
SHOW-THROUGH CANCELLATION IN SCANNED IMAGES USING BLIND SOURCE
SEPARATION TECHNIQUES

Boaz Ophir ∗ and David Malah

Department of Electrical Engineering
Technion - Israel Institute of Technology

email: boazo@il.ibm.com; malah@ee.technion.ac.il

ABSTRACT

Show-Through is a common occurrence when scanning du-
plex printed documents. The back-side printing shows through
the paper, contaminating the front side image. Previous work
modeled the problem as a non-linear convolutive mixture of
images and offered solutions based on decorrelation. In this
work we propose a cleaning process based on a Blind Source
Separation approach. We define a cost function incorporating
the non-linear mixing model in a mean-squared error term,
along with a regularization term based on Total-Variation. We
propose a location dependent regularization tradeoff, preserv-
ing image edges while removing show-through edges. The
images and mixing parameters are estimated using an alter-
nating minimization process, with each stage using only con-
vex optimization methods. The resulting images exhibit sig-
nificantly lower show-through, both visibly and in objective
measures.

Index Terms— Image Separation, Scanned Images, BSS,
Total-Variation, ICM

1. INTRODUCTION

Cross talk (or show-through) interference is a common occur-
rence when scanning duplex printed documents. The back-
side printing shows through the paper thus contaminating the
front side image. The same occurs when scanning the reverse
side of the page. This may not be a problem in low quality
scans (as done in home/office scanners) where, up to a de-
gree, image quality is not an issue. The matter becomes cru-
cial when the show-through effect is significant due to the use
of very thin paper or when image quality is essential. Such
is the case when creating a master copy in the digital printing
industry.

Previous work [1] focused on analyzing the process that
causes the phenomena, tracking the passage of light in the
scanner mechanism as it passes through the document (see
Fig. 1), creating a physical model for it and trying to linearize

∗B. Ophir is a research staff member at the IBM Haifa Research Lab.

Back-Side Print


Front-Side Print


Paper


Scanner Backing


Lamp

Sensor


Fig. 1. Passage of light through a duplex printed document.

it. Thus, the show-through problem can be modelled as a lin-
ear convolutive mixture of non-linear transformations of the
desired images.

In [1], and in our previous work [2], the cleaning process,
based on the developed model, applies Least-Squares adap-
tive filtering techniques to estimate the point spread function
and clean the front-side image, using the back-side image as
a reference noise signal, and vice versa.

In our current work we approach the problem as a Blind
Source Separation (BSS) problem, simultaneously estimating
the images and mixing parameters. Our image separation pro-
cess is based on the minimization of a cost functional. We
combine a Mean Squared Error fidelity term, incorporating
the non-linear mixing model, and Total-Variation (TV) regu-
larization terms, applied separately to each image. A novel
location dependent weighting scheme insures simultaneous
true edge preservation while reducing show-through induced
edges. Optimization is done alternatingly on the images and
on the mixing parameters. This allows us to use only con-
vex optimization techniques. Applying the ICM optimization
method [3] further simplifies the process.

The resulting images exhibit significantly lower show-
through both, visibly and in objective measures such as cross-
correlation and mutual information.

2. COST FUNCTION

We denote by X the measured mixed images, by Y the esti-
mated separated images, and by H the estimated mixing op-
erator:

H =
[

1 h1 ∗ f(·)
h2 ∗ f(·) 1

]
, (1)



where hi are point-spread functions modeling the diffraction
of light as it passes through the paper, and f(·) a known non-
linear transformation [1, 2]. The determination of Y and H
becomes a minimization problem, as follows:

(Ŷ, Ĥ) = arg min
Y,H

‖ H(Y)−X ‖22 +λ TV(Y), (2)

where TV(Y) denotes the total variation operator:

TV (s) ≡
∫
|∇s|dxdy ≡

∫ √
s2

x + s2
ydxdy, (3)

where sx and sy denote the image derivatives in the x and
y axes, respectively. The term λ determines the tradeoff be-
tween fidelity and regularization. In the BSS framework the
underlying assumption of the independence of the mixed im-
ages allows us to decompose the regularization term into a
sum of two independent terms, one for each image:

TV (Y) = TV (y1) + TV (y2) (4)

The TV measure has the advantage of being both convex and
edge preserving. This approach has been found to be espe-
cially good in preserving sharp edges while not penalizing
smooth images [4].

We use the following discretization of (4), as proposed in
[5], where the gradient field is computed on points in between
pixel locations, at half pixel horizontal/vertical shifts:

TV (s) =
1
2
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(5)

Additional penalty terms can be added to the cost func-
tional, incorporating additional prior knowledge.

2.1. Location Dependent λ for Image Separation

An important issue is the tradeoff between the relative strengths
of the fidelity term and the regularization term, determined by
the parameter λ. This is particularly true in image processing
applications. In [5] Strong et al propose using a varying, lo-
cation dependent, weight term, for the purpose of image de-
noising. Under their scheme, a high weight is assigned to the
regularization term in smooth image areas, and a low one at
image edges.

Thus, strong denoising can be achieved while simultane-
ously preserving image edges.

Since we are dealing with an image separation scenario,
the tradeoff term λ can be set separately for each image. Fur-
thermore, in this scenario additional considerations need to be

taken in determining the location dependent tradeoff, since
the interference component in each image is itself derived
from the second image. Thus the interference itself contains
edges that we want to overcome in the total variation mini-
mization process. We therefore want to recognize these inter-
ference edges (as opposed to the desired edges). We assign
a high weight to the regularization term in these regions thus
smoothing them out. At true image edges we will choose a
low value of λ so as to preserve the edge. In addition, since
the backside image is slightly blurred, the back-side edges af-
fect not only the front-side pixels at their exact location, but
also pixels in their vicinity.

Based on these guidelines we propose the following weight-
ing scheme that uses both front and back-side reconstructed
images y1 and y2. Two weight maps λ1 and λ2 are created
each with components in the x and y directions. The x com-
ponent is applied to the first part of (5) and the y component
to the second.

If |y2x(i, j)| < c ∗ |y1x(i, j)| :

λ1
x(i, j) =

1
|y1x(i, j)| (6)

else (edge is a result of show-through):

λ1
x(i, j) = |y2x(i, j)|, (7)

where y1x and y2x denote gradient images (in the x direction),
dilated by a small structuring image (such as 3 × 3). The
purpose of the gray-scale dilation is to insure that the edge
pixels affect not only their exact location, but their immediate
vicinity as well. c is an estimated attenuation factor. We found
that setting c to values in the range of 5-10 proved adequate
in our examples.

The y component of the weight maps is set similarly using
the y direction component of the gradient. The weight map
for the reverse side image is created in a similar manner.

Fig. 2 depicts an example of the horizontal weighting
maps (λx). Notice the low (dark) values along edges with
vertical components, such as along the edges of the letters
”i” and ”n” in the front-side image (b). Notice however, that
the show-through edges do not have the same effect. Areas
affected by show-through, as well as smooth areas, all have
relatively higher (brighter) values, as can be seen in (d).

Recalculating the weighting maps during the optimization
process serves to further reinforce the show-through removal.
As the show-through edge is gradually removed, λ at the edge
will increase (since it is inversely proportional to the show-
through edge strength), thus reinforcing the removal.

3. OPTIMIZATION FRAMEWORK

The minimization process (2) in the joint solution space {Y,H}
is a very difficult problem. The optimization problem is both
non-linear and non-convex in the joint solution space, requir-
ing specialized optimization tools. Therefore, we do not solve
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Fig. 2. Weighting maps example.

the problem directly. Instead, we approach the joint MAP es-
timation by an alternating minimization scheme. This popu-
lar complexity reduction approach consists of iterative alter-
nating estimation steps with respect to the different sets of
variables.

The optimization process we use consists of alternating
minimization stages in Y - the recovered images while keep-
ing the mixing parameters constant, and H - the convolutive
mixing parameters, while keeping the images constant.

Ŷ = arg min
Y
{‖ H(Y)−X ‖22 +λTV {Y}} (8)

Ĥ = arg min
H
{‖ H(Y)−X ‖22} (9)

Although the cost function is non-convex in the joint space
{Y,H}, by choosing a convex regularization term, such as
TV, the cost function becomes convex in both Y and H sepa-
rately. The Y minimization stage (8) is clearly convex as both
the MSE term and the TV term are each convex in Y . The H
minimization stage (9) is also clearly convex in H.

Thus, each optimization stage uses only simple convex
optimization techniques. This is in contrast to [6] where the
use of non-convex MRF regularization functionals requires
the use of specially tailored non-convex optimization tools.

While this reduction makes the optimization more feasi-
ble, the optimization process is still burdensome. The Y op-
timization stage is especially problematic. The large number
of interrelated variables (all the pixels in both images) poise a
computational challenge.

3.1. Y Minimization - Iterated Conditional Modes

As explained above, the many dependent variables (all the im-
age pixels for both front and back sides) cause the image es-

timation stage to be cumbersome. Furthermore, image mod-
els, such as MRFs, assume certain local image characteristics,
while a global optimization process may induce undesirable
large scale properties of the random field. To solve these prob-
lems Besag [3] offers the Iterated Conditional Modes (ICM)
algorithm, an iterative method for image reconstruction that
does not depend on large scale characteristics.

In the ICM method, pixel locations are visited sequen-
tially. At each step the pixel value is updated as to mini-
mize the image cost, with all other pixel values held constant.
When applied sequentially to all the pixels, this procedure de-
fines a single cycle of the algorithm. Typically, convergence
occurs after only a few such iterations to a local image prob-
ability maximum.

Applying this method to the image separation problem,
each location consists of a pixel pair (front and back side pix-
els at that location) to be changed.

An advantage of this method is that during each pixel op-
timization we need not calculate the complete cost function.
Instead, due to the local nature of the pixel relations, we need
to apply minimization only to the parts of the cost function
that are affected by the current location.

3.2. H minimization

The H optimization step is much simpler due to the smaller
number of variables. Given no prior knowledge on the mix-
ing parameters this problem becomes a Least-Squares prob-
lem minimizing only the fidelity term (9). Using all pixel
information (the whole two images) may hinder the solution
as many non-informative pixels introduce noise to the pro-
cess. We want to evaluate the PSFs by only using locations
with single-side activity. An active pixel is one with signifi-
cant print in it’s vicinity. This is determined by comparing the
minimum value of neighboring pixels to a certain threshold,
which is dependent on the brightness of unprinted paper [2].
A binary activity mask, M , is incorporated in the fidelity term
so that only the relevant pixels contribute to the cost function.

As in [2] we use a cascaded approach starting with small
PSF support and increasing the support in latter iterations.

4. PROPOSED ALGORITHM

To summarize, the proposed algorithm is:

1. Initialize Y = X and H =
[

1 ε
ε 1

]
, ε ∼ 0.1

2. Alternating minimization stage:

(a) Y optimization:

i. Compute tradeoff maps λ1,2(m,n)
ii. ICM iterations until convergence - each itera-

tion includes two scans: forward and reverse.



For each pixel location minimize:

{ŷ1(m,n), ŷ2(m,n)} =

arg min
y1,2(m,n)

{‖ H(Y)−X ‖22 +λTV {Y}}(m,n)

Minimization is done by a line-search pro-
cess and is done only on the elements of the
cost function dependent on location (m,n).

(b) H optimization:

i. Compute activity masks M

ii. Least-Squares minimization:

Ĥ = arg min
H
{‖ M(H(Y)−X) ‖22}

Alternate repeatedly between stages 2a and 2b until con-
vergence (or for a predetermined number of iterations).

3. Repeat stage 2 with a larger PSF support. This can be
done several times with predetermined support for each
iteration.

An additional penalty term can be added to the Y mini-
mization stage, penalizing pixel values brighter than the local
background brightness, as computed in [2].

5. RESULTS

The original scanned images are shown in Fig. 3. We can
get a feel of the amount of show-through by measuring the
similarity of the front and back side images. The measures for
these images are Normalized Cross Correlation XC = 0.323
and Mutual Information MI = 0.153.

We ran 4 alternating minimization stages. Each ICM stage
took 3-5 iterations. Filter support of 1×1 was used in the first
stage and 5×5 in the latter stages. The algorithm’s results are
shown in Fig. 4. A significant reduction in show-through is
clearly seen. After cleaning, the similarity measures are XC
= 0.056 and MI = 0.129. Still, it should be mentioned that
these objective measures are limited in describing the show-
through effect, as in our experiments we didn’t find sufficient
match between image quality and the degree of improvement
in the measures.

6. CONCLUSION

In this article we showed how the BSS framework can be used
for separating complicated image mixtures as demonstrated
in the considered show-through problem, where the scanned
images are a non-linear convolutive mixture of images. We
use Total-Variation regularization coupled with a novel loca-
tion dependent scheme for setting the trade-off terms. We
thus achieve good edge preservation, while avoiding the use
non-convex functions and optimization methods. Applying

(a) Front (b) Back

Fig. 3. Scanned images.

(a) Front (b) Back

Fig. 4. Cleaned images.

the ICM optimization method further simplifies the process.
The combination of all these methods is found to give good
show-through cancellation.
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