediction - obtain the prior probability:

p (yt|x1:t−1) =

∫

p (yt|yt−1) p (yt−1|x1:t−1) dyt−1. (5.4)

2. Update - use the current observation xt to update the posterior probability:

p (yt|x1:t) =
p (xt|yt) p (yt|x1:t−1)

p (xt|x1:t−1)
, (5.5)

where,

p (xt|x1:t−1) =

∫

p (xt|yt) p (yt|x1:t−1) dyt. (5.6)

This recursion is initialized by setting the prior probability to be equal to the initial probability of the

state vector: p (y0|x0) = p (y0), where p (y0) is assumed to be known (in practice, mostly taken as a

uniform distribution). The likelihood function p (xt|yt) that appears in (5.5) is determined according to

the measurement model (eqn. (5.2)) and the statistics of the measurement noise vt.

When the noise signals ut and vt are Gaussian, and the functions ft (·) and ht (·) are linear and time

invariant (meaning that ft (·) ≡ f (·) and ht (·) ≡ h (·)), this recursion can be computed analytically,

1In general, any arbitrary integrable function of the state vector yt can be evaluated [52].
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leading to Kalman filtering [55]. Yet, in most practical cases where these conditions are not sustained,

this derivation is hard and often performed using approximation methods such as GB approximation or

particle filtering [52]. These methods sequentially evaluate the posterior probability as a discrete weighted

sum using a given set of samples in case of GB, or a randomly drawn set in case of Particle Filtering.

In this work, we express the spectral conversion process as a sequential estimation problem tracking

the target spectrum, using observed samples from the source spectrum. We propose models for the evi-

dence and likelihood probabilities needed for the GB formulation. Using these approximated probabilities

the algorithm sequentially evaluates the converted spectrum as a weighted sum of the target training vec-

tors. It is well known that the performance of particle filtering crucially depends on successful statistical

modeling of the state-space temporal evolution. The performance of GB, on the other hand, depends on

dense modeling of the state-space by a set of predetermined grid-points. Nevertheless, in the following

sections we show that 5-10 training sentences alone, which still result in several thousands of spectral

feature vectors, are sufficient for training a GB conversion. Our subjective evaluations show that the GB

conversion is found to be better or comparable, at least, to the classical GMM conversion method, when

trained by this small set.

5.2.2 Grid-Based Approximation

The main principle of GB approximation is to provide a Bayesian sequential estimation framework while

avoiding the integral computations in (5.4) and (5.6) by using a discrete evaluation of the posterior

probability.

Let
{

yk
t

}Ny

k=1
be a set of predetermined grid-points taken from the state-space

{

yt

}

. We divide the

state space into cells, so that each cell has a grid point yk
t as its center. Thus, the posterior probability

can be approximated by2:

p (yt|x1:t) ≈
Ny
∑

k=1

wk
t|tδ
(

yt − yk
t

)

. (5.7)

where the posterior weights
{

wk
t|t

}Ny

k=1
denote the conditional probabilities:

wk
t|t = p

(

yt = yk
t |x1:t

)

. (5.8)

Using this discrete approximation, the prior probability is also approximated as a discrete sum:

p (yt|x1:t−1) ≈
Ny
∑

k=1

wk
t|t−1δ

(

yt − yk
t

)

. (5.9)

The prior weights can be estimated sequentially [52]:

wk
t|t−1 ≈

Ny
∑

l=1

wl
t−1|t−1p

(

yk
t |yl

t−1

)

, (5.10)

2If the state space is indeed discrete and finite, and the grid-points consist of all its states, this

evaluation becomes exact.



5.3. VOICE CONVERSION USING GRID-BASED APPROXIMATION 39

where p
(

yk
t |yl

t−1

)

, called the evidence probability, is derived from the state space dynamics (eqn. (5.1)).

The posterior weights {wk
t|t}

Ny

k=1 are evaluated by:

wk
t|t ≈

wk
t|t−1p

(

xt|yk
t

)

∑Ny

l=1 w
l
t|t−1p

(

xt|yl
t

)
, (5.11)

where, as stated above, the likelihood probability p
(

xt|yk
t

)

is derived from the measurement model (eqn.

(5.2)).

Finally, the hidden state vector yt is approximated using the posterior weights:

ŷt = E [yt|x1:t] ≈
Ny
∑

k=1

wk
t|ty

k
t . (5.12)

Note that equations (5.10), (5.11) and (5.12) are discrete evaluations of equations (5.4)-(5.3), correspond-

ingly. It is known [52] that the estimated terms in (5.7) and in (5.12) are biased for any finite Ny. Still,

as more grid points are taken the bias gets smaller and the approximation improves, since the state space

is more densely represented.

The sequential estimation process is initialized using the initial probability of the state vector p
(

yk
0

)

,

which as stated above, is assumed to be known:

wk
0|0 = p

(

yk
0

)

. (5.13)

Table 5.1 summarizes the main stages of sequential Bayesian estimation using GB approximation.

Table 5.1: Bayesian Estimation Using Grid-Based Approximation.

Input: a sequence of states sampled from the observed process - x1:T

Initialization: set the initial weights, {wk
0|0}

Ny

k=1
, using eqn. (5.13)

Main Iteration: for t = 1, ...T , perform the following steps:

1. Evaluate the prior weights, {wk
t|t−1
}Ny

k=1
, using eqn. (5.10).

2. Evaluate the posterior weights, {wk
t|t}

Ny

k=1
, using eqn. (5.11).

3. Evaluate the hidden state, ŷt, using eqn. (5.12).

Output: a sequence of the estimated hidden states - ŷ1:T

5.3 Voice Conversion Using Grid-Based Approxima-

tion

We now use the GB approximation method described above as a framework for spectral voice conversion.

We express the conversion as a sequential estimation problem, where the observed process is the source
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spectrum, and the tracked state-space is the target spectrum. We propose models for both likelihood and

evidence densities, required for the sequential estimation process, as described in equations (5.10)-(5.12).

The GB conversion method proposed here uses a parallel training set, but does not require time

alignment between the source and target training vectors since it is trained using soft correspondence

between them, rather than matched pairs. The training and conversion stages of the proposed GB

conversion method are presented below in Secs. 5.3.1 and 5.3.2, respectively.

5.3.1 Training Stage

The training process described here includes pre-computation of the evidence and discrete likelihood

probabilities. These probabilities are evaluated using all available training data. Note the difference

from our previously presented GB method, where these probabilities were evaluated separately for each

phoneme [53]. The source and target training sentences are assumed to be parallel and phonetically

labeled. The spectral features of the two speakers are extracted from the voiced frames, but, as stated

above, no time alignment is performed. Instead, a matching process of the source and target utterances

is performed as follows. Each sequence of frames related to a certain phoneme at the source, is matched

to its corresponding sequence at the target, according to the phonetic labeling. When matching frames

extracted from recordings of the the word ”father”, for example, the sequence of frames related to the

phoneme ”f” at the source is matched to the sequence of frames related to the phoneme ”f”, taken from the

target’s recording of this word. The same is done for ”a”, ”th” etc. Note that although matched sequences

mostly have different lengths, our training process does not require using an alignment procedure such as

DTW, unlike GMM-based methods do. Based on the matched sequences, we model the discrete likelihood

probability used in eqn. (5.11), as:

p
(

xt = xm|yt = yk
)

∝











1 xm,yk belong to the same phonetic sequence

0 otherwise,

(5.14)

where {xm}Nx

m=1 and {yk}Ny

k=1 are source and target training vectors, respectively. We normalize the

obtained discrete likelihood probability so that:

Nx
∑

m=1

p
(

xt = xm|yt = yk
)

= 1, ∀k = 1, ..., Ny. (5.15)

The discrete likelihood probability defines a relaxed correspondence between source and target

training vectors, as opposed to a one-to-one match defined in other parallel methods, for which

p
(

xt = xm|yt = yk
)

= δm,k.

The evidence probability, as mentioned before, expresses the transition probability from state yl to

state yk. In natural speech, spectral feature vectors related to consecutive time frames are typically

similar, but not identical. Motivated by this behavior, we model the transition probability as having the

same value for all the states inside a ball, centered at yk with a radius Ry. The probability of transitions
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to farther states, however, is taken as a simple Gaussian distribution, centered at yk. Altogether, we

model the discrete evidence probability, used in eqn. (5.10), as:

p
(

yt = yk|yt−1 = yl
)

=
e−

M2

k,l

2

∑Ny

k=1 e
−

M2

k,l

2

, (5.16)

where the exponential term in eqn. (5.16) is the maximum between the LSD of the two states yl and yk

(as defined in eqn. 3.6, Ch. 3.1.3), normalized by a parameter Ry, and 1:

Mk,l = max

(

LSD
(

yk,yl
)

Ry
, 1

)

, (5.17)

where yp (p) and yl (p) are the p-th elements of yk and yl, respectively. An alternative approach would

be to take the exponential term, defined in eqn. (5.17), as a normalized distance. For example, Mk,l =

LSD
(

yk,yl
)

/Ry, where Ry is a parameter selected by the user. However, in case of a sparse training set

the most substantial probability would be for staying in the same state. Since the training set is fixed,

the likelihood and evidence densities are in fact time invariant.

5.3.2 Conversion Stage

The likelihood probability modeled above in eqn. (5.14) is defined only for a discrete set consisting of the

source training vector. In this section we extend (5.14) to model any input vector xt ∈ R
P , as required

by the GB formulation.

In our previous work dealing with GB-conversion, [53], we modeled the continuous likelihood prob-

ability p
(

xt|yt = yk
)

as a sum of the discrete likelihood probabilities p
(

xm|yt = yk
)

, m = 1, ..., Nx,

(defined in (5.14) and (5.15)), each weighted by a Gaussian kernel, centered at xm:

p
(

xt|yt = yk
)

=

∑Nx

m=1 p
(

xm|yt = yk
)

e−LSD2(xt,x
m)/2R2

x

∑Ny

k=1

∑Nx

m=1 p (x
m|yt = yk)e−LSD2(xt,xm)/2R2

x

, (5.18)

where Rx is a parameter determined by the user. The Gaussian term e−LSD2(xt,x
m)/2R2

x can be viewed as

an interpolation factor from the discrete space represented by the source training vectors to the continuous

space of the test source vectors.

Denote Xt =
(

xt−τ/2, ...,xt, ...,xt+τ/2

)

as context test vector - a sequence of test source vectors. Also

denote {Xm
t }Nx

m=1 as training context vectors similarly obtained from the source training set. In a recent

work, [56], (also presented Ch. 6), we have shown that Euclidian distance between context vectors leads

to improved spectral matching compared with Euclidian distance between single vectors . Although that

was shown for matching spectral segments of two different speakers, it is certainly beneficial for matching

spectral segments taken from the same speaker. Therefore, we substitute the LSD term in the Gaussian
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kernel in eqn. (5.18) with the mean LSD between context vectors, i.e.:

p
(

xt|yt = yk
)

=

∑Nx

m=1 p
(

xm|yt = yk
)

e−LSD
2
(Xt,X

m
t )/2R2

x

∑Ny

k=1

∑Nx

m=1 p (x
m|yt = yk)e−LSD

2
(Xt,Xm

t )/2R2
x

LSD
2
(Xt,X

m
t ) =

1

τ

τ/2
∑

ν=−τ/2

LSD
(

xt+ν ,x
m
t+ν

)

(5.19)

Define wk
t|t as the posterior weights corresponding to the training vectors {yk}Ny

k=1:

wk
t|t , p (yt|x1:t) . (5.20)

During conversion, the posterior weights are sequentially evaluated, using the corresponding evidence

and likelihood probabilities defined in (5.16) and (5.19), according to equations (5.10) and (5.11). The

posterior weights are used to obtain the converted outcome as a discrete Bayesian approximation (as

defined in (5.12)):

F{xt} = E [yt|x1:t] ≈
Ny
∑

k=1

wk
t|ty

k
t . (5.21)

Due to the sequential update of the posterior weights, the converted spectral outputs evolve smoothly

in time, within each phonetic segment, also during transitions between phonemes. Figure 5.1 demonstrates

the obtained time evolution of the first and third MFCCs using GB conversion, compared to the classical

GMM-based conversion - JGMM [3]. The classical GMM-based conversion are applied frame by frame

which may lead to discontinuities. The proposed GB, however, is based on a sequential update leading

to a smoother time evolution of the cepstral elements, as seen in Fig. 5.1.
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Figure 5.1: Temporal evolution of the 1st and 3rd cepstral coefficients of: the target signal

- blue; JGMM - green; GB - red.

To conclude, the main stages of converting a sequence of source vectors are summarized in Table 5.2.
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Table 5.2: Voice Conversion Using GB Approximation.

Input: a sequence of feature vectors related to the source speaker x1:T

Initialization: set the initial weights, {wk
0|0}

Ny

k=1
.

Main Iteration: for t = 1, ...T , perform the following steps:

1. Evaluate the prior weights, {wk
t|t−1
}Ny

k=1
, using equations (5.10) and (5.16).

2. Evaluate the posterior weights, {wk
t|t}

Ny

k=1
, using equations (5.11) and (5.14).

3. Evaluate ỹt = F{xt}, using (5.21).

Output: a sequence of converted vectors - ỹ1:T

5.4 Related Work

The GB approach uses a state-space representation of the source and target spectra to obtain a converted

spectra as a weighted sum of the target training vectors. In this section we address two related methods:

1) a method based on state-space representation [54]; 2) an exemplar based approach [36], where the

converted spectra is evaluated as a weighted sum of the target training vectors. We discuss here the

similarities and differences between these methods and our proposed approach.

In [54], a state-space approach for representing speech spectra as an observed process generated

from an underling sequence of a hidden Markov process has been proposed. The source and target

speech are both modeled using this state-space representation. The state-space parameters are divided

into two parts: a common part related to the uttered speech (assuming a parallel training set) and a

the differentia part related to the difference between the speakers. These parts are evaluated during

training time using an iterative algorithm known as Expectation Maximization (EM) [16]. During test,

the common parameters related to the test utterance are evaluated using EM and then used, along with

the trained differentia part to obtain the converted spectra. Both training and conversion stages include

iterative training (EM). Conversion results reported by the authors were obtained using several hundreds

of parallel training sentences. Although our method and Xu et al.’s method, [54], both use state-space

for representing the temporal evolution of the speech sprecta, in our method the source and the target

spectra are linked through a state-space dynamics, where in Xu et al.’s approach the parallel source

and target spectra are each modeled as the observed signals of a shared underlined unobserved Markov

process.

An exemplar-based sparse-representation approach for voice conversion has been proposed in [36].

Each speech signal is modeled as a linear combination of basis vectors (the training vectors), where

the weighting matrix is called an activation matrix. The main assumption used in this method is that

the speaker’s identity is modeled by the basis vectors, where the information regarding the uttered text

lies entirely in the activation matrix. Therefore, given a test source signal, its activation matrix is



44 CHAPTER 5. GRID-BASED VOICE CONVERSION

evaluated and then multiplied by the target training set, used as the target basis vectors, to obtain the

converted spectra. Therefore, this method does not require any training, but its testing stage includes high

computational load and a substantial memory footprint. As the exemplar-based method, our proposed

GB method also uses a linear combination of the target training vectors. Besides the obvious differences

in the models used by the two methods, there are two major differences:1) We use sequential evaluation

of the weights to ensure smooth temporal evolution while in the exemplar based the activation matrix is

evaluated as a batch. 2) We use scalar weights while the exemplar-based method uses weighting vectors

(the activation matrix).

5.5 Experimental Results

5.5.1 Experiments Setup

In our experiments we used speech sentences of four U.S. English speakers taken from the CMU ARCTIC

database [46]: two males (bdl, rms) and two females (clb, slt). Two different sizes of training sets 5 and

10 parallel sentences were used to demonstrate the performance of the examined methods as a function of

training set size. The testing set consisted of 50 additional parallel sentences. All sentences were sampled

at 16kHz and were phonetically labeled.

Analysis and synthesis were both carried out using an available vocoder [57]. This vocoder uses a

two-band harmonic/noise parametrization, separated by a maximal voicing frequency for representing

each spectral envelope [58]. 25 Mel Frequency Cepstrum Coefficients (MFCCs) were extracted from the

harmonic parameters [21]: the zero-th coefficients, related to the energy, were not converted. The other

24 coefficients were used as spectral feature vectors during training and conversion.

The spectral features of unvoiced frames were not converted but simply copied to the converted

sentence, since they do not capture much of the speaker’s individuality [59] and their conversion often

leads to quality degradation [60]. The maximal voicing frequency was also not converted but re-estimated

from the converted parameters by the vocoder. The sequences of the training data set used for GB

conversion were matched (without alignment), as described in Sec. 5.3.1. The training set used for the

other examined methods, and the testing set, were each time aligned using a DTW algorithm based on

phonetic labeling [48]. The pitch was converted linearly as described in eqn. (3.1).

5.5.2 Objective Evaluations

The examined GMM-based methods (JGMM and CGMM) were trained using diagonal covariance ma-

trices and 1− 4 Gaussian mixtures, due to the low amount of training data.

We begin with a short examination of the influence of each of the three parameters of the proposed

GB method (Rx, Ry and τ) on its performance. Figure 5.2 presents the ND vs. NGV values obtained

for the proposed GB method using Rx ∈ [0.3, 2], Ry ∈ [1, 4] and τ = 1, trained by 10 sentences, for
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a male-to-male conversion. As the parameter Rx gets higher, more grid-points are considered in the

weighted sum, so that ND decreases, but the NGV also decreases. Since the evidence probability is solely

determined by the training set (see eqn. (5.16)), we also examined the performance of the GB method

using a data-driven value for Ry, specifically, the median of the MCD between all training vectors pairs

related to the target speaker. These values vary between 2-3dB when using different source-target pairs

and data-set sizes. As depicted in Fig. 5.2, the median leads to the best ND-NGV values so all results

presented from now on were obtained using this value for Ry. Figure 5.3 presents the ND vs. NGV
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Figure 5.2: ND vs. NGV for GB conversion for a male-to-male conversion using 10

training sentences and Rx ∈ [0.3, 2] dB, τ = 1 and: Ry = 1dB - blue x; Ry = 2dB - red

circle; Ry = median - black astrict; Ry = 3dB - magenta square.

values obtained for the proposed GB method using Rx ∈ [0.3, 2], τ = (0, 1, 2), trained by 10 sentences,

for a male-to-male conversion. Using τ = 1 leads to higher NGV values than using τ = 0, with a slight

increase in the ND. However, increasing τ further leads to the same NGV values with a minor decrease

in the ND. Table 5.3 summarizes the ND and NGV values achieved by JGMM [3] and the proposed GB

conversion method, for all four gender conversions: male-to-male (M2M), male-to-female (M2F), female-

to-male (F2M) and female-to-female (F2F), using 5 and 10 training sentences. The number of mixtures

for JGMM, and parameters for the GB (Rx and τ) were selected for each method and training set so

that a minimal ND was attained, while keeping the NGV as high as possible. As mentioned above, Ry

was taken as the median. The proposed GB leads to higher NGV values in all the cases. For 5 training

sentences JGMM leads to lower ND values (except for F2M), however, using 10 training sentences, the

proposed GB achieves lower or very similar ND values. Still, both methods lead to very low NGV values

and consequently, muffled sounding synthesized signals.

To further improve the quality of the synthesized speech, we applied the post-processing method for

GV enhancement [44]. This method maximizes the GV of an input sequence, under a spectral distortion

constraint. The GV of each enhanced sequence is increased up to the level where the MCD between the

converted sequence and its enhanced version reaches a preset threshold value, denoted as θMCD. We
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Figure 5.3: ND vs. NGV for GB conversion for a male-to-male conversion using 10

training sentences and Rx ∈ [0.3, 2], Ry = median: τ = 0 - blue x; τ = 1 - red circle;

τ = 2 - black astrict.

Table 5.3: Objective performance: ND and NGV values using 5 and 10 training sentences,

for all four gender conversions.

5 Train. Sent 10 Train. Sent

ND NGV ND NGV

M2M
JGMM 0.72 0.15 0.71 0.13

GB 0.73 0.25 0.69 0.14

M2F
JGMM 0.7 0.15 0.7 0.12

GB 0.71 0.21 0.69 0.19

F2M
JGMM 0.74 0.14 0.71 0.13

GB 0.71 0.34 0.71 0.42

F2F
JGMM 0.8 0.22 0.8 0.18

GB 0.88 0.34 0.81 0.31

recently showed [44] that this method leads to significant improvement in the perceived quality of signals

converted by the classical GMM method [2]. In this work we applied this GV enhancement method to

JGMM [3], and to our proposed GB conversion outcomes. We also examined the performance of CGMM,

which considers GV enhancement at training.

Table 5.4 summarize the ND and NGV values achieved by the examined conversion methods, for all

four gender conversions using 5 and 10 training sentences. Again, the GB conversion, followed by GV

enhancement with θMCD = 2dB (En-GB) leads to the highest NGV values. Using 5 training sentences,
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JGMM leads to the lowest ND values, while En-GB comes in second (except for F2F). Using 10 training

sentence, En-GB, produces the lowest ND and at the same time the highest NGV, for M2M and M2F

conversion. For F2M and F2F conversion, En-GB leads to the highest NGV with very similar ND values

to JGMM, which are the lowest.

Table 5.4: Objective performance: ND and NGV values using 5 and 10 training sentences,

for all four gender conversions with GV enhancement (θ = 2dB).

5 Train. Sent 10 Train. Sent

ND NGV ND NGV

M2M

JGMM 0.76 0.6 0.74 0.55

CGMM 0.83 0.46 0.82 0.45

GB 0.79 0.8 0.73 0.6

M2F
JGMM 0.74 0.57 0.74 0.54

CGMM 0.83 0.45 0.84 0.46

GB 0.76 0.73 0.73 0.68

F2M
JGMM 0.77 0.63 0.75 0.69

CGMM 0.86 0.62 0.85 0.61

GB 0.76 0.95 0.77 1.1

F2F
JGMM 0.86 0.79 0.85 0.65

CGMM 0.91 0.63 0.89 0.6

GB 0.95 1 0.87 0.98

To conclude the objective examination, in terms of NGV, the proposed EN-GB conversion scheme

outperforms all the examined methods. In terms of ND, JGMM leads to lower ND values using 5 training

sentences. Using 10 training, En-GB leads to the lowest (or very similar to the lowest) ND values.

In the next section we present subjective evaluation results comparing the proposed En-GB conversion

scheme to the classical GMM-based conversion method (with enhancement) and to CGMM, in terms of

perceived quality and similarity to the target speaker.

5.5.3 Subjective Evaluations

Listening tests were carried out to subjectively assess the performance of the examined methods (all

trained by 10 sentences). In every test, 10 different sentences were examined by 11 listeners. The group

of listeners included 20-30 years old, non-experts, men and women. The same four speakers (two males

and two females) that were used for the objective evaluations, were used for the subjective evaluations.
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The number of mixtures for the GMM-based methods and parameters for the GB conversion (Rx and τ)

were set so minimal spectral distortion would be attained while keeping the NGV as high as possible. We

used informal listening tests to select the threshold value for GV enhancement from θMCD = 0.5, 1, 2, 4dB.

The best perceived quality was obtained with θMCD = 2dB, for both JGMM and GB. All four gender

conversions were performed using the same parameters values as described above.

We conducted subjective quality evaluations in a format similar to Multi Stimulus test with Hidden

Reference and Anchor (MUSHRA) [30]. The listeners were presented with four test signals: (a) a hidden

reference - the target speaker; (b) Enhanced JGMM; (c) CGMM; (d) Enhanced GB (En-GB). The test

signals were randomly ordered, and the listeners were not informed about the hidden reference signals

being included in the test set. During evaluation, the listeners were asked to compare the test signals

to the reference signal (the target speaker) and rate their quality between 0 to 100, where at least one

of the test signals (the hidden reference) must be rated 100. As expected, all the listeners rated the

hidden reference as 100. The mean scores of the examined methods for M2M, M2F, F2M and F2F

conversions, and also their scores averaged over all four conversions are presented in Figures 5.4 and 5.5,

respectively. All subjective results are presented with their 95% confidence intervals. We evaluated
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Figure 5.4: Subjective quality test, comparing: Enhanced JGMM (En-GMM), CGMM

[43] and Enhanced GB (En-GB).

the individuality performance using, again, a similar format to MUSHRA, as conducted by Godony et.

al. [31]. The listeners were presented with the same test signals (including the hidden reference) and were

asked to rate their similarity to the reference signal, in terms of the speaker’s identity, while ignoring

their perceived quality. The mean individuality scores of the examined methods for M2M, M2F, F2M

and F2F conversions, and also their scores, averaged over all four conversions, are presented in Figures

5.6 and 5.7, respectively.

Except for F2F, the proposed EN-GB was rated as most similar to the target speaker (Fig. 5.6). In

terms of perceived quality, CGMM was rated as having the best quality, while EN-JGMM and EN-GB

were rated as comparable (Fig. 5.4). All in all, considering all four gender conversion, the proposed
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Figure 5.5: Subjective quality test averaged over all four gender conversions comparing:

Enhanced JGMM (En-GMM), CGMM [43] and Enhanced GB (En-GB).
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Figure 5.6: Subjective individuality test, comparing: Enhanced JGMM (En-GMM),

CGMM [43] and Enhanced GB (En-GB).

EN-GB was marked as most similar to the to the target speaker, while CGMM was marked as having

best quality.

5.6 Chapter Summary

We propose here a GB voice conversion method suitable for low resource environments, which can be

successfully trained using very few sentences (5-10) and does not require phonetic labeling of the test

signals.

The GB conversion method is based on sequential Bayesian tracking, using a Grid-Based (GB)

formulation. The target spectral evolution is modeled as a hidden Markov process, tracked by using

the source spectrum, modeled as the observed process. The training stage is very simple and based on
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Figure 5.7: Subjective individuality test averaged over all four gender conversions com-

paring: Enhanced JGMM (En-GMM), CGMM [43] and Enhanced GB (En-GB).

Euclidean distances between the training vectors and it is successfully performed using very small training

sets. Additionally, although GB is trained using a parallel set, time alignment is not needed. During

training, the evidence and likelihood probabilities needed for the GB formulation are approximated as

discrete densities. During conversion, the converted spectrum is obtained as a weighted sum of the

training target vectors, used as grid-points. The weights are sequentially evaluated so that a smooth

temporal evolution of the converted spectra is produced.

We used a small set of just 10 sentences for training both the classical GMM-based conversion

function and our GB method. According to our experiments, the GB conversion method achieves lower

spectral distances between the converted and target spectra and GV values which are closer to the

target speaker’s values, than the classical GMM-based conversion. To further improve the quality of the

synthesized speech, we increased the variability of the converted vectors by applying GV enhancement as

a post-processing block. We compared the proposed Enhanced GB (En-GB) scheme to CGMM and to

classical GMM-based conversions, with GV enhancement, using listening tests. This comparison showed

that En-GB is best in terms of similarity to the target speaker and comparable to the enhanced GMM

conversion, in terms of quality.



Chapter 6

Non-Parallel Conversion

In this chapter we formulate the non-parallel training process as a minimization problem of a joint

cost, considering temporal-context alignment and conversion function. We propose a generalization of

INCA (described in Sec. 3.2.3), denoted here Temporal-Context INCA (TC-INCA), based on matching

sequences of vectors (rather than single vectors), according to their original temporal context. We show

that TC-INCA (and hence also INCA) are, in fact, alternating minimization steps of the joint cost, and

prove their convergence.

Fig. 6.1 illustrates the main difference between TC-INCA, which is based on matching temporal

context vectors, and INCA’s, which is based on matching single vectors.

(a) (b)

Figure 6.1: Alignment process: (a) - matching feature vectors used in INCA; (b) - tem-

poral context vectors (sequences of feature vectors) used in TC-INCA.

We present objective and subjective evaluations comparing the proposed TC-INCA to INCA. Our

method significantly increases the amount of correctly matched pairs and leads to improved synthesized

quality and similarity to the target.
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6.1 TC-INCA

6.1.1 Joint Cost

In this section we formulate the training stage of a non-parallel conversion as a minimization problem of a

joint cost, considering both conversion and context-based matching functions. We define a set of context

vectors {Xk}Ñx

k=1 ∈ R
d(T+1), {Yk}Ñy

k=1 ∈ R
d(T+1) obtained by concatenating T/2 (T is even) successive

vectors before and after each training vector:

Xk ,

(

x⊤
k−T/2, ...,x

⊤
k , ...x

⊤
k+T/2

)⊤

Yj ,

(

y⊤
j−T/2, ...,y

⊤
j , ...y

⊤
j+T/2

)⊤

, (6.1)

where Ñx = Nx − T, Ñy = Ny − T are the number of the source and target context vectors, respectively.

We assume that the non-parallel source and target sets are extracted from several continuous utterances

(words, sentences). To simplify the notation we also assume that the indices k and j reflect their temporal

ordering, meaning that xk and xk+1, for example, are extracted from consecutive time frames.

Given a spectral conversion function, its inverse, F−1 (·), and two matching functions p (·) and q (·) -
pairing each source context vector to a target context vector and vice versa, we write a joint cost function,

similar to eqn. (3.31):

L =

Ñx
∑

k=1

∥

∥F (Xk)−Yp(k)

∥

∥

2
+

Ñy
∑

j=1

∥

∥Xq(j) −F−1 (Yj)
∥

∥

2
, (6.2)

where the converted context vectors F (Xk) are obtained by applying the conversion function on each

feature vector:

F (Xk) ,
(

F
(

xk−T/2

)⊤
, ...,F (xk)

⊤
, ...F

(

xk+T/2

)⊤
)⊤

, (6.3)

and similarly for F−1 (Yj).

The cost presented in eqn. (6.2) is the empirical squared-error between the source and target se-

quences and their estimated versions (using the conversion function), according to the two alignment

functions, p and q. Therefore, we regard the training stage as an optimization problem, aiming to

minimize this cost:

{F∗, p∗, q∗} = argmin
{F ,p,q}

L (p, q,F) . (6.4)

In the parallel case, alignment is obtained by using DTW and phonetic labeling (if available). Assum-

ing, w.l.o.g., that the source and target training vectors are ordered so that xk matches yk, ∀k = 1, ..., N ,

the matching functions become identity functions: p (k) = q (k) = k. Substituting eqn. (6.3) in eqn.

(6.2) and neglecting the ends, our cost becomes:

Lpara = T

(

N
∑

k=1

‖F (xk)− yk‖2 +
N
∑

j=1

∥

∥xj −F−1 (yj)
∥

∥

2

)

, (6.5)

which is a symmetric generalization of the empirical loss minimized in the training process of the classical

GMM-based conversion (see Sec. 3.2.2, eqn. (3.22)), up to a constant T .
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6.1.2 Iterative Minimization

In this section we present an iterative approach, for reducing the joint cost defined in eqn. (6.4), similar to

the iterative process of INCA [1]. Applying standard minimization techniques such as gradient descent is

rather problematic considering the non trivial dependency of the joint cost with respect to the matching

functions. Alternating minimization is a well known iterative technique for minimizing cost functions

depending on more than one variables [61]. Applying this method for minimizing the joint cost, reduces

eqn. (6.4) to two minimization problems solved iteratively for t = 1, 2, ...:

{pt, qt} = argmin
{p,q}

L (p, q,Ft−1) (6.6)

Ft = argmin
F

L (pt, qt,F) , (6.7)

Lemma 6.1. The series L (pt, qt,Ft) converges to a (local) minimum.

Proof. According to eqns. (6.6) and (6.7), the solutions {Ft, pt, qt} sustain:

Lt , L (pt, qt,Ft) ≤ L (pt, qt,Ft−1)

≤ L (pt−1, qt−1,Ft−1) , Lt−1. (6.8)

The series {Lt} is non-increasing and obviously bounded by zero, therefore converges to a (local) mini-

mum.

Convergence to a global minimum, or even existence of a single minimum is not guarantied since the

original minimization problem stated in eqn. (6.2) is not convex.

Given a conversion function, the joint cost is separable in p and q, leading to a two-step solution of

eqn. (6.6):

pt = argmin
p

Ñx
∑

k=1

∥

∥Ft−1 (Xk)−Yp(k)

∥

∥

2

qt = argmin
q

Ñy
∑

j=1

∥

∥Xq(j) −F−1
t−1 (Yj)

∥

∥

2
(6.9)

We apply a nearest-neighbor search, similar to the one applied for INCA, but instead of using single

spectral feature vectors, we use the context vectors defined in eqn. (6.1):

pt (k) = argmin
j

‖Ft−1 (Xk)−Yj‖2

qt (j) = argmin
k

∥

∥Xk −F−1
t−1 (Yj)

∥

∥

2
. (6.10)

According to our preliminary experiments, an optimal exhaustive search for the exact solutions of (6.9)

yields a negligible improvement compared to a nearest-neighbor search.
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Substituting eqn. (6.3) into eqn. (6.7) and neglecting the ends, the minimized term takes a similar

form to the parallel symmetrical cost presented in eqn. (6.5):

Ft = argmin
F







Ñx
∑

k=1

∥

∥F (xk)− ypt(k)

∥

∥

2
+

+

Ñy
∑

j=1

∥

∥xqt(j) −F−1 (yj)
∥

∥

2







. (6.11)

Consequently, any parallel conversion method minimizing this squared error can be used as an auxil-

iary function, using the parallelized training set -
{(

xk,ypt(k)

)

,
(

xqt(j),yj

)}

. The classical GMM-based

conversion, for example, can fit this description since its parameters are evaluated using Least Squares

minimization of the MSE between the converted and target vectors as described in Sec. 3.2.2.

The TC-INCA algorithm, is summarized in Table 6.1. We note that if no context frames are consid-

Table 6.1: Joint Cost Optimization Using TC-INCA.

Input: a non-parallel training set of context

vectors {X,Y }

Initialization: set the initial conversion func-

tion to identity: F0 (X) = X

Main Iteration: for t = 1, 2... perform the fol-

lowing steps:

1. Evaluate the matching functions, pt, qt, using

eqn. (6.10).

2. Train an auxiliary conversion function using

eqn. (6.11).

3. Evaluate the cost function L (pt, qt,Ft) using

eqn. (6.2) and check convergence.

Output: conversion and matching functions

pt, qt,Ft.

ered, meaning T = 0, TC-INCA essentially becomes identical to INCA.
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6.2 Experimental Results

6.2.1 Experiment Setup

Three U.S. English speakers (two females and one male) taken from the CMU ARCTIC database [46]

were used for our objective and subjective evaluations in two directions - female to female (F2F) and

female to male (F2M). Analysis, synthesis and extraction of 24 MFCCs were performed using an available

toolkit [57], based on the Harmonic Plus Noise Model (HNM) [62, 63].

We used both parallel and non-parallel sets for training, consisting of (5, 10, 50, 100) sentences, and

an additional set of 50 parallel sentences for testing, all sampled at 16kHz. The pitch was converted

using a simple linear function using the mean and the standard deviation values of the source and target

speakers.

6.2.2 Objective Evaluations

We used two objective criteria to evaluate the performance of the trained matching and conversion

functions: phonetic accuracy, measured by the percentage of training vectors having the same phonetic

label as their matches (as suggested by [60]), and Normalized Distance (ND), as defined in eqn. (3.7)

We used the classical GMM method for training the auxiliary and final conversion functions using

full covariance matrices and (1, 2, 3, 4) mixtures for both methods. TC-INCA was trained using several

context lengths, T = (2, 4, 8, 10, 14, 18, 24, 26). The number of mixtures (for both methods) and context

length (for TC-INCA) were tuned for F2F and M2F and for every training set size, so that maximal

(training) accuracy would be attained. Generally, the best accuracy was obtained using longer context

T ∈ [14, 24] for the parallel sets, than for the non-parallel sets T ∈ [2, 10]. Also, as more training sentences

were used, more mixtures were preferred.

Figs. 6.2 and 6.3 present the accuracy values attained by TC-INCA compared to INCA, averaged over

both examined directions (F2F and M2F) using parallel and non parallel sets, respectively. TC-INCA

leads to significantly higher phonetic accuracy, using either parallel or non-parallel training sets. The

ND values achieved by both methods are very similar (±1%), in the range of 0.7-0.75 for the parallel sets

and 0.75-0.8 for the non-parallel sets. Nevertheless, the improvement in accuracy has a great influence

on the perceived quality and similarity to the target, as presented in the next section.

6.2.3 Subjective Evaluations

We carried out two preference tests comparing TC-INCA to INCA: AB quality tests and ABX individ-

uality tests, as described in Sec. 3.1.4 Following Helander et al. [64], we allowed the listeners to answer

”equal”, if they felt they could not decide between the two options. In each test (quality and individu-
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Figure 6.2: Maximal accuracy [%] (39 phonemes) vs. training set size obtained by TC-

INCA and INCA using parallel training sets.

5 10 50 100
0

2

4

6

8

10

12

14

# of Training Sentences

P
ho

ne
tic

 A
cc

ur
ac

y 
[%

]

 

 

INCA
TC−INCA

Figure 6.3: Maximal accuracy [%] (39 phonemes) vs. training set size obtained by TC-

INCA and INCA using Non-parallel training sets.

ality), 10 different randomly ordered (pairs or triplets, correspondingly) were examined by 10 listeners,

all 20-30 years old non-experts. For these evaluations we used non-parallel training sets consisting of

5 sentences. Table 6.2 presents the overall results, averaged over both F2F and F2M conversions. The

advantage of TC-INCA is well demonstrated; most listeners marked it as having a higher quality and as

more similar to the target speaker, than INCA.



6.3. DISCUSSION 57

Table 6.2: Subjective Preference Evaluations.

INCA [%] TC-INCA [%] Equal [%]

Quality 20± 2 73± 2 7± 1

Individuality 33± 2 54± 2 13± 1

6.3 Discussion

In this chapter we presented a non-parallel training process as a minimization problem of a joint cost,

considering both temporal-context alignment and conversion functions. We proposed TC-INCA (a gen-

eralization of INCA) for iteratively performing this minimization. We showed that TC-INCA reduces

the joint cost (and therefore INCA too) and prove its convergence. Objectively, TC-INCA leads to a

considerable increase of alignment accuracy and to similar spectral distance values, compared to INCA.

Subjective evaluations demonstrate the great influence of accuracy improvement: TC-INCA was rated

higher, both in terms of quality and similarity to the target speaker.
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Chapter 7

Keyword Spotting

7.1 Background

Keyword Spotting (KWS) is a task of detecting whether a keyword was said in a given speech signal. It

is used, for example, in mobile applications, smart homes and security purposes. If the query is given in

the form of text, KWS can be viewed as a sub-task of automatic speech recognition (ASR). Some ASR

systems aim to recognize whole word terms, so they use Large Vocabulary Continuous Speech Recognition

(LVCSR) to generate word level transcription of the given speech signal [65]. These systems require an

enormous amount of annotated data and detailed language models, which are not always available for

under-documented languages or speech of children [66], for example. Many KWS systems addressing this

task are based on phonetic recognizers used for ASR, thus eliminating the need for a detailed word-based

language model. Such systems use Hidden Markov Models (HMMs) to statistically model sub-word

units such as phonetic n-grams or multigrams [67–70]. Still, these systems require a great amount of

phonetically labeled recordings.

When the query is given as a speech signal, Query-by-Example (QBE) approaches are applied. These

methods usually do not use language models so they require much smaller training sets and considerably

less annotated data, if any. Some QBE approaches are based on lattice representation of sub-word units,

similarly to text-based systems. These supervised methods train the lattices using phonetically labelled

recordings [8, 9]. Unsupervised QBE methods do not require any kind of labelled resource; they use a

template representation of the searched keyword and compare it against a similar representation of a

given speech utterance. Several methods based on a posterior representation of speech data have been

proposed using: a phonetic division where the posterior values are obtained using the lattice output of

a phonetic recognizer [8], the output of a Multi Layer perceptron (MLP) [10], statistical modeling of the

speech signal using Gaussian Mixture Model (GMM) [11], or alternatively, using HMM [12]. The natural

rate of speech varies with speakers and context so the posterior representation of the template and test

signals do not match in length. Therefore most of these methods use Dynamic Time Warping (DTW).
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An efficient implementation for DTW have been proposed [71], still using DTW impose a challenging

computational load.

The main criticism against KWS methods presented above is that they use statistical models or pho-

netic segmentation for classification, so they are not directly optimized for minimizing keyword detection

rate. In recent years, several keyword spotting methods have been proposed based on a discriminative

classification. Discriminative methods use machine learning techniques for training optimal (in terms of

detection rate) binary classifiers between speech signals including keywords and not including it. Keshet

et al. proposed new feature representation for speech utterances based on the estimated duration of

phonemes and transition times [13]. A linear classifier is trained using positive sentences (including the

keyword) and negative sentences (not including it). This method is trained using phonetic segmented

data at a medium size such as TIMIT, which consists of about 4 hours of recorded speech.

In some cases, when dealing with under-documented speech, such as children’s voice or under docu-

mented languages, even a medium size data-set is unavailable. In some other limited-data applications,

such as in a mobile environment, only few positive examples may be available for training and com-

putational load is also limited. Two methods dealing with small training sets have been proposed.

These methods use features extracted from the time-frequency representation of speech signals: sprectro-

temporal patches [14] or patterns of high-energy tracks [15]. Both methods use isolated utterances of the

keyword (as opposed to using positive sentences - including the keyword - as used by Keshet et al. [13])

and negative utterances including other words to train a binary classifier. Given a test sentence, a se-

quence of feature vectors is extracted using a sliding window. A binary classifier fed with this sequence

produces a response curve, and a final decision regarding the existence of the keyword is taken by applying

a threshold to the response vector.

In this chapter we present a novel discriminative method for unsupervised keyword spotting in a

limited-data environment. Our method is based on two classifiers: an isolated word classifier, and a

sentence classifier. We propose here a new representation for isolated words and for sentences, presented

in Ch. 7.2.1 and Ch. 7.2.2, respectively.

In this work we specifically deal with limited-data setups such as mobile applications, where users

are not willing to record themselves more then a few times, resulting in a very small positive data-set

available for training. In such a setup where the positive training set is much smaller than the negative

one, the training process may result in a classifier which is biased towards the negative class. To avoid this

situation, while still exploiting the diversity of the negative training set, we use bootstrap aggregating,

also referred to as bagging predictors [17], for training the isolated word classifier, as well as for training

the global classifier for sentences, as described in 7.2.3. In Ch. 7.3 we present experimental results

demonstrating the advantages of our approach compared to a HMM-based KWS benchmark system.
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7.2 Proposed Approach

In this section we propose a new discriminative method for keyword spotting. This method is based on a

histogram representation for classification of isolated words as described in Sec. 7.2.1, followed by global

features representation for classification of sentences, as described in Sec. 7.2.2. In Sec. 7.2.3 we describe

how bagging predictors are utilized for training robust and unbiased word and sentence classifiers. An

overall description of our proposed inference procedure, based on the above, is presented in Sec. 7.2.4.

7.2.1 Histogram Representation For Isolated Words

LetM be a Gaussian Mixture Model (GMM), trained using spectral features extracted from all available

training data:

M = {λm, µm,Σm;m = 1, ...,M} , (7.1)

where λm ∈ R, µm ∈ RP and Σm ∈ RP×P are the weight, mean vector and covariance matrix of the m-th

component (out of M components in the mixture), respectively, and P is the dimension of the spectral

feature vectors. GMM is an unsupervised model, not requiring any labelling or other metadata, so even

in cases of limited data resources such as under-documented languages, a sufficiently large amount of

training data can be easily collected.

Given a sequence of Tw spectral feature vectors extracted from a specific utterance of a single word

- (x1, ...,xTw
) ∈ RP×Tw , we obtain its posteriograms, z1:Tw

= (z1, ..., zTw
) ∈ RM×Tw , with respect to the

GMM:

zt (m) =
λm exp{−1/2 (xt − µm)

⊤
Σm−1 (xt − µm)}

∑M
n=1 λ

n exp{−1/2 (xt − µn)
⊤
Σn−1 (xt − µn)}

t = 1, ..., Tw

m = 1, ...,M
(7.2)

where zt (m) is the m-th element of zt. For each vector zt, t = 1, ..., Tw, we set the maximal element to 1

and the rest to zero to obtain an indicator vector ut ∈ RM such that:

ut (m) =















1 m = argmax
n=1,..,M

zt (n)

0 otherwise

(7.3)

This means that ut is an M × 1 indicator of the specific Gaussian component in M that has the

highest probability, for a given xt. We obtain the word histogram representation, v ∈ RM , by averaging

the indicator vectors, u1:Tw
, over t:

v =
1

Tw

Tw
∑

t=1

ut, (7.4)

Therefore each element of v counts the fraction of times a certain Gaussian component led to the

highest probability. Note that regardless of the value of Tw, the proposed histogram representation

always results in an M -dimensional vector (depending on the size of the mixture), thus enabling training

of discriminative classification methods with fixed input size such as Support Vector Machine (SVM).
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Given a positive set of histograms extracted from utterances of the keyword and a negative set extracted

from utterances of non keywords, we train a binary classifier for isolated words. In the following section

we use this classifier to obtain a response curve of a given sentence, which is further used for extracting

a global feature vector representing the entire sentence.

7.2.2 Global Feature Representation Of Sentences

Given a sequence of spectral features related to a certain sentence, (x1, ...,xTs
), (positive or negative)

we apply a sliding window of length αT̄w, with a βT̄w hop, where T̄w is the mean length of the keyword,

evaluated using the keyword utterances used for training the word classifier, and α > 1 and β < 1. This

way, in case of a positive sentence, at least most the of spectral feature vectors related to the keyword

would fit into one of the window hops. For each window, we extract a histogram with respect to the

GMM,M. The sequence of histograms,v1:τs, represents the sentence, where its length τs depends on the

length of the spectral feature sequence, T̄s, extracted from the sentence, the mean length of the keyword,

T̄w, and the sliding hop size. We apply the word classifier trained as described above in Sec. 7.2.1, to

the sequence of histograms. Discriminative binary classifiers mostly produce a score value on which a

threshold operation is applied to produce the classified label. In case of a linear classifier, for example,

this score would be the distance of of the test vector from the classifying hyperplane. Inspired by previous

work, [14, 15] we use these score values to form a response curve, S1:τs = (S1, ..., Sτs), where St is the

score produced by the word classifier given the t-th histogram. Therefore a positive sentence is expected

to yield a response curve having a distinct maximal value corresponding to the location of the keyword

in the spoken sentence, while a negative sentence is expected to lead to random-like response. Figures

7.1(a) and 7.1(b) present the waveform, the spectrogram and the response curve, extracted as described

above for the sentences “help me unroll the new rug” and “you didn’t arrive too late”, correspondingly,

where the searched keyword is “unroll”. Note that the response curve related to the positive sentence,

Fig. 7.1(a), has a distinct-positive valued maximum point, as opposed to the response curve related to

the negative sentence, Fig. 7.1(b), which is quite random and mostly below zero.

A simple approach for classifying a response curve is to apply a threshold, as performed elsewhere

[14, 15]. In this work we generalize this operation by training a binary classifier based on global features

extracted from the response curve. Define σ as the standard deviation of the response curve:

σ =

√

√

√

√

1

τs

τs
∑

t=1

(

St −
1

τs

τs
∑

t′=1

St′

)2

(7.5)

The global feature vector is φ =
(

Mx,mn, a,DN, δ, δ2
)

, where:

• Normalized maximal value - Mx = max{S1:τs}/σ

• Normalized minimal value - mn = min{S1:τs}/σ

• Normalized mean value - a =
∑τs

t=1{St}/σ
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(a)

(b)

Figure 7.1: Detection of the keyword “unroll” from the sentence: (a) “help me unroll

the new rug”; (b) “you didn’t arrive too late”. Top - waveform; middle - spectrogram;

bottom - response curve (solid blue) and zero response (dashed black).

• Normalized dynamic range - DN = Mx −mn

• First Derivative - δ =
∑τs

t=2 dt/σ, where dt = St − St−1

• Second Derivative - δ2 =
∑τs

t=3 (dt − dt−1) /σ.

Given response curves related to positive and negative training sentences, we obtain their global

feature vectors and train a sentence classifier.
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7.2.3 Bagging Predictors

In practice, labeled samples are harder to acquire than unlabeled ones. Therefore, we address the case

where the amount of positive examples N+ is very small, compared to the amount of negative examples

N−. It is preferable to use all available labelled data when training a discriminative classifier, to increase

robustness. However, an extremely unbalanced training set will lead to a biased classifier, classifying

almost everything as negative. To avoid this bias, and still, utilize the variety of the negative set we use

bagging predictors [17]. When training an isolated word classifier we randomly select negative examples

from the negative set, at the same amount as the number of available positive examples, N+. We repeat

this sampling to obtain L1 negative subsets. Each negative subset along with the positive set is used to

train a binary classifier, so that eventually we have L1 isolated word classifiers. We use the same strategy

for training the sentence classifiers by randomly selecting L2 negative sets, each containing negative

sentences at the same amount as the size of the positive set. At the end of the training process, we have

L1 isolated word classifiers and L2 sentence classifiers.

7.2.4 Inference

Given a sequence of spectral feature vectors, (x1, ...,xTs
), related to a test sentence, inference is made as

depicted in Fig. 7.2: we obtain the sequence of histograms representing the sentence, v1:τs , with respect

to the GMM, M, using a sliding window according to eqns. (7.2)-(7.4). L1 isolated word classifiers are

applied producing L1 response curves Sl
1:τs , l = 1, ..., L1. The global feature vectors, φ

l, l = 1, ..., L1, are

extracted from each response curve as described above. L2 sentence classifiers are applied to the global

feature vectors, producing L1 · L2 predictions. A final decision is made by taking a majority decision.

Figure 7.2: Inference using the proposed approach for keyword spotting.
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7.3 Experimental Results

The proposed keyword spotting system comprises two classifiers: an isolated word classifier - applied to

sequences of histograms, and a sentence classifier - applied to global features. To demonstrate the advan-

tages of our proposed approach we begin with an examination of the proposed isolated word classifier, in

comparison with a classifier based on GMM-HMM. We proceed with a keyword spotting task, comparing

the proposed system to an unsupervised HMM-based keyword spotter, using recordings of adults. We

conclude by presenting the performance of the examined systems tested on clean and noisy speech signals

of children. We used recording of children taken from CSLU [72], and adults’ recordings taken from

TIMIT, [73]. Noise signals were added to TIMIT and to CSLU datasets using a “Filtering and Adding

Noise Tool” (Fant) [74].

Mel Frequency Cepstral Coefficients (MFCC’s) along with their first and second derivatives were

extracted from all waveforms every 10msecs using Kaldi - an open source software [75]. We used LIBSVM

- an available toolkit [76] - for training our proposed classifiers for isolated word and sentence classification.

We tested several kernels: the standard linear and RBF kernels, and a Chi-Square kerenl defined as:

K (xi,xj) = exp

(

−γ
∑

n

(xi (n)− xj (n))
2

xi (n) + xj (n)

)

, (7.6)

where γ is a parameter. In all our experiments, the Chi-Square kernel of eqn. (7.6), led to the best

results for isolated word classification and a linear kernel was found best for sentence classification, so

all the results presented here were obtained accordingly. All HMM-based systems presented here were

trained using an available toolkit1, where a wide range of values was explored for the amount of emitting

states mixture components (6–25 and 1–8, respectively). Final values were set separately for each of the

examined setups by using cross-validation.

7.3.1 Isolated Word Classification

In this section we present the performance of the proposed isolated word classifier, used in our overall

keyword spotting system. In a keyword spotting task, this classifier is trained for a binary classification

task between histograms related to the keyword or to non-keyword speech. In this section we demon-

strate its performance in a more challenging task - a multi-class classification task - from among a given

dictionary. Since no transcription was used for training (except for the label of each word, signifying if it

is a keyword or not), we used an unsupervised HMM classifier as a benchmark, where all utterances of a

specific word are used to train an HMM. Inference is made according to the HMM leading to the highest

likelihood score (using Viterbi decoding).

For training and evaluation, we used recordings of children saying isolated words, taken from the

CSLU database. We examined three different vocabularies, each consisting 10 words, defining three

1http://www.cs.ubc.ca/ murphyk/Software/HMM/hmm.html



66 CHAPTER 7. KEYWORD SPOTTING

different classification tasks2. All parameters (number of states and components for the HMM and SVM-

constant in our approach) were set using a 10-fold cross validation, where in each fold, 8/10 of the data set

was used for training, 1/10 for setting the parameters and 1/10 for testing. The final values for number

of emitting states and mixture components were set between 6–12 and 1–2, respectively.

The spectral features of speech signals of children varies with age: young kids (6-10 years old)

have higher variability in terms of the shape and location of formants. Towards their teens, the speech

characteristics become more stable and more similar to adults’ [77]. To examine the robustness of our

system and the HMM classifier to this variability, we divided the data into three age groups: “low” -

kindergarten–fifth grade, “high” - sixth grade–tenth grade, and “all” - kindergarten–tenth grade. We

trained three classifiers using these age groups and tested each one on its corresponding group and on

the other two.

The results presented in Table 7.1 are the accuracy rates, mean and STD values, achieved by each

method, averaged over the three tasks, including all combinations of training and testing sets among age

groups. In general, higher accuracy is achieved when training and testing are performed using the same

age group, where the “low” age group was harder for both methods due to the high variability in speech

signals of young children. Nevertheless, the proposed method leads to higher accuracy rates than HMM

in all cases: 4-6% higher for training and testing on the same age group and 3-11% higher for cross-ages

training and testing. Also note that the STD of the HMM classifier is between 1.3 and 3.4 for the “low”

and “high” age groups while the STD of the proposed system is lower than 1 in both cases. For the “all”

age group both methods lead to similar and low STD values. This indicates that the proposed classifier

is more robust to training set size and variability than the HMM classifier, as it leads to more consistent

accuracy rates.

7.3.2 Keyword Spotting - Speech Of Adults (TIMIT)

The TIMIT dataset was used to examine the performance of our proposed system for speech of adults,

in a keyword spotting task. We followed the protocol presented by Ezzat and Poggio [14], and later by

Barnwal et al. [15], and selected four frequent words in TIMIT as keywords: “greasy”, “dark”, “wash”,

and “oily”. We used the standard division of TIMIT for training and testing (73% and 27%, respectively).

To demonstrate the influence of the amount of positive examples, we trained the examined systems using

several sets, consisting of 5, 10, 50, 100 and 200 positive examples, where 20% of the training set was

taken as a development set, i.e., used for setting the parameters of the examined methods. In all the

experiments, a single negative set was used, consisting of 100 sentences that do not include any of the

2The three vocabularies used for the isolated word classification experiments are: 1) back-

ground, bathe, behind, beyond, bigfoot, biology, birthmark, boomerang, breath, bronco. 2) earth-

quake,easier,eight, employees, endure, engrave, ethnic, explosion, faithful, fancy. 3) gumshoe, handshake,

hardship, hawthorne, herbalist, homemaking, hoof, hopeful, hourly, humor.
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Table 7.1: Isolated word classification of speech of children (CSLU database): classification

accuracy rates - mean and STD values, averaged over three different 10-word vocabularies.

Test Data

Train. Data “Low” [%] “High” [%] “All” [%]

“Low”
HMM 89.0± 1.3 84.7 ± 2.9 86.4± 1.3

proposed 94.6 ± 0.5 91.1± 0.2 93.2± 0.3

“High”
HMM 75.1± 2.7 91.0 ± 3.4 79.2± 4.2

proposed 86.1± 0.8 97.2± 0.6 90.5± 0.7

“All”
HMM 91.4± 0.8 94.7± 0.4 92.7± 0.5

proposed 95.3± 1.0 97.4± 0.3 96.1± 0.5

keywords.

Benchmark System

We examined two configurations for HMM keyword spotters to be used as our benchmark:

• Ezzat et al. [14] - an isolated word HMM-based classifier, trained using isolated utterances of

the keyword. Inference is performed by applying a threshold onto a response curve comprised of

log-likelihood values, obtained using a sliding window (1.2T̄w long window with a 0.2T̄w hop).

• Keshet et al. [13] - training two HMMs: 1) a garbage+keyword model trained using the positive

sentences 2) a garbage model trained using the negative sentences. Inference is performed by

comparing the log-likelihood of one HMM to the log-likelihood of the other HMM.

Our system does not use phonetic transcription as done by Keshet et al. [13]. Hence, to allow a fair

comparison between this methods and ours, we used unsupervised training for both HMM-based keyword

spotters. As mentioned above, a wide range of emitting states and mixture components was examined,

6–25 and 1–8 respectively, for each HMM configuration, training-set size and fold. In general, as more

positive examples are available for training, the tuning process resulted in selecting models trained with

more emitting states and more mixture components.

Fig. 7.3 presents the Receiver Operating Characteristic (ROC) curves attained by the two HMM

configurations averaged over detection of the words “greasy”, “dark”, “wash”, and “oily” using 5, 10 and

50 positive examples. According to our experiments, the garbage+keyword approach leads to significantly

higher detection rates than the sliding window approach. Therefore we used the garbage+keyword HMM

as a benchmark. For simplicity, from now on we will refer to the garbage+keyword HMM approach as

HMM.



68 CHAPTER 7. KEYWORD SPOTTING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e 

 

 

HMM − Sliding Window
HMM − Sentence  Modeling

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e 

 

 

HMM − Sliding Window
HMM − Sentence  Modeling

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e 

 

 

HMM − Sliding Window
HMM − Sentence  Modeling

(c)

Figure 7.3: ROC curve of benchmark systems averaged over detection of the words

“greasy”, “dark”, “wash”, and “oily”, trained: HMM with sliding window - blue square;

HMM with garbage+keyword models - red circle, using: (a) - 5 training sentences, (b) -

10 training sentences and (c) - 50 training sentences.

Proposed System

Fig. 7.4 presents the Area Under the ROC Curve (AUC), averaged over detection of the words “greasy”,

“dark”, “wash”, and “oily”, using 5–50 positive examples, obtained by the proposed system. In this

experiment, several values of bagging predictors were used for word and sentence classification: L1 =

L2 = L ∈ [1, 5, 11, 51, 75]. As expected, bagging predictors are mostly useful when the training set is

highly uneven, in our case, when just 5 or 10 positive examples are available. For 50 positive examples,

comparable results are achieved, regardless of the value of L.
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Figure 7.4: AUC averaged over detection of four keywords (“greasy”, “dark”, “wash”,

and “oily”), obtained by the proposed approach using 5–50 positive examples, and L1 =

L2 = L ∈ [1, 5, 11, 51, 75].

Fig. 7.5 presents the averaged AUC values obtained by the proposed system, using 10 positive
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examples, for all combinations of L1, L2 ∈ [1, 5, 11, 51, 75]. In general, the AUC increases with L1 and

L2. As mentioned above, the final decision regarding a sentence is made through a majority decision of

L1 · L2 predictions, so having more predictions raises the detection rate. Still, from this experiment it is

clear that the amount of bagging predictors used for word classification, L1, has a greater influence on the

final outcome, in terms of AUC, than the amount of bagging predictors used for sentence classification,

L2. For a large L1, in this case (greater than 51) it is sufficient, and also preferable to take L2 = 5.

We used the development set to tune the amount of bagging predictors and set them to be L1 = 51 and

L2 = 5, in all further experiments in this section.
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Figure 7.5: AUC averaged over detection of four keywords (”greasy”, “dark”, “wash”,

and “oily”) obtained by the proposed approach using 10 positive examples and L1, L2 ∈
[1, 5, 11, 51, 75].

Table 7.2 presents the overall AUC results obtained by the HMM benchmark system and the proposed

approach for detection of the four keywords “greasy”, “dark”, “wash”, and “oily” and also the mean value

for all four words, using 5–50 sentences. The mean and STD values presented in this table were obtained

by averaging over 10 repetitions of each experiment, using randomly selected sub-sets for training, taken

from the overall training set of TIMIT. Our approach outperforms, on average, the benchmark for 5–50

positive training examples. For 50 examples, HMM is slightly better for detection of the word “water”,

but both methods reach almost perfect detection - AUC ≈ 1. The results for 100–200 positive examples,

are not presented in this table, as both methods are comparable, leading to almost perfect detection.

Barnwal et al. [15] also followed the same experiment protocol suggesting a discriminative approach based

on spectro-temporal features. While their system outperforms the patches-based discriminative system

proposed by Ezzat et al. [14], our proposed approach exceeds both.
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Table 7.2: Mean and STD of AUC results obtained by the HMM-based KWS and proposed

system applied to speech of adults (TIMIT), averaged over 10 randomly selected training

sets.

# Positive Examples

Keyword Method 5 10 50

“greasy”
HMM 0.6±0.1 0.8 ±0.1 0.99 ± 0.01

Proposed 0.94 ± 0.08 0.99 ± 0.004 0.995 ± 0.003

“dark”
HMM 0.6±0.1 0.8±0.1 0.96 ± 0.02

Proposed 0.99 ±0.005 0.999 ± 0.001 0.997 ± 0.001

“wash”
HMM 0.6 ±0.1 0.8 ±0.1 0.99 ± 0.01

Proposed 0.99 ± 0.001 0.99 ±0.002 0.995 ± 0.001

“water”
HMM 0.6 ±0.1 0.85 ±0.05 0.98 ± 0.01

Proposed 0.9 ± 0.04 0.94 ±0.02 0.96±0.01

Mean
HMM 0.6±0.1 0.8 ±0.1 0.98 ± 0.02

Proposed 0.96 ±0.04 0.98±0.02 0.99 ± 0.01

7.3.3 Keyword Spotting - Noisy Speech Signals Of Adults

We also compared the performance of the proposed approach and the benchmark system under noisy

conditions. In this experiment, we used the same models trained by the clean set (Sec. 7.3.2), and applied

them to noisy versions of the test set. Figs. 7.6 and 7.7 present the AUC (averaged over detection of the

four keywords) obtained by the HMM benchmark and the proposed system when tested for two types of

noise added to the speech signals. For 5–50 positive examples (Figs. 7.6(a)-7.6(c) and Figs. 7.7(a)-7.7(c)),

mean STD values were obtained by averaging over detection of four keywords and over 10 repetitions.

For 100–200 positive examples (Figs. 7.6(d), 7.6(e) and Figs. 7.7(d), 7.7(e)), mean STD values were

obtained by averaging over detection of four keywords, but without repetitions. The two noise types were

“babble” and “car”, at several SNR values, ranging from −5dB to 20dB. For comparison, the performance

for testing on clean speech (presented above in the last row of Table 7.2) are are also presented in these

figures. In general, the proposed system has a distinct advantage in extreme setups where very few

positive examples are available for training and/or low SNR values at testing. Specifically, for 5–10

positive examples, the proposed system outperforms the HMM system at all SNR values and for both

noise types. When training with 50 positive examples, the two systems are comparable for SNR ≥ 15dB.

However, for SNR < 15dB, the proposed system leads to higher AUC values than the benchmark system.

The same behavior is observed for 100-200 positive examples, where the two systems are comparable for
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SNR ≥ 5dB, but the proposed system is better for SNR < 5dB.
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Figure 7.6: AUC averaged over detection of four keywords (“greasy”, “dark”, “wash”, and

“oily”) taken from speech of adults (TIMIT), tested on clean and noisy speech (babble

noise) by: HMM - black square; proposed approach - blue circle, using: (a) - 5 training

sentences, (b) - 10 training sentences, (c) - 50 training sentences, (d) - 100 training

sentences, and (e) - 200 training sentences. For 5–50 positive examples ((a)-(c)), mean

and STD values were obtained by averaging 10 repetitions of randomly selected training

sets.

7.3.4 Keyword Spotting - Speech Of Children (CSLU)

We examined our proposed approach also for speech of children taken from the CSLU dataset. We used

three keywords which are most frequent in the dataset: “one”, “two” and “unroll”. Table. 7.3 presents

the AUC (mean and STD) obtained by the HMM benchmark and the proposed systems for all age groups

(kindergarten–tenth grade). For 5–50 positive examples, the AUC were averaged over detection of the

three keywords and over 10 repetitions of each experiment, using randomly selected training sets. For

100–200 positive examples, the AUC were also averaged over detection of the three words, but without

repetitions. The proposed method has a distinct advantage for 5-10 positive training examples, whereas

for 50 and 200 positive examples, the benchmark system is better. For 100 positive examples, both

methods are comparable.
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Figure 7.7: AUC averaged over detection of four keywords (“greasy”, “dark”, “wash”, and

“oily”) taken from speech of adults (TIMIT), tested on clean and noisy speech (car noise)

by: HMM - black square; proposed approach - blue circle, using: (a) - 5 training sentences,

(b) - 10 training sentences (c) - 50 training sentences, (d) - 100 training sentences, and

(e) - 200 training sentences. For 5–50 positive examples ((a)-(c)), mean and STD values

were obtained by averaging 10 repetitions of randomly selected training sets.

7.3.5 Keyword Spotting - Noisy Speech Signals Of Children

We tested the performance of the proposed approach and the benchmark system on noisy speech signals

of children. In this experiment we used unified training and test sets consisting of all age groups together.

We applied the same 10-fold cross validation as described above. At each fold, 8/10 of the set were used

for training, 1/10 of the set for parameters setting (as before for clean speech), and 1/10 of the set, used

for testing, was noisy. Figs. 7.8 and 7.9 present the AUC (averaged over detection of the three keywords)

obtained by the HMM benchmark and the proposed system for testing on noisy speech signals. Similarly

to Sec. 7.3.3, we examined the performance for testing two noise types - ”babble” and ”car”, at several

SNR values, ranging from −5dB to 20dB. For comparison, the performance for testing on clean speech

(presented in Table. 7.3) is also presented in these figures. When testing on clean signals, our system

leads to higher AUC values when 10 or less positive examples are available for training, whereas for 50

or more, the HMM system is comparable or better than the proposed system. When testing on noisy

signals, our proposed system is more robust: it outperforms the HMM-benchmark system at all SNR



7.3. EXPERIMENTAL RESULTS 73

Table 7.3: Mean and STD of AUC results obtained by the HMM-based KWS and proposed

system applied to speech of children (CSLU). Averaged over detection of three words:

“one”, “two” and “unroll”. For 5–50 positive examples, also averaged over 10 repetitions

of the experiment, using randomly selected training sets.

# Positive Examples

Method 5 10 50 100 200

Mean AUC
HMM 0.5±0.1 0.6±0.1 0.9±0.1 0.9±0.1 0.97±0.03
Proposed 0.6±0.05 0.7±0.05 0.8±0.1 0.9±0.1 0.9±0.1

values and for both noise types for 5–10 positive examples. For 50 positive examples or more, the two

systems are comparable for high SNR values, still, for SNR ≤10dB, the proposed system is better.
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Figure 7.8: AUC averaged over detection of three keywords (“one”, “two”, and “unroll”)

taken from the “All” age group (kindergarten to tenth grade) of CSLU, tested on clean and

noisy speech (babble noise) by: HMM - black square; proposed approach - blue circle,

using: (a) - 5 training sentences, (b) - 10 training sentences (c) - 50 training sentences,

(d) - 100 training sentences, and (e) - 200 training sentences. For 5–50 positive examples

((a)-(c)), mean and STD values were obtained by averaging 10 repetitions of randomly

selected training sets.
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Figure 7.9: AUC averaged over detection of three keywords (“one”, “two”, and “unroll”)

taken from “All” age group (kindergarten to tenth grade) of CSLU, tested on clean and

noisy speech (car noise) by: HMM - black square; proposed approach - blue circle, using:

(a) - 5 training sentences, (b) - 10 training sentences (c) - 50 training sentences, (d) - 100

training sentences, and (e) - 200 training sentences. For 5–50 positive examples ((a)-(c)),

mean and STD values were obtained by averaging 10 repetitions of randomly selected

training sets.

7.4 Chapter Summary

In this chapter we presented a novel approach for keyword spotting, specifically adequate for limited-

data applications. It is based on fixed-length representations for words and for sentences, which enable

training of discriminative classification methods such as Support Vector Machine (SVM). We avoided

bias in training by using bootstrap aggregating, also referred to as bagging predictors, where a series

of classifiers are trained using randomly sampled subsets of the larger training set. We demonstrated

the advantages of our proposed approach, compared to an HMM-bases KWS benchmark system through

a series of experiments using speech singles of both adults and children in several challenging setups,

considering training-set size, and background noises - car and babble.



Chapter 8

Conclusion

8.1 Summary of Main Contributions

In this work we dealt with two main tasks of speech processing in low resource environments: a voice

conversion task, and a keyword spotting task. Common methods for both tasks use relatively large data

sets for training, which are not always available in case of limited resources such as mobile applications,

under-documented languages or speech of children.

We addressed the following elements of the voice conversion task:

• Speech quality - we presented two methods for enhancing the global variance of converted signals

and, as a result, improving their perceived quality and individuality: 1) training of a GMM-based

conversion with a GV constraint; 2) a modular block for GV enhancement, applied as a post

processing bock.

• Low resource applications - we proposed a new method for voice conversion, called Grid-Based

conversion, which is suitable for low resource applications. This approach is based on sequential

Bayesian tracking, by which the conversion process is expressed as a sequential estimation problem

of tracking the target spectrum, based on the observed source spectrum. Combined with our post

processing block for GV enhancement, the overall system is easily and successfully trained using

very small data sets. In our subjective evaluations, comparing the overall enhanced GB system

to the enhanced GMM conversion method and to CGMM, the enhanced GB system was marked

as best, in terms of individuality, and as comparable to the enhanced GMM method, in terms of

quality.

• Non-parallel training - for this setup, where the training set does not consist of the source and

target speakers saying the same text, we presented a generalization of an existing method known as

INCA. For determining the source-target matching, we proposed using temporal context vectors,

rather than single feature vectors that are used in INCA. Furthermore, we formulated the training
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process as a minimization problem of a joint cost of the source-target matching and the spectral

distance between the converted and target vectors. We showed that this optimization problem can

be solved using an alternating minimization procedure which converges to a local minima, and by

this way proved its convergence in the particular case of INCA. Our experimental results show that

compared to INCA, our approach improves the matching process used for training the conversion,

and as a result, improves the quality and individuality of the synthesized output signals.

For the keyword spotting task we proposed a new discriminative method which is suitable for limited-

data setups such as: mobile applications, under-documented languages and speech of children. We

presented a new fixed-length representation for isolated words, based on histograms obtained with respect

to a pre-trained GMM. We also proposed a fixed-length representation for sentences, based on global

feature vectors, extracted from the response curve obtained by the word classifier. A highly biased

training set is a reasonable scenario in limited-data applications, so in order to avoid biased classifiers

we used bagging predictors for training both word and sentence classifiers. According to our experiments

on speech of adults, the proposed system outperforms the standard HMM-based benchmark system

in challenging setups of small training sets and/or low SNR values. In case of highly variable speech

of children, when tested on clean speech, our system outperformed the benchmark when 50 or fewer

examples are available for training. Moreover, in presence of noise, our system leads to higher detection

rates for all the examined cases, regardless of training-set size, noise type or SNR.

8.2 Further Research

Most voice conversion methods, including those presented in this work, deal with converting the spectral

envelope. However, the identity of a speaker is also closely related to his prosody features. The global lin-

ear pitch conversion function, described in this work and commonly applied in other systems, is effective,

but still, a more sophisticated modeling and conversion of the pitch contour of the two speakers would

probably improve the individuality of the converted outcome. In this work, as in most other systems,

the speaking rate was not converted al all. The spectral conversion process is performed by simply re-

placing the spectral envelopes extracted from the source signal with the converted outcome. As a result,

the synthesized output has the same speaking rate as the source speaker. Further improvement can be

obtained by modifying the duration of each converted utterance to match, on average, its corresponding

value for the target speaker.

Spectral distortion and GV are commonly used as objective measures since they provide a simple and

fully automated way for evaluating conversion systems. These objective measures may express significant

trends and phenomena, but, as shown in this work, they do not always agree with subjective evaluation

results. Further research is needed to design alternative measures for objective evaluation of conversion

systems, with better correspondence to subjective results. In the mean time, subjective listening tests

are imperative to properly evaluate and compare conversion methods.
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The proposed GB conversion method, as presented here, is based on soft correspondence between the

source and target vectors, obtained by using a parallel training set. The TC-INCA method presented

here is a general approach for matching source and target spectra, enabling training of parallel voice

conversion methods in a non-parallel setup. It is based on the classical GMM-based conversion and

therefore requires several dozens of recorded sentences for training. Further research is needed for merging

these two approaches - TC-INCA for matching, and GB for spectral conversion, to design a non-parallel

voice conversion system, in a limited-data setup.

The histogram representation of keywords presented in this work is obtained with respect to a GMM.

Therefore, the temporal correspondence of the spectral feature vectors is ignored. An alternative model,

considering the temporal context of spectral feature vectors could provide better modeling of the keyword,

and as a result, improve the detection rate. In this work we proposed a set of global features for

representing sentences. These features were selected since they characterise the differences between

positive and negative response curves. Still, exploring other features may lead to improved representation

and classification of positive and negative response curves and therefore to improved detection rate.
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[34] D. Sündermann, H. Höge, A. Bonafonte, H. Ney, A. Black, and S. Narayanan, “Text-independent

voice conversion based on unit selection,” in Proc. ICASSP, vol. 1. IEEE, 2006, pp. I–I.

[35] T. Dutoit, A. Holzapfel, M. Jottrand, A. Moinet, J. Perez, and Y. Stylianou, “Towards a voice

conversion system based on frame selection,” in Proc. ICASSP, vol. 4. IEEE, 2007, pp. IV–513.

[36] Z. Wu, T. Virtanen, E. S. Chng, and H. Li, “Exemplar-based sparse representation with residual

compensation for voice conversion,” IEEE Trans. on Audio, Speech and Lang. Proc., vol. 22, no. 10,

pp. 1506–1521, 2014.

[37] M. Zhang, J. Tao, J. Tian, and X. Wang, “Text-independent voice conversion based on state mapped

codebook,” in Proc. ICASSP, 2008, pp. 4605–4608.

[38] P. Song, W. Zheng, and L. Zhao, “Non-parallel training for voice conversion based on adaptation

method,” in Proc. ICASSP, 2013.

[39] A. Mouchtaris, J. Van der Spiegel, and P. Mueller, “Non-parallel training for voice conversion by

maximum likelihood constrained adaptation,” in Proc. ICASSP, vol. 1, 2004, pp. I–1.

[40] T. Toda, Y. Ohtani, and K. Shikano, “Eigenvoice conversion based on Gaussian mixture model,” in

Proc. ICSLP, pp. 2446–2449.

[41] A. Kain and M. W. Macon, “Design and evaluation of a voice conversion algorithm based on spectral

envelope mapping and residual prediction,” in Proc. ICASSP, 2001, pp. 813–816.

[42] E. Helander, T. Virtanen, J. Nurminen, and M. Gabbouj, “Voice conversion using partial least

squares regression,” IEEE Trans. on Audio, Speech and Lang. Proc., vol. 18, no. 5, p. 91217921,

2010.

[43] H. Benisty and D. Malah, “Voice conversion using GMM with enhanced global variance,” in Proc.

Interspeech, 2011, pp. 669–672.

[44] H. Benisty, D. Malah, and K. Crammer, “Modular global variance enhancement for voice conversion

systems,” in Proc. EUSIPCO, 2012, pp. 370–374.



82 BIBLIOGRAPHY

[45] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. The Johns Hopkins University

Press, 1996.

[46] J. Kominek and A. W. Black, “CMU ARCTIC databases for speech synthesis,” 2003.

[47] Software available at http://gps-tsc.upc.es/veu/soft/soft/vc\ toolkit/.

[48] D. Erro, A. Moreno, and A. Bonafonte, “Voice conversion based on weighted frequency warping,”

IEEE Trans. on Audio, Speech and Lang. Proc., vol. 18, no. 5, pp. 922–931, 2010.

[49] E. Helander, J. Schwarz, S. H. Nurminen, J, and M. Gabbouj, “On the impact of alignment on voice

conversion performance,” in Proc. Interspeech, 2008, pp. 1453–1456.

[50] T. Toda, Y. Ohtani, and K. Shikano, “Eigenvoice conversion based on Gaussian mixture model,” in

Proc. ICSLP, 2006, pp. 2446–2449.

[51] T. Toda, T. Muramatsu, and H. Banno, “Implementation of computationally efficient real-time voice

conversion.” in Proc. Interspeech, 2012.

[52] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online

nonlinear/non-gaussian bayesian tracking,” IEEE Trans. on Signal Proc., vol. 50, no. 2, pp. 174–188,

2002.

[53] H. Benisty, D. Malah, and K. Crammer, “Sequential voice conversion using grid-based approxima-

tion,” in Proc. IEEEI. IEEE, 2014, pp. 1–5.

[54] N. Xu, Z. Yang, L. Zhang, W. Zhu, and J. Bao, “Voice conversion based on state-space model for

modelling spectral trajectory,” Electronics letters, vol. 45, no. 14, pp. 763–764, 2009.

[55] B. Anderson and J. Moore, “Optimal filtering. 1979,” 1979.

[56] H. Benisty, D. Malah, and K. Crammer, “Non-parallel voice conversion using joint optimization of

alignment by temporal context and spectral distortion,” in Proc. ICASSP, 2014, pp. 7909–7913.

[57] Software available at: http://aholab.ehu.es/users/derro/software.html.

[58] D. Erro, I. Sainz, and I. Hernaez, “Improved HNM-based vocoder for statistical synthesizers,” in

Proc. Interspeech, 2011, pp. 1809–1812.

[59] H. Kuwabara and Y. Sagisaka, “Acoustic characteristics of speaker individuality: Control and con-

version,” IEEE Trans. on Signal Proc., vol. 16, no. 2, pp. 165–173, 1995.

[60] D. Erro, A. Moreno, and A. Bonafonte, “Inca algorythm for training voice conversion systems from

nonparallel corpora,” IEEE Trans. on Audio, Speech and Lang. Proc., vol. 18, no. 5, pp. 944–953,

2010.

[61] I. Csiszar and G. Tusnady, “Information geometry and alternating minimization procedures,” Statis-

tics and Decisions, vol. 1, pp. 205–237, 1984.



BIBLIOGRAPHY 83

[62] Y. Stylianou, J. Laroche, and E. Moulines, “High-quality speech modifcation based on a harmonic

+ noise model,” in Proc. EUROSPEECH, 1995.

[63] Y. Stylianou, “Applying the harmonic plus noise model in concatenative speech synthesis,” IEEE

Trans. on Audio, Speech and Lang. Proc., vol. 9, no. 1, pp. 21–29, 2001.

[64] E. Helander, J. Nurminen, and M. Gabbouj, “Lsf mapping for voice conversion with very small

training sets,” in Proc. ICASSP, 2008, pp. 4669–4672.

[65] J. S. Garofolo, C. G. Auzanne, and E. M. Voorhees, “The trec spoken document retrieval track: A

success story.” NIST SPECIAL PUBLICATION SP, vol. 500, no. 246, pp. 107–130, 2000.

[66] L. Boves, R. Carlson, E. W. Hinrichs, D. House, S. Krauwer, L. Lemnitzer, M. Vainio, and P. Witten-

burg, “Resources for speech research: present and future infrastructure needs.” in Proc. Interspeech,

2009, pp. 1803–1806.

[67] D. A. James and S. J. Young, “A fast lattice-based approach to vocabulary independent wordspot-

ting,” in Proc. ICASSP, vol. 1. IEEE, 1994, pp. I–377.

[68] K. Thambiratnam and S. Sridharan, “Dynamic match phone-lattice searches for very fast and ac-

curate unrestricted vocabulary keyword spotting.” in proc. ICASSP, 2005, pp. 465–468.

[69] D. Vergyri, I. Shafran, A. Stolcke, V. R. R. Gadde, M. Akbacak, B. Roark, and W. Wang, “The

sri/ogi 2006 spoken term detection system.” in Proc. Interspeech, 2007, pp. 2393–2396.

[70] J. Mamou, B. Ramabhadran, and O. Siohan, “Vocabulary independent spoken term detection,” in

SIGIR. ACM, 2007, pp. 615–622.

[71] Y. Zhang and J. R. Glass, “An inner-product lower-bound estimate for dynamic time warping,” in

Proc. ICASSP. IEEE, 2011, pp. 5660–5663.

[72] K. Shobaki, J.-P. Hosom, and R. Cole, “The ogi kids’ speech corpus and recognizers,” in Proc.

ICSLP, Beijing, China, 2000.

[73] J. S. Garofolo, L. D. Consortium et al., TIMIT: acoustic-phonetic continuous speech corpus. Lin-

guistic Data Consortium, 1993.

[74] H.-G. Hirsch, “Fant-filtering and noise adding tool,” ACM Transactions on Intelligent Systems and

Technology, 2005, software available at http://dnt.kr.hs-niederrhein.de/index964b.html?option=

com content&view=article&id=22&Itemid=15&lang=de.

[75] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hannemann, P. Motlicek,

Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer, and K. Vesely, “The kaldi speech recognition toolkit,”

in Proc. ASRU, Dec. 2011.

[76] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM Transactions

on Intelligent Systems and Technology, vol. 2, pp. 27:1–27:27, 2011, software available at http:

//www.csie.ntu.edu.tw/∼cjlin/libsvm.



84 BIBLIOGRAPHY

[77] M. Gerosa, D. Giuliani, S. Narayanan, and A. Potamianos, “A review of ASR technologies for

children’s speech,” in Proc. WOCCI. ACM, 2009, p. 7.





יביא המפתח מילת את המכיל שמשפט מכאן המפתח. למילת היסטוגרמה כל של ההתאמה מידת על

לעקום יביא המפתח מילת את מכיל שאינו שמשפט בעוד חיובי, מקסימאלי ערך בעל תגובה לעקום

החלון החלקת ובאופן המקורי המשפט של במשכו תלוי תגובה עקום כל של אורכו האפס. סביב רועש

מיוצג עקום כל למשפטים, המבדל המסווג אימון לשם לכן קבוע. אינו ולכן ההיסטוגרמות בחישוב

מנורמלים וכד', ממוצע ומקסימום, מינימום ערכי כגון גלובליים פרמטרים של קבועה סדרה ידי על

התגובה. עקום ערכי של הכוללת התקן סטיית ע"י

"שליליות", המכונות – המפתח מילת את מכילות שאינן רבות הקלטות להשיג ניתן מעשי, באופן

האימון סט הנדונים, המקרים ברוב לכן, "חיוביות". – אותה המכילים משפטים של הקלטות מאשר

מסווג מאימון להימנע כדי שליליות. מאשר חיוביות דוגמאות פחות הרבה בו ויהיו מאוזן יהיה לא

הסט ידי על מאומן מהם אחד שכל מסווגים, של סדרה מאמנים יחיד, מסווג לאמן במקום מוטה,

הדוגמאות מספר בין לאזן ניתן זה באופן השלילי. הסט מתוך אקראית הנדגמת ותת־קבוצה החיובי

בזמן השלילי. הסט של גודלו את לנצל בעת ובו מסווג כל של האימון בזמן והשליליות החיוביות

במערכת מבוצע זה תהליך הרוב. הצבעת לפי ומחליטים המסווגים סדרת את מפעילים הסיווג,

המשפטים. סיווג עבור והן המילים סיווג עבור הן המוצעת

מפתח, מילות לגילוי המוצעת המערכת ביצועי את הבוחנים ניסויים, של סדרה מוצגת בעבודה

סט של גודלו של כפונקציה חבוי, מרקובי מודל על המבוססת סטנדרטית מערכת לביצועי והמושווים

מבוגרים של דיבור עבור ברקע. דיבורים או רכב של מנוע כגון, שונים, רקע רעשי ובנוכחות האימון,

במקרים בעיקר הסטנדרטית, זו מאשר יותר טובים לביצועים מביאה המוצעת המערכת כי ניכר

גבוהה. בעוצמה רקע רעשי של בנוכחות או במיוחד, קטן החיוביות הדוגמאות מספר בהם קשים

המערכות שתי חלש, רקע ורעש לאימון דוגמאות של גדול מספר היה בהם קלים היותר במקרים

ילדים של דיבור טובה. פחות מעט היתה המוצעת המערכת כאשר מאוד, טובים לביצועים הביאו

במקרה גבוהה. שונות בעלי באותות מתאפיין ולכן מבוגרים של מאשר עקבי פחות הינו צעירים

או הדוגמאות במספר תלות ללא המקרים, בכל יותר טובים לביצועים הביאה המוצעת המערכת זה

הרעש. בעוצמת
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בעזרת בהצלחה לאימון הניתנת דובר, של ספקטרום להמרת חדשה שיטה כאן מוצעת כן, כמו

הנצפה התהליך בעזרת המטרה דובר של הספקטרום אחר עוקבים זו בשיטה קטן. נתונים מסד

המרחב את המייצג סריג משמש המטרה דובר של האימון סט המקור. דובר של הספקטרום שהוא

משוערך המטרה דובר של הספקטרום ההמרה, בתהליך זה. דובר של הדיבור אות של הספקטראלי

הקודמות הזמן מסגרות עבור שחושבו המשקלים בסריג. הנקודות של משוקלל כסכום עוקבת, בצורה

חלקה זמנית התפתחות לקבלת העכשווית, הזמן מסגרת עבור המשקלים בחישוב בחשבון נלקחים

איכותיים כיותר דורגו המוצעת המערכת ידי על שיוצרו משפטים השמע, במבחני הספקטרום. של

עם יחד המוצעת, ההמרה של הביצועים נבחנו כן, כמו הקלאסית. ההמרה גישת ידי על שיוצרו מאלה

הקלאסית. לגישה בהשוואה הספקטראליים, הרכיבים של הגלובלית השונות להגברת הנפרדת היחידה

הספקטרליים הרכיבים של הגלובלית השונות הגברת עם היא גם בוצעה הקלאסית לגישה ההשוואה

ההמרה. לאחר נפרדת, כיחידה או ההמרה פונקצית של האימון כדי תוך – השיטות משתי אחת בכל

המטרה. לדובר דמיון מבחינת ביותר הטובים לביצועים הובילה המוגברת הסריג המרת זה, במקרה

כטובה סומנה האימון בזמן הגלובלית השונות הגברת עם הקלאסית הגישה השמע, איכות מבחינת

הנפרדת. היחידה עם יחד הקלאסית לגישה כשקולה סומנה המוגברת הסריג שהמרת בעוד ביותר,

המקור דובר בו מקבילי נתונים מסד על מתבסס דובר להמרת המערכות רוב של האימון תהליך

לא בו מקבילי, הלא במצב גם מטפלים אנו זו בעבודה המשפטים. אותם את אומרים המטרה ודובר

דובר של האימון וקטורי בין בהתאמה צורך יש זה, במקרה שהוקלט. הטקסט לגבי דבר מניחים

זו בעבודה ההמרה. פונקצית את לשערך מנת על המטרה דובר של האימון וקטורי לבין המקור

שערוך הקיימת, בגישה וההתאמה. ההמרה פונקציות של עוקב לשערוך קיימת לגישה הכללה מוצעת

לרכיבים השייכים וקטורים בין להתאמה המוביל ביותר, הקרוב השכן חיפוש ידי על מתבצע ההתאמה

האותות באיכות גם לפגיעה דבר של ובסופו ההמרה, פונקצית באימון לפגיעה גם ולכן שונים לשוניים

סדרות בין הקרוב השכן חיפוש ידי על מתבצעת ההתאמה כאן, המוצגת המוכללת בגישה המומרים.

זו התאמה המקוריים. הדיבור באותות עוקבות זמן ממסגרות הלקוחות ספקטראליים וקטורים של

המטרה. לדובר דמיון מבחינת והן השמע איכות מבחינת הן המומרים האותות איכות את משפרת

הוא הפרטי, במקרה גם ולכן המוכללת, בגישה העוקב השערוך כי מראים זו בעבודה לכך, בנוסף

ההמרה פונקציות של עלות פונקצית את מקומי למינימום המביא עוקב מזעור של תהליך למעשה

הדוברים. בין וההתאמה

אות יצירת לתהליך סטטיסטי מודל אימון על מבוססות מפתח מילות לגילוי הקיימות הגישות רוב

המודל, אימון לשם ההקלטות של פונטית סגמנטציה וכן רבות הקלטות דורשים אלה גישות הדיבור.

חדשה גישה מוצעת זו בעבודה זמין. אינו ומסומן גדול אימון סט בהם במקרים מתאימות אינן ולכן

מבדלת בשיטה מאומנים אלה מסווגים ומשפטים. למילים מסווגים על המבוססת מפתח, מילות לגילוי

דוגמאות מספר של במקרים גם לאימון הניתנת חישובית, בלמידה סטנדרטית שהיא (discriminative)

מבוסס המילים מסווג המוצעת, בגישה הדוגמאות. של קבוע באורך ייצוג דורשת אך במיוחד, קטן

גאוסייאנים. מרובה למודל ביחס המחושבות היסטוגרמות ידי על מילים של קבוע באורך ייצוג על

אבל הקלטות, של מבוטלת בלתי כמות נדרשת עצמו הגאוסייאנים מודל של האימון לתהליך אמנם

להקלטות פרט נוספים סימונים או נתונים שום נדרשים שלא כיוון יחסית בקלות אותן להשיג ניתן

של סדרה מחשבים מסוים, למשפט המתאימים ספקטראליים וקטורים של סדרה בהינתן עצמן.

מילת של ממוצע יותר ארוך מעט חלון של החלקה ידי על הגאוסיאנים, למודל ביחס היסטוגרמות,

המורים ציונים, של סדרה ומקבלים בסדרה היסטוגרמה כל על המילים מסווג את מפעילים המפתח.
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תקציר

מידה בקנה וזיכרון חישוב משאבי מצריכים דיבור אותות לעיבוד מודרניות מערכות של והרצה אימון

הטכנולוגיה התקדמות רלוונטיים. דיבור אותות של רבות הקלטות המכילים נתונים מסדי וכן גדול

בפיתוח משמעותי בקבוק צוואר מהוות אינן כבר הדיגיטליות והזיכרון העיבוד שיחידות לכך הביאה

שפות כגון במקרים אתגר מהווה עדיין האימון סט של גודלו זאת, עם דיבור. אותות לעיבוד מערכות

אינו המצוי המשתמש בהם סלולאריים, למכשירים ויישומים ילדים, של דיבור היטב, מתועדות שאינן

דיבור אותות לעיבוד מערכות בשתי נעסוק זו בעבודה קולו. של בהקלטות רב זמן להשקיע מוכן

מקור דובר ידי על שנאמר משפט בה דובר, המרת מערכת במיוחד: קטן הוא האימון סט כאשר

משפט, בהינתן בה מפתח מילות לזיהוי ומערכת מטרה, דובר ידי על נאמר כאילו שיישמע כך מומר

לא. או המפתח מילת בו נאמרה האם לומר נדרש

הדיבור אות של הספקטראליים למאפיינים הדובר זהות של הסובייקטיבית התפיסה את לייחס נהוג

של בהמרה מתרכזות דובר להמרת המערכות רוב ולעוצמתו. הדיבור לקצב המרכזי, לתדר וכן

שממוצע כך פשוטה ליניארית המרה בעזרת ממירות הן המרכזי התדר עקום שאת בעוד הספקטרום,

הדיבור וקצב המטרה, דובר של לאלה שווים יהיו המומר האות של המרכזי התדר של התקן וסטיית

כלל. מומרים לא כלל בדרך ועוצמתו

לאמן מנת על סטטיסטיים במודלים ברובן משתמשות דובר של ספקטרום להמרת קיימות שיטות

מרובה מודל בעזרת ליניארית המרה של אימון על מבוססת הקלאסית השיטה המרה. פונקצית

ללא מתבצע ההמרה תהליך מוקלטים. משפטים של רבות עשרות נדרשות זה לאימון גאוסייאנים.

החלקה עודף עקב עמומים כלל בדרך נשמעים המתקבלים והמשפטים עוקבות, זמן מסגרות בין תלות

הספקטראליות. המעטפות של

להגברת שיטות שתי כאן מוצגות הסינטזה, לאחר המומרים האותות של האיכות את לשפר מנת על

על מבוססת הראשונה השיטה מומרים. אותות של הספקטראליים הרכיבים של הגלובלית השונות

של הגלובלית השונות את מאלצים האימון בזמן כאשר דובר, להמרת הקלאסית־ליניארית המערכת

בשיטה המטרה. בדובר המתאימה הגלובלית לשונות שווה להיות המומר האות של הספקטרום רכיבי

השנייה השיטה ההמרה. פונקציה של מחודש אימון ידי על נעשית הגלובלית השונות הגברת זו

נדרש בהן למערכות מתאימה ולכן עצמה, ההמרה לאחר המופעלת נפרדת עיבוד יחידת על מבוססת

אות בהינתן עצמה. ההמרה מערכת את לשנות מבלי המומרים האותות של השמע איכות את לשפר

כך הספקטרליים, הרכיבים של הגלובלית השונות את להגביר שואפת הנפרדת היחידה מומר, דיבור

לפי המשתמש. שהגדיר סף על יעלה לא המומר והאות המוגבר האות בין הספקטראלי שהמרחק

בהשוואה המומרים, האותות של השמע איכות לשיפור מביאות השיטות שתי שנערכו, השמע מבחני

הקלאסית. ההמרה לגישת
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תודות

בת מרגישה אני המסורה. הנחייתם על קרמר קובי ולפרופסור מלאך דוד לפרופסור להודות ברצוני

העצות ההכוונה, על רבה תודה האישית. ברמה והן המקצועית ברמה הן מהם ללמוד שזכיתי מזל

לוותר. כשחשבתי גם קדימה, הדחיפה על ובעיקר לשלמות השאיפה הטובות,

שמייצרים רוזן ואבי אבני זיוה משה, יאיר פלג, נמרוד ותמונות: אותות לעיבוד המעבדה לצוות תודה

ונעימה. משפחתית ואוירה מעולה עבודה סביבת

השיחות על תודה ונורית. תמר איתמר, מירי, רונן, בטכניון: להכיר שזכיתי לחברים להודות ברצוני

כך. כל למהנה בטכניון השהות את שהפכו כך ועל כאחד והאישיות המקצועיות והעצות

להאמין והמשיך הראשון התואר בתחילת עוד בי שהאמין והמתוק היקר לבעלי להודות ברצוני לבסוף,

האהובה: למשפחתי מיוחדת תודה כוחי. מקור היא אהבתך השלישי. התואר לסיום עד בי ולתמוך

לי. שהעניקו והאהבה תמיכה העזרה על ואלון, תומר לאחיי: וברוריה, איתן להוריי

ואהבתן. תמיכתן על וליזו מיכל אלה, טלי, נגה, עבורי: משפחה כמו שהן המקסימות לחברותי תודה

יום יום לי שמעניקים ורעות, דניאל טליה, והמתוקים: האהובים לילדיי תודה חביבים, והכי אחרונים

ונחת. שמחה אינסופית, אהבה

בתמיכתם נעשתה המחקר מעבודת חלק בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני
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