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Abstract

The detection of materials and objects using remotely sensed spectral information
collected by hyperspectral sensors has many military and civilian applications.
Detection algorithms exploit the spectral information present in hyperspectral
data to detect and discriminate localized man-made targets, e.g., small buildings,
vehicles, etc. In anomaly detection, no prior knowledge on the target spectral
signature is assumed. Therefore, anomaly detection algorithms first model the
abundant material spectra (background process). Then, every pixel or group of
pixels spectrally different in a meaningful way from the background process are
declared to be anomalies.

According to the hyperspectral literature, two major approaches to statis-
tical background modeling can be distinguished. In the first approach, named
"local", the background is modeled by a large number of local independent dis-
tributions, each of which is responsible to represent a different local region in
the image. Local algorithms can tightly fit the background data, however they
are subject to an overfitting problem, which may produce an excessive number
of false-alarms. The second background modeling approach, denoted "global", is
based on a global representation of the background process in the whole image.
By design, this approach is more resistant to the overfitting problem. However,

it has a limited ability to adapt to all nuances of the background process (an



underfitting problem), which may result in high false alarm rates, as well as low
anomaly detection rates.

In this research, we propose a combination of the local and global back-
ground modeling approaches by introducing the BEVA (Background Extreme
Value Analysis) algorithm. In the local part of BEVA, the local background is
approximated using a greedy sequential estimation process. It is composed of a
robust estimation of the Gaussian statistics and a background cluster hypoth-
esis discriminator, which is based on Extreme Value Theory results. Then, in
its global part, the obtained local background models are inter-related to reduce
the number of false alarms. BEVA has the ability to adapt to all nuances of the
background process like the local approach but avoids overfitting.

In the next part of the research, we propose several improvements to the
BEVA algorithm. First, we reinforce BEVA’s global filter performance by adding
an auxiliary background dictionary to deal with spatially dispersed background
pixels that are a source of false alarms in BEVA. Second, we improve BEVA’s local
part via a preprocessing segmentation that is based on Spectral Clustering. The
Gaussian model used in BEVA, although efficient and mathematically tractable, is
only partially adequate to represent real hyperspectral data. In order to overcome
this drawback, we introduce the NG-BEVA (Non-Gaussian BEVA) algorithm, a
non-Gaussian version of BEVA, which replaces the Gaussian assumption with
Gamma distribution fitting.

The results strongly prove the effectiveness of the proposed "local-global"
approach. On real hyperspectral data, our local-global algorithms perform better

than other examined global or local anomaly detection techniques.
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Chapter 1

Introduction

1.1 Hyperspectral Imaging

Hyperspectral remote sensing exploits the fact that all materials reflect, absorb,
and emit electromagnetic energy, at specific wavelengths, in distinctive patterns
related to their molecular composition. Compared to a typical color camera that
uses three wavelength bands, corresponding to the red, green and blue colors,
hyperspectral imaging (HSI) sensors acquire digital images in many contiguous
and very narrow (nominally about 10 nm wide) spectral bands that typically span
the visible, near-infrared, and mid-infrared portions of the spectrum (0.4-2.5 pum).
This enables the construction of an essentially continuous radiance spectrum for
every pixel in the scene. The end result of the high spectral resolution of HSI
is that we can identify and classify the materials present in the scene and, as
presented in this work, detect targets of interest.

In Fig. 1.1, the spectrum signatures of three different materials (soil, veg-
etation and water) are obtained from a hyperspectral image. Due to the high

spectral resolution, it is easy to discriminate between each material.



1.2 Anomaly Detection

Veg

Water

|

Figure 1.1: Hyperspectral Imaging

1.2 Anomaly Detection

The detection of materials and objects using remotely sensed spectral information
has many military and civilian applications. Detection algorithms exploit the
spectral information present in hyperspectral data to detect and discriminate
localized man-made objects, e.g., small buildings, vehicles, etc.

Detection algorithms can be divided in two classes: supervised detection and
unsupervised detection. In supervised detection (also called "Target Detection"),
the main objective is to search for a specific given material spectrum (target) in
a hyperspectral image. The spectral signature of the target is known "a-priori"

from laboratory measurements.



1.3 Background Modeling

In this research, we focus our attention on the problem of unsupervised de-
tection in hyperspectral images also called "Anomaly Detection". Anomaly de-
tection algorithms do not require any knowledge of the spectral signature of the
targets. Anomalies are defined as patterns in data that do not conform to a well
defined notion of normal behavior. In anomaly detection tasks, hyperspectral pix-
els have to be classified into either background (normal behavior) or anomalies.
Every pixel or group of pixels that are spectrally different in a meaningful way
from the abundant (background) material spectra are declared to be anomalies.

Since neither prior anomaly signatures nor their statistical model, are known,
anomaly detection methods first model the background and then detect anomalies
by finding pixels that are not well-described by the background model. It turns
out that the problem of background pixels modeling is a critical and a subtle task.
As a matter of fact, it poses a two-fold problem: On one hand, the model has
to be general enough in order to accurately represent the wealth of background
material spectra, so as to avoid false alarms due background pixel deviations from
the model. On the other hand, the model has to be concise enough, limiting its
ability to adapt to anomalies, and leaving anomalies to disagree with the model,

which is essential for a high probability of detection.

1.3 Background Modeling

According to hyperspectral related publications, there are two main background
modeling methodologies, one based on a linear mixture model (1], [2], 3], [9])
where the background process is modeled using a small number of representative
spectra known as "endmember", the second on statistical modeling ([4]). Two

major approaches to statistical background modeling can be distinguished.



1.3 Background Modeling

In the first approach, the background is modeled by a large number of local
independent distributions, each of which is responsible to represent a different
local region in the image. Therefore, we call this approach "local". A classical
local background modeling algorithm, named RX [4], has become a benchmark
anomaly detection algorithm in the remote sensing community. Many other local
algorithms have also been proposed by the hyperspectral society like in [6], [7] or
[8]. Most of local algorithms are based on the Gaussian model. Since the Gaus-
sian assumption for modeling the local background process is in general not valid,
Kwon and Nassrabadi proposed, in [5], a nonlinear version of the RX algorithm
called kernel-RX that transforms each spectral pixel into a very high-dimensional
feature space (could be of infinite dimensions) by a nonlinear mapping function.
Detection is made by assuming a Gaussian distribution to the local background
process in the high-dimensional feature space. Modeling the input data in the
feature space by a Gaussian distribution is equivalent to representing the distri-
bution of the input data with a much more complex model when defined in the
original input space.

The second background modeling approach is based on a global representation
of the background process in the whole image. Therefore, we call this approach
"global". There are various statistical global modeling algorithms found in the
literature ([11], [13], [15] or [16]). In the global approach, the background is
modeled using a simple universal distribution, which is designed to represent the
background process in the whole image. For example, the global background pro-
cess is modeled by a mixture of Gaussians in the GMM-RX algorithm (Gaussian
Mixture Model RX) proposed in [11].

Classical local and global methods rely on non-robust covariance matrix es-

timation which are highly sensitive to the presence of outliers. The background



1.4 Thesis Outline

modeling obtained by a non-robust statistic estimation can lead to a decrease in
the anomaly detector’s performance. The authors of [14]| proposed a robust global
anomaly detection based on the Minimum Covariance Determinant (MCD), a
highly robust estimator of multivariate statistics introduced by Rousseeuw in
[12]. MCD’s objective is to find h (out of n) observations whose covariance ma-
trix has the lowest determinant. In hyperspectral data, n is the number of pixels
of a local region in the image. These observations are then used to estimate the
background process by a GGaussian with robust parameters.

As explained in the sequel, in section 3.1, the local approach is subject to
an overfitting problem, which may produce an excessive number of false-alarms.
On their part, global algorithms have a limited ability to adapt to all nuances of
the background process (an underfitting problem), which may result in high false
alarm rates, as well as low anomaly detection rates.

In this research we present a novel statistical background modeling approach
denoted "local-global". The local-global background model has the ability to
adapt to all nuances of the background process like in the local approach but
avoids overfitting. The local model, because it is composed of a number of distinct
clusters, is capable of handling multiple types of terrain. Then a global filter is
applied to alleviate the overfitting problem by inter-relating the independent local

background models.

1.4 Thesis Outline

The thesis is organized as follows: In Chapter 2, we focus our attention on two
representative anomaly detection methods: RX [4] as a local approach algorithm

and GMM-RX [11] as a global one.



1.4 Thesis Outline

In Chapter 3, we present our proposed local-global background modeling al-
gorithm named BEVA (Background Extreme Value Analysis). In the local part
of BEVA| the local background is approximated using a greedy sequential estima-
tion process. It is composed of a robust estimation of the Gaussian statistics and
a background cluster hypothesis discriminator, which is based on Extreme Value
Theory results (EVT) [24]. EVT was already applied to hyperspectral images for
redundancy reduction that preserves anomalies [9]. Their results strongly prove
the effectiveness of EVT in hyperspectral data. In the global part of BEVA, the
obtained local background models are inter-related to reduce the number of false
alarms.

In Chapter 4, we notice that BEVA’s global part cannot deal with spatially
dispersed background pixels which are a source of false alarms. We propose to
reinforce BEVA’s global filter performance by adding an auxiliary background
dictionary. Chapter 5 deals with the improvement of the local part of BEVA via
a segmentation that is based Spectral Clustering |29].

Finally, in Chapter 6 we develop a technique for non-Gaussian background
model estimation, denoted NG-BEVA (Non-Gaussian BEVA). Indeed, as most
local algorithms, BEVA’s local part models each local background cluster by a
Gaussian distribution, although the hyperspectral data is not following closely
the Gaussian distribution. In NG-BEVA, we remove the Gaussian assumption by
using Extreme Value Theory combined with Gamma distribution fitting.

All the algorithms developed in this thesis are tested on real hyperspectral
data (see Appendix A) and their performance are compared using ROC (Receiver

operating characteristic) curves.



Chapter 2

Statistical Background Modeling
Approaches in Hyperspectral

Imaging

In this chapter, we focus our attention on two anomaly detection algorithms de-
rived from the statical background modeling methodology. First, we examine
the classical "RX" algorithm [4] based on the local approach. The second algo-
rithm we present is a global algorithm called "Gaussian Mixture Model RX" [11]
(GMM-RX) where a global representation of the background process in the whole
image is used to detect anomalies. The algorithms are explained bellow in detail

and tested with real hyperspectral data.

2.1 Local Approach: RX

2.1.1 Theory

In this section we summarize the classical local anomaly detector proposed by
Reed and Xiaoli in [4], named RX, which has become a benchmark anomaly

detection algorithm in the remote sensing community.



2.1 Local Approach: RX

In the RX algorithm, local background pixels are assumed to be indepen-
dent, identically distributed, Gaussian random vectors. The model assumes that
the data arises from two Gaussian pdfs with the same covariance matrix 3 but

different means. Thus, two hypotheses can be formulated as:

Hy= N(p,X) (Anomaly absent)
(2.1)
Hy=N(p+s,%) (Anomaly present)

where p is the background mean vector and s = (s1, S2, ..., 5,)7 is the target
mean spectra.

For each tested pixel y, a double concentric square window is used to separate
a local area into two regions - the inner window region (IWR) and the outer
window region (OWR) as shown in Fig. 2.1. The IWR size is generally set so
that it can fully enclose a target. Another concentric square centered at the tested
pixel known as the "guard window region" can be utilized as well. The guard
band is slightly larger in size than the IWR but smaller than the OWR. The main
purpose of the guard band is to reduce the probability that some target pixels will

be present in the OWR and hence affect the background statistics estimation.



2.1 Local Approach: RX

Inner Window
Region (IWR)

Current Test
Pixel

_ Guard (Band)
Quter Window Window

Region (OWR)

Figure 2.1: Concentric windows for local anomaly detection.

The background mean vector g and covariance matrix 3 of the RX model

are estimated from the OWR as follow:

1 X
Sy
1 O

“ T ) = )

=1

(2.2)
>

where N, is the number of pixels in the OWR.
After estimating the background mean vector and covariance matrix, the
GLRT (Generalized Likelihood Ratio Threshold) is computed, which leads to

a simple test. If the Mahalanobis distance between the tested pixel y and the



2.1 Local Approach: RX

background mean vector p is greater than a user-defined threshold T'h,

RX(y) = (y — )2 (y — ) > Th, (2.3)
the pixel is declared as an anomaly.

2.1.2 RX performance for Real Hyperspectral Data

The RX algorithm was applied to two data sets of real hyperspectral data (For a
description of the hyperspectral data used, see Appendix A). The IWR size was
set to 7 x 7, the OWR size to 15 x 15.

An anomaly is considered as detected if at least one of the detected pixels hits
the corresponding marked segment. All pixels detected by the algorithms were
grouped into connected objects using 8-connected object labeling. If an object
doesn’t intersect a marked anomaly, it is considered a false alarm object. This
kind of anomaly detection/miss criteria is particularly suitable for applications
that aim to alert the user on all anomalies of all sizes. Therefore, it is more
important to detect at least one pixel on each anomaly, rather than many pixels
on only some of the anomalies.

RX ROC curves on data set I and I are shown in Fig. 2.2 and 2.3, respectively.

10



2.1 Local Approach: RX
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Figure 2.2: ROC curve for RX - Data Set I.
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Figure 2.3: ROC curve for RX - Data Set II.
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2.1 Local Approach: RX

A typical false alarm of the RX algorithm (an isolated tree detected as an
anomaly despite the large number of similar trees present in the image) is shown
in Fig. 2.4. It reveals a major drawback of this algorithm: the RX model has a
too high number of degrees of freedom in representing the background process.
Indeed, the model is estimated for each pixel using a small local window. An
overfitting problem is almost inevitable, leading to an excessive number of false
alarms. Furthermore, anomaly pixels present in the OWR can severely affect the
background statistic estimation. In fact, RX relies on a non-robust covariance
matrix estimation which is highly sensitive to the presence of anomalies. This
sensitivity manifests itself in distortions of the estimated covariance that are not
representative of the true structure of the data. Two notable problems can result.
First, a very strong anomaly present in the OWR may "inflate" the Gaussian
distribution that approximates the background process to the point that other
anomalies ar missed. Second, an increase in the false alarm rate can occur when
the Gaussian distribution is shifted or rotated by such a degree that background

pixels are no longer part of the background process.

12



2.2 Global Approach: Gaussian Mixture Model RX (GMM-RX)

Figure 2.4: A typical RX false alarm. Right image - RX score map with
a strong false alarm , Left image - An RGB representation of the area with the

false alarm marked by a red ellipse

2.2 Global Approach: Gaussian Mixture Model
RX (GMM-RX)

In this section, we present a global algorithm, based on a probabilistic model,
known as "Gaussian Mixture Model" (GMM).

Unlike the local approach, a unique unimodal multivariate Gaussian distri-
bution is not appropriate for modeling the background of a whole image since it
contains multiple types of terrain. A mixture of Gaussian distributions can be
used for better characterization of nonhomogeneous backgrounds.

The GMM approach ([16],]11]) assumes that the image data X in RP (p-

number of spectral bands) arises from a linear combination of Gaussian pdfs,

13



2.2 Global Approach: Gaussian Mixture Model RX (GMM-RX)

resulting in a mixture probability density function of the form

FX) = 7 fi( X e, S (2.4)

k=1

where K is the number of Gaussians in the mixture and {7}~ are the mixing
proportions, with Zle 7 =1land 0 < 7 < 1. fo(X|px, Xx) denotes the density
of class k defined as a Gaussian distribution with mean vector g and covariance
matrix .

A Gaussian mixture model can be used for anomaly detection in the same way
as a unimodal Gaussian model. An anomaly is, as in local methods, a pixel that
does not fit well to the background process. Here an anomaly is a vector that
does not fit well to the GMM Model, so a test can be proposed to detect outliers
that use the pdf as an anomaly score. If the pdf value of a tested pixel is lower
than a user-defined probability threshold value P, the pixel will be considered

as an anomaly:

K

GMM-RX(y) = > 7 fu(y|ttr, Zr) < P, (2.5)
k=1

where y is a tested pixel.

While estimating the parameters of a single Gaussian is straightforward, esti-
mating the parameters of a GMM requires more complex estimation procedures.
GMM parameters can be estimated using the Expectation-Maximization (EM)
algorithm (Appendix B).

In [11], a hard clustering GMM is proposed where a class label ¢, € {1,--- | K}
tells, for each vector x;, to which class it belongs. This method, which was chosen
for our implementation, gives very similar results to the standard GMM, but

avoids numerical implementation difficulties. In a hard clustering GMM, a pixel

14



2.2 Global Approach: Gaussian Mixture Model RX (GMM-RX)

will be considered as an anomaly if
GMM-RX(y) = fo (¥|tber, Ze) < Pin, (2.6)

where ¢ is the background cluster to whom y was associated during the hard
clustering GMM estimation.

Our GMM-RX algorithm was initialized by an excessive number of Gaussians
using the k-means algorithm for initializing the Gaussian parameters. During the
EM iterations of the GMM-RX, too small clusters, and hence unreliable, were

eliminated.

2.2.1 GMM-RX on Real Hyperspectral Data

The GMM-RX algorithm was applied to two data sets of real hyperspectral data
(For a description of the hyperspectral data used, see Appendix A) and its ROC
curves are presented in Fig. 2.5 and 2.6 together with the RX ROC curves. The

initial number of Gaussians was set to 10 for each hyperspectral image.

15



2.2 Global Approach: Gaussian Mixture Model RX (GMM-RX)

Detected Target Segments out of 50

Detected Target Segments out of 35

a4t

a2t

36 |

34

RX
= = = GMMRX]| ]

Figure 2.5:

0 200 400 600 800 1000 1200 1400 1600

False Alarm Segments

ROC curve GMM-RX vs. RX - Data Set 1.

-
[o0)
T

-
()]
T

-
N
T

-
N
T

-
o
T

RX
= = = GMMRX

Figure 2.6:

500 1000 1500 2000
False Alarm Segments

ROC curve GMM-RX vs. RX - Data Set II.

16



2.3 Summary

As it can be seen, the GMM-RX algorithm has fewer false alarm pixels than
the RX algorithm for all probability of detection values in data set I. However,
weak anomalies detection is difficult because the global modeling of GMM-RX
has no ability to adapt to all the nuances of the background. It explains why
GMM-RX is outperformed by RX for high value of probability of detection in
data set II.

2.3 Summary

In this chapter, we presented in detail two algorithms based on local and global
background modeling approaches: the classical RX and GMM-RX. In the local
algorithm (RX), the background is modeled by a large number of Gaussian dis-
tributions, each of which is responsible to represent a different local region in the
image. The second algorithm, called GMM-RX, uses a simple universal distri-
bution, consisting of a linear combination of Gaussian distributions, to represent
the background process in the whole image.

For the two data sets of real hyperspectral images, GMM-RX has a better per-
formance than RX in the detection of strong anomalies. However, weak anoma-
lies detection is more difficult in GMM-RX. In the next chapter, we will highlight
drawbacks of each approach and introduce a novel algorithm BEVA (Background
Extreme Value Analysis) which is based on the combined local-global background

modeling approach.

17



Chapter 3

Background Extreme Value
Analysis (BEVA) for Anomaly

Detection

3.1 Drawbacks of Local and Global Approaches

In the previous chapter we presented two approaches of background modeling for
anomaly detection.

In the local approach, the background is modeled by a large number of local
independent distributions, each of which is responsible to represent a different
local region in the image. Local background models can be tightly fitted to
the background data since each local region has its own estimated parameters.
This allows obtaining high detection rate of anomalies. Unfortunately, in many
cases, the strength of local models turns into a weakness. In fact, each local
background model has a high number of degrees of freedom. In RX, for example,
local model parameters are estimated using a small window (OWR). The number

p(p+1)

of degrees of freedom for the mean and covariance estimation is p and =5,

respectively, where p is the number of spectral bands. This high number of
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3.1 Drawbacks of Local and Global Approaches

degrees of freedom may cause model overfitting. Over-fitting generally occurs
when a model is excessively complex, such as having too many degrees of freedom,
relative to the amount of data available. Generally, this can be explained by
the "Hughes Phenomenon" [20], which states that the number of training data
pixels has to be significantly higher than the number of the model degrees of
freedom for a correct estimation. A model which over-fits the data will generally
produces a high false-alarm rate. Since the number of free parameters in local
background models is proportional to the data size, the model overfitting problem
is almost inevitable. According to the "Hughes Phenomenon", performance of
anomaly detection algorithms significantly deteriorates when the number of pixels
is severely limited for an accurate learning of the local background models.

The global background modeling approach is based on a simple universal
distribution, which is designed to represent the background process in the whole
image. By design, these methods are more resistant to the overfitting problem.
However, they have a limited ability to adapt to all nuances of the background
process (an underfitting problem), which may result in high false alarm rates, as
well as low anomaly detection rates.

Obviously, there is no ultimate answer how to completely avoid the overfitting
or underfitting problems, however, one may significantly improve detector per-
formance by a proper combination of the local and global background modeling
principles. One way to accomplish this is to use local background models that
are not independent, but are interrelated in some way. This construction may
help to significantly reduce the vast number of degrees of freedom of the local
method, while retaining the ability of local models to be intimately adjusted to

the background. We call this approach "local-global".
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3.2 Proposed Local-Global Approach

3.2 Proposed Local-Global Approach

In this research, we propose BEVA (Background Extreme Value Analysis) an
algorithm based on the local-global approach in which both the local part and
the global part are novel. The local model that is capable of handling multiple
types of terrain, is composed of a small number of distinct clusters, L (up to 3),

ordered by size, each distributed as a separate Gaussian distribution.

reCy 1<k<L
Ck ~ N(uk,Zk) (31)
C1 2 |Co| = -+ = |C

where | - | denotes set cardinality

In the global part, we reduce the number of degrees of freedom by inter-
relating the independent local background models. Each found local anomaly is
compared to other local background models of a larger image area. If it can be
associated to one of the background clusters, it will be removed from the anomaly

set.

3.2.1 Background cluster hypothesis test

In this subsection we construct an automatic test that isolates pixels belonging
to a specific background cluster in a local image area. It is based on examining
the Mahalanobis distance d = (z — p)"X 7 (z — ) of a pixel x to the mean of a
background cluster, where g and 3 are the mean and covariance of a Gaussian
N(u,X) that approximates this background cluster.

A set of N data-vector indices of a local image area can hypothetically be
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3.2 Proposed Local-Global Approach

divided into two subsets:
B = {indices of realizations of a specific background cluster}
A = {indices of realizations

of other background clusters or anomalies}

Let be n = max;_ ... n(d;), the maximum Mahalanobis distance over this set

obtained at index §. Given 7 and d, we formulate the following hypotheses:

Hy : 6 belongs to B
(3.2)
Hy : 6 belongs to A

Denoting v = max;cp(d;) and £ = max;ca(d;), as the maximum Mahalanobis

distance of subset A and subset B, respectively, n can be expressed as:

n = max(v, &) (3.3)

In order to evaluate the conditional probabilities p(Hy|n) and p(H|n), one
has to specify pdfs f,(-) and fe(-), or, equivalently, cdfs F,(-) and Fg¢(-). While
the probability of v can be determined by Extreme Value Theory results [24], as
shown in Appendix C, the pdf of £ is generally unknown. A possible choice for

fe(+) is therefore,
£~ U[0,n], (3.4)

where U denotes a uniform distribution.
It can be shown (see Appendix D for details) that conditional probabilities

are given by:

p(Holn) = (3.5)

(3.6)
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3.2 Proposed Local-Global Approach

Fig. 3.1 shows the two conditional hypotheses obtained from N = 10,000

pixels of 65 spectral bands:

ast

06 -

04t

02

Figure 3.1: Conditional hypotheses probabilities P(Hy|n) and P(Hi|n)
obtained from N = 10,000 pixels of 65 spectral bands

The crossing point 7 of the two hypotheses, i.e., the Mahalanobis distance
above which P(Hy|n) < P(Hi|n), can be used as a threshold to isolate the back-
ground cluster realizations from other realizations in the data-set. Given a Gaus-
sian statistics N(u,3), which represents a background cluster pdf, a data pixel
having a Mahalanobis distance that is below 7, will be declared as a background

cluster pixel.

3.2.2 Local background modeling

In this subsection we describe in detail how the local background is estimated and
local anomalies found. We develop a greedy sequential algorithm that estimates
the unknown number and statistics of the background clusters. The estimation
process is applied to a local image area composed of N data-vectors. Starting with

the dominant cluster estimation, we initialize two distinct indices sets A° = () and
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3.2 Proposed Local-Global Approach

B°={1: N} and aim to get

B’ = Pixel indices of the dominant background cluster
(3.7)
A’ = Pixels indices of other background clusters or anomalies

By re-initializing B® = A/ and A° = ) , the process is repeated to estimate
a new background cluster in the same local image area. However, the remaining
number of pixels in A/ has to be sufficient to allow correct estimation. Moreover,
if a too small number of pixels remains in Af, we could estimate a Gaussian
pdf that approximates the anomaly class and we will miss anomalies. Thus, an
estimation of a new background cluster is allowed only if the remaining number
of pixels is greater than a threshold value that is usually dictated by the anomaly
supposed size (10% of the block in our test).

Given that the Gaussian statistics of each cluster typically needs to be esti-
mated in the presence of a large number of outliers (other background clusters and
anomalies), we propose a two-stage iterative estimation process that combines ro-
bust estimation of the Gaussian statistics from [22] with the background cluster
hypothesis testing as described in section 3.2.1. The robust estimation process of
the Gaussian statistics gives a full weight to observations assumed to come from
the background process, but reduces the influence to observation from the tails
of the distribution (outliers). The weights calculation and statistics estimation
are computed iteratively. For each iteration, the weigh of a pixel is calculated
using the Mahalanobis distance of this pixel to the Gaussian distribution with
the current estimated statistics. The Gaussian statistics of the next iteration are
obtained by the maximum likelihood estimators weighted by the current iteration
weights.

In the first stage, we obtain an intermediate set B from the set B that is
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3.2 Proposed Local-Global Approach

exclusively composed of pixels of the dominant background cluster.

However, some pixels of the dominant background cluster may have been
wrongly excluded in the previous stage. A second stage is necessary to introduce
the excluded pixels back into B.

The two-stage estimation process is described in detail in Tables 3.1 and 3.2.
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3.2 Proposed Local-Global Approach

Inputs: {z,,} , p - # of spectral bands

Initialization: A° =0, B°={1: N}, " =1,
do=(yP+Vv2)?% v=125and i=0

Main Iteration: Perform the following steps:

1. Robust estimation of Mean and Covariance [22]

Ni _ meeBi w;qu
szEBi w’fn
meeBi (w:n)z(xm - NZ>T(xm - ')

> = :
Yo eni(Wh)? =1

2. Calculation of Mahalanobis distances in B* :
Vi, € B': dy = (2 — p)T (2 e — pb)
3. Update weights [22]

i+l 1 Zf dm < dO

wm
B exp(—0.5(dm — do)?/7?)  if dm > do

4. Update sets:

Find data pixel indices {4’} having Mahalanobis distances that exceed the back-
ground cluster hypothesis threshold value 7¢ which is a function of p, |B?| and ¢, as
explained in Appendix C

{6y = {I(d,, > ™)} (I = Index of value)
Bi+1 _ BZ\_{éL}
A'H—l _ AL U{&z}

5. Stopping rule:
If {§'} = 0, stop. Otherwise increment i and go to 1

OUtPUt: Atmp = Ai? Btmp = Bi7 Htmp = H’l and Ztmp = EZ

Table 3.1: First Stage of a background cluster estimation
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3.2 Proposed Local-Global Approach

Initialization: A° = A B0 = ptmr 0 — ytmr 350 = 53tmp gnd j =0

Main Iteration: Perform the following steps:

1. Calculation of Mahalanobis distances in AJ
me € AJ : dm = ([Bm - H‘J)T(ZJ>_1($W - IJ’J)

2. Update sets:

Find pixel indices {6/} having Mahalanobis distances that are below the back-
ground cluster hypothesis threshold value 77 which is a function of p, |B’| and X7, as
explained in Appendix C

{07} = {1(dm <)}
AT — Aj\{(;j}
Bitl — pi U{(;j}

4. Stopping rule:
If {67} = 0, stop. Otherwise, estimate p/*! and /! using B/*! like in the

first stage, increment 5 by and go to 1

Output: A/ =4/, B =B, p=p?, and ¥ =37

Table 3.2: Second Stage of a background cluster estimation

In summary, by applying a greedy sequential algorithm, the local background
pdf is estimated using a small number of Gaussian pdfs and all the hyperspectral
pixels of the local image area are classified as background or local anomalies. The

block diagram of BEVA’s local part is shown in Fig. 3.2
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3.2 Proposed Local-Global Approach

Initialize:
i=0
=1

A2 ={}
Bl ={14N}

Robust
Statistics
Estimation

#1‘_ , Zi. 5?:

Are there No . | lterative Post | Bf, A/
anomaly indexes? Processing

Stage | Stage Il

Re-initialize
=10
c=c+1
Al = {}
BY = Al |

Background
Hypothesis Test

Remove
Anomaly pixels
Bt = Bi\{6:}
A = ALU{a2}

Increment
iteration

t=t¢+1

|Af| greater
than threshold?

Stop

Figure 3.2: BEVA’s Local Part - Block Diagram

3.2.3 Interrelating local background models

The proposed greedy algorithm for local background estimation allows the use of
several Gaussian pdfs to accurately represent the wealth of the local background
spectrum. However, the many degrees of freedom in the parameter selection can
lead to a high false-alarms rate stemming from overfitting.

We propose here a global filtering approach, which reduces the number of
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3.2 Proposed Local-Global Approach

degrees of freedom by inter-relating the obtained local background pdfs. Given
the anomaly subset A of a local block, we define a larger image area composed
of T blocks around it. All the local anomaly pixel in A are compared to the T
relevant backgrounds (each modeled by up to 3 clusters). For each anomaly pixel
x € A, we find the minimum Mahalanobis distance from it to all the clusters of
the T backgrounds, d = min; ;{(x — p; ;)" (2;;) " "(x — pi )} where i =1,--- . T
and j runs over the number of clusters in block 7. If the minimum Mahalanobis
distance is smaller than the background hypothesis threshold value of the cluster
where the minimum was found , the local anomaly pixel will be removed from
the anomaly set. At the end, A is composed just of global anomalies.

Table 3.3 presents a formal description of the global filter.

Task: Reduce the number of false alarms in a local block anomaly subset A

Loop: For i=1:T
1. Background hypothesis testing on a local block i containing L; background clusters,
\V/.’Em €A7,7217 7Li

Ay = miing { (@m — pig)" (Big) " (@m — pij)}

2. Update sets:
Find data pixel indices having Mahalanobis distances that are below the back-
ground cluster hypothesis threshold value 7; :

{0:} =I(dm <)
A= A\{0:}

Output: A is composed just of global anomalies

Table 3.3: Global Filter
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3.3 Experiments with Real Data

3.3 Experiments with Real Data

In this section we evaluate the performance of the proposed algorithm by applying
it to real hyperspectral data (For a description of the hyperspectral data used,
see Appendix A). We compare the BEVA algorithm to RX [4], GMM-RX |[11]
and MCD [14], in terms of Receiver Operation Characteristic (ROC) curves. For
the experiment, the image was divided into non-overlapping local areas of size
35 x 35 . The global filter was applied using a large image area of size 525 x 300.
The ROC curves are presented in Fig. 3.3 and 3.4
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Figure 3.3: ROC curve BEVA vs. RX, GMM-RX and MCD - Data Set
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Figure 3.4: ROC curve BEVA vs. RX, GMM-RX and MCD - Data Set
II.

For these two data sets of real hyperspectral images, the BEVA algorithm is

seen to have a better performance than the other tested algorithms.

3.4 Summary

In this chapter we presented the BEVA algorithm for anomaly detection that is
based on a local-global statistical background modeling approach. It significantly
reduces the vast number of degrees of freedom of the local method, while retain-
ing the ability of local models to be intimately adjusted to the background. In
the local part, the local background is approximated using a greedy sequential

estimation process that applies a robust estimation of the Gaussian statistics and
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3.4 Summary

background cluster hypothesis testing based on Extreme Value Theory results.
Then, in the global part, the obtained local background models are inter-related
to reduce the number of false alarms. In experiments with real hyperspectral im-
age cubes, BEVA was found to have a better performance than RX [4], GMM-RX
[11] and MCD-based algorithm [14].

In the next chapters, we propose several improvements of both local and global

parts of BEVA.
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Chapter 4

Global Auxiliary Dictionary

In this chapter, we propose to reinforce BEVA’s global filter performance by

adding an auxiliary background dictionary.

4.1 BEVA Global Filter Drawback

BEVA combines a local anomaly detector with a global filter. In the global filter,
for each pixel x of a local block, we define a larger image area composed of T'
blocks around it. x is then compared to the T relevant block backgrounds by
computing the Mahalanobis distances d; ; = (z — ;)7 (X ;)" (@ — p; ;) where
i=1,---,T, and j runs over the number of clusters in block i (up to L;). The
minimum Mahalanobis distance over ¢ and 7 is the final pixel score.

By inter-relating local blocks, we have obtained a global background model
composed of several local background clusters. In other words, pixels are com-
pared to a "dictionary" where each "word" is an estimated local background
cluster. A pixel is declared as an anomaly if it does not fit well any "word" of
the "dictionary".

However, this "dictionary" suffers from a drawback: it is based only on local
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4.2 Auxiliary Dictionary using a GMM Algorithm

background clusters. Spatially dispersed background pixels like rocks in a vegeta-
tion area, wrongly detected in BEVA local part as anomalies, will not be removed
by the global filter since they cannot be associated with any local background

cluster of the larger image area.

4.2 Auxiliary Dictionary using a GMM Algorithm

We overcome the above drawback by adding an auxiliary background dictionary
composed of global background clusters estimated using a global spectral clus-
tering.

In the global clustering, the background process of the whole image is mod-
eled by several clusters, each one distributed as a Gaussian distribution. The
global clustering is initialized by an excessive number of Gaussians using the k-
means algorithm |23] for initializing the Gaussian parameters. Then, we applied
the Expectation-Maximization (EM) [25] algorithm on the initial partition (See
Appendix B).

The EM algorithm estimates the Gaussian statistics p; and 3 of each cluster
k. As an improvement of the EM algorithm, we also remove too small clusters,
and hence unreliable, during the EM iterations. The algorithm converges then to
a local maximum with a smaller number of clusters, P, than in the initialization

step. Each cluster is represented by a Gaussian distribution:

{C,EM, 1<k<P w1)

CEM ~ N(uf™, ZEY)
This dictionary of global background clusters is used in the global filter of
BEVA. The tested pixel x is compared to the T relevant block backgrounds and

also to the P clusters obtained from the global spectral clustering. The final pixel
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4.3 Experiments with Real Data

score d is then given by the minimum distance over all the clusters:

d = ming g e[{(x = pi)" (Bi) 7 x = o)} UA{(x = )T S THx - M)}
(4.2)
where k =1,--- /P, ¢t =1,--- T and j runs over the number of clusters in block

i (up to L;)

4.3 Experiments with Real Data

The improved algorithm was applied to the same two data sets (see Appendix A)
and compared to BEVA performance. The auxiliary dictionary was initialized to
10 clusters for each image of the data sets. The ROC curves are shown in Fig.

4.1 and 4.2.
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Figure 4.2: ROC curve BEVA with the auxiliary dictionary vs. BEVA
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Since there are almost no spatially dispersed background pixels wrongly de-
tected by BEVA in data set I, the two ROC curves are close. However, the
addition of the auxiliary dictionary improves BEVA’s performance for the second
data set of hyperspectral images where a lot of spatially dispersed background

pixels were wrongly detected as anomalies.

4.4 Summary

In this chapter, we proposed an improved version of BEVA: we add an auxiliary
background dictionary composed of global background clusters estimated using
a GMM clustering method. Since this clustering is not influenced by the spatial

configuration of the pixels, it helps to reduce false alarms on spatially dispersed
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4.4 Summary

background pixels which was a source of false alarms in BEVA.
Another improvement of BEVA, denoted "Spectral BEVA" is introduced in

the next chapter.
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Chapter 5

Spectral Clustering for Anomaly

Detection

In this chapter we introduce Spectral BEVA, an improvement of the local part of

BEVA algorithm.

5.1 BEVA’s Local Part Drawback

In BEVA’s local part, the hyperspectral image is partitioned into distinct local
blocks in which the background process is modeled by a small number of clusters,
L (up to 3), ordered by size, each distributed as a separate Gaussian distribution:
xeCy, 1<k<L
Ci ~ N(pe, I'r) (5.1)
|C1] > |Cs] > -+ > |C
The cluster parameters are estimated using a greedy sequential estimation
process that applies robust estimation of the Gaussian statistics and background
cluster hypothesis testing based on Extreme Value Theory results. Starting with
the dominant cluster estimation, this process is repeated until all the background

clusters are estimated.
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5.2 Spectral Clustering

In BEVA’s local part, segmentation of the background clusters and their esti-
mation are combined together in one process that uses the background hypothesis
test develop in section 3.2.1 to determine if a pixel belongs or not to a background
cluster. The background hypothesis test, based on Extreme Value Theory, is not
sensitive enough to give a correct segmentation. In our simulations with real
hyperspectral data, it can be seen that most of the local blocks are segmented
into just one cluster, which by viewing the images is clearly an under-estimation
of the real number of background clusters.

In the next section, we propose an algorithm, denoted Spectral BEVA, which
overcomes this weakness. In Spectral BEVA, each local block is first segmented
using a Spectral Clustering algorithm ([27], [29]). Then, each segment is consid-
ered as a background cluster and its parameters are estimated using a simplified

version of the estimation process in BEVA.

5.2 Spectral Clustering

In recent years, Spectral Clustering (SC) has become one of the most popu-
lar modern clustering algorithms (|27, |28|). It is simple to implement, can be
solved efficiently by standard linear algebra software, and very often outperforms
traditional clustering algorithms such as the k-means algorithm [23]. In this sec-
tion, we present some graph theory concepts that are the basis of SC methods.
Then, we describe in detail the SC algorithm that is used in Spectral BEVA [29]

and show some segmentation results on real hyperspectral images.
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5.2 Spectral Clustering

5.2.1 Graph Theory

Given a set of data points zi,---,2y and some notion of similarity w;; > 0
between all pairs of data points x; and z; , the intuitive goal of clustering is to
partition the data points into several groups such that points in the same group
are similar and points in different groups are dissimilar to each other. If we do
not have more information than similarities between data points, a nice way of
representing the data is in form of the similarity graph G = (V| E). Each vertex
v; € V in this graph represents a data point x;. Two vertices are connected
with an edge e;; € I/, weighted by the similarity w;; between the corresponding
data points z; and x;. Large weights mean that the adjacent vertices are very
similar; small weights imply dissimilarity. In Fig.5.1, an example of a graph with
6 vertices and the similarity between them. The similarities not represented in

this graph are assumed to be equal to zero.

Figure 5.1: Data Representation using Graph Theory
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5.2 Spectral Clustering

The problem of clustering can now be reformulated using the similarity graph:
we want to find a partition of the graph such that the edges between different
groups have very low weights and the edges within a group have high weights. In
other words, given a similarity graph with affinity matrix W = {w, ;}}', a way to
construct a partition {A;, -+, Ac} of the graph is to solve the Normalized Cut
[26] (Ncut) problem. The Ncut is defined as:

o _
Necut(Ay, -+, Ac) = Z M (5.2)

where A is the complement of A

The partition A* = {A],---, A5} that solves the Ncut problem is given by:
A" =ming, .. a,Ncut (5.3)
Here, the cut between two partitions A and B is defined by
cut(A, B) Z W j (5.4)
i€A,jJEB
and the volume of a graph subset A by
N
vol(A) = Z Z (i (5.5)
i€A j=1
The Ncut tries to achieve a minimal cut together with "balanced" clusters, as
measured by the number of vertices weights. Unfortunately, the Ncut problem is
"NP-Hard" and hence intractable. Spectral Clustering used in Spectral BEVA is

based on a standard relaxation procedure that transforms the Ncut problem into

a tractable eigenvector problem [27].
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5.2 Spectral Clustering

5.2.2 Spectral Clustering Algorithm
Given N data points 1, - - - , xy, the spectral clustering (SC) algorithm [27] con-
structs an affinity matrix W € R¥*Y | where

i =l

wij = exp( ) (5.6)

o
reflects the relationships between z; and z;, with o as a user-defined parameter.
The similarity between x; and itself is assumed to be 0. SC uses the similarity
information to group xi,--- ,zy into C clusters.

The algorithm is described in detail in Table 5.1
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5.2 Spectral Clustering

Inputs: {z,,}Y, xm :p x 1, p- # of spectral bands,
Number of clusters C' , o - Scaling parameter

Algorithm: Perform the following steps:
1. Compute the Affinity Matrizc W € RV*N where

i = ayl?

)

wij = exp( 3

2. Compute the Degree Matrix D to be the diagonal matriz with:

N
Dii = w
j=1
3. Compute the Normalized Laplacian Affinity Matriz L:
1 1
L=D:2WD"2
4. Solve the following eigenvalue problem:

Lv = )\v
5. Find the eigenvectors corresponding to the C' largest eigenvalues of L:

V ={v1,va,-+ ,v0} c RVxC

Vij=Vi/ [> V2
\ 5

7. Treat each row of V as a point in RC and cluster via k-means

6. Normalize the rows of V:

8. Assign the original point x; to cluster ¢ if and only if the corresponding row i of
the matriz V' was assigned to cluster c

Output: Each data point x; belongs to one of the C' clusters

Table 5.1:  Spectral Clustering Algorithm [27|
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5.2 Spectral Clustering

In Table 5.1, the scaling parameter o is set a priori by the user. o is some
measure of when two points are considered similar, and it can be difficult to tune.
Moreover, when the input data includes clusters with different local statistics
there may not be a single value of o that works well for all the data. In the
next subsection, we introduce an automatic local scaling parameter as proposed

in [29].

5.2.3 Local Scaling

Zelnik-Manor and Perona proposed in [29] to calculate a local scaling parameter
o; for each data point z; instead of selecting a single scaling parameter o. Using
a specific scaling parameter for each point allows self-tuning of the point-to-point
distances according to the local statistics of the neighborhoods surrounding points

¢ and 7. The affinity between two points is now given by

M = ]l

) (5.7)

w;; = exp( p
i%j

The selection of the local scaling parameter o; is done by studying the local

statistics of the neighborhood of point x;:

i.e., the local scaling parameter o; is the distance from z; to its K'th nearest
neighbor xx. The choice of K is data dependent. A too small K will not rep-
resent well the local statistics of the neighborhood of x;. On the other hand,
segmentation using a too large K would be affected by the presence of outliers
(anomalies). For our data, K between 10 to 50 gives similar segmentation results.

Fig. 5.2, provides a visualization of the effect of the local scaling.
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Figure 5.2: Local Scaling Effect (from [29])

In Fig. 5.2, a cluster resides within a bigger cluster. The affinity between
each point and its surrounding neighbors is indicated by the thickness of the line
connecting them. In the center image, the affinities across clusters are larger than
the affinities within the background cluster leading to a wrong segmentation. In
the right image, the local scaling was applied. The affinities across clusters are
now significantly lower than the affinities within any single cluster, which should

improve the segmentation results.

5.2.4 Segmentation Results for Real Hyperspectral Data

The Spectral Clustering algorithm was applied to real hyperspectral data. The
results with a global scaling parameter o = 0.5 and using local scaling parameters
with K = 20 are shown in Fig. 5.3. The number of clusters is set to 3. As we

can see, the segmentation using local scaling parameters is more accurate.
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5.2 Spectral Clustering

(a) (b) (<)

Figure 5.3: Spectral Clustering Result - Global vs. Local Scaling Pa-
rameter. (a) - Single hyperspectral band. (b) - Spectral Clustering Result with
Global Scaling Parameter. (c¢) Spectral Clustering with Local Scaling Parameter

45



5.3 Anomaly Detection using Spectral BEVA

5.3 Anomaly Detection using Spectral BEVA

In Spectral BEVA, the local block is first segmented into C' clusters using the
Spectral Clustering algorithm proposed in the previous section. The number of
clusters C' is a user-defined parameter. In our experiments, C is set to 3 for a
[35%35] local block. Then, each segment is considered as a background cluster and
its parameters are estimated using a simplified version of the BEVA estimation
process detailed in Table 5.2. In order to estimate the statistics of a cluster ¢ € C,
we initialize two distinct indices sets A2 = @ and B? = {m|z,, € ¢} and aim to

get

B! = Pixel indices of background cluster ¢
(5.9)
AJ = Pixel indices of anomalies

From B/, we also estimate the statistics u/ and X/ of cluster c.
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5.3 Anomaly Detection using Spectral BEVA

Inputs: In = {m|x,, € ¢}, c€ C, x, : [p X 1], p - # of spectral bands

Initialization: A% =0, B =In, =1,

do=(/p+Vv2)? v=125and i=0

Main Iteration: Perform the following steps:

1. Robust estimation of Mean and Covariance [22]

o
i Z:CmEBé Wi Lm

He = ,
’ meeBg Win

si _ 2enen @) (@m — )" (m — i)
) szeBg (wi)? —1

2. Calculation of Mahalanobis distances in B! :
Vg € BL: dn = (@ — pe) " (Z0) 7 (wm — pl)
3. Update weights [22]:

, 1 if dpy <d
w;i,;'_lz ) f m > (0

T exp(—0.5(dp, — do)?/~?) if dpm > dy

m

4. Update sets:

Find data pixel indices {6’} having Mahalanobis distances that exceed the back-
ground cluster hypothesis threshold value 7¢ which is a function of p, |B| and 3¢, as
explained in Appendix C:

{6y ={I(d,, > )} (I = Index of value)
B = BI\(#)
A= 4o

5. Stopping rule:
If {§'} =0 , stop. Otherwise increment i and go to 1

Output: Al = AL, Bl = Bi, pl = pi and ! = 3¢

Table 5.2: Spectral BEVA - Background Parameter Estimation
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5.3 Anomaly Detection using Spectral BEVA

The block diagram of Spectral BEVA’s local part is shown in Fig. 5.4:

Initialize:
L = nb of clusters
=1
Increment
cluster num
Initialize c=c+1
SpeCtra| Clusty, -+~ ,Clusty =0

Clustering A =}
Bl = Clust,

Stop

Robust
Statistics
Estimation

Fory 2y Background

Hypothesis Test

Iterative Post
Processing

anomaly indexes?

Remove

Increment .
iteration Anomaly pixels
i=i+1 B! = Bi\{4:}
At = AL U ez}

Figure 5.4: Spectral BEVA’s Local Part - Block Diagram

Anomalies are then detected using a global filter identical to BEVA with
the auxiliary dictionary. The tested pixel x is compared to T relevant block
backgrounds and also to the P clusters of the auxiliary dictionary obtained from
the global segmentation. The final pixel score d is then given by the minimum

distance over all the clusters:

d = ming j[{(x — pig)" (Zig) 7 (x = i)} UA{Gx = g EY) T x M)
(5.10)

where k =1,--- , P, i=1,---,T and j runs over the C clusters in block 1.
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5.4 Experiments with Real Data

5.4 Experiments with Real Data

In this section we evaluate the performance of Spectral BEVA by applying it to
real hyperspectral data (For a description of the hyperspectral data used, see
Appendix A). We compare it to the BEVA algorithm, in terms of Receiver Op-
eration Characteristic (ROC) curves. For the experiment, the image was divided
into non-overlapping local areas of size 35 x 35 . The global filter was applied
using a large image area of size 525 x 300. Each local area was segmented into
3 clusters with a local scaling parameter K set to 20. An auxiliary dictionary,
initialized to 10 clusters for each image of the data sets, was added to the two

algorithms. The ROC curves are presented in Fig. 5.5 and 5.6

50

:

48

Detected Target Segments out of 50

= = = BEVA + Auxiliary dictionary
Spectral BEVA

36 1 1 1 1 1
10 20 30 40 50
False Alarm Segments

Figure 5.5: ROC curve Spectral BEVA vs. BEVA - Data Set 1.
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Figure 5.6: ROC curve Spectral BEVA vs. BEVA - Data Set II.

For these two data sets of real hyperspectral images, the Spectra BEVA al-
gorithm is seen to have a better performance than the BEVA algorithm for all

probability of detection values.

5.5 Summary

In this chapter, we proposed Spectral BEVA, an improvement of the BEVA algo-
rithm. In the local part of Spectral BEVA, the local background is approximated
using a Spectral Clustering algorithm [27] together with a greedy sequential esti-
mation process based on robust estimation of the Gaussian statistics and Extreme
Value Theory results. The global part is the same as in the BEVA algorithm:

a filter using large image area statistics is applied to reduce the number of false
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5.5 Summary

alarms.

Despite of its good performance, Spectral BEVA suffers from a drawback: The
background process is still approximated with linear Gaussian distributions. In
the next chapter, we propose to overcome this drawback by proposing a non-linear

local-global based algorithm where no Gaussian assumption is made.
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Chapter 6

Non-Gaussian Background

Modeling for Anomaly Detection

6.1 The Gaussian Assumption in BEVA

In the different variations of the BEVA algorithm presented in the previous chap-
ters, the local background model is composed of C' distinct clusters, each ap-
proximated by a separate Gaussian distribution. During the local background
estimation process, the background clusters pixels are discriminated from other
pixels. For this purpose, we developed in section 3.2.1 a background hypothe-
sis test that determines which pixels are belonging to a background cluster. It
is based on examining the Mahalanobis distance d = (v — )X (z — ) of a
realization x to the mean of a background cluster, where g and 3 are the mean
and covariance of a Gaussian Gaussian N(u, ) that approximates this back-
ground cluster. Assuming this Gaussian model, the Mahalanobis distances have
a Chi-squared distribution of order p equal to the number of spectral bands.
Two conditional hypotheses are then obtained using Extreme Value Theory
on a Chi-squared distribution (see appendix C). The crossing point 7 of the two

hypotheses can be used as a threshold to discriminate the background cluster
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6.2 Gamma Fitting for Background Modeling

realizations from other realizations in the local block.

The choice of the Gaussian model is due to its efficient processing and math-
ematically tractability. In fact, it simplifies the derivation of decision rules and
the evaluation of the detectors’ performance. Unfortunately, the Gaussian model
is not sufficiently adequate to represent the statistical behavior of a background
cluster in real hyperspectral images. It has been shown ([31], [32], [33]) that the
Gaussian model fails in its representation of the distribution tails. In particular,
distributions of hyperspectral data have longer tails than the Gaussian pdf. This
is a critical issue in BEVA. Indeed, anomalies are isolated using the Extreme
Value Theory results. Since the Gaussian model underestimates the distribution
tails, it can lead to an excess number of false alarms.

To overcome the limits of the Gaussian model, we propose in the next section
a non-Gaussian version of the BEVA algorithm, named NG-BEVA (Non Gaussian

Background Extreme Value Analysis).

6.2 Gamma Fitting for Background Modeling

In the BEVA algorithm, each background cluster is approximate by a unimodal
Gaussian pdf N(u, ¥) with g and 3 being the mean and covariance, respectively.

The Mahalanobis distances to a background cluster in BEVA,
di = (v, — p)' S (2 — p) with i=1,...,N (6.1)
have then a Chi-squared distribution of order p equal to the number of spectral

bands, denoted by x?(p),

1

- = o ®/2)-1,-u/2 :
= 2P/2F(p/2)u e with © >0 (6.2)

f(u)
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6.2 Gamma Fitting for Background Modeling

where I' is the Gamma function.
In the proposed NG-BEVA, we assume that the Mahalanobis distances have
a Gamma distribution instead of a Chi-squared distribution. The Gamma distri-

bution I'(k, ©) is a two-parameter distribution. Its pdf has the following form:

flu) = @C%(k)ukle“/e with u >0 (6.3)

where O is the scale parameter and k the shape parameter.

The Gamma distribution is more general than the Chi-squared distribution.
In fact, the Chi-squared distribution x?(p) is a special case of the Gamma distri-
bution I'(k, ©), obtained for £ = £ and © = 2.

By using the Gamma distribution, we have relaxed the Gaussian model con-
straint. However, the parameters k£ and © have to be estimated. The maximum
likelihood estimators k and © are given in appendix C.

As in BEVA (see section 3.2.1), the conditional hypotheses probabilities are

given by:

p(Holn) = (6.4)

p(Hiln) = (6.5)

However, f, and F, are now the pdf and cdf, respectively, of the Gamma
distribution with the estimated max-likelihood parameters k and ©.
The two stages of the estimation process are described in more details in Table

6.1 and Table 6.2.
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6.2 Gamma Fitting for Background Modeling

Inputs: {z,,} , p - # of spectral bands

Initialization: A° =0, B°={1: N}, " =1,
do=(yP+Vv2)?% v=125and i=0

Main Iteration: Perform the following steps:

1. Robust estimation of Mean and Covariance |22]

Hi _ meeBi wfnl’m
meGBi w;Ln
meeBi (W;n)2(xm - :“Z)T(xm — ')

»i= :
Yo eni(Wh)? =1

2. Calculation of Mahalanobis distances in B* :
Vi, € B': dy = (2 — p)T (2 e — pb)
3. Update weights [22]

i+l 1 Zf dm < dO

wm
B exp(—0.5(dm — do)?/7?)  if dm > do

4.Gamma Distribution Fitting using Mazimum Likelihood Estimation (Appendix E)
Vi, € B : dy,, — L(k, 07

5. Update sets:

Find data pixel indices {0’} having Mahalanobis distances that exceed the back-
ground cluster hypothesis threshold value 7¢ which is a function of p,|B?|, 2%, k% and
éi

{6} = {I(d,, > ™)} (I = Index of value)
Bi+1 _ Ba\{éz}
Ai+1 _ Ai U{&z}

6. Stopping rule:
If {§'} = 0, stop. Otherwise increment i and go to 1

Output: AP = Al Btmp — Bi_ytmp — i sitmp — 330 fitmp — i gpd @mp = @

Table 6.1: NG-BEVA - First Stage
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6.2 Gamma Fitting for Background Modeling

Initialization: A° = Atmp RO — ptmp 0 — ptmr 30 — wtmp |0 —
k@0 = @'mP gnd j =0

Main Iteration: Perform the following steps:

Vo, € A dy = (2 — ) (Z) o, — 1)

2. Update sets:

Find pixel indices {67} having Mahalanobis distances that are below the back-
ground cluster hypothesis threshold value 7/ which is a function of p, |[B/|, 7, k7 and
oJ

{07} = {I(dm < 7/)}
AitL — Aj\{(gj}
Bitl — pi U{(;j}

4. Stopping rule:

If {07} = 0, stop. Otherwise, estimate p/*! 3+ kit and @711 using BIt!

like in the first stage, increment j by and go to 1

Output: A/ =47, Bf =B/, p=p/, and ¥ =37

Table 6.2: NG-BEVA - Second Stage

The global filter in NG-BEVA is similar to the one proposed in Chapter 4.
The NG-BEVA algorithm can be combined with Spectral Clustering as in

Spectral BEVA. Fig. 6.1 summarizes the complete algorithm that includes im-
provements of Chapter 5 with NG-BEVA, named Spectral NG-BEVA.
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6.3 Experiments with Real Data
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Block diagram of the Local Part of Spectral NG-BEVA

6.3 Experiments with Real Data

In this section we evaluate the performance of Spectral NG-BEVA by applying

it to real hyperspectral data (For a description of the hyperspectral data used,

see Appendix A). We compare it to the Spectral BEVA algorithm, in terms of

Receiver Operation Characteristic (ROC) curves. For the two algorithms, the

image was divided into non-overlapping local areas of size 35 x 35 . The global

filter was applied to a larger image area of size 525 x 300. Each local area was

segmented into 3 clusters with a local scaling parameter K set to 20. An auxiliary

dictionary, initialized to 10 clusters for each image of the data sets, was added to
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6.3 Experiments with Real Data

the two algorithms. The ROC curves are presented in Fig. 6.2 and 6.3
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Figure 6.2: ROC curve Spectral NG-BEVA vs. Spectral BEVA - Data
Set I.
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6.4 Summary
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Figure 6.3: ROC curve Spectral NG-BEVA vs. Spectral BEVA - Data
Set II.

For these two data sets of real hyperspectral images, the Spectra NG-BEVA
algorithm is seen to have a better performance than the Spectral BEVA algorithm

for all probability of detection values.

6.4 Summary

The Gaussian model used in BEVA, although efficient and mathematically tractable,
is not sufficiently adequate to represent real hyperspectral data. In fact, back-
ground cluster distribution in hyperspectral data have heavier tails than the
Gaussian pdf. Since the Gaussian model underestimates the distribution tails,

it can lead to an excess number of false alarms. In this chapter we introduced
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6.4 Summary

NG-BEVA, a non-Gaussian version of BEVA. In NG-BEVA, the Mahalanobis
distances are no longer assumed to have a Chi-squared distribution, which was
derived from the Gaussian assumption. Instead, a Gamma distribution 1"(1;:, é) is
fitted to the Mahalanobis distances. In other words, the local background model
is now more general and can better adjust to real hyperspectral data. In experi-
ments with real hyperspectral image cubes, Spectral NG-BEVA, which combined
Spectral Clustering improvement with NG-BEVA algorithm, was shown to have
a better performance than any of the other tested algorithms in the whole range

of probability of detection values.
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Chapter 7

Conclusion

7.1 Summary

In this thesis we have studied how to detect anomalies in hyperspectral images.
According to the hyperspectral literature, there are two major approaches to back-
ground modeling and anomaly detection. In the first approach, called "local",
the background is modeled by a large number of local independent distributions,
each of which is responsible to represent a different local region in the image.
The second background modeling approach, called "global" is based on a global
representation of the background process in the whole image.

In the second chapter, we focused our attention on two anomaly detection
algorithms based on the local approach (RX |4]) and the global approach (GMM-
RX [11]). These algorithms were implemented and tested on real hyperspectral
data. For our data, the global algorithm GMM-RX performs better than RX.

Local algorithms like RX can approximate the background process by a model
with a large number of degrees of freedom. Due to the many degrees of freedom,
local background models may be tightly fitted to the background process. This

allows obtaining high detection rate of anomalies. Unfortunately, in many cases,
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7.1 Summary

the strength of local models turns into a weakness. This high number of degrees
of freedom may cause model overfitting. Since the number of free parameters in
local background models is proportional to the data size, the overfitting problem
is almost inevitable. A model which over-fits the data will generally produces a
high false-alarm rate.

On the contrary, the global background modeling algorithm GMM-RX is
based on a universal multivariate distribution estimation. GMM-RX is more resis-
tant to the overfitting problem, however, it is subject to an underfitting problem,
which may result in high false alarm rates or/and low anomaly detection rates.

In order to overcome these major drawbacks, we propose in Chapter 3 the
BEVA algorithm that properly combines local and global approaches. BEVA’s
local part consists of a two-stage iterative estimation process that combines ro-
bust estimation of the Gaussian statistics |22] with background cluster hypothesis
testing. BEVA was found to perform better on real hyperspectral data than the
other algorithms we have examined.

In BEVA, we use independent local background models that are interrelated
in the global part. This construction help us to significantly reduce the vast
number of degrees of freedom of the local method, while retaining the ability of
local models to be intimately adjusted to the background. The essence of the
local-global approach is to explore more complex local models that fit better to
the background local disparities even at a price of a high false alarm rate, but
alleviate the false alarm problem by using a global filter.

In Chapter 4, we notice a drawback of BEVA’s global part: Spatially dis-
persed background pixels like rocks in a vegetation area, wrongly detected in
BEVA local’s part as anomalies, may not be removed by the global filer. This

is because they cannot be associated with any local background cluster of the
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7.1 Summary

global image area. A solution was given by adding an auxiliary background dic-
tionary composed of global background clusters estimated using a global spectral
segmentation algorithm. An anomaly pixel detected in BEVA’s local part is now
compared to both the local background clusters of the global image area and to
the auxiliary background dictionary. Since the global segmentation is not influ-
enced by the spatial configuration of the pixels, it helps to reduce false alarms
for spatially dispersed background pixels which was a source of false alarms in
BEVA.

In Chapter 5 we propose the Spectral BEVA algorithm to overcome a draw-
back of BEVA’s local part. In BEVA’s local part, segmentation of the background
clusters and their estimation are combined together in one process that uses a
background hypothesis test to determine if a pixel belongs or not to a background
cluster. This background hypothesis test, based on Extreme Value Theory, is not
sensitive enough to give a correct segmentation. In Spectral BEVA, the local
block is first segmented using an improve Spectral Clustering algorithm (|27,
[29]). Then, each segment is considered as a background cluster and its parame-
ters are estimated using a simplified version of the estimation process in BEVA.

The Gaussian model used in BEVA, although efficient and mathematically
tractable, is not sufficiently adequate to represent real hyperspectral data. In fact,
background cluster distributions in hyperspectral data have heavier tails than the
Gaussian pdf. Since the Gaussian model underestimates the distribution tails, it
can lead to an excess number of false alarms. In order to overcome the Gaussian
assumption, we introduce in Chapter 6 the NG-BEVA algorithm, a non-Gaussian
version of the BEVA algorithm. In NG-BEVA, the Mahalanobis distances are
no longer assumed to have a Chi-squared distribution, which was derived from

the Gaussian assumption. Instead, a Gamma distribution I‘(l%, @) is fitted to the
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7.1 Summary

Mahalanobis distances. Then, a background hypothesis test is applied based on
the Gamma distribution extreme values to detect anomalies.

In Fig. 7.1 and 7.2, the ROC curves of RX, GMM-RX, BEVA and Spectral
NG-BEVA are represented. The Spectral NG-BEVA has the best performance in

the whole range of relevant probability of detection values for the two data sets.
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Figure 7.1: ROC curves of all the examined algorithms - Data Set 1
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Figure 7.2:

ROC curves of all the examined algorithms - Data Set 2

In Fig. 7.3, we compare the computation time of RX, GMM-RX, MCD and the

different BEVA versions. The algorithms were applied to a 350x300 hyperspectral

image of 65 spectral bands. The computer used was an Intel Core 2 duo 2Ghz with

2GB of RAM and all the algorithms were simulated in Matlab® environment.

The algorithms’ parameters were the same as in the previous chapters.
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7.2 Future Work

Algorithms Computation Time
RX 770 s
GMM-RX 27 s
MCD 23 s
BEVA 61 s
BEVA+ Auxilary Dictionary 98 s
Spectral BEVA 413 s
Spectral NG-BEVA 491 s

Figure 7.3: Computation Time (Matlab®)

The different variations of the BEVA algorithm are faster than RX but slower
than GMM-RX and MCD. The Spectral NG-BEVA algorithm has the slower

computation time of all BEVA versions but also gives the best performance.

7.2 Future Work

As discussed in Chapter 6, the Gaussian assumption is not sufficiently adequate
to represent real hyperspectral data. In the NG-BEVA algorithm, a non-Gaussian
version of the BEVA algorithm, a Gamma distribution I'(k, ©) is fitted to the Ma-
halanobis distances allowing to overcome the Gaussian model constraint. Other
algorithms were proposed in hyperspectral literature to remove the GGaussian as-
sumption. For example, Kernel-RX [5] proposed a non-linear version of the RX
algorithm. Detection is made by assuming a Gaussian distribution for the two hy-
potheses Hy and H; in a high-dimensional feature space obtained by a nonlinear
mapping. Modeling the input data in the feature space by a Gaussian distribu-
tion is equivalent to representing the distribution of the input data with a much
more complex model when defined in the original input space. The mapping is

done by applying the "Kernel Trick" on the RX algorithm. The kernel defines
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7.2 Future Work

the distance between pixels in the non-linear feature space. In Spectral BEVA,
the affinity map can also be considered as a kernel that defines distance between
pixels. Therefore, in a future research, one may develop a non-linear local-global
algorithm based on a kernelization using the affinity map obtained by Spectral
Clustering.

In Chapter 5, we have proposed Spectral BEVA, an improvement of the BEVA
algorithm. In the local part of Spectral BEVA, the local background is approx-
imated using a Spectral Clustering algorithm [27]. Despite of its good perfor-
mance, Spectral Clustering suffers from a serious drawback: the number of local
background clusters is fixed and user defined for all the local blocks. The selection
of a proper number of clusters for each local block may be a subject for future
research.

The proposed algorithm BEVA and its variations combine local and global
background modeling for anomaly detection in hyperspectral imaging. Although
BEVA significantly improves detector performance compared to the local and
global approaches, it is not the ultimate answer to completely avoid the overfit-
ting or underfitting problems. Another way to accomplish this is to first reduce
the data dimensionality before applying an anomaly detector. Therefore, a fu-
ture research subject can be the development of an unsupervised algorithm for

dimensionality reduction as a preprocessing stage of the BEVA algorithm.
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Appendix A

Experimental Data

In order to compare the performance of different algorithms developed in this
thesis, we use ROC (Receiver operating characteristic) curves obtained by apply-
ing the different algorithms to two different data sets. The first one ("data set I")
is composed of 5 real hyperspectral image cubes collected at 3 km altitude by an
ATISA airborne sensor configured to 65 spectral bands, uniformly covering VNIR
range of 400nm - 1000nm wavelengths. Pixel resolution corresponds to (0.8m)? .
The total covered area of the 5 cubes is approximately 1.2km?. The second data
set ("data set II") contains 2 real hyperspectral cubes collected at 4 km altitude
by an AISA airborne sensor configured to 47 spectral bands, uniformly covering
VNIR range of 400nm - 1000nm wavelengths. Pixel resolution corresponds to
(1.2m)? . The total covered area of the two cubes is approximately 0.6km?.

The images in the data sets contain ground-truth anomalies, which were man-
ually identified using side information collected from high resolution CCD images
of the corresponding scenes. For the purpose of ROC curves generation, all hy-
perspectral images were used, having a total number of 50 anomalies for data set
I and 35 anomalies for data set IT (vehicles, small agriculture facilities and small

plastic containers). Anomalies in data set IT are smaller (some of them are sub-

73



pixel anomalies) and are partially shaded compared to "data set I" anomalies.
Thus their detection is more difficult.

In Fig. A.1 and A.2, one can see a false RGB representation of hyperspectral
cubes used in this research. The false RGB image was obtained by combining
three spectral bands each corresponding to the blue, green and red colors (bands
8, 18 and 27 corresponding to 461nm, 552nm and 637nm respectively). The first
hyperspectral cube (Fig. A.1) is of size 900 x 400 x 65 , the second (Fig. A.2) is of
size 300 x 400 x 65 where 65 is the number of spectral bands. The ground truth

(in red) is composed of 16 and 11 anomalies, respectively.

Figure A.1: Hyperspectral false RGB representation - cube 1.
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Figure A.2: Hyperspectral false RGB representation - cube 2.
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In Fig. A.3, we show one of the CCD images used for identifying the ground-

truth anomalies.

Figure A.3: High resolution CCD image of the analyzed scene, used as a

ground-truth indication The ground-truth anomalies are encircled by red ellipses.
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Appendix B

GMM Parameters Estimation

GMM parameters can be estimated using a hard clustering version of the Expectation-
Maximization (EM) algorithm ([18],[19]).

The EM algorithm is used for finding maximum likelihood estimates of pa-
rameters in probabilistic models, where the model depends on unobserved latent
variables. In our case, we associate an unobserved vector z; for each pixel vector
x;. z; is of length J, the number of background clusters, and its components are
all zero except for one at index j indicating that x; is belonging to cluster j.

The hard clustering version of the EM algorithm for GMM iterates between
performing an expectation (E) step and a maximization (M) step. In the E step
of iteration ¢, we compute an expectation of the likelihood with respect to the

current estimated parameters ®. The likelihood L is given as

N J
L(x,2,0") = [[D_zfi(xi,0/) (B.1)
i=1 j=1
where f; is a Gaussian distribution with parameters @;‘1 and @1 = {@3_1}*{
The unobserved vectors z! at iteration ¢ are estimated from the data by the

t—1

Bayes theorem with the Gaussian parameters p'~! and X!~! of the previous
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iteration as follow (hard clustering case)

. (B.2)

QL if g =argming(xi — pgT) T (ET) Tk - )
0, otherwise

In the M step, we compute the parameters which maximize the likelihood

found in the E step. The maximization is given as
©' = argmazre »+L(O|O"! 2" (B.3)

In GMM, the parameters u' and X of each cluster j obtained at the M step
are
N

¢ > im1 Zf,jxi

- N
Zizl Zf]

N

s _ Di1 Zf,j (x; — ”’pT(XZ’ — /‘Lé)

N
’ Zi:l Zf]

These parameters are then used to determine the distribution of the unob-

(B.4)

served variables z; in the next E step.

The initial partitioning of the data has a crucial importance on the output of
the EM stage, as EM will converge to a local maximum in the neighborhood of
the starting point. K-means clustering is usually used as an initialization of z;;.

An outline of the hard clustering version of the EM algorithm is given in the

table B.1.
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Initialization: Zj is the output of a K-Means clustering. Iteration index:
t=1

Main iteration: Repeat:

1. M-Step Maximize given 25]71

N
~t __ ~t—1
n; Zij
=1
N
~t—1_ .
Zij X;
~t _ i=1 B
l’l’] - ﬁt ( 5)
J

2. E-Step Compute zAf-j given the parameter estimates from the M-Step

i (B.6)

. )1, if j= argming(x; — uz_l)T(Zz_l)*l(xi - ,u,z._l)
0, otherwise

3. Stopping rule:

If the lo-norm of the representation error converges to a value smaller than a defined
threshold T', stop. Otherwise increment 7 and go to 1

Output: Zzj; = zj;, u; = p; and ij = 2;

Table B.1: Hard-Clustering EM algorithm for Gaussian Distribution
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Appendix C

Distribution of maximum-norm

(zaussian realizations

In this appendix we characterize the pdf f,(-) of section 3.2.1. We assume that
the background cluster of N pixels is approximated by a Gaussian with mean u

and covariance 3. Then, the Mahalanobis distances
d; = (z; — p) 57 s — ) (C.1)

1 =1,..., N, have a Chi-squared distribution of order p equal to the number of

spectral bands, denoted by x*(p),

1

= =, Ww/2)1mu/2 C.2
STENTET R (©2)

f(u)

where I' is the Gamma function.
For large p, the Central Limit Theorem can be used to obtain the following

approximation:

d; ~ x*(p) = N (p, 2p) . (C.3)
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Now, the limiting distribution of v, which satisfies

can be obtained using the following Extreme Value Theory result [24]:

Theorem 1
If {d;}Y.| is i.i.d., with absolutely continuous distribution F(x) and density
f(z), and letting

(i) h(z) = f(z)/(1 - F(z))
(i) by = F~1(1 — 1)

N
. 7. dh(z)
(vi) w=limg_px=7,

where x* is the upper end-point of F,

then, for My = max{(...(n},

P(CLN(MN — bN> S U) —

N—oo
exp(—e™), if w=o00
p(—e™) f ©5)
exp{—[1+ 2]“},if w < o0
The proof is found in [24].
In words: Theorem 1 says that the maximum of N i.i.d random variables
has a limiting distribution that depends on w - a parameter derived from their
individual distributions. For the purpose of the present work, we consider normal

and chi-squared distributions, which lead to w = oc.

Therefore, from (C.5), the limiting distribution of interest is

G(u) £ exp(—e™), (C.6)
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also known as the Gumbel distribution. The mean and std of a variable dis-
tributed as (C.6) are n = 0.5772 and v = 1.6450, respectively. The normalizing
coefficients an and by are also functions of the (; distribution. Theorem 1 also
describes how to calculate the normalizing coefficients given the distribution func-

tion of d;.
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Appendix D

Derivation of conditional hypothesis

probabilities

In the following, we derive the conditional probabilities p(Hy|n) and p(Hi|n) in
(6.4) and (6.5), based on pdfs f, and fe:

f(Ho,n) = folmp(§ <n) =
f(Hy,m) = fe

fom) = f(Ho,m)+ f(Hi,n) =

% nfo(n) + Fu(n)],

_ fomEem)  nfu(n)
P = TG T wh) + B
() = JEEm) Fo(n)

fa) o) + Eu(n)’

which are the expressions shown in (6.4) and (6.5).
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Appendix E

Maximum Likelihood Estimation of

Gamma Distribution

In the following, we derive Maximum Likelihood estimators k and © of the

Gamma distribution I'(k, ©), with the following pdf:

1
f(U) = mu’“_le_“/@ with u Z 0 (El)
The likelihood function for N iid observations (xy,- - ,zy) is
N

=1

from which we calculate the log-likelihood function

1(k,©) = (k= 1) ) In(x Z % — NEIn(©) — Nin['(k)  (E.3)

Finding the maximum with respect to © by taking the derivatives and setting it

equal to zero gives the maximum likelihood estimator for the © parameter:

. 1 &
o= —NZ: (B.4)
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Substituting this into the log-likelihood function gives

I(k) = (k—1) XN: In(z;) — Nk — Nkln(%]\mfi) — NinT'(k) (E.5)

=1

Finding the maximum with respect to k by taking the derivative and equating it

to zero yields

where ¢ (k) = .

There is no closed-form solution for k. An initial value of k can be found by

using the approximation

N3—s+\/(5—3)2+24s
- 12s

k

where s = In(+ SN @) - * SV In ().
The value of k can be obtained by an iteration process using this initial guess.
The iteration update, proposed by Choi and Wette |34], has the following expres-

sion:

(E.8)
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