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Abstract

Show-Through interference is a common occurrence when scanning duplex printed

documents. The back-side printing shows through the paper thus contaminating the

front side image. The same occurs when scanning the reverse side of the page. This

is not a problem in low quality scans (as done in home/office scanners) where, up to a

degree, image quality is not an issue. The matter becomes crucial when image quality

is essential. Such a case is when creating a master copy in the digital printing industry.

Previous work focused on analyzing the process that causes the phenomenon,

tracking the passage of light in the scanner mechanism as it passes through the doc-

ument. Obviously, any such model includes a point spread function modelling the

scattering effect caused to the light as it passes through the paper blurring the back-

side Show-Through. It was shown that the process can be modelled as non-linear

convolutive mixture of the desired images.

In this work we present two algorithms for removing the Show-Through.

The first algorithm, improving on earlier work, attempts to alleviate the problem

via an adaptive decorrelation process. A cascaded multi-stage filtering scheme min-

imizes the image correlation. The algorithm adapts to local brightness variations,

estimating local background brightness through a mean-shift process. The effects of

the cross interference, in the reference signals, are minimized by an additional post

1
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processing adaptive filtering stage.

The second algorithm treats the problem as a Blind Source Separation (BSS) prob-

lem, simultaneously estimating the images and mixing parameters. Image separation

is achieved via an alternating minimization process, minimizing a cost functional com-

bined of a Mean Squared Error fidelity term and Total-Variation (TV) regularization

terms. The fidelity/regularization tradeoff is set by a location dependent scheme

aiming to preserve image edges while removing unwanted show-through edges. Op-

timization is done via the Iterated Conditional Modes (ICM) method thus avoiding

large scale optimization.

The decorrelation based algorithm achieves good results on a wide range of images

at relatively low computational cost. The BSS algorithm also achieves good image

separation, but at a much higher computational cost. Nevertheless, we believe that

the BSS approach holds much promise for future development.
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Chapter 1

Introduction

1.1 The Show-Through Problem

Show-through interference is a common occurrence when scanning duplex printed

documents. The back-side printing shows through the paper, thus contaminating

the front side scan. This is not considered a problem in low quality scans (as done

in home/office scanners) where, up to a degree, image quality is not an issue. The

matter becomes crucial when image quality is essential. Such a case is when creating

a master copy, in the digital printing industry. The problem is akin to the Cross Talk

problem in multi-channel communication systems.

A naive approach to solving this problem is by thresholding, but this only works

with scans of ”simple” documents, such as scans of documents that contain only text

(basically, binary images) as shown in Fig.1.1. When the document is more complex,

such as a true grayscale image as shown in Fig.1.2, this approach fails.

Detailed analysis of the phenomenon (Chapter 2) reveals that show-through is

the result of a complex process including non-linear effects and spatial dependency

(convolution).

5
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(a) Front (b) Back

Figure 1.1: Example scans of binary documents.

(a) Front (b) Back

Figure 1.2: Example scans of true grayscale documents.

1.2 Previous Work

While the Show-Through effects may in some cases be partially reduced through stan-

dard image de-noising techniques, recovery of a show-through corrected image cannot

be accurately done using only a single side scan, because it is not possible to reli-

ably distinguish between low-contrast printing on the front-side and the low-contrast

show-through from the back-side.

Thus, Show-Through removal requires using scans of both sides of the paper.

The first to suggest such an approach was Knox [22, 23]. However, the solution
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proposed is overly simplistic. The mixing model described is linear point-wise, and

more importantly, no practical method for estimating the mixing parameters is given.

The only comprehensive work regarding Show-Through was done by Sharma [37].

The main contribution of Sharma’s work is in the physical modelling of the problem

and the partial linearization of it. We describe this model in detail in Chapter 2.

Since very few works deal specifically with the problem of Show-Through, our re-

view covers works on the more general subject of signal/image separation or cleaning.

Due to the complexity of the mixing model in the Show-Through scenario, most of

these techniques are not directly applicable to our problem however we borrow ideas

from them in our work.

1.2.1 Image Separation

The category of works, most closely related to the Show-Through problem, is that of

separating mixtures of images. Many of these works are in the context of separating

semi-reflections, a common occurrence in photography.

In [35] a solution is sought for the reflection separation problem that minimizes the

structural correlations between the images. Minimization is done at varying scales us-

ing normalized gray-scale correlation as the measure of similarity. The mixing process

is assumed to be pointwise linear. While promising at first, we found this method to

be unapplicable and difficult to scale to convolutive mixtures.

Independent Component Analysis (ICA) techniques, using high-order statistics,

have also been used for separation of reflections [16, 9]. These works use different

polarizations to get linear pointwise image mixtures. The algorithm in [16] uses
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graphical techniques, and [9] uses a sparsity prior, to achieve image separation. Nei-

ther of these methods can be readily scaled to non-linear convolutive mixtures.

In [36] focus cues are used. In this scenario, a convolutive mixture model is used.

Each mixture contains one in focus image layer, and one out of focus layer. The sep-

aration criterion is Mutual Information, however minimization is done via exhaustive

search, thus making it impractical.

In [24, 25] reflection separation is performed on a single image. The image mixture

is assumed to be pointwise linear and fixed throughout the image. The algorithms

assume statistic priors on the image and use a-priori information about the scene. In

[24] human interaction is critical since the algorithm heavily depends on an ”oracle”.

The algorithm in [25] suffers from high non-linearity of the cost function and conver-

gence to the correct solution is not assured.

Other approaches include algorithms using motion cues [15] or stereo photography

[44] to separate the images. These methods require images to be taken from different

points of view (or different time), which is not relevant in our scenario.

In [40, 41, 17] a Maximum Likelihood (ML) approach is taken to separate linear

pointwise image mixtures. Markov Random Field (MRF) models are used as image

priors, requiring computational heavy non-convex optimization methods to be used.

In [42] an attempt is made to generalize this approach to convolutive mixtures, how-

ever, the large number of variables makes this approach impractical for real world

applications.
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1.2.2 Related Problems

A more general category of works deal with multi-channel systems. Specifically our

interest is in convolutive systems.

The prevalent approach in signal processing today falls under the heading of In-

dependent Component Analysis (ICA) [1]. ICA signal separation techniques attempt

to achieve statistical independence of the output signals. These methods typically

use the Mutual Information (MI) measure or high order statistics as the separation

criteria.

In order to calculate the MI, the signal entropies need to be calculated. A popular

approach is to estimate entropies using simple parametric models of the PDF [6, 43].

The use of simple parametric models reduces the complexity of the problem but may

lead to inaccurate solutions.

Many Blind Source Separation (BSS) algorithms approximate the MI criteria with

high order statistics. Second order statistics are used in [46, 29] and forth order sta-

tistics in [48, 49, 39, 14]. We tested such an approach, cancelling 4th-order output

cross cumulants, and found the results unimpressive.

A different approach, related to MI, uses maximum likelihood / maximum a-priori

(ML/MAP) estimation [30, 32, 31, 27]. In this approach the separated sources are

optimized to best fit the statistical model, and the quality of the results depends on

the accuracy of the model.

Many of these works, dealing with one dimensional signals, make assumptions

regarding the signals that are not relevant to images. Specifically, a popular assump-

tion is that the signals are i.i.d.. Algorithms relying on this assumption many times
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whiten the output signals thus corrupting the results severely.

A closely related problem to the convolutive mixture problem, is the blind decon-

volution problem. We mention here just a handful of select works that influenced

our work. In [10] a sparsity prior is used for deconvolution, while [11, 21] use Total-

Variation and [4, 18] use MRFs.

1.3 Proposed Approach

We treat the show-through problem as an Image Separation problem, where neither

desired images nor mixing parameters are known. Our inputs are two grayscale im-

ages created by scanning both the front and back sides of a duplex printed page. Each

scan is obviously contaminated by the reverse side.

We assume no prior knowledge about either the contents of the scanned docu-

ment or of the physical attributes of the paper and ink. We assume the scans are

made using a standard flatbed scanner and have no specific knowledge of the scanner

mechanism or characteristics. The only assumption is that the images are aligned

(registered) in advance. Image registration is itself not a trivial problem. In this

work the images were registered manually.

Our goal is to generate two images, cleaned of show-through effects, as near as

possible to the images that would be generated by scans of the same pages (front and

back) if they were printed on a single side.

For this propose we developed two Show-Through removal algorithms. The first

algorithm is based on the decorrelation criterion, improving on Sharma’s algorithm.

The second algorithm we developed uses a ML/MAP BSS approach. The algorithm
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uses Total-Variation image priors and gradient based optimization techniques.

1.4 Thesis Outline

In Chapter 2 we formalize the show-through problem as an image mixture problem

and present a physical model for the phenomenon.

In Chapter 3 we give a an outline of Decorrelation models for signal separation. In

Chapter 4 we analyze Sharma’s decorrelation-based algorithm, propose an improved

decorrelation-based Show-Through removal algorithm, and present simulation results.

In Chapter 5 we formulate the Show-Through problem as a BSS minimization

problem, minimizing energy functionals based on Maximum-a-Priori models. In

Chapter 6 we present a minimization algorithm for Show-Through removal and present

simulation results.

In Chapter 7 we summarize the work and provide suggestions for future work.





Chapter 2

Modelling Show-Through as an

Image Mixture Problem

In this chapter we will show how the show-through phenomenon in scans of duplex

printed images can be expressed as a non-linear convolutive mixture of images.

In order to facilitate understanding we first formalize the different types of image

mixtures, give a brief overview of how print and scanners work, and then present a

physical model of the show-through phenomena.

2.1 Image Mixtures

2.1.1 Pointwise Mixtures

The simplest image mixtures are pointwise mixtures, analogous to instantaneous mix-

tures in one dimensional signals. the mixtures xf and xb (front and back side images

respectively), are mixed so that each pixel value at location (i, j) is a combination of

the values at the same location of the original images sf and sb.

A linear pointwise mixture can be expressed as:

13
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xf (i, j) = h11sf (i, j) + h12sb(i, j)

xb(i, j) = h21sf (i, j) + h22sb(i, j)
, (2.1)

where the h’s are scalar mixing coefficients.

Defining the mixing matrix H:

H =




h11 h12

h21 h22


 , (2.2)

allows us to write (2.1) in compact form:

X = HS , (2.3)

where X is a row stack matrix of the mixtures, and S of the sources. For M ×N

pixel images, these matrices have dimensions of 2 × (MN).

2.1.2 Convolutive Mixtures

A more realistic scenario in the case of images is that of convolutive mixtures. In this

case the sources are also blurred in the mixing process. Thus the mixing matrix’s

scalar coefficients need to be replaced by blur kernels, and the matrix multiplication

by convolution. The mixture becomes:

xf (i, j) = (h11 ∗ sf )(i, j) + (h12 ∗ sb)(i, j)

xb(i, j) = (h21 ∗ sf )(i, j) + (h22 ∗ sb)(i, j)
. (2.4)

In a typical scenario, each mixture contains two source images, only one of which

is blurred, i.e.:

h11(i, j) = h11δ(i, j)

h22(i, j) = h22δ(i, j)
, (2.5)
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where δ is the Kronecker delta function.

The mixing operation can no longer be expressed simply as a matrix multiplica-

tion, however, for simplicity of notation, we define a mixing operator H such that:

X = H(S) , (2.6)

In the linear pointwise case, the mixing operator H is simply the matrix H mul-

tiplied by S.

2.1.3 Non-Linear Mixtures

The most general scenario is one where the source signals are also non-linearly trans-

formed during the mixing process. Obviously, this severely complicates the un-mixing

process, especially when the non-linear functions are unknown. We do not presume

to deal with the general non-linear mixture problem. However, we do consider the

case where the non-linear function is known, as the show-through process, as will be

shown in the following sections, can be modelled as:

xf (i, j) = h11sf (i, j) + (h12 ∗ f(sb))(i, j)

xb(i, j) = (h21 ∗ f(sf ))(i, j) + h22sb(i, j)
, (2.7)

where f(·) is a known non-linear function.

For convenience and simplicity we will use throughout this work the compact

notation in (2.6) for all mixture models.

2.2 About Scanners and Print

The printing process involves the application of translucent 1 ink in a thin layer, on

a reflecting surface, usually white paper. The transparency of the ink means that

1transmitting and diffusing light (Merriam-Webster)
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viewer

light
source

paperprint

Figure 2.1: Viewing Printed Paper

when the printed paper is illuminated by white light, the light entering the viewer’s

eye (or the optical sensor) actually passes through the ink layer, to the paper, and is

reflected by the paper back through the ink layer again, to the eye. The ink absorbs

part of the light passing through it. The spatial profile of this absorbtion, or filtering,

represents the printed information.

In a typical scanner, the document to be scanned is flattened on a transparent

plate of glass by the scanner backing. The light originating from the scanner lamp,

illuminates the document through the glass. The light is reflected from the document

back to the sensor, thus creating a reflectance profile of the document.

Figure 2.2: Schematic of Optical Components of Flatbed Scanner (from [37])
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The show-through problem in duplex printed paper arises from the fact that the

paper does not reflect 100% of the light that hits it. A fraction of the light actually

passes through the paper, through the back-side print layer, and is reflected back

toward the sensor by the scanner backing, as shown in Fig.2.3.

Back-Side Print

Front-Side Print

Paper

Scanner Backing

Lamp

Sensor

Figure 2.3: Passage of Light Through Duplex Printed Paper

2.3 Physical Model

The model developed by Sharma in [37] tracks the light passing through the printed

page and the scanner mechanism. The results are given in terms of the reflectance

and transmittance profiles of the print and paper.

The model described in the following sections is obviously a simplified one. Issues

such as ink penetration into the paper substrate (when printing with normal inks

on normal paper, there is no well-defined interface between the ink and paper) are

ignored. Also, any Fresnel reflections at the print surface are neglected, as are sec-

ondary reflections between the paper and scanner backing. Nevertheless, the model

captures enough of the complexity of the phenomenon to allow for useful correction

algorithms.
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2.3.1 Non-Linear Model

We define the reflectance of the paper Rp as the fraction of the light (optical en-

ergy/flux) reflected by the paper in the forward direction (toward the sensor). The

transmittance of the paper Tp is defined as the fraction of light passed through it. A

reasonable assumption is that most of the light that hits the paper is reflected by it

Rp � Tp, and that these values are not location dependant, i.e. the paper is uniform.

The scanner backing also reflects light back toward the sensor. This value is de-

noted Rbk.

Thus, the reflectance of white paper (paper with no print on either side) is made

up of two main components, light that is reflected by the paper and light that passes

through the paper and is reflected by the scanner backing and passes back through

the paper. We denote this value Rpw:

Rpw = Rp + T 2
p Rbk. (2.8)

The print layers on either side of the page exhibit transmittance properties Tf (i, j)

and Tb(i, j), with the printed information represented by the spatial transmittance

profile of these layers.

The reflectance detected when scanning the front side (neglecting second order

effects) is given by:

Rs
f (i, j) = TfRpTf + TfTpTbRbkTbTpTf

= Tf (i, j)
2(Rp + T 2

p RbkT
2
b (i, j))

. (2.9)

The expression TfRpTf represents light passing through the front-side print layer
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Tf , reflected by the paper Rp and passing back again through the print to the sen-

sor (see Fig.2.1). The expression TfTpTbRbkTbTpTf represents light passing through

the front-side print Tf , the paper Tp and the back-side print Tb and reflected by the

scanner backing Rbk back along the same path (Fig.2.3).

Similarly for the back side scan:

Rs
b(i, j) = TbRpTb + TbTpTfRbkTfTpTb

= Tb(i, j)
2(Rp + T 2

p RbkT
2
f (i, j))

. (2.10)

The show-through component of the scanned image stems from the dependence of

acquired reflectance on the reverse side transmittance. We define the desired result of

a cleaning process as the images that would be recovered from the scan if no reverse

side print existed:

Rf (i, j) = T 2
f (i, j)(Rp + T 2

p Rbk)

= T 2
f (i, j)Rpw

, (2.11)

and

Rb(i, j) = T 2
b (i, j)(Rp + T 2

p Rbk)

= T 2
b (i, j)Rpw

. (2.12)

Obviously, the scanned images are not a linear combination of the desired images

Rf and Rb.

2.3.2 Linearized Model

In order to linearize the mixture model two concepts are introduced. Optical Density,

defined as the logarithm of the ratio of incident to reflected light, or in our case, the

negative logarithm of the reflectance:
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D = − ln R, (2.13)

and Optical Absorptance, defined as the ratio of absorbed to incident light, or in

our case the complement of the reflectance:

A = 1 − R, (2.14)

Normalizing reflectance values by the white paper reflectance, the Normalized

Density of the front side print is given by:

Ds
f (i, j) ≡ − ln

(
Rs

f (i, j)

Rpw

)

= − ln

(
T 2

f (i, j)(Rp + T 2
p RbkT

2
b (i, j))

Rp + T 2
p Rbk

)

= − ln(T 2
f (i, j)) − ln

(
1 −

T 2
p Rbk

Rp + T 2
p Rbk

(1 − T 2
b (i, j))

)
, (2.15)

similarly, the desired density image (without show-through) is given by:

Df (i, j) ≡ − ln

(
Rf (i, j)

Rpw

)
= − ln(T 2

f (i, j)). (2.16)

Substituting eq.2.16 into eq.2.15 gives:

Ds
f (i, j) = Df (i, j) − ln

(
1 −

T 2
p Rbk

Rp + T 2
p Rbk

(1 − T 2
b (i, j))

)
(2.17)

Since Rp � Tp we can approximate (2.17) using the relation ln(1 − t) ≈ −t for

|t| � 1.

Ds
f (i, j) ≈ Df (i, j) +

T 2
p Rbk

Rp + T 2
p Rbk

(1 − T 2
b (i, j)) (2.18)

Recalling that the normalized back-side absorptance is given by:

Ab(i, j) = 1 − Rb(i, j)

Rpw

= (1 − T 2
b (i, j)), (2.19)
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we can express the observed front side density by the following linear combination

of the desired front side density and back side absorptance:

Ds
f (i, j) ≈ Df (i, j) +

T 2
p Rbk

Rp + T 2
p Rbk

Ab(i, j). (2.20)

Notice that the scalar term
T 2

p Rbk

Rp+T 2
p Rbk

depends only on paper and machine charac-

teristics and not on the print layers.

The model, so far, ignores the spatial interaction between the front and back sides,

i.e., the blurring caused by the passage of light through the paper. This spreading

of light through paper has been studied at length particularly in the context of half

toning. The Yule-Nielsen effect (1951) reflects the fact that a photon which enters

the ink dot can exit from the non-inked paper or vice versa due to light diffusion in

the substrate (see [33] and references within). This effect, also called optical dot gain,

depends on the optical properties of the materials (paper, ink) and geometrical dis-

tribution of ink dots (resolution, size and shape). This behavior can be characterized

by a point spread function.

This spatial interaction can be modelled by replacing the scalar term
T 2

p Rbk

Rp+T 2
p Rbk

in

(2.20) by the point spread function h, resulting in the following relation:

Ds
f (i, j) = Df (i, j) + (h ∗ Ab)(i, j). (2.21)

The unknown parameters are incorporated in the PSF as an attenuation factor.

Similarly for the back side scan:

Ds
b(i, j) = Db(i, j) + (h ∗ Af )(i, j). (2.22)

Obviously, the relations depicted in (2.21) and (2.22) between the scanned and
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desired images are not strictly linear. However, they do express the image mixtures

as a linear mixture of aspects of the desired front and back side images.

In summary, we can now express the show-through problem as a non-linear convo-

lutive mixture of images. In the optical density domain the mixing operator becomes:

H =




1 h12 ∗ f(·)

h21 ∗ f(·) 1


 (2.23)

where f(d) = 1 − e−d is the non-linear function that translates density values to

absorptance.

Working in the reflectance domain (standard gray-scale images) requires trans-

forming to and from density and absorptance values, when estimating the mixture

parameters. This requires an estimation of Rpw. An automatic method for this is

proposed in section 4.2.1.

2.4 Similarity Measures

Measuring the amount of show-through goes to the heart of the show-through re-

moval problem. Finding a reliable measure of the amount of show-through consistent

with our human perception, is in itself a nontrivial problem. In theory, once such a

measure is found, algorithms can be devised minimizing the measure and removing

the show-through.

One way of assessing the amount of show-through can be done by measuring the

similarity of the front and back side images. Theoretically, the greater the similarity,

the more show-through is present in the images. Several such similarity measures can

be defined between the images.
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In practice, while the show-through removal process usually caused a reduction in

the similarity measures we rarely saw a direct correlation between image quality and

the degree of improvement in the measures.

2.4.1 Cross Correlation

The correlation of two images s1 and s2 is defined by:

Cor(s1, s2) =
∑

m,n

(s1(m,n) − E{s1}) ∗ (s2(m,n) − E{s2}) (2.24)

Normalizing by the auto-correlation of the images gives the following cross-correlation

measure:

XC(s1, s2) =
Cor(s1, s2)√

Cor(s1, s1) ∗ Cor(s2, s2)
(2.25)

2.4.2 Mutual Information

A measure of Mutual Information is defined in [36]. This measure is a normalized

version of the Kullback-Leibler distance which measures how far the images are from

statistical independence.

Let the probabilities for certain brightness values s̃1 and s̃2 be P (s̃1) and P (s̃2),

respectively. These probabilities are estimated by the histograms of the images. The

joint probability is P (s̃1; s̃2) (which is in practice estimated by the joint histogram of

the images). The mutual information is then:

I(s1, s2) =
∑
�
s1,
�
s2

P (s̃1, s̃2) log
P (s̃1, s̃2)

P (s̃1)P (s̃2)
(2.26)

The entropy, or self-information, of each image is defined as:

H(s) = −
∑
�
s

P (s̃) log(P (s̃)) (2.27)
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Normalizing the mutual information, by the average of the image entropies, gives

the ratio of mutual information to the self information:

In(s1, s2) =
I(s1, s2)

[H(s1) + H(s2)]/2
(2.28)

In this chapter we showed how the show-through phenomenon in scans of duplex

printed images can be modelled as a non-linear convolutive mixture of images. Based

on this model, we now offer two different approaches to removing the show-through,

described in subsequent chapters.



Chapter 3

Decorrelation Models

3.1 Single Channel Interference

The most widely used approach to two-channel signal separation was proposed by

Widrow et al. [47]. An interfering signal s2 is coupled into the primary signal s1

through an unknown system H12. The signal mixing system is depicted in Fig.3.1.

H 12

s1(n)
+

+

s2(n)

x1(n)

x2(n)

Figure 3.1: Single Channel Interference

The underlying assumption is that the signals s1 and s2 are uncorrelated. The

objective is to reconstruct an estimate y1 of s1 using the interfering signal x2 as a

reference.

It is suggested in [47] that the unknown system H12 can be identified by mini-

mizing the average power of the reconstructed signal. This system can be used for

cancellation of the interfering signal as illustrated in Fig.3.2.

25
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x1(n) +

-

x2(n)

y1(n)

H 12

Figure 3.2: Least Squares Reconstruction

Adjusting the filter to minimize the average power of the reconstructed signal cor-

responds to estimating H12 by a least-squares fit of the interfering (reference) signal

x2, to the primary signal x1. Minimizing the output power, minimizes the output

noise power and maximizes the output signal-to-noise ratio.

Recursive (RLS) and sequential (LMS) algorithms are widely used in these con-

texts [20].

3.2 Adaptive Filtering Methods

3.2.1 LMS Method

The Least-Mean-Square (LMS) algorithm is a stochastic gradient based algorithm.

The estimated recovery filter Ĥ12 is assumed to be a FIR filter with tap weight vector

w of length M .

The algorithm consists of two basic processes:

• An adaptive process for the adjustment of the filter tap weights.

• A filtering process, generating an estimation of the desired response and an

estimation error used in the adaptation process.
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The algorithm attempts to minimize the mean-squared error, which at time n is

given by:

J(n) = E[y2
1(n)] (3.1)

A steepest descent tap-weight updating scheme can be described as a recursive

relationship:

w(n + 1) = w(n) +
1

2
µ[−∇(J(n))] (3.2)

where µ is a positive real-valued constant controlling the size of the incremental

correction to the tap-weight vector.

The gradient-decent algorithm requires the knowledge of the gradient vector at

time n:

∇(J(n)) = −2p + 2Rw(n) (3.3)

where, R = E[x2(n)xH
2 (n)] is the M-by-M correlation matrix of the M-by-1

tap-input vector x2(n) (composed of the tap input series x2(n), x2(n − 1), . . .,

x2(n − M + 1)). Likewise, p = E[x2(n)x∗
1(n)], is the M-by-1 cross correlation vector

between the tap inputs and the desired response x1(n). Superscript H indicates Her-

mitian transposition.

However, exact measurements of the gradient vector are impossible since this

would require prior knowledge of both the correlation matrix R and cross correlation

vector p. Thus, the gradient vector must be estimated from the available data. An

instantaneous estimate of the gradient vector is given by substituting instantaneous

estimates of R and p into equation 3.3:

R̂(n) = x2(n)xH
2 (n) (3.4)

p̂(n) = x2(n)x∗
1(n) (3.5)

∇̂(J(n)) = −2x2(n)x∗
1(n) + 2x2(n)xH

2 (n)ŵ(n) (3.6)
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Substituting (3.6) into (3.2) gives the following tap-weight adaptation:

ŵ(n + 1) = ŵ(n) + µx2(n)[x∗
1(n) − xH

2 (n)ŵ(n)] (3.7)

The output signal produced is given by:

y1(n) = x1(n) − ŵH(n)x2(n) (3.8)

As can be seen the LMS algorithm is a very simple optimization process. Among

it’s advantages are that it does not require measurements of correlation functions or

matrix inversions. The algorithm does not converge to the Wiener solution due to

gradient noise, however it does display two convergence behaviors when µ is properly

chosen:

1. Convergence in the mean to the Wiener solution

E[ŵ(n)] −−−→
n→∞

w0 (3.9)

where w0 is the Wiener solution defined by Rw0 = p.

2. Convergence in the mean square:

J(n) −−−→
n→∞

J(∞) (3.10)

where Jmin < J(∞) < ∞ is a finite value but obviously greater than the

minimum mean squared error that corresponds to the Wiener solution.

The convergence of the algorithm depends on the choice of the step-size parameter

µ. Small µ gives slow adaptation, which is equivalent to long system ”memory”. The

choice of large µ gives faster adaptation at the cost of larger excess mean-squared error

(smaller ”memory” degrades the estimation performance and gives larger steady-state

error).

Detailed analysis of the convergence properties of the algorithm and the choice of

µ are given in [20] and references within.
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A useful variant of the LMS algorithm is the Normalized LMS (NLMS)[20]. The

standard LMS algorithm suffers from gradient noise amplification when x2(n) is large

(since the tap-weight correction is proportional to the tap-input x2(n)). To overcome

this, the tap-weight correction is normalized with respect to the squared Euclidian

norm of the filter input at time n. Thus the tap-weight adaptation becomes:

ŵ(n + 1) = ŵ(n) +
µ

‖x2(n)‖2
x2(n)[x∗

1(n) − xH
2 (n)ŵ(n)] (3.11)

3.2.2 RLS Method

The Recursive Least Squares (RLS) method is an algorithm for the design of adaptive

transversal filters. Given the least squares estimate of the tap-weight filter at time

n−1, the algorithm computes an updated estimate given the new data at time n. The

algorithm utilizes at each update all the input data back to the point the algorithm

was initiated.

The exponentially weighted least squares cost function to be minimized is:

J(n) =
n∑

i=1

λn−1|y1(i)|2 (3.12)

The weighting factor λ ensures that data from the distant past is ”forgotten”

thus allowing for filter adaptation in non-stationary environments. The optimum tap

weight vector that minimizes the cost function is defined by:

R(n)ŵ(n) = p(n) (3.13)

where R(n) is an estimate of the correlation matrix with exponential weighting,

defined as:

R(n) =
n∑

i=1

λn−1x2(i)x2
H(i) n = 1, 2, . . . (3.14)

and p(n) an exponentially weighted cross-correlation vector:

p(n) =
n∑

i=1

λn−1x2(i)x
∗
1(i) (3.15)
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The recursion equations for updating these expressions are given by:

R(n) = λR(n − 1) + x2(n)x2
H(n) n = 1, 2, . . . (R(0) = 0) (3.16)

and:

p(n) = λp(n − 1) + x2(n)x∗
1(n) (3.17)

Through matrix algebra relations it is possible to compute recursively the inverse

of the correlation matrix. Thus the tap-weight vector ŵ can be estimated without

the need to invert R directly [20].

The rate of convergence of the RLS algorithm is typically of an order of magni-

tude faster than the LMS, however this is achieved at the cost of a large increase in

computational complexity. Different versions of the algorithm, as well as in-depth

analysis of the algorithm properties are given in [20] and references within.
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3.3 Dual Channel Interference

Inherent in the previously described approach is the assumption that there is no leak-

age of the primary input signal s1 into the interfering signal s2. The cross channel

interference scenario is depicted in Fig.3.3.

H 1

s1(n) x1(n)+

+

+

+

H
2

s2(n) x2(n)

Figure 3.3: Cross Channel Interference

The naive reconstruction approach is to use two LS reconstruction systems (Fig.3.2),

to create output signals y1 and y2. However, when both signals are coupled into each

sensor, the performance of the LS systems may deteriorate. The LS approach will

cause a portion of the primary signal to be cancelled out while removing the interfer-

ing signal, thus distorting the recovered signal.

Widrow et al. [47] analyze the amount of distortion caused to the primary signal,

concluding that if the signal-to-noise ratio is high enough in the primary signal and

the energy seepage into the reference signal is low enough, then the distortion is not

enough to render the cleaning process useless. However, they do not offer solutions

to counter the distortion.

An in-depth analysis of the cross channel scenario is offered by Weinstein et al.
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in [46]. The coupling system analyzed is of the form:

H =




1 H12

H21 1


 (3.18)

The system is assumed to be invertible, i.e., det(H) = 1 − H12H21 6= 0 ∀ω,

and s1(n) and s2(n) are assumed to result from uncorrelated wide-sense stationary

random processes, with zero mean. This is equivalent to:

E{s1(n)s∗2(n − τ)} = 0 ∀τ (3.19)

The aim is to find estimates Ĥ12 and Ĥ21 of H12 and H21, respectively, and an

appropriate reconstruction system, so that the reconstructed signals y1(n) and y2(n)

be uncorrelated:

E{y1(n)y∗
2(n − τ)} = 0 ∀τ (3.20)

This implies the Cross-Spectra Py1y2
(ω) is zero for all ω.

Using the relationships between the Power-Spectra of the inputs and outputs of

an LTI system, the following de-correlation criterion is obtained:

Py1y2
(ω) = Px1x2

(ω) − Ĥ12(ω)Px2x2
(ω)

− Ĥ∗
21(ω)Px1x1

(ω) + Ĥ12(ω)Ĥ∗
21(ω)Px2x1

(ω) = 0

(3.21)

Based on this criterion several possible algorithms were developed for signal separa-

tion.

Two implementations of reconstruction systems are offered in [46]. These imple-

mentations are depicted in Fig.3.4 and Fig.3.5.
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3.3.1 Recovery System 1

In this system a post-processing filtering stage, 1

1−
�
H1

�
H2

, is appended to the decorrela-

tion system, as depicted in 3.4. The post filters counter the distortion caused to the

decorrelated signals.

x1(n) +

-

-

+
x2(n)

1
1-H1H2

1
1-H1H2

y1(n)

y2(n)

v1(n)

v2(n)

H 1

H
2

Figure 3.4: First Reconstruction System

The decoupling filters Ĥ12 and Ĥ21 are assumed to be discrete time casual FIR

filters:

Ĥ12(ω) =

q1∑

k=0

ake
−jωk (3.22)

Ĥ21(ω) =

q2∑

k=0

bke
−jωk (3.23)

Generating the estimated signal under the reconstruction system presented in

Fig.3.4, is given by:

v1(n) = x1(n) −
q1∑

k=0

akx2(n − k) (3.24)

v2(n) = x2(n) −
q2∑

k=0

bkx1(n − k) (3.25)

and y1 and y2 are generated from v1 and v2 by the relation:

q1+q2∑

k=0

dkyi(n − k) = vi(n) i = 1, 2 (3.26)

dk = δk −
k∑

l=0

albk−l k = 0, 1, ..., (q1 + q2) (3.27)
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Developing the cross and auto power spectrum relations between si and vi, defined

by the recovery system, and requiring that the de-correlation criterion (3.21) be met,

give the following relations:

Px2v2
(ω)Ĥ12(ω) = Px1v2

(ω) (3.28)

Px1v1
(ω)Ĥ21(ω) = Px2v1

(ω) (3.29)

In the time domain the equations become:

q1∑

k=0

akcx2v2
(τ − k) = cx1v2

(τ) (3.30)

q2∑

k=0

bkcx1v1
(τ − k) = cx2v1

(τ) (3.31)

where cxivj
(τ) is the cross-correlation:

cxivj
(τ) = E{xi(n)v∗

j (n − τ)} (3.32)

Defining cxivj
= E{v∗

jxi(n)} and Cxivj
= E{v∗

j (n)xT
i (n)} allows concatenating

equations (3.30) and (3.31) into matrix form:

Cx2v2
a = cx1v2

(3.33)

Cx1v1
b = cx2v1

(3.34)

Substituting the correlation functions by sample based approximations, recursive

and sequential algorithms are developed for adjusting a and b.

The recursive (RLS like) algorithm [46]:

a(n) = a(n − 1) + Q(n)v∗
2(n)v1(n; a(n − 1)) (3.35)

where v1(n; a(n − 1)) is the estimate of signal v1 at time n based on the previous

estimate of a, and,

Q(n) = [
n∑

k=1

βn−k
1 v∗

2(k)xT
2 (k)]−1 =

=
1

β1

[Q(n − 1) − Q(n − 1)v∗
2(n)xT

2 (n)Q(n − 1)

β1 + xT
2 (n)Q(n − 1)v∗

2(n)
]

(3.36)
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Replacing a and b by their current estimates gives a sequential (LMS like) algo-

rithm:

a(n) = a(n − 1) + µv∗
2(n;b(n − 1))v1(n; a(n − 1)) (3.37)

b(n) = b(n − 1) + µv∗
1(n; a(n − 1))v2(n;b(n − 1)) (3.38)

An open issue in the implementation of this system has to do with the imple-

mentation of the post filter G = 1

1−
�
H1

�
H2

. Direct computation of the IIR filter G

from the estimated coefficients of filters H1 and H2 is problematic. While stabil-

ity of this filter is assured when the exact coefficients of H1 and H2 are known

(det(H) = 1 − H12H21 6= 0 ∀ω) this is not the case when using the estimates,

and stabilizing procedures need be taken.

A FIR approximation of G is proposed in [36]. In this method an approximation

Ĝ(m) is created by:

Ĝ(m) =
m∑

k=1

(H12H21)
k−1 (3.39)

which in the spatial domain becomes:

ĝm(x, y) = δ(x, y) +

once︷ ︸︸ ︷
a ∗ b+

twice︷ ︸︸ ︷︷ ︸︸ ︷
a ∗ b ∗

︷ ︸︸ ︷
a ∗ b+ · ··

+

m−1 times︷ ︸︸ ︷︷ ︸︸ ︷
a ∗ b ∗ · · · ∗

︷ ︸︸ ︷
a ∗ b

(3.40)

The filter support is proportional to m. Thus, for large m the border effects on finite

size images are significant.

Computing G directly from the filter estimates also means that transients and

errors in the LS estimation process will also be directly reflected in the post processing

stage. We therefore prefer using the filtered signals to estimate the post filters. The

filters are estimated using an LMS process between signals v1 and x1 and between

signals v2 and x2. For further details see 4.
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3.3.2 Recovery System 2

An alternative reconstruction system is depicted in Fig.3.5.

x1(n) +
-

-
+x2(n)

y1(n)

y2(n)

H
12

H 21

Figure 3.5: Second Reconstruction System

In this scheme the estimated signal is generated by:

y1(n) = x1(n) −
q1∑

k=0

aky2(n − k) (3.41)

y2(n) = x2(n) −
q2∑

k=0

bky1(n − k) (3.42)

Developing an LMS-like filter coefficient update equation, for each of the two

summation operations, gives the following sequential algorithm [46]:

a(n) = a(n − 1) + µy∗
2(n;b(n − 1))y1(n; a(n − 1)) (3.43)

b(n) = b(n − 1) + µy∗
1(n; a(n − 1))y2(n;b(n − 1)) (3.44)

An RLS-like algorithm can be developed in a similar manner [46].

While seemingly, this approach is superior to the previous one (no post filtering),

there is an inherent problem in expanding the algorithm to two dimensions. No mat-

ter in what order the images are scanned, the 2-D filters are no longer casual. This

is not a problem when the reference image is known (as in recovery system 1), but

this is not the case when both signals are reconstructed in unison, each serving as a

reference for the other.
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The recovery algorithm needs to be adjusted to solve this problem. We considered

the following alterations:

• Adding a delay to the coefficient updating mechanism. The length of the delay

is proportional to the size of the filter and the image size (row length).

• Recovering the image in two passes - one forward, one backward. During the

forward pass, only the casual part of the filter is updated. During the backward

pass the whole filter can be updated.

In our simulations we found the second method preferable.





Chapter 4

Solving the Show-Through

Problem by Decorrelation

In this chapter we present the basic show-through removal algorithm proposed by

Sharma [37], point out it’s weaknesses and propose an improved algorithm.

4.1 Basic Algorithm

The show-through removal algorithm proposed in [37] is a 2-D adaptation of 1-D

echo-cancellation techniques used in telephony. Adaptive linear filters estimate and

track the show-through point spread function through an LMS process.

39



CHAPTER 4. DECORRELATION BASED ALGORITHM 40

The Algorithm:

1. Manually estimate the white paper reflectance Rpw (averaging reflectance values

of areas with no print on either side).

2. Convert front-side reflectance values to density (equation 2.13).

3. Convert back-side reflectance values to absorbance (equation 2.14).

4. For each pixel (progressing in a spatial contiguous order):

(a) Compute show-through corrected density D̂f from the scanned front-side

density Ds
f and back-side absorbance As

b:

D̂f (m,n) = Ds
f (m,n)

−
k=N∑

k=−N

l=N∑

l=−N

w(k, l)As
b(m − k, n − l).

(4.1)

where w are the filter tap weights.

(b) If back side has activity but not front side, update filter coefficients by

LMS method

w′(k, l) = w(k, l) + µD̂f (m,n)As
b(m − k, n − l). (4.2)

w(k, l) = w′(k, l).

A pixel at location (m,n) is deemed active if the minimum value over

neighboring pixels is below a certain percentage of the estimated white

paper reflectance.

(c) Convert density to reflectance.

5. Repeat steps 1-4 for the back-side image.
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4.1.1 Algorithm Analysis

The algorithm proposed by Sharma suffers from several faults and weaknesses which

we rectified.

The first issue we addressed was that of the background estimation. Other than

the obvious need to automate the process we also found that using only a global

reflectance value (a single value for the whole image) may lead to unwanted ”whiten-

ing” artifacts in the recovered images. We propose using ”local” (location dependent)

background reflectance values.

Another problem is related to inherent limitations in the LMS process, using a

single filtering stage as proposed by Sharma may not be the best strategy. We pro-

pose a cascaded filtering structure to improve the results.

Thirdly, a structural fault with Sharma’s algorithm is that it uses the standard

LMS recovery system (Fig.3.2). Obviously the show-through problem is a case of

dual channel interference. Thus, an appropriate recovery system is required.

The following sections provide the details of our modifications.

4.2 Proposed Algorithm Development

4.2.1 Background Estimation

4.2.1.1 Global Background

The original algorithm described in [37] computes the white paper reflectance Rpw by

taking the average reflectance value of a manually selected area of the images, not

containing print on either the front or back side. We propose an automatic method
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based on the mean shift algorithm proposed in [12] and [13].

Typically, the brightness histogram of a scanned document is multi-modal (Fig.

4.1). We define the white paper reflectance as the peak of the brightest (rightmost)

mode in the image histogram. While other choices are also possible (such as taking

the brightest pixel value in the image), our choice is both intuitive and robust, as well

as giving good results.

(a) Image
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(b) Image histogram

Figure 4.1: Multi-modal PDF of image (Rpw marked by dark line).

The mean shift algorithm is a simple non-parametric technique for estimation

of the probability density gradient. An iterative steepest ascent algorithm is imple-

mented, operating on the marginal probability density (the brightness histogram).

Beginning at an initial position - a certain brightness level, the algorithm computes

the mean value of neighboring brightness levels. The algorithm then ”shifts” to this

mean position and repeats the process until convergence.

The algorithm, (with properly selected parameters) converges to a local proba-

bility density maximum (mode peak). Details on setting the parameters (the size of

neighborhood and the initial location) are discussed following the algorithm steps.
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The Mean Shift Algorithm:

1. Choose the search window radius (in our case the number of brightness levels).

2. Choose initial window center location (in our case the brightness level).

3. Compute mean value of pixels contained in the window and shift window center

to it .

4. Repeat step 3 until convergence.

The point of convergence obviously depends on the starting point. Since we are

seeking the peak of the brightest mode, the brightest pixel value in the image is cho-

sen as the initial window position.

As a rule of thumb - the smaller the window radius - the better the separation

resolution of the modes. However, if the radius is too small, the algorithm may get

stuck on local maxima caused by discontinuities in the PDF estimate. Thus we want

to find the maximal radius that gives us sufficient resolution, depending on the pixel

distribution statistics of the image. In [12] the window radius chosen is proportional

to the STD of the pixel brightness values. Values between 0.2σ and 0.4σ were chosen

according to the application. We found that a radius of 0.1σ produced good results

on the images tested.

We denote the global white paper reflectance values obtained by the above algo-

rithm, Rf
pg and Rb

pg for the front and back-side images, respectively.

4.2.1.2 Local Background

The cleaning processes described in [37] attempts to cancel or minimize in some sense

(specifically least mean square) a difference, or error, value. According to the nor-

malization proposed in [37], the zero value corresponds to the global white paper
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reflectance. This means that when removing show-through, the algorithm attempts

to bring the brightness value closer to Rpg, whether or not this is the ”desired” value.

The effect will be one of over ”whitening” of areas in the image that contained show-

through, as can be seen in Fig.4.2 (notice especially the man’s forehead). The desired

value we are seeking is that of the background reflectance in the vicinity of the pixel

being cleaned.

(a) Before (b) After

Figure 4.2: Whitening Artifacts

Typically, least-squares algorithms operate on zero mean signals. This is due to

the fact that separation of the DC component in signal mixtures is an ill-conditioned

problem [36]. The normalization by Rpw serves to set the background, or ”DC”,

value to zero. However, as can be seen in Fig.4.2, the non-stationarity of the scanned

images pertains (among other things) to non-constant DC (or background) values.

Therefore, we conclude that the normalization should be done on a local level accord-

ing to local background levels.

We define Rpl, the local background value, as the gray level value at the peak of

the brightest mode, in a square area (L × L pixels) surrounding each pixel location.

This value can generally be found using a mean-shift process, with a few alterations,

as explained below. The collection of background values for all pixel locations define
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a background image.

As before, the brightest pixel value in the area, is chosen as the initial window

position. However, since the sample size is limited to a small area surrounding each

pixel, the histogram may not give a good approximation of the density. Too small

a mean-shift window radius may cause the mean-shift process to get stuck on an

isolated value or local maxima that is not a true mode. In other cases the image

segment analyzed contains only one narrow mode. This typically happens in image

segments that are more or less uniform (such as segments with no print). In these

cases, setting the window size as a small fraction of the STD, gives too small a value

that may result in the algorithm getting stuck. A reasonable choice for the window

radius (taking into account that the STD may be very low) may be as high as 0.5σ.

The solution to these problems is an adaptive mean-shift process [13] in which

the window radius is allowed to vary throughout the iterations. The minimal radius

is set in proportion to the STD, however if the window covers too few pixels (less

than a certain percentage of the L × L area pixels), the radius is increased until

the window covers enough pixels. Increasing window size guarantees that the al-

gorithm does not get stuck on isolated values, instead of an actual mode. We used

5% of the pixels as the minimal window coverage for a window of size L×L = 31×31.

In some cases, where back-side activity is high, it is impossible to estimate the

correct local background value based on the immediate vicinity alone, since too many

of the pixels are contaminated by show-through. In these cases the best we can do is

use the global value.

Back-side activity is measured by comparing the local average back-side reflectance

(measured on neighboring pixels) value to back-side Rpg and by comparing average
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back-side and front-side reflectance values. The darker the back-side the more likely

it is to be active. By comparing the back-side and front-side values we can identify

areas where the back-side activity results from show-through. If the average back-side

value is lower than a fraction (say 60% − 75%) of the back-side Rpg and if the local

mean back-side value is lower than the local mean front-side value, the back-side is

deemed active. In this case the global front-side value is chosen.

The process described above is computationally heavy - a mean-shift process is

run for most pixels. Several measures may be taken to reduce the computational

load. Local background values need not be calculated for every pixel. Instead, we

found it sufficient to re-calculate at horizontal and vertical intervals equal to half

the dimensions of the window. In order to avoid unwanted discontinuities, the local

background images are smoothed by low-pass filters (Gaussian, 15 × 15 pixels, std

= 2). Additionally, when the STD is very low (for example less than 20% of the

STD of the total image) ,the data is typically single modal, and it is sufficient to use

the mean pixel value in the neighborhood, instead of completing a mean-shift process.

A similar process is run for the back-side. We denote the local background re-

flectance values Rf
pl(m,n) and Rb

pl(m,n), for front-side and back-side, respectively.

These values replace the Rpw when calculating density and absorbance thus provid-

ing adaptation to local background levels.
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To summarize, the procedure for calculating the local background reflectance is

given by:

1. Compute front-side global background reflectance Rf
pg by a mean-shift process

run on the whole image.

2. For selected pixel locations (m,n) if back-side activity is high:

Set local value equal to global value Rf
pl(m,n) = Rf

pg

else:

Compute local value by an adaptive mean-shift process.

3. Interpolate background image for locations not set in previous step (nearest

neighbor interpolation).

4. Smooth local background image Rf
pl with Gaussian filter.

5. Repeat steps 1-4 for the back-side image.

Using this approach greatly reduces the ”whitening” artifacts. A demonstration

of the results obtained with this algorithm is deferred to section 4.3.

4.2.2 Filter Cascade

One of the drawbacks of a MSE process, is that it has a tendency to concentrate it’s

effort on the larger filter coefficients, where most of the energy is concentrated. In

doing so the process neglects the smaller coefficients which may not converge correctly.

The proposed solution to this problem is a cascaded filter structure (Fig. 4.3), re-

placing the single filtering stage (Fig. 3.2), with a large filter support, in the original

algorithm. The filter support is increased with each stage of the cascade (for example

a 3-stage cascade with filter supports of 5 × 5, 9 × 9 and 15 × 15).
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Figure 4.3: Cascaded filter structure.

Each stage uses the previous stage output as it’s main input, but uses the same

original reference (interference) signal, as shown in Fig.4.3. Another option is to com-

pute new reference signals at each stage, from the previous stage output (converted

to absorbance). We found this option less preferable since recomputing the reference

signal, from partially cleaned signals, hurts the stability of the cleaning process.

Predictably, the later filtering stages contribute less with each stage. The first

filtering stage produces the biggest improvement both visually and in similarity mea-

sures. Both mutual information and cross correlation were calculated between front

and back side images. We expected these values to decrease in magnitude with the

reduction of show-through. The latter filtering stages did provide visual improve-

ment. However, improvement in the similarity measures was found to be negligible.

Is some cases even a certain degradation occurs. We found that two or three filtering

stages are appropriate.

4.2.3 Post Processing

When using the reconstruction system depicted in Fig.3.4 a post processing stage is

required. Estimating the post-processing filter is in itself not a trivial process. For

linear mixtures this filter is G = 1

1−
�
H12

�
H21

but in our case the distortion caused to
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the primary signal by the LS process is more complex due to the non-linearity of the

system. In light of this, estimating the post-processing filter directly from the esti-

mates of H12 and H21 is unfeasible. Instead, we propose a non-parametric approach

to estimate the filter G from the data itself.

We propose using the fact that the scanned (contaminated) image, Ds
i , contains

an undistorted version of the clean image and additive interference. We assume that

the interference is uncorrelated with the clean signal. The show-through cleaned im-

age, D̃i, is a distorted version of the clean image with much reduced interference. We

estimate the post-processing filter and cancel the distortion using an LMS process

(Fig.4.4). In theory the error signal, e, should contain, after convergence, only the

uncorrelated show-through, and the filter output, D̂i, the undistorted image. This

process is run separately for the front and back side images.

Di
s +

-
e

Di

Di
G

Figure 4.4: Post processing filter estimation.

This approach was found to give good results and although the distortion it cor-

rects isn’t usually significant, the resulting images are more aesthetically pleasing.
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4.2.4 Summary of Proposed Algorithm

To summarize, the proposed algorithm is:

1. Estimate the global white paper reflectance, Rpg, using the mean-shift process

on the whole image for both front and back sides.

2. Estimate the local white paper reflectance images, Rpl, for both front and back:

local mean-shift process coupled with activity estimate.

3. Convert front-side reflectance values to density using front-side Rf
pl (2.13) 1.

4. Convert back-side reflectance values to absorbance around pixel location using

front-side Rf
pl value at pixel location (2.14) 2.

5. For each pixel (progressing in a spatial contiguous order):

(a) Compute show-through corrected density.

(b) If back side has activity but not front side, update filter coefficients by

LMS method.

6. Clip density values brighter than Density of Rpg.

7. Repeat stages 5 and 6 with larger filter supports (Fig.4.3).

8. Post-processing stage - cancel distortion on front and back-side recovered images

using their respective scanned versions in an LMS process (Fig.4.4).

9. Convert density back to reflectance using Rf
pl.

1Stages 3-9 are run simultaneously for the back-side.
2The area around the pixel location (m,n) is converted to absorbance according to R

f
pl(m,n).

This operation has heavy memory costs since for each location we must save an area of size equal
to the support of the largest filter used. Alternatively, this operation can be done for each location
in turn as part of stage 5.
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4.3 Simulation Results

The following example is for a pair of 256 gray level images of 1000×1000 pixels. For

convenience The images are shown in their correct orientation but obviously during

registration and throughout the cleaning process the mirror image (flip left-right) of

one of the images is used.

Fig.4.5 depicts the original scans. Notice that this example contains not only text

(binary image) but also contains various shades of gray, thus making naive thresh-

olding cleaning impossible.

(a) Front (b) Back

Figure 4.5: Original Images : MI = 0.105, Corr = 0.2478

Fig.4.6 depicts the local background images. Notice the large area in the center of

the front-side image where the global background value was chosen due to the large

area affected by show-through caused by the dark area in the back-side. Of particular

importance is the correct background estimation in the left of the back-side image

(the man’s forehead for instance).
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(a) Front (b) Back

Figure 4.6: Rpl Images. The global background values for these images :
Rf

pg = 203, Rb
pg = 209

Figures 4.7-4.9 show the output of each of three cascaded filtering stages. Visual

improvement is evident, with each stage improving on the previous stage output

(notice for example the text show-through in the right side of the back-side image)

even though the objective measures worsen somewhat (although all still improve on

the original measures).
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(a) Front (b) Back

Figure 4.7: First Stage Output (5 × 5 filter): MI = 0.025, Corr = 0.002

(a) Front (b) Back

Figure 4.8: Second Stage Output (9 × 9 filter): MI = 0.027, Corr = Corr = 0.022

(a) Front (b) Back

Figure 4.9: Third Stage Output (15 × 15 filter): MI = 0.027, Corr = Corr = 0.035
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Fig.4.10 depicts the final output (after the post-processing stage) of our improved

cleaning algorithm. While the effects of the post-processing stage are subtle, these

images are more aesthetically pleasing than the output of the filter cascade (Fig.4.9)

and bear closer likeness to the original images (for example in textures) but without

the show-through.

(a) Front (b) Back

Figure 4.10: Post-Processing Output : MI = 0.029, Corr = 0.013

In comparison to our results, Figure 4.11 shows the results of Sharma’s algorithm

for the same images.

(a) Front (b) Back

Figure 4.11: Output of Sharma’s Algorithm : MI = 0.027, Corr = 0.052
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Fig.4.12 depicts another example for a pair of 2000 × 2000 pixel images. The

cleaned images are shown in Fig.4.13 and zooms of interesting parts in Figures 4.14

and 4.15.

(a) Front (b) Back

Figure 4.12: Original Images : MI = 0.050, Corr = 0.129

(a) Front (b) Back

Figure 4.13: Full algorithm’s output : MI = 0.006, Corr = 0.012
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(a) Before (b) After

Figure 4.14: Zoom of front side

(a) Before (b) After

Figure 4.15: Zoom of back side

In conclusion, in this chapter we presented a decorrelation-based Show-Through

removal algorithm that improves on previous results. The algorithm adapts to local

image behavior while using a more suitable filtering scheme to achieve better show-

through removal with significantly less artifacts.
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Maximum-a-Priori Models

In recent years Bayesian estimation has gained popularity as a framework for image

restoration and much work has been done in the field. The BSS problem can also be

formulated as a Bayesian estimation problem. This approach allows easy incorpora-

tion of prior knowledge, thus regularizing and stabilizing an otherwise ill-conditioned

problem.

Under the Bayesian approach a likelihood function P (Y,H,X) is formulated.

Where Y are the estimated images, H the estimated mixing operator and X the

measured images. The image reconstruction thus becomes:

< Y∗,H∗ >= arg max
Y,H

P (Y,H,X) (5.1)

Decomposing the probability expression:

P (Y,H,X) = P (X|Y,H)P (Y)P (H) (5.2)

allows us to formulate the problem as a Maximum-a-Priori problem:

< Y∗,H∗ >= arg max
Y,H

P (X|Y,H)P (Y)P (H) (5.3)

An equivalent formulation of the problem is that of minimizing an energy func-

tional. This formulation can be achieved directly from the Bayesian approach (by

taking the −log of the likelihood function) or independently of it.

57
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5.1 Energy Functional

The image separation process is thus based on the unconstrained minimization of an

energy functional, typically composed of two main terms:

A. A Fidelity term describing the likelihood of our estimation, i.e. the closeness of

the estimate to the measured images.

B. A Regularization term describing prior knowledge of the signals, typically con-

trolling the irregularity of the images.

J = Fidelity + λ ∗ Regulariztion (5.4)

where λ is a parameter determining the trade-off between the goodness of the fit to

the measured data and the amount of regularization done.

In certain situations additional penalty terms may be added to the functional.

An alternative formulation of this problem is that of a constrained minimization

problem. Typically in this formulation, the regularization term is minimized subject

to a known distortion level. This formulation is less convenient in our scenario where

not only the images Y need be estimated but also the mixing operator H.

5.1.1 Fidelity

The most popularly used fidelity term used is the mean squared error. In compact

form we write:

Fidelity =‖ H(Y) − X ‖2
2 (5.5)

In our case, where each mixture contains a pair of images, one of which is blurred
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and non-linearly transformed, this term becomes:

Fidelity =
∑

(n,m)∈S


h11y1(n,m) +

∑

(i,j)∈K

h12(i, j)f(y2(n − i,m − j)) − x1(m,n)




2

+




∑

(i,j)∈K

h21(i, j)f(y1(n − i,m − j)) + h22y2(n,m) − x2(m,n)




2

(5.6)

where f(·) is the non-linear transformation.

Minimization of the fidelity term alone in terms of the joint space {Y,H}, is

insufficient. The global minimum of this term is the trivial solution ({X, I}). Also,

of practical concern is the fact that this term is non-convex in the joint space.

5.1.2 Regularization

The regularization term allows us to introduce prior knowledge on the signals into

the process. An exact model for modelling images does not currently exist, however

some reasonable priors are accepted as suitable for images. These priors will typically

attempt to control the irregularity of the images since images are typically piecewise

smooth functions, while at the same time attempting to preserve edges.

In the BSS framework the underlying assumption of the independence of the mixed

images allows us to decompose the regularization term into a sum of two independent

terms, one for each image.

Reg(Y) = Reg(y1) + Reg(y2) (5.7)

Two types of regularization terms, suitable for images, are considered in our work.

The first type of terms is based on the Markov Random Field (MRF) model for images

[26]. The second type of regularization is the Total Variation term.
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5.1.2.1 Markov Random Fields

Under the MRF model, an image s has a distribution according to the Gibbs form:

P (s) =
1

Z
exp−U(s) (5.8)

where U is the prior energy, composed of a sum of potential functions over a set

of cliques of interacting pixel locations. Z is a normalization factor.

The regularization term is taken to be the prior energy U . For example, consid-

ering the set of cliques composed of adjacent pixel locations {l, r}:

U(s) =
∑

{l,r}

φi(s(l) − s(r)) (5.9)

The functional φ is chosen according to the degree of correlation assigned to ad-

jacent samples. This functional describes the regularity of the image by penalizing

high gradient values. However, in order to preserve steep edges in the image, edge

preserving functionals are preferred.

MRF functionals may be convex, such as:

φ(∆s) =
√

(∆s)2 + ε (5.10)

or non-convex, such as [40]:

φ(∆s) =
|∆s|/T

1 + |∆s|/T (5.11)

where T is a threshold parameter. MRF functionals of varying complexity were

used in the context of image separation [41, 42].

The use of convex functions allows for standard optimization methods based on

gradient decent to be used. Non-convex functions require the use of specially tailored
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optimization methods, such as Graduated Non-Convexity (GNC). Under this scheme

the optimization process starts with convex functions, which are gradually morphed

into the non-convex MRF functional. For details see 6.

5.1.2.2 Total Variation

The second type of regularization term considered is based on the non-linear Total

Variation norm proposed by Rudin, Osher and Fatemi [34].

In this approach the regularization term is of the form:

TV (s) ≡
∫

Ω

|∇s|dxdy ≡
∫

Ω

√
s2

x + s2
ydxdy (5.12)

where Ω denotes the image domain and sx and sy are the image derivatives in the x

and y axes, respectively. The functional TV (s) measures the total variation in image

s. This measure has the advantage of being both convex and edge preserving. This

approach has been found to be especially good in preserving sharp edges while not

penalizing smooth images, in image denoising [34, 45] and restoration [50, 3].

An important aspect of the Total Variation approach is the discretization of (5.12)

and the precision of the gradient estimation. Simply put, better estimation leads to

a more stable algorithm and better results.

An example of a simple discretization using central derivatives is:

sx(i, j) =
1

2
(si+1,j − si−1,j)

sy(i, j) =
1

2
(si,j+1 − si,j−1)

(5.13)

The following, more intricate discretization, is proposed in [38], where the gradient

field is computed on points in between pixel locations (Fig.5.1):
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TV (u) =
1

2

[
n−1∑

i=1

n∑

j=1

√
[sx(i +

1

2
, j)]2 + [sy(i +

1

2
, j)]2+

n∑

i=1

n−1∑

j=1

√
[sx(i, j +

1

2
)]2 + [sy(i, j +

1

2
)]2

] (5.14)

j-1 j j+1

i-1

i

i+1

Figure 5.1: Gradient field estimation - gradient is estimated between pixel
locations at half pixel horizontal/vertical shifts. At each location both
vertical and horizontal derivatives are calculated.

where:

sx(i +
1

2
, j) = si+1,j − si,j

sy(i, j +
1

2
) = si,j+1 − si,j

and,

sy(i +
1

2
, j) =

1

2
minmod[(si,j+1 + si+1,j+1 − si,j − si+1,j), (si,j + si+1,j − si,j−1 − si+1,j−1)]

sx(i, j +
1

2
) =

1

2
minmod[(si+1,j + si+1,j+1 − si,j − si,j+1), (si,j + si,j+1 − si−1,j − si−1,j+1)]

The function minmod is defined as follows:

minmod(a, b) =
sign(a) + sign(b)

2
min(|a|, |b|)

5.1.3 Fidelity/Regularization Tradeoff

An issue that is often neglected is that of the tradeoff between the relative ”strengths”

of the fidelity term and the regularization term, determined by the parameter λ. This
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is particularly true in image processing applications. In [38] Strong et al propose

using a varying, location dependent, weight term, for the purpose of image denoising.

Under this scheme, a high weight is assigned to the regularization term in smooth

image areas, and a low one at image edges. Incorporating λ into the TV term, (5.14)

becomes:

TV (s) =
1

2

[
λi+ 1

2
,j

n−1∑

i=1

n∑

j=1

√
[sx(i +

1

2
, j)]2 + [sy(i +

1

2
, j)]2+

λi,j+ 1

2

n∑

i=1

n−1∑

j=1

√
[sx(i, j +

1

2
)]2 + [sy(i, j +

1

2
)]2

] (5.15)

where λi+ 1

2
,j and λi,j+ 1

2

are given by:

λi+ 1

2
,j =

1

|s(i + 1, j) − s(i, j)| + ε

λi,j+ 1

2

=
1

|s(i, j + 1) − s(i, j)| + ε

(5.16)

Thus, strong denoising can be achieved while simultaneously preserving image edges.

5.1.3.1 Location Dependent Weighting for Image Separation

Since we are dealing with an image separation scenario, the tradeoff term λ can be

set separately for each image. Furthermore, in this scenario additional considerations

need to be taken in determining the location dependent tradeoff, since the interfer-

ence component in each image is itself derived from the second image. Thus the

interference itself contains edges that we want to overcome in the total variation

minimization process. We therefore want to recognize these interference edges (as

opposed to true edges), and assign a high weight to the regularization term in these

regions. In addition, since the backside image is slightly blurred, the back-side edges

affect not only the front-side pixels at their exact location, but also pixels in their

vicinity.

Based on these guidelines we propose the following weighting scheme that uses

both front and back-side reconstructed images y1 and y2. Two weight maps λ1 and
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λ2 are created. Conforming with (5.15) each map has two components one at vertical

half-pixel shifts (i + 1
2
, j) and one at horizontal half-pixel shifts (i, j + 1

2
).

Weighting Algorithm:

1. Create dilated absolute difference images:

y1x = dilate(|y1(i, j + 1) − y1(i, j)|)

y1y = dilate(|y1(i + 1, j) − y1(i, j)|)

y2x = dilate(|y2(i, j + 1) − y2(i, j)|)

y2y = dilate(|y2(i + 1, j) − y2(i, j)|)

The gray-scale dilation uses a small flat structuring element such as a 3 by 3

square [19].

2. For each location (i, j):

(a) If y2x(i, j) < c ∗ y1x(i, j):

λ1
i+ 1

2
,j

=
1

y1x(i, j)/255 + ε

where c is an estimated attenuation factor.

(b) else (edge is a result of show-through):

λ1
i+ 1

2
,j

= y2x(i, j)

3. Repeat previous step for derivatives in y direction to compute λ1
i,j+ 1

2

.

4. Repeat previous two steps for image y2.

5. Clean weight maps by morphological closing and opening using a small flat

structuring element (done separately for components in x and y directions).

6. Truncate weight values to a reasonable range (1-10).
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When dealing with linear mixtures the factor c can be set to be inversely propor-

tional to a12 and a21 (once reasonable estimates of these elements are achieved). In

the case of non-linear mixtures, determining this factor is more complex. We found

that values in the range of 5-10 proved adequate in our examples.

Fig.5.2 depicts an example of the horizontal weighting maps (λx). Notice the low

(dark) values along edges with vertical components, such as along the edges of the

letters ”i” and ”n” in the front-side image (5.2(b)). Notice however, that the show-

through edges do not have the same effect. Areas affected by show-through, as well

as smooth areas, all have relatively higher (brighter) values, as can be seen in 5.2(d).

(a) Front-side image y1
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(b) λ1

x - front-side weighting map

(c) Back-side image y2
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(d) λ2

x - back-side weighting map

Figure 5.2: Weighting maps example.

In the following chapter we discuss optimization schemes for the solution of the

image separation problem and propose a show-through removal algorithm.





Chapter 6

Solving the Show Through

Problem by MAP Estimation

6.1 Optimization Framework

MAP estimation (5.3) in the joint solution space {Y,H}, discussed in 5, is a very

difficult problem. The optimization problem is both non-linear and non-convex in

the joint solution space, requiring specialized optimization tools. Therefore, we do

not solve the problem directly. Instead, we approach the joint MAP estimation by

an alternating minimization scheme [21, 41, 42]. This popular complexity reduction

approach consists of iterative alternating estimation steps with respect to the differ-

ent sets of variables.

The optimization process alternates between the Maximum-a-Priori problems:

Ŷ = arg max
Y

P (X|Y,H)P (Y) (6.1)

Ĥ = arg max
H

P (X|Y,H)P (H) (6.2)

where Y are the estimated images, H the estimated mixing operator and X the mea-

sured images.

67
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We alternate between the minimization of the image and the mixing operator such

that the following free energies are minimized:

Ŷ = arg min
Y

{‖ H(Y) − X ‖2
2 +λReg{Y}} (6.3)

Ĥ = arg min
H

{‖ H(Y) − X ‖2
2} (6.4)

where Reg{Y} is the regularization function describing the image prior.

Equations (6.3) and (6.4) can also easily be expanded to incorporate additional

terms such as priors on H and penalty terms.

While this reduction makes the optimization more feasible (the fidelity term at

least is convex, with regard to H and Y separately), the optimization process is

still burdensome. The Y optimization stage is especially problematic. The large

number of interrelated variables (all the pixels in both images) poise a computational

challenge. Furthermore, non-convex MRFs require the use of special optimization

techniques.

6.2 Optimization Methods

6.2.1 Iterated Conditional Modes

As explained above, the many dependent variables (all the image pixels for both front

and back sides) cause the image estimation stage to be cumbersome. Furthermore,

image priors such as MRFs assume certain local image characteristics, while a global

optimization process may induce undesirable large scale properties of the random

field. To solve these problems Besag [7] offers the Iterated Conditional Modes (ICM)

algorithm, an iterative method for image reconstruction that does not depend on
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large scale characteristics.

In the ICM method, pixel locations are visited sequentially. At each step the pixel

value is updated as to maximize the image probability (minimize the image cost) with

all other pixel values held constant. When applied sequentially to all the pixels, this

procedure defines a single cycle of the algorithm. Typically, convergence occurs after

only a few such iterations to a local image probability maximum.

Applying this method to the image separation problem, each location consists of

a pixel pair (front and back side pixels at that location) to be changed.

An advantage of this method is that during each pixel optimization we need not

calculate the complete image probability (or cost function). Instead, due to the local

nature of the pixel relations, we need to apply minimization only to the parts of the

probability/energy functional that are affected by the current location.

In pointwise mixtures each pixel affects only the opposite side pixel at the same

location. Thus, each optimization need only include the fidelity and regularization

terms of that location. In convolutive mixtures, each pixel affects a group of pixels

on the opposite side. In this case, each pixel optimization includes the fidelity terms

for all locations affected.

A detailed derivation of the probability functionals, maximized by the ICM method

for pointwise and convolutive image mixtures, is given in Appendix A.
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6.2.2 Graduated Non-Convexity

Non-convex functions require the use of specially tailored optimization methods, such

as Graduated Non-Convexity (GNC) [8, 28]. The GNC method is a deterministic an-

nealing method for approximating the global solution for non-convex unconstrained,

continuous minimization problems. This method finds good solutions at considerably

less cost than stochastic Simulated Annealing which is commonly used for such prob-

lems.

In the GNC method, a parametric family of functions is created, the first of which

is convex, and the last is the desired regularization function. Optimization starts

by using the convex function and as the optimization progresses it is morphed into

increasingly non-convex functions.

The family of functions has to be created specifically for the regularization function

chosen (and is not necessarily unique). An example of such a family for the following

non-convex MRF:

φ(∆s) =
|∆s|/T

1 + |∆s|/T (6.5)

is given by [5]:

φ(p)(∆s) =





|∆s|/T
1+|∆s|/T

|∆s| ≥ p

r(∆s)2 + q otherwise
; p = pmax, .., 0 (6.6)

where r and q are appropriate constants, assuring a continuous and smooth func-

tion. Parameter p controls the convexity of the function. During the optimization

process this parameter is gradually reduced until the function φ(p) is equal to the

original MRF at p = 0. The effect of different values of p is shown in Fig.6.1 for the

above example. p = 255 gives the topmost dashed line, and p = 100, 50, 25, 10 the

dashed lines approaching the MRF (solid line).
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Figure 6.1: Function φ (solid line) and φ(p) for various values of p (dashed lines).

6.3 Derivation of Proposed Algorithm

Several options for regularization functions were examined:

• Non-convex MRFs

• Convex MRFs

• Total Variation

The non-convex, edge preserving, MRFs were are our first choice as they provide

the best available image model. Under the alternating minimization optimization

process, each Y stage consisted of a series of GNC iterations, each of which con-

sisted of ICM iterations. The computational requirements of such a process proved

too high for all but very small images. Furthermore, the number of options and

free parameters in such a process is very large: the specific MRF used (both shape

and support), the choice of the parametric function family and the morphing strategy.

In trying to simplify the process we tested convex MRFs with small support. Using

convex MRFs implies that the energy functional minimized in the Y stage is convex

and can be minimized using standard gradient based techniques. The simplest MRF

we tested was the absolute difference of adjacent pixel values (actually a smoothed

approximation for numerical stability |a| ≈
√

a2 + ε ). The L1 norm is related to
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sparsification, in this case the sparsification of image edges, which is a good measure

of image separation.

While the results were pretty good, an obvious progression of this approach was

to use Total-Variation regularization (actually the L1 norm on pixel differences con-

stitutes a crude implementation of Total-Variation).

The full algorithm developed includes an outer layer of alternating minimization

(Eqs.(6.3) and (6.4)). Utilizing the cascaded approach (4.2.2) we start with a small

filter support, increasing the filter support in later iterations. At the start of each Y

iteration, the fidelity/regularization tradeoff maps (see 5.1.3.1) are recomputed with

the minimization itself being implemented by the ICM method.

In order to avoid the directional preference that only one pass of the images gen-

erates, each of our ICM iterations consists of two passes, scanning once from top left

to bottom right, and then in the opposite direction. In each scan the TV is computed

based on the ”causal” pixels. The ICM process typically converges in a few (3-5)

iterations.

Each pixel (pair) optimization can be done using any standard multi-dimensional

optimization technique. However, in order to reduce the computational cost, we are

satisfied with finding new pixel values that reduce the cost but do not necessarily

minimize it. A case can even be made that because of the complex (and non-convex)

nature of the solution space and the interrelated variables, we should prefer that each

pixel value optimization will not be too strong, so that the whole optimization process

will not get stuck in a local minima.
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We used a simple process that finds a ”V” combination1 of points in the direction

of the gradient. Thus, instead of exact two-dimensional minimization, we perform a

single (non-exact) one dimensional line-search. This optimization process is simple to

implement at relatively low cost. While this process does not find a global minimum

of the cost function (but only a lower point than the current one) we found it adequate.

The global background values (4.2.1) are used both in computing the fidelity term

(the background is used in the non-linear transformation between reflectance and

density/absorptance values). Local background values can be used for clipping pixel

values updated in each optimization step, not allowing pixel values to be brighter

than the background.

The H optimization step is much simpler due to the smaller number of vari-

ables. Given no prior knowledge on the mixing parameters this problem becomes a

Least-Squares problem minimizing only the fidelity term (Eq.(6.4)). Using all pixel

information (the whole two images) may hinder the solution (as in the decorrelation

algorithms) as many non-informative pixels introduce noise to the process. As before

we want to evaluate the PSFs by only using locations with single-side activity (as

defined in 4). This is done by adding a mask to the fidelity term so only the relevant

pixels contribute to the cost function.

Like all ICA methods our algorithm may suffer from two ambiguities:

1. Permutation

2. Scale

The Permutation ambiguity, while theoretically possible, is in practice not an is-

sue. This is due to the sequential scan by the ICM method. The probability of a large

1Three points a < b < c so that f(a) > f(b) < f(c).
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number of pixels, not to mention the whole image, simultaneously being ”switched”

is negligible. This has not happened even once in all our tests.

The Scale ambiguity is also not of major concern. While mixing parameters h11

and h22 do tend to drift from their expected value of 1, this drift is only noticeable af-

ter a large number of iterations and can be easily rectified by normalizing the images

and mixing parameters. The density images are multiplied by the estimated value

of h11 and h22, which are then set to 1. Alternatively, we can fix the values of h11

and h22 to 1 during the optimization process, thus avoiding the need to normalize.

However, we found that this hinders the optimization process somewhat.

The last issue that concerned us is that of the initialization. In view of the complex

nature of the solution space, a good initial guess can greatly aid the optimization.

Given no prior knowledge of the images, the input image mixtures X are used as an

initial guess for the image estimates Y . However, a reasonable guess can be made

regarding the mixing operator. Elements h11 and h22 are known to be 1 while the

PSFs h12 and h21 are known to have a strong attenuation factor. Thus, we initialize

these operators to small scalar values ε.
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6.4 Proposed Algorithm

To summarize, the proposed algorithm is:

1. Estimate the global white paper reflectance, Rpg, using the mean-shift process

on the whole image for both front and back sides (see 4.2.1.1).

2. Estimate the local white paper reflectance images, Rpl, for both front and back:

local mean-shift process coupled with activity estimate (see 4.2.1.2).

3. Initial guesses Y = X and H =




1 ε

ε 1


, ε ∼ 0.1

4. Alternating minimization process:

(a) Y optimization:

i. Compute tradeoff maps λ1,2(m,n) (see 5.1.3.1)

ii. ICM iterations until convergence - each iteration includes two scans:

forward and reverse.

A. For each pixel location minimize:

{y1(m,n), y2(m,n)} = arg min
y1,2(m,n)

{‖ H(Y)−X ‖2
2 +λTV {Y}}(m,n)

(6.7)

minimization is done by a line-search process and is done only on

the elements of the cost function dependent on location (m,n).

B. Clip values to [0, Rpwl(m,n)].

(b) H optimization:

i. Compute activity masks

ii. Least-Squares minimization

(c) Normalize images and PSFs.

5. Repeat stage 4 with larger PSF supports.
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6.5 Simulation Results

The following example is for a pair of 256 gray level images of 420 × 560 pixels. For

convenience, the images are shown in their correct orientation but obviously during

registration and throughout the cleaning process the mirror image (flip left-right) of

one of the images is used.

Fig.6.2 depicts the original scans. Notice that this example contains not only text

(binary image) but also contains various gray graphical elements.

Fig.6.3 depicts the output of our BSS algorithm. The separated images are the

result of only six alternating minimization stages. The first stage uses a 1 × 1 filter

support, and all the following stages a 5 × 5 filter support.

While the separation (and subsequent Show-Through removal) is not perfect, we

can see a big improvement. Additional minimization stages will further improve these

results, however, we had to severely limit the number of iterations due to the high

computational cost. Several improvements of our algorithm that could allow for bet-

ter Show-Through removal are discussed in Section 7.2.
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(a) Front (b) Back

Figure 6.2: Example 1 : Original Images

(a) Front (b) Back

Figure 6.3: Example 1 : Separated Images
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Fig.6.4 depicts another example for a pair of 420× 560 pixel images. The cleaned

images are shown in Fig.6.5.

(a) Front (b) Back

Figure 6.4: Example 2 : Original Images

Notice in the left part of the separated front-side image, in Fig.6.5, the smoothing

of the textured area. This type of artifact is typical of Total-Variation based image

processing techniques.

(a) Front (b) Back

Figure 6.5: Example 2 : Separated Images
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In conclusion, in this chapter we presented a Blind Source Separation algorithm

for Show-Through removal. The algorithm attempts to minimize a cost functional

which incorporates the non-linear and convolutive image mixture model in the fidelity

term, and Total-Variation image regularization. The fidelity/regularization tradeoff

is set via a location dependent scheme, preserving only the desired image edges.

Optimization is done by applying an alternating minimization scheme using the ICM

approach to adjust pixel values.





Chapter 7

Conclusion

7.1 Summary

In this work we presented the Show-Through problem in scans of duplex printed doc-

uments, showed how it can be modelled as a non-linear convolutive mixture of images

and developed two algorithms for solving the problem.

Our literature search revealed only one significant work, by Sharma [37], relating

to this specific problem. The main contribution of Sharma’s work is in modelling

the Show-Through phenomenon and in partially linearizing it. However, the image

processing tools utilized by Sharma to remove the Show-Through were fairly basic

and the solution suffered from several flaws.

The first part of our work focused on analyzing Sharma’s Decorrelation algorithm,

understanding it’s shortcomings, and offering improvements. Thus, our first algorithm

is an improved Decorrelation based algorithm. We significantly improved on previous

results by incorporating three main components:

• Local background estimation : Use of a global background value can cause over-

whitening artifacts. We offered an algorithm for estimating local background

81
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values using an adaptive mean-shift process.

• Cascaded filtering scheme : We propose using a cascaded adaptive filtering

scheme, using filters with increasing support, to achieve better signal decorre-

lation.

• Adaptive post-processing stage : The cross-contamination of the signals causes

the decorrelation process’s output to be distorted. A post-processing stage is

required to cancel the distortion. We offer a method to estimate the post-

processing filter using adaptive filtering techniques.

The developed algorithm gives good results at relatively low computational costs.

We found the algorithm to be robust, both in handling complex documents and in

not being strongly affected by choice of parameters.

In the second part of our work we tackled the Show-Through problem from an

ICA/BSS approach. The second algorithm we propose uses Blind Source Separation

techniques to estimate both the clean images and the mixing parameters.

Image separation (resulting in Show-Through cancellation) is achieved by min-

imization of a cost functional. The non-linear convolutive image mixture model is

incorporated into a mean-squared fidelity term. The independence assumption al-

lows us to use an image regularization approach to the separation problem, applying

the regularization separately to each image. We chose Total-Variation as our image

prior due to it’s convexity and edge preserving features.

Fidelity/Regularization tradeoff is set by a location dependent scheme that takes

into account that the interfering signal is itself an image. Thus, only desired edges

are preserved, while Show-Through induced edges are removed.
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Minimization is achieved by an alternating minimization scheme, minimizing the

cost functional by optimizing the image pixel values Y for given mixing parameters

H, and vice versa, for several iterations. This complexity reduction allows us to break

the non-linear non-convex optimization problem into a set of simpler linear convex

stages. The image minimization stage is done by the ICM method adapted for image

separation. The algorithm gives good results but at a very high computational cost.

Several directions for improving the BSS algorithm are discussed in section 7.2.

7.1.1 Algorithm Comparison

Fig.7.1 shows a comparison of the two algorithm’s output. It is evident that both al-

gorithms significantly reduce the Show-Through although each approach suffers from

different types of artifacts.

In the decorrelation based approach, areas of the image not affected by Show-

Through remain virtually unchanged. Areas where Show-Through is removed may

however suffer from over-cleaning effects, as shown in Fig.7.1(b), due to the algo-

rithm’s dependance on the background estimation.

In the BSS approach, the Show-Through is removed just as effectively, however

artifacts typical to Total-Variation (or similar regularization functions) such as over-

smoothing may occur. This is evident in Fig.7.1(c) where the texture of the gray

background is smoothed. The BSS algorithm also comes at a much higher computa-

tional cost.
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(a) Scanned (b) Decorrelation (c) BSS

Figure 7.1: Output of Decorrelation and BSS algorithms

7.2 Future Directions

While we feel that we have, more or less, exhausted the possibilities for improvement

using the Decorrelation approach, much work can still be done under the BSS ap-

proach.

We divide future work into two main categories:

1. Technical improvements

2. Theoretical extensions

7.2.1 Technical Improvements

Under the heading of Technical Improvements we include various computational im-

provements to the numerical approximations used in our work. Specifically, both the

Gradient and the Total-Variation estimations can be performed in various ways, usu-

ally with a clear tradeoff between computational complexity and the quality of the

estimation. We expect better results with improved numerical approximations.

Another category of technical improvements goes to the optimization scheme used.

Various other schemes can be applied to the problem. For example, Pyramidal and

Multigrid methods have been used in many image processing problems, and may



CHAPTER 7. CONCLUSION 85

be appropriate for the Show-Through problem as well. Variational methods may

also hold promise for image separation, in general, and the Show-Through problem,

specifically.

7.2.2 Theoretical Extensions

The technical improvements, listed above, attempt to minimize the same cost func-

tional we used in our work, however better image models/priors can be proposed.

A model that may be more suitable for our problem is the Structure-Texture model

[2]. In this model an image is decomposed into structural and textural parts. Due

to the attenuating and smoothing nature of the Show-Through process, most of the

show through is probably due to the structural parts of the interfering image. Proper

use of such a model may both lead to better Show-Through removal and lessen the

smoothing artifacts inherent in the TV model.

Another problem, which exceeds the scope of this work, is that of Show-Through

in color images. Even the modelling of the problem in color images is subject to

further research. Are the different color channels affected in a similar way by Show-

Through? How do they interact? Also, given a Show-Through model for color images,

what tools are most appropriate for handling the problem?





Appendix A

Iterated Conditional Modes

The ICM method [7] aims to reconstruct degraded images taking into account the

relations between adjacent pixels. The ICM method consists of an iterative process,

where each iteration consists of sequential simple optimizations. Thus computational

heavy large scale optimization is avoided as are undesirable large scale properties of

the MRF.

We applied the ICM methodology to separation of image mixtures. The derivation

of the ICM method to image separation is given below.

A.1 Single Image Reconstruction

Denoting y an estimate of scene s, the algorithm aims to update point y(n) in light

of all available information. y(n) is updated so as to maximize the conditional proba-

bility, given the scanned image x and the current estimate at all other points y(Ω\n):

y(n) = arg max�
y(n)

P (ỹ(n)|x,y(Ω\n)) (A.1)

Assuming a locally dependent Markov random field model:

P (y(n)|y(Ω\n)) = P (y(n)|y(∂n)), (A.2)
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where ∂n denote the neighbors of n (directly related to n through the MRF).

Assuming also that each x(n) has the same density function dependent only on

s(n) (as in the case of additive i.i.d. noise), and that x(n) are conditionally indepen-

dent for given s, yields:

P (x|s) =
∏

n

p(x(n)|s(n)) (A.3)

It follows that :

P (y(n)|x,y(Ω\n)) ∝ p(x(n)|y(n))P (y(n)|y(∂n)) (A.4)

When applied sequentially to each pixel in turn, this procedure defines a single

cycle of an iterative algorithm for estimating s.

The algorithm uses a ”greedy” maximization strategy. During the process P (y|x)

never decreases (P (y|x) = P (y(n)|x,y(Ω\n))P (y(Ω\n)|x)), so eventual convergence

is assured. Typically convergence occurs after only a few iterations to a local maxi-

mum of P (y|x).

A more complicated scenario is that where x(n) depends not only on s(n) but

also on points in it’s vicinity vn. This is the the case in deconvolution problems,

where vn is defined by the support of the blur kernel. The x(n)’s are still considered

conditionally independent given s. In this scenario the conditional probability can be

written as:

P (x|s) =
∏

n

p(x(n)|s(n), s(vn)) (A.5)

The probability to be maximized is given by:

P (y(n)|x,y(Ω\n)) ∝ p(x(n)|y(n),y(vn)P (y(n)|y(∂n))·
∏

m∈ρn\n

p(x(m)|y(n),y(m),y(vm\n))
(A.6)

where ρn = {m : n ∈ vn}, i.e., all the points that point n falls within their vicinity.
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A.2 Iterated Conditional Modes for Image Mix-

tures

We applied the ICM methodology to image mixtures. Denoting yi an estimate of

scene si, the algorithm aims to update the point pair (y1(n),y2(n)) in light of all

available information. (y1(n), (y2(n)) is updated so as to maximize the conditional

probability, given the scanned images xi, the current estimate at all other points

yi(Ω\n):

(y1(n),y2(n)) = arg max
(y1(n),y2(n))

P (y1(n),y2(n)|x1,x2,y1(Ω\n),y2(Ω\n)) (A.7)

Assuming a locally dependant Markov random field model:

P (yi(n)|yi(Ω\n)) = P (yi(n)|yi(∂n)) (A.8)

Where ∂n denote the neighbors of n.

The sources s1 and s2 are assumed to be statistically independent so:

P (y1,y2) = P (y1)P (y2) (A.9)

A.2.1 Pointwise Model

Assuming that each xi(n) has the same density function dependent only on si,j(n)

(instantaneous model), and that xi(n) are conditionally independent for given s, yields

the following conditional probability:

P (x1,x2|s1, s2) =
N∏

n=1

p(x1(n),x2(n)|s1(n), s2(n)) (A.10)

It follows that the probability to be maximized is given by:

P (y1(n),y2(n)|x1,x2,y1(S\n),y2(S\n)) ∝p(x1(n),x2(n)|y1(n),y2(n))

P (y1(n)|y1(∂n))P (y2(n)|y2(∂n))

(A.11)
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A.2.2 Convolutive Model

In the convolutive mixture scenario xi(n) depends not only on sj(n) but also on it’s

vicinity vn. The xi(n)’s are still considered conditionally independent given si,j. The

conditional probability is given by:

P (x1,x2|s1, s2) =
N∏

n=1

p(x1(n),x2(n)|s1(n), s2(n), s1(vn), s2(vn)) (A.12)

The probability to be maximized is given by:

P (y1(n),y2(n)|x1,x2,y1(S\n),y2(S\n)) ∝

p(x1(n),x2(n)|y1(n),y2(n),y1(vn),y2(vn))·

P (y1(n)|y1(∂n))P (y2(n)|y2(∂n))·
∏

m∈ρn\n

p(x1(m),x2(m)|y1(n),y2(n),y1(m),y2(m),y1(vm\n),y2(vm\n))

(A.13)

where ρn = {m : n ∈ vm}, i.e., all the points that point i falls within their vicinity.
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�g� �f�v�vs £
Show-Through

¤ fghijq�klq �p mhnompqq mffrs mj �f|flv hyj h� qkhsrs
fghijq hkfls �hnkq e�kq fkfl fypv �nkhvq �v�v �fogh� gpj� mpigmv h� qrnhm e�foh
�fogh� gpj� �nhqvs mgho qrnhmq efvkoq klq myhvm mj �o�ovh �kq �gk �ompv �kq �p
hv� ¤ q�hvy mh�fjs mhofg�s gshkv gpj� kihfvs kfg�v hyfj gskq e�kq �p fypq hkfl mj
mh�fj gpj� ¥��hj efmhqv hyfj mh�fjq jphy �p £fyi�hp ogh�s mf�hnf� �f�v�v mofg�s
f�j�f|fkq �hnkq mffprms qgovq hq� efyhfi qfqy mhnompqq mffrs �hgmn ¥qshpi qofg�q

e
master

omhr mgflf mrs
�hpnª �f�v�v ghsr qfrsq mj mgmhn ¥�� mvg m�rnq fªr ¥qfrsq �hgmn� mfsfjy qpf|
mj�� qpf| e£mhfgjyfs mhyhvm ¥qprv�¤ ks�s ��o� �f�f�vq �f�v�v �pv� �q q�j� eª�f�
emhyhp ghnj mhvg mh|gks �ffnjg| �f�yv�j �f�f�vq ¥gmhf �fs�ghv �f�v�vs �hnf�s �p�m
¥�kq fkfl fyp �p mhofg� m�lyv qyfjp ¥ks�s mkkhs qyhvm� m�iffmvq qpf| �� �p�m �| ��

e�mhpvs
mkovmv hyjlvp qkfifq mfmhrvpvq qkhsrq eh� qfrs� h�iffmq ks�s mh�rv mhkhsr
�gk ghjq gsrv �h��v gij sorv fªr fghijq klq mhnompq mrnhm �p qgflfq �f�qm ihmfys
hkls hfkq ms�p �gk gshr ¥ogh�q mghyvv jlhf ghjq e�v�vq mofg� mrs ¥ogh�q fyhy|yv
mffrs efvkoq klq myhvm mgflf� ¥fj�|q �j ¥hfkq �gk qg�i ¥�kqv g�ihvh �kq �p fvkoq
¥�kq �gk gshr j�j ¥�kqv mhgfpf g�ihv hyfj ghjq �p �fh�v sf�gp �hhf� mglhy mhnompqq
£hvlr �kqh ¥�kq mhs�p fmp �gk¤ ogh�q q��vv g�ihvh ¥�kq �p fghijq hkfls hfkq ms�p �gk
gjmvq �khv �� efghijq klqh fvkoq klq mhyhvm �p fgjfyf� j� shsgr glhy �� efj�|q �j
��h ¥�kq �gk hgsrs ghjq gh�fn mj m|lffvq ph�p� mfloyhn gmfq �fs �h��� �fgl qrnhmq mj
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qrnhmqp �� �khvq �p mfo�i qfl�fgjfyf� rls� �mfy efghijq klq mhnompq mj mp�p�v

emhfhlgq mhyhvmq �p mhfgjfyf� j� mhgvmq �p p�p�vh fgjfyf� shsgr� gjhmm
�fg�v h�somqp ghnj mhvg mhyhvm fmp hykfs pfp jfq ¥qfrsq �hgmn� ¥hy�p jlhvq mkhoy
fs|� hj ¥ohg�q �v�vq ��hm fs|� �kohv rkfv �� hykfs �fj f� �fifyv hyj e�kq fkfl fyp mo
�ifq jlhvq miyq eogh�qh hfkq ¥�kq �p mhf�of�fn mhyh�mv �frshyq shsgrq �f�qm fg�vgn

e�fkov �f�qm� £qflg��f|g¤ mfsigv qvjmq hgsr mhyhvmqp jfq �fifyv hyj qmhj qkf
gpnjq ��� mhvhkq ¥mhfhnompqv mhohyv ¥£fghij klh fvko kl¤ mhyhvm fmp ghlf� hymg�v

eks�s ¥�kq �p kij klv �nkhv qfq h� �v�v hmhj mofg�v �f�sov hyffq �mhj mhyhvm�
efghijq klq mhnompq mffrs �hgmn� �fvmfgh|�j fyp �f|flv hyj h� qkhsrs

qpry ¥Sharma
�p ¥mvkho qkhsrs eqfl�gho�qkq �hfg�fgo �r ��smv �hpjgq �mfgh|�jq

emhp�hih �fv|n gn�vv �s�h kjv f�f�s qfq rlhqp �mfgh|�jq �j q� �hfg�fgos phvfp
�qk ¥hy�p �mfgh|�js emhn�hmh �fghnfp gn�v �frflvh ¥Sharma

�p hmkhsr mj �fimyv hyj
��s e£�ffsf�nkj¤ �f�|m�v �fyy�v �p £qko�o¤ fs�p sg �f�qm mhrlvjs m|phv qfl�gho
¥�khoq s�pqv gmhf �hk| �vm f�rs £qyhvm ��� kij¤ �fyy�v �f�grhpv qko�oq �p s�p
qyhvms mhgfqs ffhyfp� �|m�v rlhvq �mfgh|�jq ¥��hys e

LMS
m�fps rlsmv �hgrpq gpj�

�f��sv hyj e
Mean-Shift

�f�qm fªr qpry gskq efvhov �nhjs rogq �p ghnjq mvg �hgrfp fªr
hvlrs �f�v £fypq klq myhvm jhqp � �hiffq mhj ¤ pfrgvq mhjqp �� sor glhyp ¥mhhfrq mj
fªr ��hy �hyf� �f�qm fªr ¥£fghijq kls fvkoq klq mhnompq sor¤ fhlgq mhjqv �f�yv�j

e�|m�v �y�v
�f�v�v �p mhofg�s qi�lqs �n�vq mfshpfi �frfh £f��hshg¤ kfvr �mfgh|�j jfq qjlhmq
mj �fyffnjvp �f��hs �f�onf�gj j�� mj� ¥�fs�ghv �ffnjg| �f�yv�j �f�f�vq �fs�ghv

e
Sharma

�p �mfgh|�jq
e£
Blind Source Separation

¤ mhghov �p mghhfr qkgnq �p mh�fps pvmpv fypq �mfgh|�jq
�h�fs �� sorh¤ mhyhvmq mkgnq eshsgrq fg�vgn mjh mhyhvmq mj mfyv� hs �grpv �mfgh|�jq
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fypv ms�ghv h� qfloyhn egfiv mfloyhn �p qfl�fvfyfv �f�qm mhrlvjs m|phv £mhnompqq
qvjmqq mj gjmvh mrlhvv mfrhsfg qjf|p �p sf�g jhq �hpjgq sf�gq e�ffgofr �fsf�g
|jhkh mhyhvmq �p fghfgn�j �khv |lffv fypq sf�gq emhohg�q mhyhvm� �hgrpq �p £

fidelity
¤

e
Total-Variation

jhq hyfkf �r gisyp qfl�fg�h|gq �khv e�hgmnq �p £
regularization

¤ qgk�q�
�r �ovp qv ¥qghro jfq h� qfloyhn �v�s hs gpj� mhnpq ghvfp myh�m �ps gisy q� �khv
�� �r kgnys qgk�q rls� hy� mgpnjv mhyhvmq �fs mh�m�fjq miyq eqfl�fvf�nhjq �f�qm
�qs mhvhovs e�hofv fh�m �nhjs �fsf�gq fyp �fs �f�vh|q �if mj rsho �mfgh|�jq eqyhvm
mvhr� eqgk�q� qhs| �opv �mfy ¥mhnompqqv qqhs| mhgfs�s mrshyq £

edge
¤ qnp mvffo

mj gvpv �mfgh|�jq �� eqgk�q� �hvy �opv �mfy ¥ªmfmfvjª qnp mvffo �qs mhvhovs ¥mj�efghijq klq mhnompqv mhrshyq mhnp gf�v hkhrs mhfhlgq mhnpq
hyj ��� fj egfivq mfloyhn �r qgfpf qfl�fvf�nhj rhlfs mgpnjv j� qfrsq mhs�ghv
�p qfl�fvfyfvq gpj� ¥fsf�g�fj �nhjs qfl�fvfyfvq mj �frlsvh qfrsq �p �hpfn �frlsv
fg�vgn f�gr gpj� ¥mhyhvmq �p ghnjq mhvg f�gr �r �rn ¥�f|hgf�� mfpry gfivq mfloyhn
�somv �� emhrshov mhyhvmq f�gr gpj� ¥shsgrq fg�vgn �r �rnh ¥�frhso �fo�ihv shsgrq
�kj mg�rs qpry mhyhvmq f�grs qfl�fvf�nhjq krl eghroh fgjfyf� jhq �f�qms s�p �� f�
oghnv h� q�fps emhyhvm mkgnq mffrs� £

Iterated Conditional Modes
¤
ICM

m�fp �p qfl�n
qkhoys �f��ofnq f�gr og �fy�krmv krl ��sp� ¥�fkrl �p qgk�� qfl�fvf�nhjq �f�qm
�ghlq ryvy h� q�fps emh�y�mq� kr mhyhvmq �r q�j� �fgsrv gn�v ��h� �f�qmq emij

e�hk| qkfv qyos qfl�fvf�nhjs
��hns �fyfvjv hyj ¥mj� �r ekjv qhs| fshpfi gfivs �j mhsh� mhjlhm |fpv �mfgh|�jq

eq� �mfgh|�j� �ffgpnj mhsigqh �fghnfp gn�v �frflvh qfrsq �hgmn� h� qpf| �p �jfly


