
SELF-DUAL MORPHOLOGICAL

OPERATORS BASED ON TREE

REPRESENTATIONS OF IMAGES

ALLA VICHIK



SELF-DUAL MORPHOLOGICAL OPERATORS

BASED ON TREE REPRESENTATIONS OF

IMAGES

RESEARCH THESIS

Submitted in Partial Fulfillment of the Requirements

For the Degree of Master of Science

in Electrical Engineering

Alla Vichik

SUBMITTED TO THE SENATE OF THE TECHNION — ISRAEL INSTITUTE OF TECHNOLOGY

NISAN, 5766 HAIFA MARCH, 2006



The Research Thesis was done under the supervision of

Dr. Renato Keshet and Prof. David Malah at the Electrical

Engineering department.

I would like to convey my deepest gratitude to Dr. Renato Keshet and

Prof. David Malah for their extremely devoted guidance and support

throughout the research. I would like to thank all the staff of Signal

and Image Processing Lab and especially to Nimrod Peleg, for the

excellent organization and the warm relation and Ziva Avni for the

technical support. Finally, I thank my own family, which accompany

me in all steps.



Contents

1 Introduction 5

1.1 Self-Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Original contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Summary and thesis organization . . . . . . . . . . . . . . . . . . . . 9

2 Theoretical Background 12

2.1 Graph theory notions . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Known tree representations . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Max-Tree and Min-Tree . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Binary Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Tree of Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Theoretical Background on semilattices . . . . . . . . . . . . . . . . . 18

2.3.1 Complete Semilattices and Lattices . . . . . . . . . . . . . . . 18

2.3.2 Morphology on Semilattices . . . . . . . . . . . . . . . . . . . 20

2.3.3 Supremum and Dilations . . . . . . . . . . . . . . . . . . . . . 21

2.4 Shape Tree Semilattice Background . . . . . . . . . . . . . . . . . . . 23

2.4.1 Tree of Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Inf-Semilattice of Binary Sequences . . . . . . . . . . . . . . . 25

2.4.3 Images of Shape Sequences . . . . . . . . . . . . . . . . . . . . 26

2.4.4 Inf-Semilattice of Images of Shape Sequences . . . . . . . . . . 27

2.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Alternating Sequences Semilattice Background . . . . . . . . . . . . . 31

2.5.1 Boundary Topographic Distance (BTD) . . . . . . . . . . . . 31

2.5.2 An extension of boundary topographic distance definition . . . 32

2.5.3 Boundary Topographic Variation (BTV) Transform . . . . . . 32

2.5.4 Semilattice in BTV Domain . . . . . . . . . . . . . . . . . . . 35

iii



iv CONTENTS

3 Implementation of BTVT 37

3.1 Topographic Distance Tree definition . . . . . . . . . . . . . . . . . . 37

3.2 Topographic Distance Tree implementation . . . . . . . . . . . . . . . 38

3.3 Implementation of the BTV Transform . . . . . . . . . . . . . . . . . 40

4 The “trench” problem and the proposed solutions 44

4.1 Filtering using an adaptive structuring element . . . . . . . . . . . . 48

4.2 Filtering using multiple minimal paths . . . . . . . . . . . . . . . . . 53

4.3 Filtering using a combined method . . . . . . . . . . . . . . . . . . . 55

4.4 Results Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.1 Comparison of different methods for avoiding trenches . . . . 55

4.4.2 Filtering of AS images versus traditional morphological filtering 55

5 Tree Semilattices 62

5.1 The Complete Inf-Semilattice of Tree Representations . . . . . . . . . 63

5.2 Image Processing on Tree Semilattices . . . . . . . . . . . . . . . . . 69

5.2.1 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.2 Examples and Particular Cases . . . . . . . . . . . . . . . . . 71

5.3 Semilattice of Images . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.1 Structure Induction . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Extrema-Watershed Tree example 75

6.1 Extrema watershed tree description . . . . . . . . . . . . . . . . . . . 76

6.2 Morphological operations on the extrema-watershed tree . . . . . . 78

6.2.1 Erosion and opening . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.2 Opening by reconstruction . . . . . . . . . . . . . . . . . . . 87

6.3 Study of EWT properties . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.1 Implicit segmentation . . . . . . . . . . . . . . . . . . . . . . 89

6.3.2 Comparison to the Shape Tree . . . . . . . . . . . . . . . . . 92

6.3.3 Filtering using Extrema watershed tree versus traditional mor-

phological filtering . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 Application examples . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4.1 Pre-processing for car license plate number recognition . . . 99



CONTENTS v

6.4.2 Noise filtering for text OCR . . . . . . . . . . . . . . . . . . 101

6.4.3 Initial step for dust and scratch removal . . . . . . . . . . . 105

6.5 EWT conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Conclusions and further research 112

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2 Further research topics . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A 114

Bibliography 116



List of Tables

2.1 The BTV transform of a 1-D function f . The boundary here are the

first and last elements of the function. Notice that the point x = 5

is a skeleton (or watershed) point of the transform, with two different

transform possibilities. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Infimum and supremum of pairs of alternating sequences. . . . . . . . 36

6.1 OCR results comparison with different pre-processing methods. . . . 100

6.2 Energy results comparison, with different pre-processing methods. . 106

vi



List of Figures

1.1 (a) A noisy binary image, (b) Erosion by a 3 × 3 squared structuring

element, (c) The result of opening-closing with the same s.e., and (d)

The result of closing-opening with the same s.e. . . . . . . . . . . . . 7

2.1 Max Tree representation of images. . . . . . . . . . . . . . . . . . . . 15

2.2 Example of Binary Partition Tree creation with a region merging al-

gorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 (a) The trees of connected components of upper and lower level sets of

a simple image. (b) The resulting tree of shapes corresponding to the

same image. Notice that D is a hole in F. . . . . . . . . . . . . . . . . 19

2.4 Shape decomposition and associated Tree of shapes. (a) Original gray-

scale image f and (b)-(f) its shapes. The white shapes correspond to

connected components of the collection of upper levels sets {θt(f)},
whereas the black shapes correspond to connected components of the

collection of lower level sets {θt(f)c}. . . . . . . . . . . . . . . . . . . 24

2.5 Tree of shapes associated with Fig. 2.4. (a) Original tree; the numbers

in parenthesis are the gray-levels of the shapes. (b) Modified tree; the

number in parenthesis are the differences s(τ) between the levels of

each shape τ and its parent p(τ). Notice that shape F was duplicated. 25

2.6 (a)-(b) Two grayscale images, and (c) their infimum according to v.

The supremum does not exist in this case. . . . . . . . . . . . . . . . 28

2.7 Erosion in the complete inf-semilattice of shape sequences. (a) Origi-

nal gray-scale image, (b) proposed self-dual erosion, and (c) standard

erosion. The structuring element in both cases is the cross 7× 7. . . . 29

2.8 (a) Original grayscale image, (b) shape-tree erosion, (c) opening, and

(d) top-hat. A square structuring element of size 2× 2 was used in all

cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii



viii LIST OF FIGURES

2.9 An example of different topographic distance reference. (a) An original

image. (b) An image of a topographic distance from the boundary. (c)

An image of a topographic distance from a center flat zone. . . . . . . 33

2.10 Plot of 1-D Function f(x). . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 An example of a given image and its TD-tree. Each flat zone of the

image corresponds to a node of the TD-tree (indicated by the letter

V, followed by the node number), its gray-level (shown in the variable

GL), and its boundary topographic distance (shown in the variable TD). 38

3.2 Synthetic image with the corresponding image of topographic distances. 42

3.3 Noisy image of Simba with the corresponding image of topographic

distances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Image of Lena 256x256 with the corresponding image of topographic

distances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Noisy Image of Lena 256x256 with the corresponding image of topo-

graphic distances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Result of BTV-based erosion ε̂B. (a) Original Synthetic Image, and

(b) Erosion of Synthetic Image for a 2× 2 structuring element. . . . . 45

4.2 Result of BTV-based opening γ̂B. (a) Original Synthetic Image, and

(b) Opening of Synthetic Image for a 2× 2 structuring element. . . . 45

4.3 Results of BTV-based erosion ε̂B. (a) Original Natural Image, and (b)

erosion of Natural Image for a 2× 2 structuring element. . . . . . . . 46

4.4 Results of BTV-based opening γ̂B. (a) Original Natural Image, and

(b) opening of Natural Image for a 2× 2 structuring element. . . . . 46

4.5 Results of BTV-based erosion ε̂B. (a) Function f(x), and (b) Erosion

of f(x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 A tree representing the BTV transform of function f(x). . . . . . . . 48

4.7 An example of filtering a dual-pixel noise : A black component - 3, is

located on brighter background - 1 and 2. After erosion with erosion

depth limit of 1, the upper pixel of the 3-rd component is untouched. 49

4.8 Results of BTV-based erosion ε̂B, using adaptive SE. (a) Original Nat-

ural Image, and (b) erosion of Natural Image for a 2 × 2 structuring

element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



LIST OF FIGURES ix

4.9 Results of BTV-based opening γ̂B, using adaptive SE. (a) Original

Natural Image, and (b) opening of Natural Image for a 2×2 structuring

element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.10 A Lena image with Salt&Pepper noise cleaned with an adaptive SE

filter using filtering depth 1. Maximal size of structuring element here

is 2×2. Notice that there are still part of the noise pixels. (a) Original

Image (b) Image corrupted by the noise (c) erosion of Noisy Image (d)

opening of Noisy Image . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.11 A Lena image with Salt&Pepper noise cleaned with an adaptive SE

filter using filtering depth 3. Maximal size of structuring element here

is 2×2. Notice that there are still part of the noise pixels. (a) Original

Image (b) Image corrupted by the noise (c) erosion of Noisy Image (d)

opening of Noisy Image . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.12 A Lena image with Salt&Pepper noise cleaned with a multiple minimal

paths filter. Size of structuring element here is 2×2. Notice that there

are still some craters. (a) Original Image (b) Noisy Lena Image (c)

erosion of Noisy Image (d) opening of Noisy Image . . . . . . . . . . 54

4.13 A Lena image with Salt&Pepper noise cleaned with a combined filter.

Maximal size of structuring element here is 2× 2. (a) Original Image

(b) Noisy Lena Image (c) erosion of Noisy Image (d) opening of Noisy

Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.14 Trench problem in results of BTV-based erosion ε̂B and opening γ̂B.

Maximal size of structuring element here is 2× 2. (a) Original Image

(b) Noisy Simba Image (c) erosion of Noisy Image (d) opening of Noisy

Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.15 A Simba image with Salt&Pepper noise cleaned with an adaptive SE

filter. Maximal size of structuring element here is 2× 2. (a) erosion of

Noisy Image (b) opening of Noisy Image . . . . . . . . . . . . . . . . 58

4.16 A Simba image with Salt&Pepper noise cleaned with an multiple min-

imal paths filter. Size of structuring element here is 2× 2. Notice that

there are still some craters. (a) erosion of Noisy Image (b) opening of

Noisy Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



x LIST OF FIGURES

4.17 A Simba image with Salt&Pepper noise cleaned with an combined fil-

ter. Maximal size of structuring element here is 2 × 2. (a) erosion of

Noisy Image (b) opening of Noisy Image . . . . . . . . . . . . . . . . 59

4.18 Traditional erosion and dilation of gray scale image . . . . . . . . . . 60

4.19 Traditional opening and closing of gray scale image. . . . . . . . . . . 60

4.20 Traditional pseudo-dual open-close and close-open operators. . . . . . 61

4.21 Median operator compared to the combined method of self-dual open-

ing of AS image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Tree-based morphology. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 An example of image tree representation. An image with V1, V2, V3

and V4 zones is represented as a tree. Each pixel in this zone is mapped

to a corresponding label. . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 An example of order of trees. The tree representation (a) is bigger

than (b), because of two reasons: tree (b) is included in tree (a), and

there exists pixels in (b) that belong to label 1, while the same pixels

belong to labels 2 and 3 in (a). . . . . . . . . . . . . . . . . . . . . . 64

5.4 An example of trees intersection that is not a tree. . . . . . . . . . . 65

5.5 An example of a projection of the mapping function. Mapping func-

tions M1(x) and M2(x) of point x are projected to a subtree t1 ∧ t2. 66

5.6 Problem of existence of image semilattice, based on tree representation 73

6.1 EWT-based morphology. . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2 Example of extrema watershed tree creation. . . . . . . . . . . . . . . 79

6.3 The Extrema Watershed Tree associated to the example in Fig. 6.2. . 80

6.4 Inverse transform of Extrema watershed tree of Lena image eroded by

structuring element 2× 2. (a) Original Image (b) Eroded Image . . . 82

6.5 Inverse transform of Extrema watershed tree of Lena image opened by

structuring element 2× 2. (a) Original Image (b) Opened Image . . . 82

6.6 A Lena image corrupted by the Salt&Pepper noise. (a) Original Image

(b) Noisy Lena Image . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



LIST OF FIGURES xi

6.7 Filtering Noisy Lena Image using t Extrema watershed tree. (a) In-

verse transform of Extrema watershed tree eroded by structuring ele-

ment 2×2 (b) Inverse transform of Extrema watershed tree opened by

structuring element 2× 2 . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.8 A comparison between filtering results of noisy and clean image. (a)

Erosion result difference. (b) Opening result difference. . . . . . . . . 84

6.9 A Simba image corrupted by the Salt&Pepper noise. (a) Original Im-

age (b) Noisy Simba Image . . . . . . . . . . . . . . . . . . . . . . . . 85

6.10 Filtering Noisy Simba Image using Extrema watershed tree. (a) In-

verse transform of Extrema watershed tree eroded by structuring ele-

ment 2×2 (b) Inverse transform of Extrema watershed tree opened by

structuring element 2× 2 . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.11 A Binary image corrupted by the Salt&Pepper noise. (a) Original

Image (b) Noisy Binary Image . . . . . . . . . . . . . . . . . . . . . . 86

6.12 Filtering Noisy Binary Image using the Extrema watershed tree. (a)

Inverse transform of the Extrema watershed tree eroded by cross struc-

turing element (b) Inverse transform of Extrema watershed tree opened

by cross structuring element. . . . . . . . . . . . . . . . . . . . . . . 86

6.13 Opening by reconstruction of simple image. . . . . . . . . . . . . . . 88

6.14 (a) Original pears image. (b) Opened by reconstruction image using

SE of 3x3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.15 (a) Original Lena image. (b) Opened by reconstruction image using

SE of 3x3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.16 Trenches meaning. (a) Trench example (b) An infimum of A and B,

is a common father E. Its sons, C and D are the roots of subtree1 and

subtree2. Pruning the tree to C and D vertices, will create the required

segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.17 An example of image a trench image. (a) Original pears image. (b)

Trenches map image. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.18 Segmentation example. (a) Original pears image. (b) Sub-tree labels.

Trenches depth threshold 450. . . . . . . . . . . . . . . . . . . . . . 92

6.19 Segmented Lena image. (a) Original Lena image. (b) Sub-tree labels.

Trenches depth threshold 800. . . . . . . . . . . . . . . . . . . . . . 93



xii LIST OF FIGURES

6.20 A Lena image corrupted by the Salt&Pepper noise. (a) Original Image

(b) Noisy Lena Image. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.21 Difference between filtering results of Tree of shapes minus filtering

results of Extrema watershed tree of Noisy Lena Image. In both filter-

ing approaches we have used structuring element 2× 2. (a) Difference

between erosion results of Tree of shapes minus erosion results of Ex-

trema watershed tree (b) Difference between opening results of Tree of

shapes minus opening results of Extrema watershed tree. . . . . . . . 95

6.22 Filtering Noisy Lena Image using Extrema watershed tree. (a) Inverse

transform of Extrema watershed tree eroded by structuring element

2×2 (b) Inverse transform of Extrema watershed tree opened by struc-

turing element 2× 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.23 Filtering Noisy Lena Image using Tree of shapes. (a) Inverse trans-

form of Tree of shapes eroded by structuring element 2× 2 (b) Inverse

transform of Tree of shapes opened by structuring element 2× 2. . . . 96

6.24 Traditional erosion and dilation of a gray scale image. . . . . . . . . . 97

6.25 Traditional opening and closing of a gray scale image. . . . . . . . . . 97

6.26 Traditional pseudo-dual open-close and close-open operators. . . . . . 98

6.27 Median operator compared to the self-dual opening using Extrema

watershed tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.28 The structuring element used in opening by reconstruction. . . . . . . 101

6.29 License plate image without noise. . . . . . . . . . . . . . . . . . . . . 102

6.30 License plate image corrupted with noise. . . . . . . . . . . . . . . . . 102

6.31 License plate image in gray scale, as used by the OCR. . . . . . . . . 102

6.32 License plate image filtered by EWT-based opening by reconstruction. 102

6.33 License plate image filtered with an averaging filter. . . . . . . . . . . 103

6.34 License plate image filtered with a median filter. . . . . . . . . . . . . 103

6.35 License plate image filtered with regular opening by reconstruction. . 103

6.36 License plate image filtered with regular self dual opening by recon-

struction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.37 (a) A text image corrupted by Salt&Pepper noise. (b) Image restored

by an opening on the watershed tree with 2x2 SE. . . . . . . . . . . . 104



LIST OF FIGURES xiii

6.38 (a) Image restored by a median filter. (b) Image restored by an opening

on the shape tree with 2x2 SE. . . . . . . . . . . . . . . . . . . . . . 104

6.39 Top hat, using cross SE, as a pre-processing for dust and scratch re-

moval. (a) Original image (b) Top hat by reconstruction based on

EWT (c) Top hat using median (d) Top hat using an averaging filter. 107

6.40 Zoom in. Top hat, using cross SE, as a pre-processing for dust and

scratch removal. (a) Original image (b) Top hat by reconstruction

based on EWT (c) Top hat using median (d) Top hat using an aver-

aging filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.41 Top hat, using SE 5x5, as a pre-processing for dust and scratch removal.

(a) Original image (b) Top hat by reconstruction based on EWT (c)

Top hat using median (d) Top hat using an averaging filter. . . . . . 109

6.42 Zoom in. Top hat, using SE 5x5, as a pre-processing for dust and

scratch removal. (a) Original image (b) Top hat by reconstruction

based on EWT (c) Top hat using median (d) Top hat using an aver-

aging filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



Abstract

This research addresses a new image filtering methodology, based on mathematical

morphology.

In this thesis a new general framework for producing morphological, self-dual

operators that are compatible to a given tree representation is proposed.

For every tree representation, a set of morphological operators on a complete

inf-semilattice in the corresponding tree-representation domain is derived. Morpho-

logical erosion, opening, and opening by reconstruction operators are defined using

this framework. The proposed image filtering scheme consists of three steps:

1. Transform the input image to the corresponding tree representation,

2. perform morphological operators in the tree representation domain, and

3. transform the resulting tree representation back to the image domain.

A particular case of this general framework is presented and studied. It involves a

new tree representation,which we also developed in this research, called the Extrema-

Watershed Tree. The particular case example emphasizes the ability of the general

framework to generate new and useful sets of morphological operators.

A number of potential applications for the Extrema-Watershed Tree is proposed.

The new morphological operators excel in tasks suited for the application of classical

morphological operators, but that require, in addition, self-duality. The proposed

applications are pre-processing for OCR (Optical Character Recognition) algorithms,

de-noising of images, and preprocessing for dust and scratch detection. In addition

we show that the tree has an implicit segmentation property that could be used in

image segmentation algorithms.

In a previous work, Keshet has defined a complete inf-semilattice of images of

alternating sequences. In this research an efficient implementation of morphological

operators in this semilattice is proposed. In addition, the “trench” problem that

1



2 ABSTRACT

arises, when applying erosion and opening based on the semilattice, is studied. Possi-

ble solutions for the trench problem are proposed. Moreover, the trenches are used in

order to exploit the implicit segmentation property of the Extrema-Watershed Tree.



3



4

List of Abbreviations and Symbols

SE Structuring element

RAG Region Adjacency Graph

AS Alternating Sequences

BTD Boundary Topographic Distance

BTVT Boundary Topographic Variation Transform

OCR Optical Character Recognition

EWT Extrema Watershed Tree

Z Set of integers

E Euclidian space

f, g, f(x), g(x) Functions from an Euclidian space to the reals

τ Tree Transform

t Tree

T Tree Representation

M Mapping function

L Set of “labels”

V Vertex of a tree

E Edge connecting two vertices of a tree

⊆ Contained or equal

∪ Union

∩ Intersection

≤,�,v,E Order relation in a complete semilattice

∧,f,u,4 Infimum in a complete semilattice

∨,g,t,5 Supremum in a complete semilattice

δ Dilation in a complete semilattice

ε Erosion in a complete semilattice

γ Opening in a complete semilattice

φ Closing in a complete semilattice

Ψ Arbitrary operator

∆ Gray levels delta



Chapter 1

Introduction

1.1 Self-Duality

Morphological operators are widely used for image analysis and processing. The clas-

sical mathematical morphology theory was originally developed by Matheron and

Serra [1], and later generalized to a complete-lattice framework by Serra [2]. A prac-

tical description of mathematical morphology and its uses can be found in Soille’s

book [3]. An extension of mathematical morphology from complete lattices to com-

plete semilattices was developed by Keshet [4], and later further studied by Heijmans

and Keshet in [5].

Most of existing morphological operators in complete lattices have the major dis-

advantage of not being self-dual. A grayscale operator ψ is called self-dual when

ψ(f) = −ψ(−f). Operators that are not self-dual typically do not treat bright and

dark “objects” in a similar way, which is often an undesirable feature.

For example, consider the problem of denoising the simple binary image in Fig. 1.1(a).

A simple erosion operation (as a first step of an opening) does remove the bright

components of the noise, but the dark components are actually dilated, as seen in

Fig. 1.1(b). The standard approaches of opening-closing or closing-opening approxi-

mately achieve self-duality, but are not actually self-dual; the filtering results depend

on the order in which the opening and closing operators are applied. For instance,

opening removes bright noise, but damages fine bright details of the image. Closing

after opening can not restore the details damaged by the opening. In addition, lack

of symmetry in the treatment of bright and dark components often causes damage to

5



6 CHAPTER 1. INTRODUCTION

the image edges, as can be seen in Figs. 1.1(c) and 1.1(d).

The most popular approach to approximately achieve self-duality in mathematical

morphology is to use alternating dual operators. For instance, opening-closing and

closing-opening filters, or the more general alternating sequential filters (ASF’s) [1, 3].

However, these are not really self-dual, and some of the difficulties related to the lack

of self-duality still appear (as in the above example of Fig. 1.1).

Development of self-dual morphological operators can be found, for instance, in

the works of Serra, [1, chapter 8], Heijmans [6], and Mehnert & Jackway [7]. Al-

though most of these operators are morphological filters (i.e., they are idempotent

and increasing, see [1, 3]), the underlying approaches do not provide for adjunctions,

or designing extensive or anti-extensive operators, see [1, 3]. As a consequence, the

ability to design basic morphological operators (erosions, dilations, openings, and

closings) is lost. Useful morphological tools, such as skeletons, granulometries and

gradients [1, 3], are not available either.

Another important branch of research is that of self-dual connected operators.

Connected operators remove objects from an image without affecting the edges of

the remaining objects. In [8], Heijmans provides a summary of the activity in this

area, and characterizes in depth binary connected operators. A summary and char-

acterization of grayscale connected operators can be found in the works of Serra and

Salembier [9]. A subclass of connected operators are operators based on tree repre-

sentations. Salembier and Garrido proposed a Binary Partition Tree for hierarchical

segmentation in [10, 11]. A tree of shapes was proposed by Monasse and Guichard

[12, 13] (see also [14, 15]). These representations are all self-dual and very powerful.

However, the above methods do not define non-connected morphological operators,

such as an erosion.

1.2 Background and motivation

A new semilattice, based on the so-called Boundary-Topographic-Variation (BTV)

Transform, was defined by Keshet in [16]. The importance of that new semilattice is

that it allows to define self-dual non-connected morphological operators (like open-

ings, erosions, etc.) without need of a reference image.

In contrast, the other morphological approaches have one or more of the following



1.2. BACKGROUND AND MOTIVATION 7

(a) (b)

(c) (d)

Figure 1.1: (a) A noisy binary image, (b) Erosion by a 3 × 3 squared structuring
element, (c) The result of opening-closing with the same s.e., and (d) The result of
closing-opening with the same s.e.



8 CHAPTER 1. INTRODUCTION

disadvantages:

1. Are not really self-dual (see [1, 3]).

2. Allow to design filters (see [9, 8, 10, 11]), but not openings (or erosions, etc.).

3. Need a reference image (like in the reference semilattices, developed by Keshet

[4], and further studied by Heijmans and Keshet in [5]).

The erosion and opening operators that are based on the BTV Transform suffer

from a “trench” problem. The “trench” problem arises, especially in complex gray-

scale images, when the operators are applied (see Fig. 4.3(b)). Our initial goal in

this research was to solve this problem. Afterwards, the next goal was to design

improved self-dual morphological operators that are not necessary connected, and to

check application possibilities for the new operators.

1.3 Original contributions

Initially, an efficient implementation of self-dual morphological operators in Boundary-

Topographic-Variation (BTV) domain, is proposed. In addition, the “trench” problem

introduced by the BTV morphological operators is studied and a few solutions are

proposed.

We also noticed that an efficient implementation of these morphological operators

is achieved by first transforming the input image into an appropriate tree represen-

tation.

While working on our research, another, more robust semilattice (without trench

problems) was introduced by Keshet [17]. This new semilattice is based on yet another

tree representation, the tree of shapes, proposed by Monasse and Guichard [12, 13]

(see also [14, 15]). The tree of shape is slightly different from that of the BTV.

Notice that both the BTV and the shape tree semilattices, and their corresponding

morphological operators, can be directly associated to self-dual tree representations.

There are many other self-dual tree representations in the literature. For instance,

Salembier and Garrido proposed a Binary Partition Tree for hierarchical segmenta-

tion in [10, 11]. These tree representations are usually used for obtaining connected

filtering operations on an image; however, they do not yield non-connected operators,



1.4. SUMMARY AND THESIS ORGANIZATION 9

such as erosions, dilations or openings. It would be interesting to associate these

tree representations with semilattice operators, to augment the set of imaging tools

related to them.

In this research we developed a general framework for tree-based morphological

image processing. This framework yields a set of new morphological operators (ero-

sion, dilation, opening, etc.), for each given tree representation of images. Because

many of the properties of the tree are inherited by the resulting morphological opera-

tors, the choice of the tree representation is of high importance. We focus mostly on

self-dual trees, such as the Binary Partition Tree, which represent dark and bright ele-

ments equally. The heart of the proposed approach is a novel complete inf-semilattice

of tree representations of images.

The proposed general framework is shown to unify previous schemes, and a new

one is obtained by means of a new tree representation, Extrema-Watershed Tree.

Following the general framework, we derive self-dual morphological operators from

the Extrema-Watershed Tree, and demonstrate its application to denoising. The new

morphological operators are effective in tasks suited for the application of classical

morphological operators, but which require, in addition, self-duality. Moreover, we

briefly study the implicit segmentation property of the Extrema-Watershed Tree, and

suggest that it might be used for segmentation purposes (more research is required).

”Example of applications discussed here are pre-processing for OCR (Optical Char-

acter Recognition) algorithms, de-noising of images, and feature extraction as a pre-

processing for dust and scratch detection. The particular case of Extrema-Watershed

Tree stresses the strength of the general framework, as a tool for generating new,

useful sets of operators.

1.4 Summary and thesis organization

The main contributions of this thesis are summarized bellow:

1. An efficient implementation of the Boundary Topographic Variation (BTV)

Transform, defined by Keshet in [16], was proposed.

2. The “trench” problem related to operators defined by Keshet in [16] was solved.



10 CHAPTER 1. INTRODUCTION

3. A general framework for producing morphological connected and non-connected

operators associated to a given tree representations is developed.

4. A new particular case of tree representation, named Extrema-Watershed Tree, is

proposed. A novel set of morphological operators was defined on the Extrema-

Watershed Tree, based on this general framework.

5. Some applications using morphological filtering, based on the Extrema-Watershed

Tree, are proposed. Those applications include pre-processing for OCR (Optical

Character Recognition) algorithms, intermediate step for image segmentation

and initial step for dust and scratch removal from images.

The thesis is organized as follows:

Chapter 2 provides a theoretical background on semilattices and graph theory,

and summarizes the work presented in [17, 16] . In Chapter 3, we propose an efficient

implementation of the methods defined in [16]. Chapter 4 proposes possible solutions

for the “trench” problem that arises when applying erosion and opening in the semi-

lattice defined in [16]. In Chapter 5 we develop a general framework for tree-based

morphological image processing, which unifies the schemes presented in [17, 16], and

enables the definition of new morphological operators that are based on tree represen-

tations. The heart of the proposed approach is a novel complete inf-semilattice of tree

representations of images. For every tree representation, a complete inf-semilattice

on the tree-representation domain is derived, and a set of morphological operators on

that inf-semilattice is obtained.

Based on the general framework of Chapter 5, all that is needed in order to obtain

a new set of morphological operators is a given tree representation. The more this tree

representation is useful, the more useful these morphological operators will likely be,

since many of the properties of the tree are inherited by the morphological operators

(like self-duality).

Chapter 6 is devoted to the Extrema-Watershed Tree semilattice; a particular

case, obtained from the general framework, and to the investigation of its usefulness.

The Extrema-Watershed Tree is a kind of “Binary Partitioning Tree”, which is

a state-of-the-art general framework for tree generation, developed by Salembier in

[10]. It was designed in order to be used for tasks such as self-dual filtering. The



1.4. SUMMARY AND THESIS ORGANIZATION 11

result is a new set of morphological operators, derived from the Extrema Watershed

Tree, by the general framework of chapter 5.



Chapter 2

Theoretical Background

2.1 Graph theory notions

This section lists basic graph theory notions needed in the following chapters and is

based on [18, chapter 1].

A graph is a pair G = (V,E) of sets satisfying E ⊆ [V ]2; thus, the elements of E

are 2-element subsets of V . To avoid notational ambiguities, we shall always assume

tacitly that V
⋂
E = ∅. The elements of V are the vertices of the graph G, the

elements of E are its vertex edges.

A path is a non-empty graph P = (V,E) of the form:

V = {x0, x1, ..., xk} E = {x0x1, x1x2, ..., xk−1xk},
where the xi are all distinct. The vertices x0 and xk are linked by P and are called

its ends. Note that k is allowed to be zero.

The degree of a vertex is the number of edges at that vertex. This is equal to the

number of neighbors this vertex has in the graph.

A graph not containing any cycles, is called a forest (or acyclic graph). A con-

nected forest is called a tree. (Thus, a forest is a graph whose components are trees.)

The vertices of degree 1 in a tree are its leaves. Every non trivial tree has at least

two leaves, take, for example, the ends of a longest path.

Sometimes it is convenient to consider one vertex of a tree as special; such a vertex

is then called the root of this tree. A tree with a fixed root is a rooted tree. Choosing

a root r in a tree t imposes the following partial ordering on V(t): x � y, if x ∈ rty.
This means that x � y, if x belongs to the path rty, which is the path, connecting y

12



2.2. KNOWN TREE REPRESENTATIONS 13

to the root of the tree t. This is the tree-order on V(t) associated with t and r. Note

that r is the least element in this partial order, every leaf x 6= r of t is a maximal

element, the ends of any edge of t are comparable, and every set of the form {x|x � y}
(where y is any fixed vertex) is a chain, a set of pairwise comparable elements. The

partial order may also be applied on trees and subtrees. We say that t1 � t2 if t1 ⊆ t2.

From the above definition it is clear that the infimum between vertices is the

common father vertex. When given 2 vertices x and y, the infimum z = x ∧ y is the

vertex that is smaller or equal than x and y, thus z ∈ rtx and z ∈ rty, and there is

no other vertex bigger than z that is smaller than x and y.

2.2 Known tree representations

Image representations can be different depending on their purpose. The raw infor-

mation, that is the values of the samples, or pixels, is a too low level representation,

and the image must be described by more elaborate models.

Once the image is segmented, one way or another, the resulting topology must be

described. The usual notion of segmentation is a partition of the image into connected

regions, also called flat zones, and the relations between these regions are meaningful.

In [19], Salembier defined flat zones as connected regions of the gray-level image,

which are determined by a specified connectivity. In binary images these connected

regions are called connected components. Each “flat zone” of a gray-level image can

contain a range of gray levels or a single gray level. The range of gray levels contained

in each connected region is denoted by [gray level, gray level+∆]. For the flat zone

with single gray level: ∆ = 0; for a range of gray levels: ∆ > 0. Using ∆ > 0, it is

possible to simplify the image by quantizing it into a set of gray scales. Thus all the

pixels in the “flat zone” get the same value of gray level inside the specified range.

This reduces the number of flat zones in the image and can be useful for filtering and

segmentation. Of course, if ∆ > 0, some information is lost because of the gray scale

quantization.

In order to encode the adjacency relations between flat zones, we need to know

when two regions have a common boundary. The classical way to represent this

relation is through a graph, the Region Adjacency Graph (RAG): Each region (flat

zone) is represented as a vertex in the graph and when two regions are adjacent,



14 CHAPTER 2. THEORETICAL BACKGROUND

an edge links the corresponding vertices. Nevertheless, adjacency is not the only

meaningful relation between regions. In addition, a hierarchy between regions can be

created by building a tree based on a RAG, using a merging algorithm. A merging

algorithm on a RAG is simply a technique, which removes some of the links and

merges the corresponding nodes, creating new regions. When two or more regions are

merged, a newly created region becomes the father of the original regions.

To completely specify a merging algorithm one has to specify: the merging order

(the order in which the links are processed), the merging criterion (each time a link

is processed, the merging criterion decides if the merging has to be done or not), and

the region model (when two regions are merged, the model defines how to represent

the union). In the case of a Region Growing algorithm, the merging order is defined

by a similarity measure between two regions (for example similar gray level), the

merging criterion states that the pair of most similar regions have to be merged until

a termination criterion is reached (for example a given number of regions has been

obtained) and the region model is usually the mean of the pixels gray levels or color

values. Note that the merging order (similarity between neighboring regions) is quite

flexible and allows the definition of complex homogeneity models. By contrast, the

merging criterion is very simple and crude: it states that the pair of most similar

regions have always to be merged until the termination criterion is reached.

Two examples of region tree representations are presented in [19] by Salembier:

Max-tree (Min-tree) and Binary Partition Tree. An additional example of image rep-

resentation, called Shape-Tree, is presented in [12, 13] by P. Monasse and F. Guichard.

2.2.1 Max-Tree and Min-Tree

The Max-tree (Min-tree) is a structured representation of the image, which is oriented

towards the local maxima (minima) of the image. Each node V in the tree represents

a connected component of the image, which is extracted by the following thresholding

process: For a given threshold T , consider the set of pixels X that have a gray level

value greater or equal to T and the set of pixels Y that have a gray level value

equal to T : X = {x, such that f(x) ≥ T}, Y = {x, such that f(x) = T}. The

tree nodes V represent the connected components Ci of X, such that Ci ∩ Y 6= ∅.
In other words, the nodes of the tree represent the binary connected components,



2.2. KNOWN TREE REPRESENTATIONS 15

resulting from thresholding of the original image at all possible gray level values and

the leaves of the Max-tree (Min-tree) correspond to the local maxima (minima) of

the image. The root node corresponds to the lowest (highest) gray level value, which

is the support of the entire image.

An example of a Max-tree is shown in Fig. 2.1. The original image is made of

7 flat zones: {A, ..., G}. The number following each letter defines the gray level

value of the flat zones. The binary images, X , resulting from the thresholding with

0 ≤ T ≤ 2 are shown in the center of the figure. Finally, the Max-tree is given in

the right side. It is composed of 5 nodes that represent the connected components

shown in black. The number inside each square represents the threshold value where

the component was extracted. Finally, the links in the tree represent the inclusion

relationships among the connected components following the threshold values. Note

that, when the threshold is set to T = 1, the circular component does not create a

connected component that is represented in the tree. This is because none of pixels

of the circle G has a gray level value equal to 1, meaning that for T = 1, G∩ Y = ∅.
However, the circle itself is obtained when T = 2. The maxima are represented by

three leaves and the tree root represents the entire image support.

Figure 2.1: Max Tree representation of images.



16 CHAPTER 2. THEORETICAL BACKGROUND

2.2.2 Binary Tree

The second region-oriented image representation that is presented by Salembier in

[19] is the Binary Partition Tree. The leaves of the tree represent all flat zones of

the image. The remaining nodes represent regions that are obtained by merging the

regions represented by the children. The root node represents the entire image sup-

port. This representation can be considered as a compromise between representation

accuracy and processing efficiency. Indeed, all possibilities of flat zones merging are

not represented in the tree. Only the most “useful” merging steps are represented.

However, as will be seen in the sequel, the main advantage of the tree representation

is that it allows a fast implementation of sophisticated processing techniques.

The Binary Partition Tree should be created in such a way that the most “use-

ful” regions are represented. This issue can be application dependent. However, a

possible solution, suitable for a large number of cases, is to create the tree by keeping

track of the merging steps performed by a segmentation algorithm based on region

merging. In the following, this information is called the merging sequence. Starting

from the partition of flat zones, the algorithm merges neighboring regions following

a homogeneity criterion until a single region is obtained. An example is shown in

Fig. 2.2.

Figure 2.2: Example of Binary Partition Tree creation with a region merging algo-
rithm.

The original partition involves four regions. The regions are indicated by numbers.

Each flat zone has the different grey level value. The algorithm merges the four

regions in three steps. In the first step, the pair of most similar regions, 1 and 2, are



2.2. KNOWN TREE REPRESENTATIONS 17

merged to create region 5. Then, region 5 is merged with region 3 to create region 6.

Finally, region 6 is merged with region 4 and this creates region 7, corresponding to

the region of support of the whole image. In this example, the merging sequence is:

(1; 2)|(5; 3)|(6; 4). This merging sequence progressively defines the Binary Partition

Tree as shown in Fig. 2.2.

2.2.3 Tree of Shapes

The tree of shapes was proposed by P. Monasse in [20]. The tree of shapes represents

an image as a hierarchy of shapes, were dark and light shapes are treated in the

same way. It is build according to the inclusion order. Therefore each father vertex

area includes also all sons area. An article by Monasse and Guichard [12] includes a

compact definition of the tree of shapes. The following paragraphs are based on this

paper.

This tree is based on upper and lower level sets: Let E be an arbitrary set, and

f : E 7→ IR. The upper level sets (or just level sets) of f are the collection of sets

{θt(f)}, t ∈ IR, given by:

θt(f)
4
= {x ∈ E|f(x) ≥ t}. (2.1)

The sets {θt(f)c} are called the lower level sets.

Given the collection of levels sets of f , the latter can be reconstructed according

to:

f(x) = sup{t ∈ IR|x ∈ θt(f)}. (2.2)

Note that the level sets are nested; the family of upper (resp. lower) level sets is

decreasing (resp. increasing):

∀λ � t, θλ(f) ⊃ θt(f), θλ(f)c ⊂ θt(f)c (2.3)

The relation (2.3) states that the level sets are nested. When going from the whole

level sets to their connected components, these relations are of course still true. Now,

a connected component can contain several connected components. These inclusions

can be represented into a tree, as shown in Fig. 2.3(a). As we can see, the connected

components of upper and lower level sets trees differ. In addition, we see that we



18 CHAPTER 2. THEORETICAL BACKGROUND

end up with a non natural description of the inclusion. Naturally, in the example of

Fig. 2.3(a), one would have expected to have the two small squares included into the

gray rectangle, and included into the white background. But the inclusion for these

trees is mostly driven by the gray level rather than by the geometrical inclusion.

Finally, we see that we need both trees if we want to have the two small squares

represented, since each of them appears in one description, and not in the other.

Now, instead of upper and lower sets, lets us introduce a term of shape. A shape

is a connected component of upper or lower set without any holes in it. If a hole

exists, it is filled. The shape corresponds to the connected component and its filled

”holes”.

The sorting of shapes can then be made thanks to their geometrical inclusions.

We can then create a tree structure as follows: each node corresponds to a shape;

descendants are the shapes included into it, and the parent is the smallest shape that

contains it (see Fig. 2.3(b) ). Each shape can specify either a gray level difference

between it and its father or an absolute gray level.

This will give us one single inclusion tree describing the image, in which a white

object on black background is represented in the same manner as a black object on

a white background.

2.3 Theoretical Background on semilattices

Mathematical Morphology is a nonlinear image processing theory, which was based

on complete lattices. In [21] Keshet has extended its scope to complete semilattices,

which are more general. This section provides a brief overview of Mathematical

Morphology on complete semilattices.

2.3.1 Complete Semilattices and Lattices

A partially ordered set A is a set associated with a binary operator ≤, satisfying the

following properties for any x, y, z ∈ A: reflexivity (x ≤ x), anti-symmetry (x ≤
y, y ≤ x ⇒ x = y), and transitivity (x ≤ y, y ≤ z ⇒ x ≤ z). In a partially ordered

set A, the least majorant ∨X (also called supremum) of a subset X ⊆ A is defined

as an element a0 ∈ A, such that:



2.3. THEORETICAL BACKGROUND ON SEMILATTICES 19

(a) (b)

Figure 2.3: (a) The trees of connected components of upper and lower level sets of
a simple image. (b) The resulting tree of shapes corresponding to the same image.
Notice that D is a hole in F.



20 CHAPTER 2. THEORETICAL BACKGROUND

1. x ≤ a0,∀x ∈ X,

2. if there exists y, such that x ≤ y ≤ a0, for all x ∈ X, then y = a0. One defines

the greatest minorant ∧X (also called infimum) of X, dually.

A partially ordered set P is an inf-semilattice (resp. sup-semilattice) if every two-

element subset {X1, X2} in P has an infimum X1 ∧X2 (resp., a supremum X1 ∨X2)

in P . If P is both an inf and a sup-semilattice, then it is called a lattice. An inf-

semilattice (resp., sup-semilattice) is complete, when every non-empty subset B ⊂ P

has an infimum ∧B (resp. supremum ∨B). In this case, there exists in the semilattice

a unique element 0, called zero element, (resp., U , called universe), such that, for any

X ∈ P , 0 ∧X = 0 (resp. U ∨X = U). A complete lattice is a lattice, which is both

a complete inf and complete sup-semilattice.

2.3.2 Morphology on Semilattices

Some basic notions and tools of mathematical morphology on complete lattices were

extended to semilattices in [21] by Keshet. In this section, we shortly review the

extensions. Proofs of propositions will be omitted, but they are available in [21].

Without loss of generality, we restrict our discussion to inf-semilattices, since all

definitions and results are valid in sup-semilattices as well, by duality.

Erosions and openings are basic notions that are directly and naturally extendible

from complete lattices to complete inf-semilattices.

Erosion is defined in complete inf-semilattice S as any operator that distributes

over the infimum, see (2.4). Preservation of the universe is not required, because it

does not necessarily exist in S.

Definition 1. A binary operator ε in an inf-semilattice S is an erosion iff, for all

{Xi} ⊆ S:

ε(
∧
i

Xi) =
∧
i

ε(Xi) (2.4)

Proposition 1. Erosions in inf-semilattices are increasing1.

The extension of algebraic openings to semilattices is also straightforward:

1A transform Ψ is increasing ⇔ ∀f ≤ g ⇒ Ψ(f) = Ψ(g).



2.3. THEORETICAL BACKGROUND ON SEMILATTICES 21

Definition 2. (Algebraic Opening): A binary operator in an inf-semilattice S is an

algebraic opening, iff it is idempotent2, increasing, and anti-extensive3.

Compared to the above extensions, that of morphological opening, presented be-

low, is a little less direct. This is because: i) In complete lattices, the morphological

opening associated with an erosion is defined using its adjoint dilation, and ii) since

there is no general definition of supremum in an inf-semilattice, one cannot generally

define dilations there (however, limited versions of supremum and adjoint dilation

will be defined in the sequel). Nevertheless, morphological opening can be completely

extended to complete inf-semilattices, without help of dilation.

Definition 3. (Morphological Opening): In a complete inf-semilattice S, the morpho-

logical opening γε associated with an erosion ε is defined, for any X ∈ S, by:

γε(X) ,
∧
{Y ∈ S|ε(X) ≤ ε(Y )} (2.5)

Proposition 2. Given any erosion in a complete inf-semilattice S, the associated

morphological opening γε(X) of any element X ∈ S exists in S and is unique.

Proposition 3. The morphological opening in an complete inf-semilattice is an al-

gebraic opening, meaning it is idempotent, increasing, and anti-extensive.

2.3.3 Supremum and Dilations

We now relate to basic morphological notions that are not directly extendible to

inf-semilattices, namely, supremum and dilation. Although it is impossible to define

the above operations generally in inf-semilattices, Keshet provides limited versions of

them in [21].

Supremum

Unless it is a complete lattice, a complete inf semilattice does not have a well-defined

supremum for all its subsets. Nevertheless, a supremum does exist for some subsets

of the semilattice.

2A transform Ψ is idempotent ⇔ ΨΨ = Ψ.
3A transform Ψ is anti-extensive ⇔ I ≥ Ψ, where I is an identity transform.



22 CHAPTER 2. THEORETICAL BACKGROUND

Definition 4. Given a complete inf-semilattice S, define the set US of upper-bounded

subsets of S as follows:

US , {S ′ ⊂ S|(∃Y0 ∈ S|Y0 ≥ X,∀X ∈ S ′)} (2.6)

In words, US contains all the subsets of S that have a majorant Y0. Supremum is

defined only over elements of US.

Proposition 4. The least majorant (supremum) ∨B of a set B ⊂ S exists iff B ∈ US,

in which case it is equal to:

∨B =
∧
{Y ∈ S|Y ≥ X,∀X ∈ B} (2.7)

The above supremum is well defined over and only over US. This is because the

set {Y ∈ S|Y ≥ X,∀X ∈ B} is non-empty iff B ∈ US. In summary, if a subset of the

complete inf-semilattice has a majorant, then it has a least majorant, and this is the

supremum.

Dilation

Instead of defining dilation generically (as an operator that commutes with the supre-

mum), Keshet defines in [21] the adjoint dilation of a given erosion, restricted to a

sub-domain of the semilattice. Before presenting the definition of dilation, let us

characterize the domain.

Definition 5. Given an erosion ε in a complete inf-semilattice S, we define the set

of ε− bounded elements of S, symbolized by Sε, as:

Sε , {Y ∈ S|[∃X ∈ S|Y ≤ ε(X)]} (2.8)

In words, Sε contains the elements in S that are smaller or equal to the erosion

of some element in S. This is the domain for the adjoint dilation of the erosion, as

defined below.

Definition 6. (Adjoint Dilation) Let S be a complete inf-semilattice, and ε an ero-

sion. If X ∈ Sε, then the adjoint dilation of ε, denoted δε, is defined as:

δε =
∧
{Y ∈ S|X ≤ ε(Y )} (2.9)



2.4. SHAPE TREE SEMILATTICE BACKGROUND 23

Note that δε is well-defined over (and only over) Sε, since {Y ∈ S|X ≤ ε(Y )} is

non-empty iff X ∈ Sε. We drop from now on the index ε from the notation of its

adjoint dilation, for simplification.

Proposition 5. The adjoint dilation of ε is increasing in Sε.

Proposition 6. For all X ∈ S, γ(X) = δε(X).

2.4 Shape Tree Semilattice Background

A type of complete inf-semilattice called Semilattice of Images of Shape Sequences

and a set of morphological operations in it, is defined in [17] by Keshet. In this

section, a theoretical background on Shape Tree Semilattice is provided.

2.4.1 Tree of Shapes

As was mentioned in section 2.2.3, Monasse and Guichard define the shapes of an

image f in [12, 13] as the collection T of sets given by (according to our notation):

φ [γx (θt (f))] and φ [γx (θt (f)c)] , (2.10)

for all x ∈ E, and t ∈ IR.

Fig. 2.4 shows a simple grayscale image, and its associated shapes.

The above researchers show that, for E = IR2 and the usual topological connectiv-

ity, every two shapes either contain one an other or are disjoint. This provides T with

a tree structure, where the parent of every shape τ ∈ T is the smallest shape that

contains τ . They call the resulting tree the tree of shapes of f (whose details were

investigated by Ballester, Caselles, and Monasse in [15]), and they show that it is a

contrast-invariant representation. Fig. 2.5(a) depicts the tree of shapes corresponding

to the above example.

In [12], a fast algorithm for calculating the tree of shapes of discrete images is

presented. The algorithm takes natural image (i.e., function with range IN), and

returns the tree T , along with the sign of the differences s(τ) (either +1 or −1)

between the levels of each shape τ and its parent p(τ), as well as the smallest shape

τ(x) that contains the pixel x. This information permits the reconstruction of the



24 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.4: Shape decomposition and associated Tree of shapes. (a) Original gray-
scale image f and (b)-(f) its shapes. The white shapes correspond to connected
components of the collection of upper levels sets {θt(f)}, whereas the black shapes
correspond to connected components of the collection of lower level sets {θt(f)c}.



2.4. SHAPE TREE SEMILATTICE BACKGROUND 25

Figure 2.5: Tree of shapes associated with Fig. 2.4. (a) Original tree; the numbers
in parenthesis are the gray-levels of the shapes. (b) Modified tree; the number in
parenthesis are the differences s(τ) between the levels of each shape τ and its parent
p(τ). Notice that shape F was duplicated.

original image, up to a local change of contrast. In order to perfectly reconstruct

the original image, one can also store the original gray levels of the shapes [as shown

in Fig. 2.5(a)], or modify the tree by replicating the shapes for all gray-levels they

appear [as shown in Fig. 2.5(b)]. In the latter situation (which is the one adopted

here), f(x) is equal to the sum of s(τ) for all shapes that contain τ(x).

2.4.2 Inf-Semilattice of Binary Sequences

Keshet defines in [17] a partial ordering of images that takes into consideration the

data of the tree of shapes. However, he does not use the tree itself in order to provide

such ordering. He proposes a representation that keeps the datum of the tree readily

available, but makes it simpler to compare images, and develops an inf-semilattice of

binary sequences.

Consider the set S formed by the null sequence and all finite binary sequences,

with elements in {+1,−1}.

Definition 7. Let s = {sn}, r = {rn} ∈ S. Sequence s is a prefix of sequence r,

marked sE r, when `(s) ≤ `(r) and sn = rn, n = 1, . . . , `(s), where `(s) is the length



26 CHAPTER 2. THEORETICAL BACKGROUND

of the sequence s.

For instance, {−1,+1,−1}E {−1,+1,−1,+1,+1}, and {}E {1, 1}.

Proposition 7. The prefix relation E is a partial ordering, and (S,E) is a complete

inf-semilattice, where the null sequence {} is the least element, and the infimum s5r
is given by the greatest common prefix, i.e.:

(s5 r)n = sn, n = 1, . . . , L(s, r), (2.11)

where

L(s, r) = sup {n ∈ IN, n ≤ min [`(s), `(r)] | sn = rn} . (2.12)

The proof is given in [17].

In order to facilitate notation in the sequel, trailing zeros can be added to all

binary sequences. I.e., let Z be the operator that maps each sequence into an infi-

nite counterpart by appending an infinite number of zeros to it. The operator Z is

invertible, and the inverse Z−1 consists of removing all zero elements of an appended

sequence. Considering the set Z(S) of all 0-appended sequences, then it also forms a

complete inf-semilattice with respect to the order given by the concatenation E◦Z−1.

In the remainder of the section, sequences are referred in this complete inf-semilattice

only, and use E to denote the partial order of 0-appended sequences as well. More-

over, the length of a 0-appended sequence will be by convention the length of its finite

counterpart, i.e., `(s) actually meaning ` (Z−1s).

2.4.3 Images of Shape Sequences

Images of Shape Sequences are defined in [17] by Keshet.

Definition 8. Let the image of shape sequences associated with an image f be the

mapping sf : E 7→ Z(S), such that sf (x) is the sequence of differences s(τ) for all

shapes that contain τ(x), ordered from the largest to the smallest, followed by zeros.

For instance, referring to the image in Fig. 2.4(a), and its modified tree in Fig. 2.5(b),

for all x in region G, set sf (x) = {+1,+1,−1,−1, 0, . . .}, for all x in D and not in F,

sf (x) = {+1,−1, 0, . . .}, and for all x in F, sf (x) = {+1,−1,+1,+1, 0, . . .}.



2.4. SHAPE TREE SEMILATTICE BACKGROUND 27

Let the operator, that maps f to sf , to be denoted by U .

The original function f can be reconstructed from s by:

f(x) =
∞∑

n=1

[sf (x)]n. (2.13)

Therefore, by defining, U∗{s} 4
=
∑∞

n=1[s(x)]n for an arbitrary image of sequences

s : E 7→ Z(S), we have U−1{r} = U∗{r} for any image of sequences r in the range of

U .

The datum of the image of sequences sf associated to f is identical to that of the

tree of shapes of f . Indeed, all pixels in a shape have a common sequence prefix, and

all connected components of pixels sharing a common prefix is a shape.

2.4.4 Inf-Semilattice of Images of Shape Sequences

In [17], Keshet defines a type of complete inf-semilattice called Semilattice of Images

of Shape Sequences and a set of morphological operations in it.

Definition 9. Let the binary relation v be given by:

f v g ⇐⇒ sf (x) E sg(x), ∀x ∈ E. (2.14)

Select a fixed point in E, and denote it by o.

Theorem 1. Let F̃IN(E) be the set of all discrete natural functions, for which f(o) =

0. Then according to [17], (F̃IN(E),v) is a complete inf-semilattice, with infimum

given by

[f u g](x) =
∞∑

n=1

[sf (x)5 sg(x)]n . (2.15)

Notice that, even though the binary case provides us with a lattice, in the gray-

scale case the supremum is not well defined, which leaves us with an inf-semilattice

only. The reason for that stems from the inf-semilattice structure of the set of se-

quences. Indeed, if f and g are given for instance by the images in Fig. 2.6(a) and (b),

respectively, then the infimum f 5 g is given by the image in Fig. 2.6(c), because the



28 CHAPTER 2. THEORETICAL BACKGROUND

central regions in those images are characterized by the sequences {+1,−1, 0, . . .} and

{+1,+1, 0, . . .}, respectively, whose infimum is given by {+1, 0, . . .}. The supremum

f 4 g, on the other hand, does not exist in this case.

Figure 2.6: (a)-(b) Two grayscale images, and (c) their infimum according to v. The
supremum does not exist in this case.

Here is another way of understanding why the binary case lends itself to a lattice

framework: Binary images are represented by alternating binary sequences starting

with +1. These are fully characterized by their length alone, and are completely

ordered.

Even though working with an inf-semilattice means that dilations can not be

defined in all cases, the inf-semilattice theory described in [4, 5] assures that a great

deal can be accomplished nevertheless. Not only can erosions be defined, but also

openings, internal gradients, white top-hats, skeletons, openings by reconstruction,

etc.

Let us define the translation-invariant erosion:

ε̂S(f) = U−1
{
5y∈ŠU{fy}

}
, (2.16)

where fy denotes the translation of f by y: fy(x) = f(x − y). Fig. 2.7 shows an

example of using the above “shape erosion” on a gray-scale image, compared to using

the standard gray-scale erosion.

The adjoint dilation is given by

δ̂S(f) = 5{g | f v ε̂S(g)}, (2.17)



2.4. SHAPE TREE SEMILATTICE BACKGROUND 29

(a) (b) (c)

Figure 2.7: Erosion in the complete inf-semilattice of shape sequences. (a) Origi-
nal gray-scale image, (b) proposed self-dual erosion, and (c) standard erosion. The
structuring element in both cases is the cross 7× 7.

which always exists if f is the erosion of some other function [4]. In fact, the ad-

joint dilation can be computed by δ̂S(f) = U−1 {4y∈SU{fy}}, where 4 is the trivial

supremum—defined only when all operands are point-wise comparable w.r.t. E, in

which case it returns the largest. When f is in the range of the erosion ε̂S, then all

operands during the computation of the adjoint dilation are point-wise comparable.

Like for any erosion in an inf-semilattice, the opening operator γ̂S associated to

ε̂B is well defined in all cases, and given by γ̂S = δ̂S ε̂S.

Fig. 2.8 illustrates the result of applying the erosion, its adjoint dilation (yielding

the opening), and the corresponding top-hat transform to a complex grayscale image.



30 CHAPTER 2. THEORETICAL BACKGROUND

(a) (b)

(c) (d)

Figure 2.8: (a) Original grayscale image, (b) shape-tree erosion, (c) opening, and (d)
top-hat. A square structuring element of size 2× 2 was used in all cases.



2.5. ALTERNATING SEQUENCES SEMILATTICE BACKGROUND 31

2.4.5 Conclusion

A new, self-dual approach for morphological image processing was proposed by Keshet

in [17]. It is based on the tree of shapes, and its resulting morphological framework

is that of a inf-semilattice. In the discrete case this semilattice is complete. The

corresponding erosion has the effect of shrinking all the elements of the image, re-

gardless to their contrast. In order to compare images in this inf-semilattice, Keshet

proposes a new representation of images in terms of binary sequences, which keeps

the information displayed in the tree of shapes readily available.

The binary version of our scheme is related to the adjacency tree, which is the

binary counterpart of the tree of shapes. In this case, a lattice framework (complete

in the discrete case) is obtained.

2.5 Alternating Sequences Semilattice Background

A type of complete inf-semilattice called Alternating Sequences (AS) Semilattice and

a set of morphological operations in it, is defined in [16] by Keshet. In this chapter,

the theoretical background on AS Semilattice is provided.

2.5.1 Boundary Topographic Distance (BTD)

The topographic distance between two pixels x and y of an image f , defined by Meyer

in [22], is the least total variation needed to walk from x to y (or vice-versa) on the

topographic relief defined by f .

In [16], Keshet utilizes a simplified definition of topographic distance, in which

the cost of walking on a topographic function f between two consecutive points p1

and p2 is given by:

cost(p1, p2) = |f(p1)− f(p2)|. (2.18)

For instance, suppose that a connected path between x and y has the following

values on f : f(x = p1, p2, . . . , p6, p7 = y) = (1, 4, 8, 5, 2, 3, 5). The total variation

on that path is given by the sum of absolute differences between consecutive values,

which is equal to 16 in this case. If no other connected path linking x to y has smaller

total variation, then 16 is the topographic distance between x and y.



32 CHAPTER 2. THEORETICAL BACKGROUND

Keshet also defines in [16] the notion of boundary topographic distance (BTD)

of a pixel x of a bounded image f , as the topographic distance between x and the

boundary of f . That is, the BTD of x is the least topographic distance between x

and any point on the boundary of f . The BTD function, BTf , is the mapping from

each pixel x to its BTD, BTf (x).

2.5.2 An extension of boundary topographic distance defini-

tion

The notion of BTD, defined by Keshet, can be easily extended, allowing the boundary

of the image f to be any connected flat zone of f . The notion of flat zone is discussed

in section 2.2. In some cases, a boundary of an image isn’t the best starting point

for topographic distance calculation, because it is arbitrary set by the properties and

position of the camera used to take the picture. When choosing another flat zone,

as a reference for the topographic distance, the choice can be more meaningful and

suited for the problem to be solved.

For instance, in some applications it can be useful to define the boundary as the

largest flat zone of the image. Another example is shown in Fig. 2.9. In this example

a root flat zone is chosen to a be a symmetric center of the image - the circle center.

2.5.3 Boundary Topographic Variation (BTV) Transform

Let πf (x) be a connected path linking the boundary of an image f to a pixel x and

π̂f (x) be one such path, with least topographic distance between x and the boundary.

The topographic distance (total variation) on π̂f (x) is exactly BTf (x) and π̂f (x) is

called a minimal-BTD path for x. There may be more than one minimal-BTD path

for a given point x.

Assume that a minimal-BTD path is associated with an alternating sequence (AS).

The AS describes the “ups and downs” that occur on that path. These “ups and

downs” are called path variation. For instance, consider a grayscale image f , and

suppose that a minimal-BTD path π̂f (x) from the boundary to a pixel x has the

following function values:

f(π̂f (x)) = (0, 2, 6, 9, 8, 8, 5, 1, 3, 7, 7, 4, 5). (2.19)



2.5. ALTERNATING SEQUENCES SEMILATTICE BACKGROUND 33

(a) (b) (c)

Figure 2.9: An example of different topographic distance reference. (a) An original
image. (b) An image of a topographic distance from the boundary. (c) An image of
a topographic distance from a center flat zone.

This path is divided into the following overlapping monotonic sub-sequences: (0, 2, 6, 9),

(9, 8, 8, 5, 1), (1, 3, 7, 7), (7, 4, 5). The corresponding path variation is given by:

V (π̂f (x)) = {9,−8, 6,−3, 1}, (2.20)

meaning that one has to climb 9 gray levels, following the monotonic sub-sequence

(0, 2, 6, 9), then go down 8, following the next monotonic sub-sequence (9, 8, 8, 5, 1),

and so on for the whole path.

Assuming that f(x) ≥ 0, ∀x, and that the boundary of f has null values, then

the first element of a path variation is always non-negative.

The mapping V : f 7→ Vf , where Vf (x)
4
= V (π̂f (x)), is called the boundary-

topographic-variation (BTV) transform. Because it is based on the topographic dis-

tance, the BTV transform can be calculated fast, by modifying a fast (topographic-

distance-based) implementation of the watershed algorithm.

As was noted before, the minimal boundary path is not necessarily unique, which

means that there maybe more than one BTV transform for a given image f . In

practice, different BTV transforms are identical up to a relatively small number of



34 CHAPTER 2. THEORETICAL BACKGROUND

x f(x) BTf (x) π̂x [V(f)](x)

0 0 0 (0) {0}
1 -2 2 (0,−2) {−2}
2 7 11 (0,−2, 7) {−2, 9}
3 9 13 (0,−2, 7, 9) {−2, 11}
4 11 15 (0,−2, 7, 9, 11) {−2, 13}
5 10 16 (0,−2, 7, 9, 11, 10) {−2, 13,−1}

(0, 3, 8, 5, 10) {8,−3, 5}
6 5 11 (0, 3, 8, 5) {8,−3}
7 8 8 (0, 3, 8) {8}
8 3 3 (0, 3) {3}
9 0 0 (0) {0}

Table 2.1: The BTV transform of a 1-D function f . The boundary here are the
first and last elements of the function. Notice that the point x = 5 is a skeleton (or
watershed) point of the transform, with two different transform possibilities.

pixels that are called skeleton pixels or watershed pixels.

Table 2.1 presents a simple 1-D case for illustration.

The plot of f(x) is given in Fig. 2.10.

The original image f can be obtain back from Vf (x) as follows:

f(x) =
∑

i

Vf (x)i, (2.21)

where {Vf (x)i} are the elements of the alternating sequence Vf (x) = [V(f)](x). Equa-

tion (2.21) represents the inverse BTV transform, V−1.

It is also simple to obtain the BTD function from V(f):

BTf (x) =
∑

i

|Vf (x)i| . (2.22)

For the example given in table 2.1, for x = 5, [V(f)](x = 5) is {−2, 13,−1} or

{8,−3, 5}. For both variants of [V(f)](x = 5):

f(x) = (−2) + 13 + (−1) = 8 + (−3) + 5 = 10,

BTf (x) = | − 2|+ |13|+ | − 1| = |8|+ | − 3|+ |5| = 16.



2.5. ALTERNATING SEQUENCES SEMILATTICE BACKGROUND 35

Figure 2.10: Plot of 1-D Function f(x).

2.5.4 Semilattice in BTV Domain

In order to define morphological operations in the BTV transform domain, a complete

inf-semilattice of variations (alternating sequences) was defined in [16] by means of the

following partial ordering. Let V1 and V2 be two alternating sequences with lengths

L1 and L2, respectively.

V1 v V2 ⇐⇒

{
(V1)i = (V2)i, ∀i < L1,

|(V1)L1| ≤ |(V2)L1|.
(2.23)

For instance, {9,−2} v {9,−3, 8, 4}, {0} v {1,−2} and {7,−2, 5} v {7,−2, 6,−1, 10},
but {7,−2, 7} 6v {7,−2, 6,−1, 10} and {1,−3,−5} 6v {1,−3, 4,−6, 7}.

The infimum operation associated to the above partial ordering is the common

prefix, followed by the the weakest of the next elements. More precisely,

V1 u V2 = {P (V1, V2),med[(V1)LP +1, (V2)LP +1, 0]}, (2.24)

where P (V1, V2) is the common prefix of V1 and V2, LP is the length of P (V1, V2), and

med is the median operation.



36 CHAPTER 2. THEORETICAL BACKGROUND

The trivial supremum t of two alternating sequences V1 and V2 is given by:

V1 t V2 =


V1, V2 v V1,

V2, V1 v V2,

6 ∃, otherwise.

(2.25)

Table 2.2 exemplifies calculations of the infimum and the supremum of pairs of

alternating sequences.

Relation Infimum Supremum

0 {9,−2, 8,−4} v {9,−2, 8,−4, 7} {9,−2, 8,−4} {9,−2, 8,−4, 7}
1 {−1, 7,−9, 2} 6v {−5, 4,−7, 1,−3} {−1} 6 ∃
2 {7,−2, 5} v {7,−2, 6,−1, 10} {7,−2, 5} {7,−2, 6,−1, 10}
3 {7,−2, 7} 6v {7,−2, 6,−1, 10} {7,−2, 6} 6 ∃
4 {1,−3, 5} 6v {−4, 6,−2, 8,−3} {0} 6 ∃

Table 2.2: Infimum and supremum of pairs of alternating sequences.

The following operator can now be defined:

ε̂B(f) = V−1 {uy∈BsV{fy}} , (2.26)

where fy denotes the translation of f by y: fy(x) = f(x − y). It can be shown that

the above operator is an erosion in the complete inf-semilattices of BTV-transform

images. The adjoint dilation is given by

δ̂B(f) = V−1 {ty∈BV{fy}} , (2.27)

Like for any erosion in a complete inf-semilattice, the opening operator γ̂B asso-

ciated to ε̂B is well defined and is given by γ̂B = δ̂B ε̂B.



Chapter 3

Implementation of BTVT

In this chapter, we propose an efficient implementation of the BTV transform de-

fined in section 2.5.3. To this end, we introduce below (section 3.1) what we call a

Topographic Distance Tree (TD-Tree). Each node of this tree relates to a flat zone

of the image with its corresponding gray level value and topographic distance to the

boundary. The TD-Tree is an efficient representation of an image, from which the

boundary topographic variation of each flat zone can be easily computed. Therefore,

we utilize the TD-Tree for BTV Transform (BTVT) implementation. In addition, we

show a few examples of BTV-based morphological filtering of sample images.

3.1 Topographic Distance Tree definition

In this section, we propose an intermediate representation for the process of BTVT

computation. It consists of a tree representation, which we call the Topographic Dis-

tance Tree, or TD-Tree for short. The TD-Tree is useful for calculating the alternating

sequences, which are a key component of the BTVT.

Let us first define a TD-graph as (VTD, ETD). Each node of a TD-graph has a gray

level function GL(v), which holds its corresponding gray level value and a topographic

distance value, which holds its topographic distance to the boundary. If RAG is a set

(VRAG, ERAG), then the TD-graph is a sub-graph of the RAG: VTD = VRAG, ETD ⊆
ERAG. The edge set ETD includes all edges that belong to a minimal topographic

distance path of every flat zone of an image. The skeleton points in this graph have

more than one father because there is more than one minimal topographic distance

37



38 CHAPTER 3. IMPLEMENTATION OF BTVT

path for those flat zones. A TD-tree (VTDT , ETDT ) is a sub-graph of the TD-graph.

The vertex set is the same, but ETDT ⊆ ETD. A TD-tree includes no skeleton points,

because all multiple minimal pathes were removed, leaving a single path for every flat

zone. In the TD-Tree, the root node is the boundary of the image.

An example of this tree representation is shown in Fig. 3.1. In this example, the

source image consists of 4 flat zones: a background component V1, a small simple

component V2 located on the background, and a complex component V3 that includes

a component V4. The resulting tree, shown in the same figure, contains information

about topographic distance and gray level of each flat zone.

Figure 3.1: An example of a given image and its TD-tree. Each flat zone of the image
corresponds to a node of the TD-tree (indicated by the letter V, followed by the node
number), its gray-level (shown in the variable GL), and its boundary topographic
distance (shown in the variable TD).

3.2 Topographic Distance Tree implementation

Our implementation of the TD-Tree is based on the algorithm of Moore, reviewed in

[22]. This is an efficient algorithm for finding the topographic distance function of

a given flat zone of an image. The original algorithm of Moore calculates the topo-

graphic distance, but does not keep the path variation of each flat zone. Therefore,

we have adapted the algorithm of Moore, so that not only does it calculate the topo-

graphic distance, but also builds the TD-Tree. Another proposed modification of the

Moore algorithm is the use of the modified cost function described in (2.18). In every

iteration of the Moore algorithm, the value of the topographic distance function for

a new flat zone is computed. This new flat zone is the nearest neighbor (according



3.2. TOPOGRAPHIC DISTANCE TREE IMPLEMENTATION 39

to the topographic-distance) of a previously processed flat zone. The new flat zone

then becomes a new node of the TD-Tree, linked as a son to the latter flat zone.

Its topographic-distance-function value is computed as that of the father plus the

topographic-distance between them.

A pseudo code of the modified Moore algorithm is given in Algorithm 1.

Algorithm 1 Modified Moore Algorithm

We modified algorithm of Moore, for topographic distance calculation, using defini-
tion (2.18) of cost. Our modified algorithm is used not only for topographic distance
calculation, but also for TD-Tree building.
The algorithm, involves the following stages:
1: Assign zero to the topographic distance of the root node of the TD-Tree, and, to

the other nodes, assign an infinite topographic distance.
2: Initialize status vector of all flat zones to status ”in-queue”.
3: while not all nodes are ”done” do
4: Find the node with the minimal topographic distance.
5: Based on this minimal topographic distance, calculate the topographic dis-

tance of the neighboring nodes, whose status are ”in-queue”, using the
graph structure. Store the node with the minimal topographic distance as
a father node of these neighboring nodes in the TD-Tree.

6: In the status vector, assign status ”done” to the node with minimal topo-
graphic distance.

7: end while

The proposed representation is more efficient in storing the information about

alternating sequences than storing an alternating sequence for every flat zone. The

storage volume required for the alternating sequence for every flat zone depends on

the number of flat zones multiplied by the mean alternating sequence length. Size =

O(N · Length(AS)) ' O(N2), where N is a number of flat zones. Typical values of

N is in order of 104 for small images, and in order of 105 for larger images. When the

same information is presented as a tree, the required storage volume depends on the

number of flat zones multiplied by the size of the pointer to the father node, which is

much smaller than the average size of an alternate sequence. In this case the required

storage volume is linear to N : Size ' O(N).



40 CHAPTER 3. IMPLEMENTATION OF BTVT

3.3 Implementation of the BTV Transform

The first phase of the algorithm is to create a Region Adjacency Graph - RAG. The

RAG is a graph (V,E), where V is a set of all flat zones of the image, and E contains

all pairs of flat zones that are adjacent to each other. A theoretical background on

graphs and trees is given in section 2.1. We developed an algorithm for computing the

RAG image representation. A pseudo code of the algorithm is given in Appendix A.

The next step is to use the modified Moore algorithm for creation of a TD-Tree.

The modification of the Moore algorithm was explained in section 3.1.

In order to calculate an alternating sequence of every flat zone, we must fetch

the path variation of a component. The path variation fetch function, is a recursive

function, as can be seen in (3.1).

AS(V ) =

{
{AS(father(V )), GL(V )−GL(father(V ))} if V 6= root

{0} if V = root
(3.1)

Where AS(V ) is an alternating sequence of vertex V in the TD-tree. GL(V ) is the

gray level of V . father(V ) is the vertex preceding V in the TD-tree. For example,

AS(V2) in Fig. 3.1 gives an alternating sequence of {AS(V1),−3} in the first recursion

step, and {5,−3} in the next (and last) recursion step.

The alternating sequence computation can be performed as a preliminary step

before any operators are applied, or during an execution of an operator. The choice

between the two options depends on a specific tradeoff between storage size and

execution time.

In summary, the proposed algorithm for the implementation of the BTV transform

consists of three stages:

1. The input image is represented as a Regional Adjacency Graph (RAG) of the

flat zones partition.

2. Based on this RAG representation, the topographic distance is calculated and

the TD-Tree is obtained, using the modified Moore algorithm.

3. The BTV transform is calculated, using the TD-Tree.

Images of topographic distances, computed for synthetic and natural images, using

the modified Moore algorithm, are shown in Figures 3.2-3.5. The images are built



3.3. IMPLEMENTATION OF THE BTV TRANSFORM 41

from the TD-Tree, where the gray level of each flat zone is taken to be a topographic

distance of that flat zone. This technique visualizes the resulting topographic distance

and helps to understand properties of an image. Because the computed topographic

distances are relative to the image boundary, the values of the images of topographic

distances generally increase as one moves from the boundary towards the center of

the region of support of the image. The TD is constant for all pixels inside the flat

zone of the image. This is clearly visible in the synthetic images. But, it is hard to

see this in the natural images, because gray levels change gradually and flat zones are

very small.



42 CHAPTER 3. IMPLEMENTATION OF BTVT

Figure 3.2: Synthetic image with the corresponding image of topographic distances.

Figure 3.3: Noisy image of Simba with the corresponding image of topographic dis-
tances.



3.3. IMPLEMENTATION OF THE BTV TRANSFORM 43

Figure 3.4: Image of Lena 256x256 with the corresponding image of topographic
distances.

Figure 3.5: Noisy Image of Lena 256x256 with the corresponding image of topographic
distances.



Chapter 4

The “trench” problem and the

proposed solutions

The BTV-domain morphological operators (erosion, opening etc.) proposed by Keshet

in [16] are self-dual. This means that those operators treat bright and dark “objects”

similarly. However, when applying those operators, a “trench” problem may arise.

This chapter studies this problem, and proposes solutions for it.

The BTV-domain morphological filtering approach involves three steps. First, the

BTV transform is performed on the input image, using the TD-tree representation

of the image. Then the transformed image is simplified using morphological filtering,

based on the partial ordering of images of alternating sequences, defined in Section

2.5.4. Finally output image is constructed from the processed image by an inverse

BTV transform, using Equation (2.21).

Figs. 4.1 and 4.3 show the output of the erosion ε̂B on two test images. Figs. 4.2

and 4.4 show the corresponding opening γ̂B of the same two test images.

Notice that the results of self-dual erosion and opening (Figs. 4.1-4.2) on the

synthetic image are as expected. The corresponding erosion has the effect of shrinking

all the elements of the image, regardless to their contrast. The opening rounds the

corners that SE can not get into in all the elements of the image, bright and dark.

However, the results on the natural image are very strange; the output shows

many “trenches” that do not appear to have any justification to exist.

These are typical results. When the number of gray levels is small, and the image

is not very complex, the BTV-based erosion returns useful results. However, when

44



45

(a) (b)

Figure 4.1: Result of BTV-based erosion ε̂B. (a) Original Synthetic Image, and (b)
Erosion of Synthetic Image for a 2× 2 structuring element.

(a) (b)

Figure 4.2: Result of BTV-based opening γ̂B. (a) Original Synthetic Image, and (b)
Opening of Synthetic Image for a 2× 2 structuring element.



46CHAPTER 4. THE “TRENCH” PROBLEM AND THE PROPOSED SOLUTIONS

(a) (b)

Figure 4.3: Results of BTV-based erosion ε̂B. (a) Original Natural Image, and (b)
erosion of Natural Image for a 2× 2 structuring element.

(a) (b)

Figure 4.4: Results of BTV-based opening γ̂B. (a) Original Natural Image, and (b)
opening of Natural Image for a 2× 2 structuring element.



47

the number of gray levels is high, or if the image is very complex, the BTV transform

usually fails. The reason for that is the existence of skeleton (watershed) points

in the BTV data, which have neighbors with potentially very dissimilar alternating

sequences; when eroded, a “trench” may open at these points, because the infimum

of the dissimilar alternating sequences yields a sequence that does not characterize

any of the neighbors. Although some of the “trenches” disappear, when we perform

opening instead of erosion, the results are still not good, see Fig. 4.4.

Let us consider a one dimentional example, given in Table 2.1, in order to under-

stand the origin of the trenches. In this example, x = 5 is a skeleton (or watershed)

point of the BTV transform of function f(x), with two different transform possibil-

ities {−2, 13,−1} and {8,−3, 5}. For x = 4 the alternating sequence is {−2, 13}.
Therefore, the infimum between two neighbors {−2, 13} and {8,−3, 5} is {0}. This

produce the trench at x = 4.

Fig. 4.5 shows the output of the erosion ε̂B on the one dimentional function f(x).

Figure 4.5: Results of BTV-based erosion ε̂B. (a) Function f(x), and (b) Erosion of
f(x).

Solutions for the “trench” problem are proposed in the following sub-sections.



48CHAPTER 4. THE “TRENCH” PROBLEM AND THE PROPOSED SOLUTIONS

4.1 Filtering using an adaptive structuring element

One of the solutions to the trench problem is, first, to choose smartly only a single

variant of the BTV transform. For instance, if there are two flat zones with the same

topographic distance, which potentially can be the fathers of the current node in

the TD-Tree, choose the one that contains the maximum number of pixels. In our

example shown in Fig. 4.6, vertices 4 and 6 can be fathers of vertex 5. We choose

the vertex 6 to be the father - this option is drawn with a solid line, and discard the

relation to the vertex 4, that is drawn with a dashed line.

Figure 4.6: A tree representing the BTV transform of function f(x).

Second, use an adaptive structuring element , constraining the filtering depth, dur-

ing the filtering operation. That is, while computing the infimum of the neighborhood,

do not take into consideration neighboring pixels that cause the path-variation to be

pruned by more than a given filtering depth. For example, if the filtering depth is

limited to 1, then, while performing erosion of x = 4, we ignore the presence of the

point x = 5 and make a trivial erosion with itself (in the 2D case it usually won’t

happen). For this method the result will be {−2, 13}
The use of an adaptive SE has some drawbacks. For instance, in some applications

it will be necessary to store this adaptive SE for every pixel. But, in case of opening

it can be implemented without the need to store the SE. Another drawback is that

the adaptive SE, although prevents a creation of trenches, limits the performance of



4.1. FILTERING USING AN ADAPTIVE STRUCTURING ELEMENT 49

the resulting filter. As an example, Fig. 4.10 shows the filter effect for a filtering

depth limit of 1 on a noisy image of Lena. Notice that a number of noisy pixels

have survived the filtering. This artifact shows the typical problem of this approach.

Fig. 4.7 shows a simple example that explains the effect. In the image shown, the

upper pixel of component 3 is connected only to component 1. When in the erosion

process the shown structure element (SE) is placed on this pixel, the infimum is taken

between {103,-6,4} and {103,-5,2,-100}. The resulting infimum is {103,-5}. That

infimum length is 2, and the alternating sequences are of length 3 and 4, respectively.

Therefore, the length difference is 2, that is more than the filtering depth limit. In

that case the noisy pixel is left untouched because the resulting infimum is much

shorter then the source alternating sequence.

Figure 4.7: An example of filtering a dual-pixel noise : A black component - 3, is
located on brighter background - 1 and 2. After erosion with erosion depth limit of
1, the upper pixel of the 3-rd component is untouched.

This problem can be solved if we use a greater filtering depth limit. As an example,

in Fig. 4.11, the adaptive structuring element method succeeds to filter more salt and

pepper noise, but some of the “trenches” remain. Another solution is presented in

section 4.3.



50CHAPTER 4. THE “TRENCH” PROBLEM AND THE PROPOSED SOLUTIONS

(a) (b)

Figure 4.8: Results of BTV-based erosion ε̂B, using adaptive SE. (a) Original Natural
Image, and (b) erosion of Natural Image for a 2× 2 structuring element.

(a) (b)

Figure 4.9: Results of BTV-based opening γ̂B, using adaptive SE. (a) Original Natural
Image, and (b) opening of Natural Image for a 2× 2 structuring element.



4.1. FILTERING USING AN ADAPTIVE STRUCTURING ELEMENT 51

(a) (b)

(c) (d)

Figure 4.10: A Lena image with Salt&Pepper noise cleaned with an adaptive SE filter
using filtering depth 1. Maximal size of structuring element here is 2×2. Notice that
there are still part of the noise pixels. (a) Original Image (b) Image corrupted by the
noise (c) erosion of Noisy Image (d) opening of Noisy Image



52CHAPTER 4. THE “TRENCH” PROBLEM AND THE PROPOSED SOLUTIONS

(a) (b)

(c) (d)

Figure 4.11: A Lena image with Salt&Pepper noise cleaned with an adaptive SE filter
using filtering depth 3. Maximal size of structuring element here is 2×2. Notice that
there are still part of the noise pixels. (a) Original Image (b) Image corrupted by the
noise (c) erosion of Noisy Image (d) opening of Noisy Image



4.2. FILTERING USING MULTIPLE MINIMAL PATHS 53

4.2 Filtering using multiple minimal paths

An alternative way to avoid the trenches is to store, for each flat zone, all possible

combinations of the path-variations, and to choose the most suitable one during

filtering. The suitable path-variation is one that has a maximal common-part length.

For the example given in Table 2.1, we can store, for the skeleton point x = 5, both

BTV transform possibilities {−2, 13,−1} and {8,−3, 5}. Graphically, it can be seen

in Fig. 4.6 that the vertex 5, (x = 5), has 2 possible origins - one from the vertex 4

and another from vertex 6. For x = 4, the alternating sequence is {−2, 13}, thus its

father is vertex 3. Therefore, the infimum path-variation of the two neighbors x = 4

and x = 5 is either {0} or {−2, 13}, depending on which option we will choose. We

choose the path-variation that has a maximal common part length - the option where

vertex 4 is the father of vertex 5, that is, {−2, 13}. Of course, this process is more

complex and more memory consuming.

Another possible implementation is to store the information about multiple pos-

sibilities for minimal paths, by enabling connections of the nodes to the multiple

fathers in the TD-Tree. This saves the memory usage, but the price is computational

overhead. In this case, the path-variation will be created a number of times for each

pixel during the filtering, instead of to create it once for each flat zone - before the

filtering. Our implementation uses the first option of storing multiple paths for each

vertex.

A drawback of this approach is that it does not fit all cases, but only those where

the topographic distance is equal in the different paths. Obviously, it ignores a large

number of cases, because the topographic distance does not have to be equal for

multiple paths. Therefore, some trenches remain after the filtering. See the example

given in Fig. 4.12.

This method has another significant drawback - the performance issue. For real-

world images, the number of combinations become very large, and the computation

time and memory requirements are exponentially dependent on the number of flat

zones in the image. Probably, it is possible, by using some heuristic methods, to

reduce significantly the computation requirements, but this issue is out of the scope

of this thesis.



54CHAPTER 4. THE “TRENCH” PROBLEM AND THE PROPOSED SOLUTIONS

(a) (b)

(c) (d)

Figure 4.12: A Lena image with Salt&Pepper noise cleaned with a multiple minimal
paths filter. Size of structuring element here is 2 × 2. Notice that there are still
some craters. (a) Original Image (b) Noisy Lena Image (c) erosion of Noisy Image
(d) opening of Noisy Image



4.3. FILTERING USING A COMBINED METHOD 55

4.3 Filtering using a combined method

It is possible to combine the features of the above two methods into a single method.

We can still look at all multiple path combinations and find such a combination that

results in the largest adapted SE and a longest alternating sequence. An example is

given in Fig. 4.13.

4.4 Results Comparison

4.4.1 Comparison of different methods for avoiding trenches

In this section, we summarize the comparison between different methods for solving

the trench problem. Figs. 4.14(c),(d) show the trench problem in BTV-based erosion

ε̂B and opening γ̂B of the noisy image in Fig. 4.14(b), respectively. Figures 4.15, 4.16

and 4.17 show the results of the three proposed methods. The multiple minimal paths

method is unacceptable, because it leaves trenches. The adaptive structure element

method and combined method results are very similar. The combined method results

are better than those of the adaptive structuring element method, but it is more

complex and more memory consuming.

4.4.2 Filtering of AS images versus traditional morphological

filtering

In this section, filtering results in the Alternating-Sequence inf-semilattice are com-

pared to the traditional erosion, dilation, opening, closing, open-close, close-open

operators in the complete lattice of gray level functions and a median filter.

In the example given in Fig. 4.19, traditional closing removes dark noise pixels,

but not the bright ones, and damages thin dark parts and edges. Traditional opening

removes bright noise, but not dark noise. In contrast, opening that was defined in

inf-semilattice of AS images is self-dual and removes both bright and dark noise.

However, it is possible to perform pseudo self-dual filtering in complete lattice of gray

level functions using traditional open-close or close-open operators, see Fig. 4.20.

The drawback is that such filtering contains two consecutive operations. Opening

removes bright noise, but damages thin bright parts or edges. Closing after opening



56CHAPTER 4. THE “TRENCH” PROBLEM AND THE PROPOSED SOLUTIONS

(a) (b)

(c) (d)

Figure 4.13: A Lena image with Salt&Pepper noise cleaned with a combined filter.
Maximal size of structuring element here is 2× 2. (a) Original Image (b) Noisy Lena
Image (c) erosion of Noisy Image (d) opening of Noisy Image



4.4. RESULTS COMPARISON 57

(a) (b)

(c) (d)

Figure 4.14: Trench problem in results of BTV-based erosion ε̂B and opening γ̂B.
Maximal size of structuring element here is 2 × 2. (a) Original Image (b) Noisy
Simba Image (c) erosion of Noisy Image (d) opening of Noisy Image



58CHAPTER 4. THE “TRENCH” PROBLEM AND THE PROPOSED SOLUTIONS

(a) (b)

Figure 4.15: A Simba image with Salt&Pepper noise cleaned with an adaptive SE
filter. Maximal size of structuring element here is 2 × 2. (a) erosion of Noisy Image
(b) opening of Noisy Image

(a) (b)

Figure 4.16: A Simba image with Salt&Pepper noise cleaned with an multiple minimal
paths filter. Size of structuring element here is 2× 2. Notice that there are still some
craters. (a) erosion of Noisy Image (b) opening of Noisy Image



4.4. RESULTS COMPARISON 59

(a) (b)

Figure 4.17: A Simba image with Salt&Pepper noise cleaned with an combined filter.
Maximal size of structuring element here is 2 × 2. (a) erosion of Noisy Image (b)
opening of Noisy Image

removes dark noise, but cannot reconstruct the thin parts that where damaged by

opening. Closing removes dark noise. Opening after closing removes bright noise, but

cannot reconstruct the parts that where damaged by closing. Median filtering is a

self-dual operator, see Fig. 4.21. Therefore, it is better than open-close and close-open

operators. But, the major drawback of the median filter is that it is not idempotent,

in contrast to opening defined in complete inf-semilattice of AS images.



60CHAPTER 4. THE “TRENCH” PROBLEM AND THE PROPOSED SOLUTIONS

Figure 4.18: Traditional erosion and dilation of gray scale image

Figure 4.19: Traditional opening and closing of gray scale image.



4.4. RESULTS COMPARISON 61

Figure 4.20: Traditional pseudo-dual open-close and close-open operators.

Figure 4.21: Median operator compared to the combined method of self-dual opening
of AS image.



Chapter 5

Tree Semilattices

In this chapter, we propose a general framework for tree-based morphological image

processing, which unifies the schemes presented in previous chapters, and enables the

definition of new morphological operators that are based on tree representations. The

heart of the proposed approach is a novel complete inf-semilattice of tree representa-

tions of images. The proposed image processing scheme is shown is figure 5.1.

This chapter is organized as follows. First, Section 5.1 introduces the complete

inf-semilattice of tree representations. Then, in Section 5.2, morphological image

processing using the complete inf-semilattice of tree representations is developed. In

Section 5.3, we address the problem of whether the complete inf-semilattice of tree

representations induces a complete inf-semilattice structure on the set of images as

well. Finally, the chapter is summarized in Section 5.4.

Figure 5.1: Tree-based morphology.

62



5.1. THE COMPLETE INF-SEMILATTICE OF TREE REPRESENTATIONS 63

5.1 The Complete Inf-Semilattice of Tree Repre-

sentations

Let L be an arbitrary set of “labels”, and let t = (V,E) be a rooted tree, with root

r, such that V ⊆ L. Therefore t is a tree of labels. Moreover, let M : E 7→ V be an

image of vertices, mapping each point in E to a vertex of t. As before, E is either an

Euclidean space or a discrete rectangular grid within the image area.

Definition 10. (Tree Representation) The structure T = (t,M) shall be called a

tree representation. The set of all tree representations associated to the label set L

and to the root r shall be denoted by T L
r .

Figure 5.2 depicts an example of a tree representation.

Consider the following relation between tree representations: For all T1 = (t1,M1)

and T2 = (t2,M2) in T L
r ,

T1 ≤ T2 ⇐⇒ t1 ⊆ t2 and M1 �t2 M2, (5.1)

where ⊆ is the usual graph inclusion, and �t2 is the partial ordering of vertices (see

Figure 5.2: An example of image tree representation. An image with V1, V2, V3 and
V4 zones is represented as a tree. Each pixel in this zone is mapped to a corresponding
label.



64 CHAPTER 5. TREE SEMILATTICES

section 2.1) within the tree t2, taken point-wise, that is:

M1 �t2 M2 ⇐⇒ ∀x ∈ E,M1(x) �t2 M2(x). (5.2)

An example of order of trees is shown in Figure 5.3.

Proposition 1 (Tree order). The above tree relation is a partial ordering on T L
r .

Proof. Since both graph inclusion (⊆) and the intrinsic root tree partial ordering (�t2)

are partial orderings, so is the composed relation on the tree representation.

A relevant question at this point is what are the infimum and supremum operators

related to the above partial ordering and whether they are well defined for any subset

of tree representations. In other words, is (T L
r ,≤) a lattice or a semilattice, and if so,

complete or not?

First notice that, for two graphs g1 and g2, the intersection g1 ∩ g2 is the in-

fimum graph. However, if g1 and g2 are trees, then unfortunately g1 ∩ g2 is not

necessarily a tree. This is because the resulting graph may be disconnected, in

which case g1 ∩ g2 is a forrest, but not a tree. For instance, consider the two trees

t1 = ({r, a, b, d}, {ra, ab, bd}) and t2 = ({r, a, c, d}, {ra, ac, cd}) as shown in Figure 5.4.

(a) (b)

Figure 5.3: An example of order of trees. The tree representation (a) is bigger than
(b), because of two reasons: tree (b) is included in tree (a), and there exists pixels in
(b) that belong to label 1, while the same pixels belong to labels 2 and 3 in (a).



5.1. THE COMPLETE INF-SEMILATTICE OF TREE REPRESENTATIONS 65

Figure 5.4: An example of trees intersection that is not a tree.

The intersection is given by t1∩t2 = ({r, a, d}, {ra}), which has two connected compo-

nent: ({r, a}, {ra}) and ({d}, {}). Notice, however, that only one of these components

contains the root r, and it is in fact the largest tree with root r that is included both

in t1 and in t2. That is, the sub-tree containing r is the infimum between the two

trees regarding the inclusion order.

This is true in general. That is, if we define Cr(·) to be the operator that extracts

from a given graph its connected component containing the root r, then Cr(t1 ∩ t2)
is the infimum t1 ∧ t2 between the trees.

Let us turn now to the infimum of mapping functions. It is natural to consider

M1(x) f M2(x) as the natural candidate for the infimum of the two vertices M1(x)

and M2(x). But, in which tree should this infimum be calculated? Should it be in t1,

t2, t1∧t2, t1∪t2? The infimum t1∧t2 is correct, but it may occur that either M1(x) or

M2(x) (or both) do not belong to its set of vertices V (t1 ∧ t2). For instance, consider

the trees t1 and t2 as in the example above, and assume thatM1(x) = b andM2(x) = c

as shown in Figure 5.5. Neither M1(x) nor M2(x) belongs to V (t1 ∧ t2) = {r, a}.

The solution to this problem is to first “project” each vertex M1(x) and M2(x) to

V (t1 ∧ t2), and then to take the infimum of the projected vertices on the tree t1 ∧ t2.
By “projection” of a vertex v onto a subtree t′ ⊆ t we mean finding the vertex w in

V (t′) that is the closest to v in the path connecting v to r inside t′. For instance, in

the above example, the projection of both M1(x) = b and M2(x) = c onto t1 ∧ t2 is

a. Recalling that vtr represents the path linking v to r in the tree t, the projection

Pt′(v) of v onto the subtree t′ could be also defined as the leaf of Cr(vtr ∩ t′).

In summary, we get the following proposition.



66 CHAPTER 5. TREE SEMILATTICES

Figure 5.5: An example of a projection of the mapping function. Mapping functions
M1(x) and M2(x) of point x are projected to a subtree t1 ∧ t2.

Proposition 2. The tree representation infimum is given by:

T1 ∧ T2 = (t1 ∧ t2, Pt1∧t2(M1) ft1∧t2 Pt1∧t2(M2)), (5.3)

where t1∧t2 = Cr(t1∩t2), Cr(·) stands for the connected graph containing r, and Pt′(·)
means the projection onto t′, i.e., the closest vertex in the path linking the operand to

r, which belongs to V (t′).

In words, the tree representation infimum is built in the following way: The

intersection of the trees is calculated, and the sub-tree containing r is extracted. This

is the infimum of the trees. For each point in E, the mapping function is obtained by

calculating the infimum vertex of the projections of the original mapping functions

onto the infimum tree.

Proof. The infimum must have the following properties:

T = T1 ∧ T2 is infimum iff :

1. T � T1 and T � T2.

2. If there exists T3 such that T � T3, T3 � T1 and T3 � T2, then T3 = T .

The graph part of the tree transform is created by a regular set intersection and

Cr(·) operator, thus t ⊆ t1 and t ⊆ t2 . The mapping function of T is calculated from

infimum of vertices in the tree t1 ∧ t2 , so M �M1 and M �M2.



5.1. THE COMPLETE INF-SEMILATTICE OF TREE REPRESENTATIONS 67

In addition we must show that the infimum is unique. t1 ∧ t2 is created by a set

intersection that is a known infimum, and then by operator Cr(·) that is a univalent

operator. Any other graph, that is a subset of t1 ∩ t2 but is larger than t1 ∧ t2, could

not be a tree, because it must contain a vertex not connected to the root vertex.

Another question is about the infimum mapping function M . It is obtained in 2

steps: a projections of source functions to t1 ∧ t2 and then infimum between them.

Let’s assume that another infimum mapping function exists M3, such that at least

one mapping - M(x) � M3(x) and M(x) 6= M3(x). For this to be true, M3(x) must

be a member of t1 ∧ t2 and smaller in tree sense then M1 and M2, but we recall that

M is calculated from the tree infimum, therefore such M3 could not exist.

Now, let us find out what the supremum of the tree representations is. First,

notice that the union t1 ∪ t2 of two trees t1 and t2 is always connected, but one can

not assure that it does not contain loops. Therefore, the union is not necessarily a

tree. Worse, there does not necessarily exist a smallest tree that is larger than the

union. For instance, if t1 = ({r, a, c}, {ra, ac}) and t2 = ({r, b, c}, {rb, bc}), then t1∪t2
is equal to the graph ({r, a, b, c}, {ra, ac, rb, bc}), which is not a tree, and there does

not exist a tree that contains it. Therefore, there does not exist a supremum of tree

representations if the union of their trees is not a tree. Now, suppose that the union

is a tree; let us focus on the mapping function. Now both M1(x) and M2(x) do belong

to V (t1 ∪ t2), but their supremum in t1 ∪ t2 may not exist. In summary, we obtain

the following.

Proposition 3. The supremum T1∨T2 of two tree representations T1 = (t1,M1) and

T2 = (t2,M2) is given by:

T1 ∨ T2 =


(t1 ∪ t2,M1 gt1∪t2 M2), if t1 ∪ t2 is a tree, and

M1 gt1∪t2 M2 exists,

6 ∃, otherwise.

(5.4)

In conclusion, the set of tree representations together with the partial ordering de-

fined in (5.1) is a complete inf-semilattice. The least element is T0
4
= (({r}, {}),M0(x) ≡ r)).

As indicated by the following proposition, calculations become much simpler when

all tree presentations involved in an infimum or supremum operation have a common



68 CHAPTER 5. TREE SEMILATTICES

tree associated to them.

Proposition 4. Let T1 = (t,M1) and T2 = (t,M2). In this case,

T1 ∧ T2 = (t,M1 ft M2) , (5.5)

and

T1 ∨ T2 = (t,M1 gt M2) , (5.6)

where M1 gt M2 may not exist.

Proof. The general infimum definition in equation 5.3 can be easily reduced to a

simpler form if t1 = t2. Then t1 ∧ t2 becomes just t and the projection operator

Pt1∧t2 has no effect because the trees are equal. For that reason the equation may be

rewritten as above.

In the similar way, the general supremum definition at equation 5.4 is reduced to

the above form, because t ∪ t = t.

The above is in fact the situation that occurs when one defines flat erosion and

dilations on the complete inf-semilattice of tree representations. The flat erosion is

the operator ε defined as:

ε(T ) =
∧
b∈B

T−b, (5.7)

where B is a structuring element, and T−b is the tree representation obtained by

translating the mapping function of T by the vector −b. That is, if T = (t,M), then

T−b = (t,M−b). It is easy to verify that the above operator is an erosion on T L
r .

Indeed, it is distributive with respect to the tree representation infimum.

Using Proposition 4, one obtains that

ε(T ) = (t,ft {M−b|b ∈ B}) . (5.8)

According to the morphological semilattice theory [21], on a complete inf-semilattice,

one can associate to any given erosion an opening γ and any morphological opera-

tor that is derived from compositions of erosions and openings, such as the internal

gradient, dark top-hat transform, and skeletons. Furthermore, the adjoint dilation δ



5.2. IMAGE PROCESSING ON TREE SEMILATTICES 69

exists, and, even though it is not well defined for all complete inf-semilattice elements,

it is always well-defined for elements that are mapped by the erosion, and γ = δε.

In the case of the above tree-representation flat erosion, the adjoint dilation is

given by:

δ(T ) = (t,gt {Mb|b ∈ B}) . (5.9)

5.2 Image Processing on Tree Semilattices

5.2.1 Proposed Approach

Our goal is to process a given grayscale image f , which we assume to be an integer-

valued function on E, i.e., f ∈ Fun(E,Z). We propose the following approach for

processing f , using the complete inf-semilattice of tree representations.

1. Transform f into a pair (T, `), where T = (t,M) ∈ T L
r is a tree representation,

and ` : L 7→ Z is a function that maps labels into graylevels,

2. Perform one or more morphological operations on T to obtain a processed tree

representation T̂ = (t, M̂).

3. Transform (T̂ , `) back into a new image f̂ ∈ Fun(E,Z), using:

f̂(x) = `
(
M̂(x)

)
. (5.10)

Notice that the format for the inverse transform (item 3) is fixed, and does not

depend on the exact definition of the tree transform τ . The user however has a great

deal of freedom for choosing τ itself. A number of tree transforms are discussed

in sections 2.2 and in section 6.1. Because there are many possible alternatives for

defining τ , designing the forward transform is the main issue for applied research in

that field, where the goal is to find the best tree representation of an image in some

sense. In this chapter, however, this issue is not addressed; instead, a tree transform

is assumed given, and we focus on the corresponding morphological operators and

the methodology to obtain them.



70 CHAPTER 5. TREE SEMILATTICES

If the morphological operation in item 2 above is the erosion ε, then, according to

next theorem, all three steps can be collapsed into one equation.

Proposition 5.

f̂(x) = ` (ft {M−b(x)|b ∈ B}) . (5.11)

Let the elements of the label set L be indices to the flat zones of f ; each flat

zone is represented by a label in L, so that V = L. Let r be the label to one of the

flat zones, which is set in advance as a root for a spanning tree of the RAG. Now

assume that τ maps an image f into a structure (T, `), where T = (t,M) is a tree

representation, with t = (L,E) being a spanning tree of the RAG.

Proposition 6. Let R(v) be the flat zone associated to a node v of the spanning tree

t, i.e.,

R(v) = {x ∈ E|M(x) = v}. (5.12)

Now consider the eroded tree representation T̂ = εB(T ) = (t, M̂), by the structuring

element B, and let R̂(v) be the flat zone associated to v in the eroded tree represen-

tation, i.e.,

R̂(v) = {x ∈ E|M̂(x) = v}. (5.13)

Then, the following holds:

⋃
v′�v

R̂(v′) =

(⋃
v′�v

R(v′)

)
	B. (5.14)

Proof. First let’s pay attention to a feature of infimum of the mapping function. If

one mapping function M1(x) belongs to a certain subtree of v : tv and another M2(x)

doesn’t belong to that subtree, the infimum of M1(x) and M2(x) will not be belong

to that subtree tv. If both M1(x) and M2(x) are belong to same subtree, the infimum

will belong to the same subtree.

Let’s assume that the above equation 5.14 is wrong, and reach a contradiction.

The above equation may be wrong either if there exist x ∈ E that belongs to the left

side but not to the right side, or the opposite.

In the first case, if x belongs to
⋃

v′�v R̂(v′), it means that M̂(x) belongs to a

subtree of v. Where M̂ was created from ft {M−b|b ∈ B}. It means that all source



5.2. IMAGE PROCESSING ON TREE SEMILATTICES 71

mappings belong to that subtree. But x lies outside a shape left by an erosion

operation on
⋃

v′�v R(v′) using the structure element B. It means that when B was

applied to x, it included M−B(x) vertices, and one of that vertices was outside the

subtree of v. So, M̂(x) could not belong to
⋃

v′�v R̂(v′).

In the second case, x belongs to
⋃

v′�v R(v′) but doesn’t belong to
⋃

v′�v R̂(v′). In

a similar way as described above, all source M−B(x) vertices belong to
⋃

v′�v R(v′),

so that M̂(x) must belong to the same subtree -
⋃

v′�v R̂(v′).

The above proposition suggests that one way of implementing the tree-representation

erosion (assume the list of all flat zones of f and a spanning tree t are given) is by:

1. Associating to each item v of the list the set of points R̄(v)
4
=
⋃

v′�v R(v′), i.e.,

the union of all flat zones that are equal or greater than v in the tree t.

2. Eroding R̄(v) for each v in the list.

3. Assigning the gray level of v for all pixels in R̂(v)
4
= R̄(v) \

⋃
v′�v R̄(v′).

5.2.2 Examples and Particular Cases

RAG’s and Spanning Trees

In order for the tree transform to be invertible, τ should be such that it assigns a

common label to each flat zone of f . This is because τ−1 maps each label to a single

gray value. This suggests that special attention should be paid to the flat zones of f .

One way of addressing the flat zones of a given image is by considering its Regional

Adjacency Graph (RAG). The RAG is a graph, where V is the set of all flat zones of

the image, and E contains all pairs of flat zones that are adjacent to each other.

A spanning tree is a subgraph of a RAG that should, obviously, be a tree, and

have the same vertex set V as the RAG. A spanning tree creates a hierarchy in the

RAG, defining father/son relationships between adjacent flat zones.

BTV and Shape Trees

The BTV tree described in chapter 3, is built from the RAG using minimal topo-

graphic distance criteria for building the tree t. The vertex set of the BTV tree is the



72 CHAPTER 5. TREE SEMILATTICES

same vertex set of the RAG - a set of all flat zones in the image. In that sense, the

BTV tree is a particular case of a spanning tree.

The shape tree is defined in [20] and the resulting semilattice is defined in [17].

The shape tree differs from the BTV tree in one main aspect: its vertex set is not

the flat zones of the image. Its vertex set is built from the flat zones during the tree

generation. Each father vertex area includes all sons in addition to an area of itself.

For each point in the image there may be more than one vertex in the shape tree that

includes that point. In order to preserve the single value of the mapping function we

define a mapping to the biggest vertex of all possible vertices in the tree.

Max and Min Trees

Another group of trees is Max and Min trees. Those trees, as described in sec-

tion 2.2.1, are created from the RAG, sorted by the gray level of the flat zones.

Similar to the above shape tree, each vertex region in the picture contains all children

vertices. In Max Tree the father gray level is always bigger than the son. And, of

course, the opposite in a Min tree. When a father is always brighter/darker then a

son, the infimum operation always changes the gray level to the darker/brighter side.

This has the same effect as a regular erosion on a gray-level picture. For this reason

those trees are of no special interest for the proposed approach.

5.3 Semilattice of Images

5.3.1 Structure Induction

What we would really like is the complete inf-semilattice of tree representation (using

a tree τ) to induce a complete inf-semilattice in the image domain. That is, we

would like, for instance, that the composite operation of τ−1ετ be an erosion in the

image domain. However, that is not guaranteed; for some tree transforms τ an image

semilattice is obtained and for others not. In fact, the partial ordering in the tree-

representation domain does induce a partial ordering for images, for any τ ; however,

the infimum is not guaranteed to exist.

Let f be an image, τ(f) is a tree representation. Tε = ε(τ(f)) is the tree repre-

sentation of an erosion operator result. Let fε = τ−1(ε(τ(f))) be the image obtained



5.4. SUMMARY AND DISCUSSION 73

by the inverse tree transform. There is no guarantee that τ(fε) will be equal to Tε.

In fact, Tε often lies outside the range of all possible tree representations of images,

as shown in Fig. 5.6. Therefore, we cannot assure that τ(fε) < τ(f). In words, we

cannot be sure that operators in a tree semilattice preserve their features in the image

domain.

Figure 5.6: Problem of existence of image semilattice, based on tree representation

The derivation of necessary and sufficient conditions for the tree transform to

preserve the semilattice feature is not in the scope of the current thesis. As stated in

the list of future directions in Chapter 7, we propose the investigation of this topic

as open future research

5.4 Summary and discussion

This chapter introduced a general framework for image processing using tree rep-

resentation. For this purpose, a semilattice of tree representations was developed.

Morphological operators, such as erosion, opening and opening by reconstruction

were defined in this semilattice. This general framework allows introduction of new,

mostly self-dual, filtering techniques. One example of such technique is presented in

the next chapter.

However, there are still issues waiting to be studied in this subject. The most

important of them is the existence of an image semilattice based on a given tree



74 CHAPTER 5. TREE SEMILATTICES

representation. The current definition of tree transform and operator definition does

not assure the existence of the image semilattice (see section 5.3).



Chapter 6

Extrema-Watershed Tree example

Chapter 5 presents a general framework for producing morphological operators that

are compatible to a given tree representations. For every tree representation, a com-

plete inf-semilattice in the tree-representation domain is derived, and a set of mor-

phological operators on that inf-semilattice is obtained.

As for any general framework, the strength and usefulness of the proposed mor-

phological tree-based framework is measured by its ability to:

1) unify existing methods as much as possible, in a simple way, and

2) generate new and useful methods.

The purpose if this chapter is to present an example of a new method that is ob-

tained from the general framework, and to investigate its usefulness. This exemplifies

the strength of the general framework, as a tool for generating new, useful sets of

morphological operators.

Based on the general framework of Chapter 5, all that is needed in order to obtain

a new set of morphological operators is a given tree representation. The more this

tree representation is useful, the more useful these morphological operators are likely

to be, since many of the properties of the tree are inherited by the morphological

operators (like self-duality).

The tree representation selected for the method presented in this chapter is a

particular case of a “Binary Partitioning Tree”, which is a state-of-the-art, general

framework for tree generation, developed by Salembier in [10]. The proposed rep-

resentation is built using an iterative merging process as presented by Salembier,

Garrido and Garcia in [23].

75



76 CHAPTER 6. EXTREMA-WATERSHED TREE EXAMPLE

The selected tree-representation was designed with the purpose of achieving good

properties for tasks such as denoising and segmentation. The resulting tree-representation

is called Extrema-Watershed Tree (EWT), and it yields a new set of morphological

operators, derived from the Extrema Watershed Tree, by the general framework of

Chapter 5. Fig. 6.1 shows how the given tree representation is used in general frame-

work.

Figure 6.1: EWT-based morphology.

This representation is self-dual: dark and light pixels are treated evenly. The tree

representation is built by symmetrical flooding of extrema zones to merge flat zones.

In the tree building process, first the smallest extremum points are merged with their

neighbors. This approach represents an image in such a way that smaller and brighter

or darker objects are located further from a root of the tree, while larger objects are

located closer to the root. This tree structure enables meaningful morphological

operators to be defined, as described in section 6.2. Later, in section 6.3, the results

are compared to a similar tree - the shape tree.

6.1 Extrema watershed tree description

Assume all extrema in the images, i.e., all regions associated to a local minimum

or a local maximum. An algorithm for creating the watershed tree sorts all regions

of extremum by size, and if sizes are equal, by gray level differences between the

extremum and a closest adjacent region. Let’s denote by Vextr a label corresponding

to an extremum region. Then, e will be an edge in a G, the RAG (Region Adjacency

Graph) that contains Vextr. For simplicity, we assume that Vextr is always the first

vertex in e (e = (Vextr, V2)). Each vertex V has a number of properties: Lbl(V ) is



6.1. EXTREMA WATERSHED TREE DESCRIPTION 77

its label; GL(V ) is the gray level of region corresponding to V ; Father(V ) is the

father vertex of V in the tree; and Size(V ) is the number of pixels in V . An exact

comparison function is shown in Algorithm 2 below.

In every algorithm cycle, the smallest edge is removed from the edges queue and

merged to create a new flat zone. In the merge process, a newly created flat zone

receives a gray level of an edge vertex other than extremum and is derived by a region

that is a union of both components. Then, all neighbor edges are extracted from the

queue and new edges with a new vertex are added only if they still include extremum

vertices. A pseudo code of the algorithm we developed is listed in Algorithm 3 below.

Using notions of merging order, merging criterion and region model in-

troduced in [23], the proposed representation has a merging order according to a

queue sorted by an order function shown in algorithm 2. Its merging criterion is

whether the edge in question is the first in the queue of all edges. And the region

model as described in the algorithm, is to take a gray level of the vertex other than

the extremum and use a union of their regions.

This algorithm resembles an algorithm introduced by Vachier and Vincent in

[24]. One difference is in the merging order: our main merge criteria is the size of

an extremum, which is not the case in Vachier and Vincent’s algorithm. Another

difference is that the resulting tree is used here to define morphological operators,

whereas Vachier and Vincent use it as an intermediate step for computing symmetrical

dynamics (see [24] for details).

Let’s take a 1-dimensional example to illustrate the tree structure. Figure 6.2

shows the first 3 steps in creating the extrema watershed tree. A source image includes

2 flat zones with extremum gray levels - v3 and v5. The first step in the algorithm is

to merge v3 and v2, because v3 is a small extremum (only 1 point) and because it’s

gray level is closer to v2 then v5 with v6. The merge creates a new flat zone - v7 with

gray level 9. A gray level is taken from a flat zone other than the extremum. The

region of a new flat zone is a merge of the two source regions. The newly created v7

is a new extremum in the image. In the next step another extremum - v5 is merged

with v6 to create v8, because v5 is the smallest extremum in the image. In the third

step v7 is merged with v4 to create v9. At that stage all remaining flat zones are

extremum. The next merge steps are to merge v8 and v9 with v10 and finally v10 is

merged with v1 a root. The choice between merging of v8 with v9 or v1 with v9 is



78 CHAPTER 6. EXTREMA-WATERSHED TREE EXAMPLE

arbitrary, because v1 and v8 have identical sizes and same gray level difference.

The resulting tree is depicted in Fig. 6.3.

Algorithm 2 Compare 2 extremum regions for a merge candidate selection

function CompareExtrema(e1,e2) . e1 = (V 1
extr, V

1
2 ), e2 = (V 2

extr, V
2
2 )

. return value 0 means e1 is smaller,value 1 means e2 is smaller
if Size(V 1

extr) < Size(V 2
extr) then

return 0
else if Size(V 2

extr) < Size(V 1
extr) then

return 1
else . sizes are equal

∆1
GL = |GL(V 1

extr)−GL(V 1
2 )|

∆2
GL = |GL(V 2

extr)−GL(V 2
2 )|

if ∆1
GL < ∆2

GL then
return 0

else
return 1

end if
end if

end function

6.2 Morphological operations on the extrema-watershed

tree

As described in the Chapter 5, once a tree transform is defined, morphological op-

erations (such as erosion and opening) in the tree-domain can be obtained. In this

section, we investigate the results of applying this technique to the extrema-watershed

tree.

6.2.1 Erosion and opening

Consider the erosion and opening operators derived from the extrema-watershed tree,

using the general framework developed in Chapter 5. In the following examples the

two operators: erosion and opening are applied on synthetic and natural noisy and

not noisy images.



6.2. MORPHOLOGICAL OPERATIONS ON THE EXTREMA-WATERSHED TREE 79

Figure 6.2: Example of extrema watershed tree creation.



80 CHAPTER 6. EXTREMA-WATERSHED TREE EXAMPLE

Figure 6.3: The Extrema Watershed Tree associated to the example in Fig. 6.2.

Algorithm 3 Create maxima watershed tree

A list of symbols :

Eq A sorted queue of edges in G containing extremum region.

Ngh A sorted queue of edges, a subset of Eq, neighbors of Vextr, V2.

Lbl The current label number, initialized to zero.

1: Find all extremum region ,Vextr, in G.
2: Find all edges connected to the extremum regions and put them in Eq.
3: Sort Eq according to the comparison function in alg. 2.
4: while Eq not empty do
5: (Vextr, V2)← First(Eq)
6: Lbl = Lbl + 1
7: Create new vertex V
8: Lbl(V )← Lbl
9: GL(V )← GL(V2) . The new vertex always gets GL other then extremum

10: Size(V )← Size(Vextr) + Size(V2)
11: Father(Vextr)← V ; Father(V2)← V
12: Ngh ← all pairs in Eq containing Vextr or V2

13: Substitute Vextr and V2 by V in Ngh.
14: Remove all pairs in Ngh where the first vertex is not extremum anymore.
15: Sort Ngh according to the comparison function in alg. 2.
16: Merge Eq and Ngh preserving the order.
17: end while
18: Root← Lbl . the last added label is defined as the root



6.2. MORPHOLOGICAL OPERATIONS ON THE EXTREMA-WATERSHED TREE 81

The result of the erosion and the opening operations on the image Lena are shown

in Figs. 6.4 and 6.5, respectively. As one can see, these operators create no significant

artifacts (unlike the the trenches that are added by boundary topographic operators,

as shown in Chapter 4). Very small components were removed, whereas the larger

ones were preserved (by opening) or shrank (by erosion). Moreover, the average gray

level of the picture did not change; in particular, the picture did not become darker,

which is what usually happens after a standard erosion or opening. In addition,

in Fig. 6.7 the filtering effect on a corrupted Lena image is shown. The image is

corrupted with salt and pepper noise constituting of random black and white pixels.

It is seen that after the filtering there is no sign of noise, and the resulted image is

very similar to a filtered image without the noise. A comparison between the two

results (filtered with and without the noise) is shown in Fig. 6.8. The image shown is

the gray level difference between the filtered original and filtered noisy images, both

obtained by opening and erosion. An additional example is shown in Figs. 6.11 and

6.10, with respect to the synthetic image “Simba”. The Fig. 6.12 results of filtering

a binary image, first introduced in Fig. 1.1, are presented. All the noise, except for

noise on the edges, has been removed.



82 CHAPTER 6. EXTREMA-WATERSHED TREE EXAMPLE

(a) (b)

Figure 6.4: Inverse transform of Extrema watershed tree of Lena image eroded by
structuring element 2× 2. (a) Original Image (b) Eroded Image

(a) (b)

Figure 6.5: Inverse transform of Extrema watershed tree of Lena image opened by
structuring element 2× 2. (a) Original Image (b) Opened Image



6.2. MORPHOLOGICAL OPERATIONS ON THE EXTREMA-WATERSHED TREE 83

(a) (b)

Figure 6.6: A Lena image corrupted by the Salt&Pepper noise. (a) Original Image
(b) Noisy Lena Image

(a) (b)

Figure 6.7: Filtering Noisy Lena Image using t Extrema watershed tree. (a) Inverse
transform of Extrema watershed tree eroded by structuring element 2× 2 (b) Inverse
transform of Extrema watershed tree opened by structuring element 2× 2



84 CHAPTER 6. EXTREMA-WATERSHED TREE EXAMPLE

(a) (b)

Figure 6.8: A comparison between filtering results of noisy and clean image. (a)
Erosion result difference. (b) Opening result difference.



6.2. MORPHOLOGICAL OPERATIONS ON THE EXTREMA-WATERSHED TREE 85

(a) (b)

Figure 6.9: A Simba image corrupted by the Salt&Pepper noise. (a) Original Image
(b) Noisy Simba Image

(a) (b)

Figure 6.10: Filtering Noisy Simba Image using Extrema watershed tree. (a) Inverse
transform of Extrema watershed tree eroded by structuring element 2× 2 (b) Inverse
transform of Extrema watershed tree opened by structuring element 2× 2



86 CHAPTER 6. EXTREMA-WATERSHED TREE EXAMPLE

(a) (b)

Figure 6.11: A Binary image corrupted by the Salt&Pepper noise. (a) Original Image
(b) Noisy Binary Image

(a) (b)

Figure 6.12: Filtering Noisy Binary Image using the Extrema watershed tree. (a)
Inverse transform of the Extrema watershed tree eroded by cross structuring element
(b) Inverse transform of Extrema watershed tree opened by cross structuring element.



6.2. MORPHOLOGICAL OPERATIONS ON THE EXTREMA-WATERSHED TREE 87

6.2.2 Opening by reconstruction

We can define an opening by reconstruction operator in the extrema-watershed tree.

The classical version of this morphology operator is defined in [3] as a single erosion

operation followed by a sequence of conditional dilation operations. The sequence is

stopped when stability is reached - meaning that a dilation followed by the minimum

operation does not change the resulting image.

Using an opening operator defined on a tree, an opening by reconstruction operator

is equivalent to tree pruning, where the pruning criteria is whether the vertex in

question exists in the opened image. The tree pruning for opening by reconstruction

is done using the following steps:

1. Apply an opening operator on the source image.

2. In a tree, for every label remaining in the tree, mark all vertices of the path

starting from this label until the tree root, as still existing in the tree.

3. Replace every label in the input image by the closest parent label that was

marked as still existing in the tree.

Let’s demonstrate the method using an example illustrated in Fig. 6.13. In this

example a source image consists of three rectangles located on a background. In the

corresponding tree, those shapes have indexes V1, V2 and V3. In the example, a

regular opening operator and an opening by reconstruction are applied on the image.

The structuring element is a square that is bigger than V2, but smaller than the other

shapes. The regular opening, shown in the figure, will leave the root label V5 shown

in the image instead of V2. However, the opening by reconstruction will remove V2,

as shown, and then reconstruct label V4 instead.

Additional examples can be seen on Figs. 6.14 and 6.15.



88 CHAPTER 6. EXTREMA-WATERSHED TREE EXAMPLE

Figure 6.13: Opening by reconstruction of simple image.

(a) (b)

Figure 6.14: (a) Original pears image. (b) Opened by reconstruction image using SE
of 3x3.



6.3. STUDY OF EWT PROPERTIES 89

(a) (b)

Figure 6.15: (a) Original Lena image. (b) Opened by reconstruction image using SE
of 3x3.

6.3 Study of EWT properties

What are the properties of extrema watershed tree and why use it? The EWT has

two main properties, listed below:

1. This tree representation is self-dual.

2. The Extrema watershed tree provides implicit hierarchical segmentation due to

the following reasons:

• A tree is created in watershed-like process.

• Small area extrema are leaves.

• Bigger flat zones are close to the root.

• Vertices connected in the tree usually have similar gray levels.

6.3.1 Implicit segmentation

Recalling that the extrema-watershed tree is built in a process that is very similar

to flooding, it is natural to investigate the potential of using the resulting tree for



90 CHAPTER 6. EXTREMA-WATERSHED TREE EXAMPLE

(a) (b)

Figure 6.16: Trenches meaning. (a) Trench example (b) An infimum of A and B, is a
common father E. Its sons, C and D are the roots of subtree1 and subtree2. Pruning
the tree to C and D vertices, will create the required segmentation.

segmentation. The idea behind the presented method is to prune the tree, leaving

only the main objects. The tree is self-dual, and so is the resulting segmentation.

The implicit segmentation is based on the “trench” phenomenon. This phe-

nomenon is described in Chapter 4. The trench is created, during erosion, on the

border of two very different zones. The difference is defined by the path-distance

to the common parent. The trench opens a gap with the gray level of the common

parent. The sub-trees (the descendents of the common parent) are image segments.

We are going to use this feature to find basic components of an image as shown in the

example in Fig. 6.16(b). As one can see, common parent of two different subtrees, has

two sons, where each of them is the root of the corresponding subtree. An example

of a trench that opens between two zones in the Lena image is shown in Fig. 6.16(a).

If we take only those son labels, and prune every other label beneath, a segmented

image is created.

The tree-depth image, is the map of depths in the tree associated to each label

in the image. In order to obtain trenches, another definition is required. The trench



6.3. STUDY OF EWT PROPERTIES 91

(a) (b)

Figure 6.17: An example of image a trench image. (a) Original pears image. (b)
Trenches map image.

image is the difference between images of depth of the original and the corresponding

eroded image. The number of segments is controlled by setting a threshold for this

trench image at an arbitrary value. In this way, we determine, what is a trench and

what is a regular point. An example of trench image is shown in Fig. 6.17.

We can get the sub-tree labels using the following process :

1. Calculate the image erosion.

2. Extract the trenches from the depth-difference image.

3. Prune the tree, leaving only sons of vertices exposed in trenches.

4. Perform additional pruning by size and similarity according to the parent cri-

terion.



92 CHAPTER 6. EXTREMA-WATERSHED TREE EXAMPLE

(a) (b)

Figure 6.18: Segmentation example. (a) Original pears image. (b) Sub-tree labels.
Trenches depth threshold 450.

The last operation in the algorithm is needed to deal with two problems. One

problem is that small regions are left sometimes near object borders. Those regions

are removed by the size criterion. It is important to notice that this size criterion does

not cause the algorithm to be a regular size-based pruning, because the size criteria

should be an order of magnitude smaller than the required objects. Another problem

is that in many cases a number of similar zones remain in the tree. Those zones have

a son-father relationship, and are stacked one above the other, with a slight difference

in size. The proposed solution of this problem is to prune vertices that have a slightly

bigger father. A threshold of 10% size difference was found to be a good choice.

An example of this segmentation is shown in Fig. 6.18. In this image the segmen-

tation roughly follows the pears boundary. Another example of segmentation can be

seen in Fig. 6.19.

6.3.2 Comparison to the Shape Tree

A natural alternative to the proposed representation is the shape tree, discussed in

Chapter 2.2.3. Monasse and Guichard list in [13] the properties of an opening operator

based on the shape tree. It may be a good idea to check which properties the two

approaches have in common and which they do not. Let us denote an opening operator

on an image u using the extrema watershed tree as γB(u), where B is a structuring



6.3. STUDY OF EWT PROPERTIES 93

(a) (b)

Figure 6.19: Segmented Lena image. (a) Original Lena image. (b) Sub-tree labels.
Trenches depth threshold 800.

element. We shall address only properties that are more general and not specific to

[13].

Contrast invariance. If g is a contrast change (an increasing real valued function),

then:

γB(g(u)) = g(γB(u)) (6.1)

Negative invariance. Like the shape tree based operator, γB(u) has the feature of

negative invariance:

γB(−u) = −γB(u) (6.2)

Idempotent. As the shape tree operator, γB(u) is idempotent:

γB(u) = γB(γB(u)) (6.3)

This property is due to the fact that the proposed operator is a morphological opening

in a complete inf-semilattice, and according to [21] such an operator is idempotent,

increasing and anti-extensive.

Fig. 6.23 and 6.22 present effects of opening and erosion using extrema watershed



94 CHAPTER 6. EXTREMA-WATERSHED TREE EXAMPLE

tree and shape tree on the corrupted image shown in Fig. 6.20. A difference between

the two approaches is shown in Fig. 6.21. It is interesting that there is a major

difference in the erosion result, but almost no difference in the opening result. This

is because in the erosion picture of the extrema watershed tree trenches are revealed.

The trenches in extrema watershed tree exposes flat zones located deep into the tree.

There is no similar effect in a shape tree because its tree structure is different.

Note that noise connected to the image border is not filtered in the Tree of shapes

and is filtered in the EWT tree. Noise is left by the shape tree filter because its

“fillhole” operator does not consider this boundary noise as a hole that can be filled

during tree creation process.

6.3.3 Filtering using Extrema watershed tree versus tradi-

tional morphological filtering

In this section, filtering results using the EWT are compared with traditional erosion,

dilation, opening, closing, open-close, close-open operators and median filter in a

complete lattice of gray level functions. In Figs. 6.24 and 6.24, results of conventional

morphological filters (erosion, dilation, opening, closing) are shown. As expected,

their results are not symmetric with respect to a gray and dark pixels. Because of

that, those filters cannot be compared with the extrema-watershed tree.

An additional morphological filter that has a pseudo symmetrical effect is a com-

bined open-close or close-open filters as described in Chapter 8 of [3]. Their results

are shown in Fig. 6.26. In Fig. 6.27 a median filter result is shown and compared to

the EWT result. Those two figures enable a comparison between the proposed filter

and traditional approaches. It can be seen the the EWT filtered result is in general

similar to an open-close and close-open results, but without a bias towards dark pixels

as a close-open or towards a light pixels as an open-close filter. The median filter

is unbiased, but a number of noisy pixels have survived the filtering by it, and the

median filter lacks other important features. For example it is not an idempotent

filter.



6.3. STUDY OF EWT PROPERTIES 95

(a) (b)

Figure 6.20: A Lena image corrupted by the Salt&Pepper noise. (a) Original Image
(b) Noisy Lena Image.

(a) (b)

Figure 6.21: Difference between filtering results of Tree of shapes minus filtering
results of Extrema watershed tree of Noisy Lena Image. In both filtering approaches
we have used structuring element 2×2. (a) Difference between erosion results of Tree
of shapes minus erosion results of Extrema watershed tree (b) Difference between
opening results of Tree of shapes minus opening results of Extrema watershed tree.



96 CHAPTER 6. EXTREMA-WATERSHED TREE EXAMPLE

(a) (b)

Figure 6.22: Filtering Noisy Lena Image using Extrema watershed tree. (a) Inverse
transform of Extrema watershed tree eroded by structuring element 2× 2 (b) Inverse
transform of Extrema watershed tree opened by structuring element 2× 2.

(a) (b)

Figure 6.23: Filtering Noisy Lena Image using Tree of shapes. (a) Inverse transform
of Tree of shapes eroded by structuring element 2 × 2 (b) Inverse transform of Tree
of shapes opened by structuring element 2× 2.



6.3. STUDY OF EWT PROPERTIES 97

Figure 6.24: Traditional erosion and dilation of a gray scale image.

Figure 6.25: Traditional opening and closing of a gray scale image.



98 CHAPTER 6. EXTREMA-WATERSHED TREE EXAMPLE

Figure 6.26: Traditional pseudo-dual open-close and close-open operators.

Figure 6.27: Median operator compared to the self-dual opening using Extrema wa-
tershed tree.



6.4. APPLICATION EXAMPLES 99

6.4 Application examples

A common usage of opening and opening by reconstruction operators is cleaning noisy

images as an intermediate step in various applications. Our operators, defined on

extrema watershed tree, have an important feature: duality. In the next paragraphs

we will show a number of possible applications that may use the EWT-based filtering

as an intermediate step. The presented applications are OCR (Optical Character

Recognition) algorithms and dust and scratch removal from images.

6.4.1 Pre-processing for car license plate number recogni-

tion

Morphological operators are a common choice for applications that require image

simplification. One kind of such an application is pre-processing for OCR (Optical

Character Recognition) algorithms. We have chosen a specific OCR algorithm, used

for recognition of license plate numbers, that was developed in [25]. This algorithm

uses a mask for each digit and looks for the best correlation among these masks with

an image. Any noise that exists in the image degrades the correlation value and

interferes with the recognition.

This particular algorithm has an important benefit: it calculates a coefficient of

recognition quality. This coefficient enables us to measure recognition improvements,

when using different pre-processing algorithms. The exact definition of this coefficient

is presented in [25].

Consider an example license plate shown in Fig. 6.29. This image is corrupted with

different kinds of noise, see Fig. 6.30. The correlation is done on the gray scale image

shown in Fig. 6.31. It is difficult to automatically recognize the numbers without pre-

processing, because of the noise level. We have done opening by reconstruction, using

the structuring element shown in Fig. 6.28. The diameter of this SE is equal to the

width of digits lines. This size of SE assures that we filter as much noise as possible

without damage to the numbers. The resulting image can be seen in Fig. 6.32. In

this figure, almost all the noise is gone, and the image is much clearer and suitable

for OCR. The effect of the proposed pre-processing can be seen in table 6.1. Without

the pre-processing, the OCR failed to recognize correctly the plate number. The pre-

processing, not only removes the noise, but also simplifies the image. Therefore, when



100 CHAPTER 6. EXTREMA-WATERSHED TREE EXAMPLE

Method used Recognition result Quality coeff.
Image without noise, without pre-processing 70-587-07 3.75

Noisy image, without pre-processing 20-687-07 3.47
Averaging filter 70-587-02 3.65
Median filter 70-587-07 3.75

Regular open by reconstruct 79-687-07 3.65
Regular quasi dual open by reconstruct 70-587-07 3.79

EWT filter 70-587-07 3.84

Table 6.1: OCR results comparison with different pre-processing methods.

the pre-processing is applied, the quality coefficient increases and correct recognition

is achieved. Sometimes OCR results are even better for pre-processed noisy image,

than for not noisy image.

In order to measure the effectiveness of the proposed approach, a number of other

pre-processing filters were used. A simple averaging filter, using the same structuring

element was used to filter the image. The result is shown in Fig. 6.33. As can be seen

in Table 6.1, this particular pre-processing gives a very poor result. A median filter

with the same structuring element, which is shown in Fig. 6.34, gives better results

than averaging. Opening-by-reconstruction results, using regular gray scale image

morphology, are shown in Fig. 6.35. The image looks much better, although it is

apparent that the filter is not self dual. The OCR, as seen in Table 6.1, successfully

recognizes the plate number and the quality coefficient goes higher. In order to

handle the lack of duality of regular morphology, we took the following approach:

Two opening by reconstruction operations were performed using the scheme shown

in equation 6.4.

Iquasi−self−dual = 256−OR(256−OR(Ioriginal)) (6.4)

Where OR is opening by reconstruction operator, 256 is the maximum gray level and

Ioriginal is the input image.

The filter result is shown in Fig. 6.36. The result looks fine but is a bit more

corrupted than the EWT filtering result in Fig. 6.32. The OCR results, shown in

Table 6.1, are slightly worst than the EWT filtering.



6.4. APPLICATION EXAMPLES 101

Figure 6.28: The structuring element used in opening by reconstruction.

6.4.2 Noise filtering for text OCR

Another example of pre-processing for OCR can be seen in Fig. 6.37(a). The figure

shows text taken from a National Geographic journal. This text is printed on non-

uniform background, and worse, part of the text is white and part of the text is black.

In addition the picture is corrupted by added random white and black pixels. If we

want to use this image for OCR, the image must be cleaned. We used an EWT-

based opening filter for this purpose. As can be seen in Fig. 6.37(b), both white

and black text was cleaned in the same way. Both white and black noise pixels were

removed, and the letters were almost undamaged. Although we didn’t run an actual

OCR, we believe that the filtered image would have a higher success rate in OCR.

For comparison, we filtered the image with the median filter and opening filter based

on shape-tree. It can be seen in Fig. 6.38 that the median filter leaves some noisy

pixels, and the shape-tree opening is almost identical to the EWT opening.



102 CHAPTER 6. EXTREMA-WATERSHED TREE EXAMPLE

Figure 6.29: License plate image without noise.

Figure 6.30: License plate image corrupted with noise.

Figure 6.31: License plate image in gray scale, as used by the OCR.

Figure 6.32: License plate image filtered by EWT-based opening by reconstruction.



6.4. APPLICATION EXAMPLES 103

Figure 6.33: License plate image filtered with an averaging filter.

Figure 6.34: License plate image filtered with a median filter.

Figure 6.35: License plate image filtered with regular opening by reconstruction.

Figure 6.36: License plate image filtered with regular self dual opening by reconstruc-
tion.



104 CHAPTER 6. EXTREMA-WATERSHED TREE EXAMPLE

(a) (b)

Figure 6.37: (a) A text image corrupted by Salt&Pepper noise. (b) Image restored
by an opening on the watershed tree with 2x2 SE.

(a) (b)

Figure 6.38: (a) Image restored by a median filter. (b) Image restored by an opening
on the shape tree with 2x2 SE.



6.4. APPLICATION EXAMPLES 105

6.4.3 Initial step for dust and scratch removal

Another example uses opening by reconstruction as an initial step for an application

that removes dust and scratches from images. The elements that remain after filtering

by the opening by reconstruction are completely preserved, including their edges. The

elements that are removed by the opening by reconstruction are completely removed,

including their edges. This feature enables one to catch candidates for dust and

scratch during the initial step. The output of the initial step is a top-hat (TH) filter

that includes all details that were filtered out by opening by reconstruction (OR)

from the original image Ioriginal, and is given by: TH = Ioriginal−OR(Ioriginal). Later

steps of the application can make further analysis of that image in order to decide

which object is dust or scratch and which is not. Afterward, objects that are dust or

scratch, according to decision rule, are removed from the image.

We have compared different methods for this application. The comparison was

done using the energy level of the top-hat image and qualitative evaluation of the

extent of dust and scratch removal. As the energy level of the top hat image is lower,

and as the dust and scratch removal is better, so the filter is declared to be more

efficient. The energy is defined by equation (6.5).

Enrg = ‖f‖2 =

√∑
i,j∈f

f(i, j)2 (6.5)

Where f is the image and Enrg is the image energy level.

We used averaging and median filters for comparison. Table 6.2 summarizes the

energy levels of the top-hat images. Figures from 6.39 until 6.42 show top-hat images

for different structuring elements and image magnifications. The objects in the top-

hat images are the potential candidates for dust and scratch for the later steps of the

application.

For all structuring elements, the averaging filter catches all the edges of the image.

In addition, the energy of the top-hat image is higher for the averaging filter than

for the other filters listed in Table 6.2. This means that the averaging filter catches

too many candidates for dust and scratch. Therefore, it is less suitable for dust and

scratch removal application, than the other compared filters.

For a given image, the energy is higher for the median than for the filter based



106 CHAPTER 6. EXTREMA-WATERSHED TREE EXAMPLE

Method used Energy (cross SE) Energy (SE 3x3) Energy (SE 5x5)
Averaging filter 1799 2643 3979
Median filter 1233 1971 3162
EWT filter 1376 1737 2895

Table 6.2: Energy results comparison, with different pre-processing methods.

on EWT, for all structuring elements, except for “cross”. For “cross” structuring

elements, median does not catch the entire real dust and scratch, as shown in Fig-

ure 6.40. So we conclude that the filter based on EWT is better for dust and scratch

removal applications than the other compared filters.



6.4. APPLICATION EXAMPLES 107

(a) (b)

(c) (d)

Figure 6.39: Top hat, using cross SE, as a pre-processing for dust and scratch removal.
(a) Original image (b) Top hat by reconstruction based on EWT (c) Top hat using
median (d) Top hat using an averaging filter.



108 CHAPTER 6. EXTREMA-WATERSHED TREE EXAMPLE

(a) (b)

(c) (d)

Figure 6.40: Zoom in. Top hat, using cross SE, as a pre-processing for dust and
scratch removal. (a) Original image (b) Top hat by reconstruction based on EWT
(c) Top hat using median (d) Top hat using an averaging filter.



6.4. APPLICATION EXAMPLES 109

(a) (b)

(c) (d)

Figure 6.41: Top hat, using SE 5x5, as a pre-processing for dust and scratch removal.
(a) Original image (b) Top hat by reconstruction based on EWT (c) Top hat using
median (d) Top hat using an averaging filter.



110 CHAPTER 6. EXTREMA-WATERSHED TREE EXAMPLE

(a) (b)

(c) (d)

Figure 6.42: Zoom in. Top hat, using SE 5x5, as a pre-processing for dust and scratch
removal. (a) Original image (b) Top hat by reconstruction based on EWT (c) Top
hat using median (d) Top hat using an averaging filter.



6.5. EWT CONCLUSIONS 111

6.5 EWT conclusions

A new tree representation is proposed and studied. In addition, a number of appli-

cations are proposed and examined. Those applications include pre-processing for

OCR, noise filtering, and initial step for dust and scratch removal. It is shown that

EWT-based filtering gives better results for those applications, as compared to other

filtering techniques. The EWT-based filtering produces results similar to the classical

morphological filtering, but achieves a better results when the self-duality is required.



Chapter 7

Conclusions and further research

7.1 Conclusions

In this work, we present a general framework for producing new morphological oper-

ators that are compatible to given tree representations. This framework was shown

to be useful by presenting an example of a new tree representation, the Extrema Wa-

tershed Tree, with the set of morphological operators based on this tree, and giving

a number of applications examples. Those examples were pre-processing for OCR,

noise filtering and initial step for dust and scratch removal. EWT-based filtering per-

forms well on tasks suitable for classical morphological filtering. When self-duality is

required, EWT-based filtering achieves better filtering results as compared to other

filtering techniques, including classical morphological filtering.

Moreover, a study of the trench problem was performed, and a number of possible

solutions were presented, along with finding a potential in using those trenches for

segmentation purposes.

7.2 Further research topics

A number of further research directions can be stated on the basis of this work:

• The developed general framework opens a gate for many possible sets of new

morphological operators. Each set is based on a specific tree representation.

Therefore, finding and exploring additional tree representations can bring new

112



7.2. FURTHER RESEARCH TOPICS 113

useful operators. Moreover, one may look for more applications for the ad-

ditional tree representations and for the developed one. For instance, further

exploration of segmentation capability using the trench phenomenon in EWT

is needed.

• The current definition of tree transform does not assure the existence of an image

semilattice. Further research is needed in order to find necessary conditions for

tree representation, so that the inf-semilattice structure is carried from the tree-

representation domain to the image domain.

• Although a number of optimizations were done to the developed algorithms,

they are still not suited for real time implementations. Therefore, improvements

of the efficiency of the presented algorithms can be performed.



Appendix A

114



115

Algorithm 4 RAG image representation

The gray-level image can be represented as a graph, where each node stands for the
image flat zones and the edges connect all the neighboring nodes. The algorithm,
that we have developed for graph building, involves the following stages:
1: Initialize current label to zero. Mark all pixels as not processed. Start arbitrary

from the image border. Insert all the pixels of the image border into fifo1 .
2: if fifo1 is not empty then
3: Get pixel current p1 from fifo1 .
4: if this pixel was not processed yet then
5: Increment emcurrent label, give this new current label to the current pixel

current p1 and insert this pixel into the fifo2 . Go to 12.
6: else
7: Go to 2.
8: end if
9: else

10: End algorithm.
11: end if
12: if fifo2 is not empty then
13: Get pixel current p2 from fifo2 .
14: else
15: Go to 2.
16: end if
17: for every neighbor of the current pixel current p2 do
18: if it was not processed yet then
19: if it belongs to the same flat zone as current p2 then
20: Insert it into fifo2 .
21: else
22: Insert it into fifo1 .
23: end if
24: else
25: if it belongs to another flat zone then
26: Then connect this flat zone in the graph to the current flat zone.
27: Go to 12.
28: end if
29: end if
30: end for



Bibliography

[1] J. Serra, Image Analysis and Mathematical Morphology, vol. 1. London: Aca-

demic Press, 1982.

[2] J. Serra, Image Analysis and Mathematical Morphology, vol. 2 : theoretical ad-

vances. London: Academic Press, 1988.

[3] Pierre Soille, Morphological Image Analysis. Springer-Verlag Berlin Heidelberg

New York, 1999.

[4] Renato Keshet (Kresch), “Mathematical morphology on complete semilattices

and its applications to image processing,” Fundamenta Informaticæ, vol. 41,

pp. 33–56, January 2000.

[5] H.J.A.M. Heijmans and R. Keshet, “Inf-semilattice approach to self-dual mor-

phology,” Journal of Mathematical Imaging and Vision, vol. 17, pp. 55–80, July

2002.

[6] H.J.A.M. Heijmans, “Self-dual morphological operators and filters,” Journal of

Mathematical Imaging Vision, vol. 6, no. 1, pp. 15–36, 1996.

[7] A.J.H. Mehnert, P.T. Jackway, “Folding induced self-dual filters,” in Mathemati-

cal Morphology and its Applications to Image and Signal Processing (J. Goutsias,

L. Vincent, and D. S. Bloomberg, ed.), pp. 99–108, Kluwer Academic Publishers,

Boston, 2000.

[8] H.J.A.M. Heijmans, “Connected morphological operators for binary images,”

Computer Vision and Image Understanding, vol. 73, no. 1, pp. 99–120, 1999.

[9] P. Salembier and J. Serra, “Flat zones filtering, connected operators and filters by

reconstruction,” IEEE Transactions on Image Processing, vol. 8, no. 3, pp. 1153–

1160, August 1995.

116



BIBLIOGRAPHY 117

[10] Philippe Salembier, “Binary partition tree as an efficient representation for im-

age processing, segmentation, and information retrieval,” IEEE Transactions on

Image Processing, vol. 9, pp. 561–576, April 2000.

[11] P. Salembier, J. Llach, L. Garrido, “Visual segment tree creation for mpeg-7

description schemes,” Pattern Recognition, vol. 35, pp. 563–579, March 2002.

[12] P. Monasse and F. Guichard, “Fast computation of a contrast-invariant image

representation,” IEEE Transactions on Image Processing, vol. 9, pp. 860–872,

2000.

[13] P. Monasse and F. Guichard, “Scale-space from a level lines tree,” Visual Com-

munication and Image Representation, vol. 11, pp. 224–236, 2000.

[14] V. Casellas and P. Monasse, “Grain filters,” Journal of Mathematical Imaging

and Vision, vol. 17, no. 3, pp. 249–270, November 2002.

[15] C. Ballester, V. Casellas and P. Monasse, “The tree of shapes of an image,”

ESAIM: Control, Optimization and Calculus of Variations, vol. 9, pp. 1–18,

2003.

[16] Renato Keshet, “Homotopy semilattice.” HP Technical Report, 2004.

www.hpl.hp.com/techreports/2004/HPL-2004-1.pdf.

[17] Renato Keshet, “Shape-tree semilattice,” Journal of mathematical imaging and

vision, vol. 22, pp. 309 – 331, May 2005.

[18] Reinhard Diestel, Graph Theory. Springer-Verlag New York, Electronic Edi-

tion ed., 2000.

[19] Philippe Salembier and Luis Garrido, “Connected operators based on region-tree

prunning,” vol. 3, pp. 367 – 370, September 2000.

[20] Pascal Monasse, Morphological representation of digital images and application

to registration. PhD thesis, Universite Paris IX-Dauphine, 2000.



118 BIBLIOGRAPHY

[21] Renato Keshet (Kresch), “Extension of morphological operations to complete

semilattices and its applications to image and video processing,” Mathemati-

cal Morphology and its Applications to Image and Signal Processing (Proc. of

ISMM’98), pp. 35–42, June 1998.

[22] F. Meyer, “Topographic distance and watershed lines,” Signal Processing, vol. 38,

pp. 113–125, 1994.

[23] Philippe Salembier, Luis Garrido and David Garcia, “Auto-dual connected op-

erators based on iterative merging algorithms,” IEEE Transactions on Image

Processing, vol. 7, no. 4, April 1998.

[24] C. Vachier, L. Vincent, “Valuation of image extrema using alternating filters

by reconstruction,” Neural, Morphological, and Stochastic Methods in Image ans

Signal Processing, pp. 94–103, July 1995.

[25] S. Vichik , R. Sandler , A. Rosen , “Moving car license plate recognition.”

www.cs.technion.ac.il/Labs/Isl/Project/Projects done/cars plates/finalreport.htm,

1999.


