

Audio Engineering Society

Convention Paper
Presented at the 118th Convention

2005 May 28–31 Barcelona, Spain

This convention paper has been reproduced from the author's advance manuscript, without editing, corrections, or consideration
by the Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request
and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org.
All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the
Journal of the Audio Engineering Society.

Packet Loss Concealment for Audio
Streaming Based on the GAPES Algorithm

Hadas Ofir1, David Malah2

1 Department of Electrical Engineering Technion IIT,Haifa 32000, Israel
hadaso@tx.technion.ac.il

2 Department of Electrical Engineering Technion IIT,Haifa 32000, Israel
malah@ee.technion.ac.il

ABSTRACT

In this work we present a novel approach for audio packet loss concealment, designed for MPEG-Audio streaming,
based only on the data available at the receiver. The proposed method is based on the GAPES (Gapped-data
Amplitude and Phase Estimation) algorithm for replacing the missing data, using interpolation in the spectral
domain. The MPEG standard uses the Modified Discrete Cosine Transform (MDCT) for compression. However,
better interpolation results are obtained by converting the data to the Discrete Short-Time Fourier-Transform
(DSTFT) domain. This conversion is done directly using an efficient procedure developed in this work. This
technique was tested subjectively and was found to provide better performance than previously reported works, even
with a packet loss rate of 30%.

1. INTRODUCTION

With the growing popularity of the internet and the
advancement in modem technology, there is increasing
interest in using the internet for multimedia
broadcasting, such as audio and video. This kind of
broadcasting is usually referred to as streaming media,
and its low cost and convenience make it appealing to
both media distributors and consumers.
Audio streaming operates by first compressing a digital
audio file and then breaking it into small packets, which

are consecutively sent over the internet. When the
packets reach their destination, they are decompressed
and reassembled into a form that can be played by the
user's system. To maintain the illusion of seamless
playing, the packets are "buffered". That is, a number of
them are downloaded to the user's machine before
playback. As those buffered packets are played, more
packets are being downloaded and queued up for
playback. This way, the client experiences only a small
delay of a few seconds, waiting for the buffer to build
up, instead of waiting several minutes, or even hours,
for the complete files to be downloaded.

Ofir and Malah Audio Packet Loss Concealment

AES 118th Convention, Barcelona, Spain, 2005 May 28–31
Page 2 of 19

However, since internet delivery doesn’t assure quality
of service, data packets are often delayed or discarded
during network congestions. When the stream of
arriving packets becomes too slow, the client’s audio
player has nothing to play, thus an annoying gap is
created in the streamed media.

Previous researches on this subject [1-3] show that most
of the receivers in such internet connections experience
a mean loss rate of about 10% or lower, but it is still
possible that at certain times the loss rate will go to the
extremes, such as up to 20% or 30% loss rate, or no loss
at all. At small loss rates (10% or less) the packet losses
are random and become more and more correlated as
the loss rates go higher [2]. Hence, when the network
load is low to moderate, the packet losses are usually
isolated audio packets [1]. Each loss, unless concealed
in some way, produces an annoying disturbance. The
common approach for dealing with such cases is to
interpolate the gap, approximating the original
waveform, so that a human listener will not notice the
disturbance.
Packet loss concealment algorithms are usually divided
into two categories: receiver-based methods where only
the data available at the receiver is used for the
concealment and sender-based methods, where the
sender changes the encoded bitstream, adding some
redundancy or additional side information that the
receiver can later use for the concealment process.
In this work we focus on a receiver-based solution.
When designing a receiver-based algorithm for
concealment of audio packet loss, the designer wishes to
interpolate the gap in a way that will sound natural: In
the case of short gaps the replacing signal should have
characteristics similar to the lost signal, so that the
listener won't even notice it was replaced. Since audio
signals are in many cases short-term stationary, these
characteristics can be estimated from the surrounding
packets, assuming they are available. In the case of long
gaps, or gaps that are very close to each other, where it
is impossible to perfectly restore the characteristics of
the lost segment, it is usually demanded that the
replacement should at least sound smooth rather than
annoying. However, since typical audio packets
correspond to 10-30 msec of audio, the gap created by
even a single lost packet is relatively wide (441-1323
samples at 44.1 kHz sampling rate) and is therefore
difficult to interpolate.

Previous works on receiver-based audio packet loss
concealment start from simple techniques, such as noise
substitution, waveform substitution [4] and packet

repetition, on to advanced techniques that use
interpolation in the compressed domain for MPEG
audio coders [5,6] or interpolation using sinusoidal
(parametric) audio modeling [7].

For reasons to be explained in the sequel, the proposed
solution in this work is to interpolate the gap in the
DSTFT domain using only data available at the
receiver-side. The algorithm was designed for MPEG
Audio coders and although it was implemented on an
MPEG-1 Audio coder (a.k.a. MP3), it can be easily
adapted also for MPEG-2/4 AAC. Our experiments
show that the reconstruction is almost transparent for a
10% loss rate, and yields good quality at higher loss
rates, with an acceptable quality achieved even at 30%
loss. Besides its good performance, the benefits of this
solution are that it assumes no parametric modeling and
that it can deal with different loss patterns.

The remainder of the paper is organized as follows:
Section 2 gives a brief overview of the MPEG-Audio
coding scheme. Section 3 explores the proposed process
for efficiently converting MDCT to DSTFT and vice
versa. Section 4 describes the proposed concealment
algorithm. Section 5 describes the quality tests and their
results, and Section 6 concludes the paper.

2. MPEG-AUDIO CODING

The MPEG-1 Audio coder compresses signals sampled
at rates of 32, 44.1 or 48 kHz, to rates in the range of 32
to 320 kbps. The standard offers a choice of three
independent layers of compression, with increasing
codec complexity and better quality. The most
interesting among them is MPEG-1 Layer 3, a.k.a. MP3.
In recent years, the MP3 coder has become the number
one tool for internet audio delivery and is now known in
most households as an efficient way to store audio files.
The reasons for its success include the fact that MP3 is
an open, well defined, standard, along with the fact that
it is supported by most hardware manufacturers (sound-
cards, CD-ROMs, CD-Writers etc.) and that numerous
versions of its encoder and decoder are available on the
internet as shareware. But the most important reason of
all is the fact that MP3 gives good quality with a small
file size, since the quality degradation arising from the
MP3 lossy compression process is almost negligible at
typical rates. Tests show [11] that at a 6:1 compression
ratio (as is the case for a 48 kHz sampled stereo signal
represented by 16 bits per sample and encoded into a
256 kbps MP3 file) and under optimal listening
conditions, expert listeners could not distinguish

Ofir and Malah Audio Packet Loss Concealment

AES 118th Convention, Barcelona, Spain, 2005 May 28–31
Page 3 of 19

between coded and original audio clips with statistical
significance.

MP3 and its successors (such as MPEG-2/4 AAC) are
part of a family called perceptual audio coders. These
coders achieve relatively high compression by
exploiting characteristics and limitations of the human
auditory system. The most useful of them are the
frequency masking property, the temporal masking
property, and the absolute threshold of hearing.

When a signal is coded, a psychoacoustic model is
applied to it in order to determine the signal-to-mask
ratio (SMR), based on these three properties. Then,
compression is achieved by a quantization process that
shapes the quantization noise so it is always underneath
the masking threshold, and hence is unnoticeable.
Needles to say, that the quality of the psychoacoustic
model has a great impact on the quality and efficiency
of the encoding process.

2.1. Encoding Process

The MP3 encoder applies the psychoacoustic model in
the following manner: The signal is divided into
segments of 576 samples each. The psychoacoustic
model calculates the SMR for every critical band of the
human auditory system within each segment. The model
also determines the type of window to be used for the
segment in the MDCT process, according to the
segment's short- or long-term characteristics.

In parallel to this, each segment passes through 32
filters of a uniform filter-bank creating 32 equal-width
sub-bands. Then, each sub-band is further divided into
18 frequency lines by applying an MDCT to each of the
sub-bands' signals. Next, the resulting 576 frequency
lines are arranged into groups, each group
corresponding to a single critical-band, and each of
them is quantized separately. The quantization step for
each of the critical-band groups is determined by an
iterative algorithm that compares the ratio between the
energy of the un-quantized signal and the quantization
noise in each critical-band to the SMR ratio that was
determined for that band. This iterative algorithm
controls both the bit-rate and the distortion level, so that
the perceived distortion is as small as possible, within
the limitations of the desired bit-rate. The quantized
values and side information (such as the window type
for the MDCT) are encoded using Huffman code tables
to form a bit-stream. Every two segments of 576
samples form a single MP3 packet.

2.2. MDCT and Window Types

The MDCT is a real-valued transform, turning 2N time
samples into N MDCT coefficients, and is defined by:

[]

[]
2 1

0

 ,0 -1

1 1cos
2 2

MDCT

N

w
n

X k k N

Nx n n k
N
π−

=

= ≤ ≤

⎛ + ⎞⎛ ⎞⎛ ⎞⋅ ⋅ + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
∑

 (1)

Where xw[n] represents the original signal multiplied by
a window function. The inverse transform is defined by:

[]

[]
1

0

ˆ ,0 2 -1

2 1 1cos
2 2

MDCT

w

N

k

x n n N

NX k n k
N N

π−

=

= ≤ ≤

⎛ + ⎞⎛ ⎞⎛ ⎞⋅ ⋅ + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
∑

(2)

The MDCT is a lossy transform since the reconstructed
samples, x̂ w[n], contain aliasing in the time domain.
However, by overlapping consecutive segments and by
defining several conditions on the window functions
that the direct and inverse MDCT transforms use, the
aliasing can be completely canceled, so that a perfect
reconstruction of the un-quantized signal is achieved.
The first condition for perfect reconstruction is that the
direct and inverse transforms use the same window
function. In addition, the window functions of
consecutive time segments should overlap by 50% and
they should also relate to each other by several other
conditions, as specified in [8].

The aliasing cancellation is achieved by multiplying
each block of 2N aliased samples, x̂ w[n], with its
corresponding window function. Then, each half-block
is merged with the overlapping half-block from the
neighboring segment into one segment of N samples by
an overlap-and-add (OLA) procedure. Hence, we need a
total of 3 consecutive MDCT blocks in order to
perfectly reconstruct a whole block of 2N samples. Fig.
1 illustrates this concept.

The MP3 standard allows the psychoacoustic model to
choose one of 4 possible window functions, which
satisfy the conditions required for perfect
reconstruction, to be used when applying the MDCT to
each segment. The four windows are denoted [13]:
‘Long’, ‘Start’ (long-to-short), ‘Short’, and ‘Stop’
(short-to-long), and they are marked as “type 0” to “type
3”, respectively. The length of the ‘Long’ window

Ofir and Malah Audio Packet Loss Concealment

AES 118th Convention, Barcelona, Spain, 2005 May 28–31
Page 4 of 19

allows better frequency resolution for audio segments
with stationary characteristics, while the length of the
‘Short’ window provides better time resolution for
transients. The ‘Start’ and ‘Stop’ windows are transition
windows between the ‘Long’ and ‘Short’ window types.
There are 3 basic half-window units, described in Fig. 2,
that are used in direct or reverse form to create each of
the 4 window functions that are shown in Fig. 3. Note
that the 3 half-window units are of different lengths: the
'long' and 'short-to-long' halves are 18 samples long,
where the 'short' half is only 6 samples long.

Fig.1: One segment of 2N samples is reconstructed
using the relevant MDCT segment and also the MDCT

segments on both its sides (dotted brackets).

The long window types (type 0, 1 and 3) are 36-samples
long, and are used for computing an MDCT of 36
samples to 18 coefficients. The short window, however,
is actually built of three overlapping 12-samples sub-
windows that are used for three short MDCT transforms
of 6 coefficients, each. Under these definitions, all the
windows result in the same total length with the same
number of MDCT coefficients. As was already implied,
switching between long and short windows is not
instantaneous: a transition window should always come
between them. One possible ordering can be seen in Fig.
4. Utilizing this fact can be very helpful in case of a
packet loss, since for a single packet loss, the window
types of the lost segments can be recovered in most
cases by observing the window types of neighboring
packets. For example: long-missing1-missing2-stop
could only match a single possible pattern, where
missing1 is a start window and missing2 is a short
window.

3. INTEROPLATION DOMAIN

As has been mentioned, MPEG-Audio coders compress
the audio signal in the MDCT domain. Specifically, the
MP3 encoder turns each segment of 576 samples in time
into 576 MDCT coefficients. Each MP3 packet contains
two such segments, therefore one lost MP3 packet
creates a gap of 1152 samples. Or in other words, a gap
of two coefficients per frequency line in the MDCT

domain. Since a smaller gap is easier to interpolate, it
makes sense to design a packet-loss concealment
algorithm that works in the MDCT domain, rather than
in the time domain, as suggested in [6]. In that work, the
authors applied an adaptive missing-samples restoration
algorithm for auto-regressive time-domain signals in the
MDCT domain, considering the coefficients of each
frequency line along time as a separate sequence of
samples.

Fig.2: The three basic half-window units:
(a) long, (b) short-to-long, (c) short

Fig.3: The four different window types defined in MP3:
(a) ‘Long’, (b) ‘Start’, (c) ‘Short’, (d) ‘Stop’

60 120 162
0

0.5

1

Time Samples

A
m
p
lit
u
d
e

Fig.4: One possible ordering of the different windows

There are, however, several disadvantages in working in
the MDCT domain: First, the MDCT coefficients
typically show rapid sign changes from frame to frame,

Time Samples
(a)

Time Samples
(b)

Time Samples
(c)

Time Samples
(d)

'Long' Window Type 'Start' Window Type

'Short' Window Type 'Stop' Window Type

Time Samples Time Samples Time Samples
(a) (b) (c)

'Long' Half 'Short' Half 'Short-to-long' Half

Ofir and Malah Audio Packet Loss Concealment

AES 118th Convention, Barcelona, Spain, 2005 May 28–31
Page 5 of 19

at each frequency line. These sign changes reflect phase
changes in the complex spectral domain [12]. Second,
because different window types have different
frequency resolutions, the MDCT coefficients of two
consecutive time segments at a certain frequency line
might represent different resolutions: For example,
consider the case where the first of two consecutive
segments uses a 'Start' window while the second uses a
'Short' window. Since the 'Short' window supports 3
short MDCT transforms, each of the coefficients
represents 1

6 of the frequency band. However, each of

the coefficients of the 'Start' window represents 1
18 of

the band. Since the data is not represented at the same
resolution, it would not make sense to estimate the
coefficients of one segment from the other.

A possible way to cope with the first limitation above
would be to work in a domain that has a less fluctuating
representation of the signal, thus providing better
interpolation results. A solution to the second limitation
would be to convert the MDCT coefficients back into
the time domain and then again to the frequency
domain, this time using the same window length for all
segments. The DSTFT domain answers both
requirements and therefore was chosen as our working
domain.

Yet, there is a disadvantage in the conversion to the
DSTFT domain, or to every other domain for that
matter: Since consecutive MDCT windows overlap by
50%, a loss of one MDCT frame affects not only the
reconstruction of the corresponding block, but also the
reconstruction of neighboring blocks, as shown in Fig.
1. Therefore, a loss of L consecutive MP3 packets,
which corresponds to 2L consecutive MDCT frames, is
translated into a gap of 2L+2 DSTFT frames: 2L absent
frames in the middle and 2 corrupted frames at the
edges of the gap. An example for this is given in Fig. 5.

3.1. From MDCT to DSTFT and vice versa

In order to convert from one working domain to the
other, we have developed expressions for direct
conversion from MDCT to DSTFT, and vice versa,
applying the DSTFT to the segments originally used by
the MDCT, with a symmetric window that has two
halves that complement each other to the value of 1.
As was explained in section 2.2, three consecutive
MDCT blocks are required in order to reconstruct a
whole segment of 2N samples. Only then can we apply
a DSTFT on this segment. The conversion back from

the DSTFT domain to the MDCT domain requires an
OLA procedure in a similar manner.

Fig.5: How a loss of a packet in the MDCT domain
affects the DSTFT domain: 2 lost MDCT frames affect

the reconstruction of 2+2=4 DSTFT frames

Since there are 4 possible window types for the MDCT,
and considering the allowed ordering of the windows,
we could theoretically get 12 different expressions for
the conversion of 3 consecutive MDCT segments into
one DSTFT segment. But, after changing the order of
the summations and some algebraic manipulation, all
these expressions converge into one general structure
that uses 4 functions as "building-blocks", given below.
The same happens in the conversion of DSTFT
segments back to the MDCT domain.

The general expression for the conversion from the
MDCT domain to the DSTFT domain is:

[]

[] [] () []()
[] []

[] () []()

()

1
1 2

()
0

-1
2

(1)
0

1
1

(1)
0

 ,0

 , 1 ,

+ ,

+ 1 ,

MDCT

MDCT

MDCT

DSTFT
n

N
m

n d r
k

N

n d
k
N

m
n r

k

X m m N

X k g m k g m k

X k g m k

X k g m k

−

=

−
=

−

+
=

= ≤ ≤

⋅ + − ⋅

⋅

⋅ − ⋅

∑

∑

∑

 (3)

Ofir and Malah Audio Packet Loss Concealment

AES 118th Convention, Barcelona, Spain, 2005 May 28–31
Page 6 of 19

Where [] []1 1, , ,d rg m k g m k and [] []2 2, , ,d rg m k g m k are

the “building-block" functions referred to earlier. Each
building-block function is chosen among 3 possible
complex functions, depending on the window type of
the segment that we wish to convert and on the window
types of neighboring segments. Table 1 shows the
different cases, where the first column is the window
type of the converted segment. Note that since the
DSTFT is performed on a 2N real-valued sequence, the
output is conjugate-symmetric in the frequency domain.
Therefore, it suffices to calculate only the first half of
the output. In total, there are 12 complex functions,
based on the 3 possible half-window units that were

shown in Fig. 2. The explicit expressions for the
different functions that appear in Table 1 are given in
appendix A.

In a similar manner, the conversion from the DSTFT
domain back into the MDCT domain can also be
expressed as a general expression of a sum of products,
while in this case we need to calculate only the real part
of the result, since the MDCT coefficients are real-
valued. The expression is given in (4) below, where *
denotes ‘complex conjugate’ value. The building blocks
here are chosen from the same functions as the direct
conversion, according to Table 2.

[] [] [] []() () [] []()()
[] () [] []()
[] [] []()

2 1
* * * *1 1 2 2

()
0

2 1
* *1 1

(1)
0

2 1
* *2 2

(1)
0

1 , , 1 , ,

1 1 , , ;0 1

1 , ,

DSTFT

DSTFT

DSTFT

N
mMDCT

n d r d r
mblock

N
m

n d r
mblock
N

n d r
mblock

X k X m g m k g m k g m k g m k
N N

X m g m k g m k k N
N N

X m g m k g m k
N N

−

=

−

−
=

−

+
=

= ⋅ + + − ⋅ +
⋅

+ ⋅ − ⋅ + ≤ ≤ −
⋅

+ ⋅ +
⋅

∑

∑

∑

 (4)

Table 1: The different functions appearing in (3). Explicit expressions appear in Appendix A.

 Function
 []1 ,dg m k []1 ,rg m k []2 ,dg m k []2 ,rg m k

‘Long’ 1

dg _long 1

rg _long 2

dg _long 2

rg _long

‘Start’ 1

dg _long 1

rg _short 2

dg _long 2

rg _short2long
Next window is

‘Stop’:
1

rg _short2long

Previous window is
‘Start’:

2

dg _short2long
‘Short’ 1

dg _short Next window is
‘Short’:

1

rg _short

Previous window is
‘Short’:

2

dg _short

2

rg _short

‘Stop’ 1

dg _short2long 1

rg _long 2

dg _short 2

rg _long

Table 2: The different functions appearing in (4). Explicit expressions appear in Appendix A.
Function

 []1 ,dg m k []1 ,rg m k []2 ,dg m k []2 ,rg m k blockN

‘Long’ 1

dg _long 1

rg _long 2

dg _long 2

rg _long N

‘Start’ 1

dg _long 1

rg _long 2

dg _short2long 2

rg _short2long N

‘Short’ 1

dg _short 1

rg _short 2

dg _short 2

rg _short 3s
NN =

‘Stop’ 1

dg _short2long 1

rg _short2long 2

dg _long 2

rg _long N

Window type

Window type

Ofir and Malah Audio Packet Loss Concealment

AES 118th Convention, Barcelona, Spain, 2005 May 28–31
Page 7 of 19

The fact that we have one general expression for each
direction of the conversion can be used to create an
efficient procedure to convert between the two domains:
Each general expression can be optimized into an
efficient computer-function, while the "building-block"
functions can be calculated off-line and stored. The
same 12 "building-block" functions are used in the
expressions for both conversion directions. Each
"building-block" function contains N(N-1) complex
values and 2N real values (for m=0,N), so in total, 2N2
real numbers need to be stored for each function. In our
case N = 18.

4. CONCEALMENT ALGORITHM

The proposed concealment method estimates the
missing data in the DSTFT domain based on the
GAPES algorithm [10]. The GAPES algorithm was
chosen because of several of its qualities: As opposed to
the algorithm suggested in [6], the GAPES algorithm
assumes no parametric modeling of the signal. It can
deal with more loss patterns than [6], because it is less
limited, and can be applied to both complex and real
signals. Although this paper describes an algorithm that
involves GAPES in the DSTFT domain, it is important
to note that we also considered applying GAPES
directly in the MDCT domain. The benefits of such
configuration are that there is no need to convert the
data to any other domain, and that there are much fewer
calculations since the signal is real-valued. The
limitations of this configuration, however, are those
mentioned in section 3.1: the problem of dealing with
windows having different resolutions, and the rapid sign
changes. Our subjective tests showed that this
configuration is inferior to the GAPES-in-DSTFT

configuration, especially at high loss rates. The results
of the subjective comparison tests are given in section 5.

Fig. 6 shows the block diagram of an MP3 decoder,
after adding the concealment block. In the decoder,
every new MP3 packet is decoded up to the MDCT
level (i.e., de-quantized) resulting in two MDCT frames.
The M0 most recent MDCT frames are stored in a
buffer, indexed from 0 to M0-1. Their associated data
(i.e., each frame's window type) is also stored
separately. If a packet is lost, the corresponding MDCT
values are set to zero and a flag is raised, indicating that
this frame is actually missing. The window type of each
of the missing frames is determined so that they comply
with the window types of neighboring frames. Then,
according to the system's delay, a delayed MDCT frame
is copied from the buffer and decoded into waveform
samples. In the case where the delayed frame is actually
a missing frame, we estimate its MDCT values before
continuing with the decoding process.

Fig. 7 shows the concealment process: The MDCT
frames are converted to the DSTFT domain, where the
data along the time axis at each frequency is considered
as an independent complex signal, and a single iteration
of the GAPES algorithm is applied separately on each
of these signals. After that, the data is converted back to
the MDCT domain and then back again to the DSTFT
domain, in order to merge the estimated MDCT frames
with the available ones, using the OLA procedure that is
incorporated in the conversion expressions. The process
above is iterated until the difference between two
consecutive reconstructions is sufficiently small. The
estimated MDCT coefficients replace the coefficients of
the lost frame and the MP3 decoding process continues.

Fig.6: A diagram of the proposed decoding process that includes a concealment block

De-
quantization

MP3
Bitstream

MDCT frame

Continue MP3
decoding process

Audio samples
ready to
be played

MDCT
frame

(576 MDCT
Coefficients)

A Buffer of M0 MDCT frames

n n-1 … …

Copy frame
from buffer Yes

No Is frame
available?

Estimate lost frame from
neighboring frames.

Concealment Block

GAPES

 n -
(M0-1)

…

MDCT frame
(576 MDCT
Coefficients)

(576 MDCT
Coefficients)

Ofir and Malah Audio Packet Loss Concealment

AES 118th Convention, Barcelona, Spain, 2005 May 28–31
Page 8 of 19

Fig.7: The flow of the proposed algorithm for estimating lost MDCT frames

These frames are considered missing Frames that contain aliasing

Original
MDCT
Buffer

Convert M
selected MDCT
frames to the
DSTFT domain

The DSTFT
matrix

Convert new
data to MDCT
domain

Convert lost
frames and their
two closest
neighbors to
DSTFT domain

Zoom in: for each sequence of coefficients along time, we use the
GAPES algorithm for estimating the missing coefficients

M MDCT Frames

For each row,
reconstruct the
lost samples by
a single
GAPES
iteration

Has the
stopping criterion

been satisfied?

M0 MDCT frames

18*32
coefficients

No,

(Continue to another
iteration) Finish

the session

2 Missing frames inside M selected frames

n … n-i-
(M-1)

n-
(M0-1)

19*32 coefficients (M-2) DSTFT frames

n-i-
(M-2) … … n-i- ∆ n-i-1

n-i-
(∆ +1)

n-i-
(M-2) … … n-i- ∆ n-i n-i-1

n-i-
(∆ +1) …

19*32 coefficients
(M-2)
DSTFT
frames

n-i-
(M-2) … … n-i- ∆ n-i-1

n-i-
(∆ +1)

n-i-
(M-2) … … n-i- ∆ n-i n-i-1

n-i-
(∆ +1)

18*32
coefficients

19*32 coefficients

(M-2)
DSTFT
frames

n-i-
(M-2) … … n-i- ∆ n-i-1

n-i-
(∆ +1)

Yes

Ofir and Malah Audio Packet Loss Concealment

AES 118th Convention, Barcelona, Spain, 2005 May 28–31
Page 9 of 19

It has already been explained that in order to convert an
MDCT frame into the DSTFT domain we need to have
both the previous and the next MDCT frames, and in
order to convert that DSTFT frame back to the MDCT
domain we need the next DSTFT frame too. This
implies that the algorithm has to maintain a delay of at
least two MDCT frames at all times, i.e., at least one
MP3 packet. Adding more delay is not necessary, but it
can improve the performance of the GAPES algorithm,
as explained in Appendix B. The extra delay will not
have much significance to the listener, since adding
delay of a few packets will only postpone the beginning
of the whole streaming session by less than a second.

The buffer, of length M0, that holds the most recent
MDCT frames, should not be too short, so there is
enough data for the estimation. The buffer should not be
too long either, since as the buffer grows longer, the
frames at both ends will have less correlation with the
missing frames around the middle, and hence it will be
less effective to include them in the estimation. In the
case of MP3, each MDCT frame contains 576 MDCT
coefficients: N=18 coefficients for each of the 32
uniform sub-bands. Hence, this buffer can be viewed as
a real-valued matrix of 576 rows and M0 columns (as
shown in Fig. 7).

Due to packet loss, several MDCT frames in the buffer
may be missing, meaning that the original values of
some of the matrix's columns are unknown and are
currently set to zero. Let’s assume that there are Q0 < M0
missing frames in the buffer in some general loss
pattern. Since we are dealing with a streaming
application, we can assume that by the time we need to
conceal a lost frame, all the frames prior to it had
already been reconstructed, and therefore they are
considered as part of the available data. We can choose
to conceal more than one frame at a time, depending on
the loss pattern: lost frames that are gathered closely
together are concealed together, where distant frames
are concealed separately. Concealing several frames at
once can reduce the computational overhead of the
whole concealment process. We will refer to a
concealment of one or more MDCT frames at once as a
concealment session. Let Q denote the number of
MDCT frames that are concealed in one concealment
session. The value of Q is reassigned at every session.
Since each MP3 packet contains 2 MDCT frames, one
concealment session always contains at least 2
concealed frames (i.e., 2≤Q≤Q0). After deciding on
the value of Q, we define the Q lost frames and the
available frames that surround them, as the buffer

section that will participate in the reconstruction of this
concealment session. The length of this buffer section is
denoted M, where Q<M≤M0.

In the first stage of the algorithm, the MDCT frames
that were selected to participate in the reconstruction are
converted to the DSTFT domain. The conversion is
done separately for each of the 32 sub-bands, and after
the conversion is completed we have a complex-valued
matrix of (M-2) columns and 36 ⋅ 32 rows of DSTFT
coefficients: 2N=36 coefficients for each of the 32
uniform sub-bands. The DSTFT frames are indexed
from 1 to (M-2). Since the DSTFT coefficients of each
transform are conjugate-symmetric it is enough to store
only 19 (0 to N) coefficients of each sub-band, i.e., the
matrix can be downsized into 19 ⋅ 32 rows.

At this point, each row in the DSTFT matrix, that
represents the DSTFT coefficients at some fixed
frequency along the time axis, is considered as an
independent complex signal with missing samples,
described by the row vector:

{ }1 2 2, ,....,k k k k
Mx x x x − (5)

Where k is the frequency index: 0≤ k≤ 19 ⋅ 32-1. The
locations of the missing samples in the vector are
actually the indices of the missing MDCT frames, since

every sample in the vector kx corresponds to a single

MDCT frame in the buffer. The missing samples are
estimated from the available samples by applying the
GAPES algorithm.

4.1. The GAPES Algorithm

The GAPES algorithm [10] reconstructs the missing
data, assuming that the missing data has the same
spectral content as the available data that surrounds it.
For the purpose of applying GAPES, each row of the
DSTFT matrix, kx , is considered as a sequence of
samples with complex values. The spectrum of these
complex samples is represented by a set of spectral
coefficients, (){ }ˆ kα ω , that are calculated on a pre-

defined frequency grid { }kω . The spectral coefficients
of the complex samples are estimated from the available
data using the APES (Amplitude and Phase Estimation)
algorithm [9], and then the algorithm reconstructs the
set of missing samples so that their spectral content will

Ofir and Malah Audio Packet Loss Concealment

AES 118th Convention, Barcelona, Spain, 2005 May 28–31
Page 10 of 19

approximate the spectrum of the available data, in the
least-squares (LS) sense.

The APES algorithm uses an adaptive filter-bank
approach for the spectral estimation: for each frequency

kω on the frequency grid, a data-dependent

narrowband filter, kh , is designed by requiring that the

output of the filter kh will be as close as possible, in the

LS sense, to a sinusoid with frequency kω . I.e., the

filter kh passes the frequency kω without distortion,
and at the same time, attenuates all the other frequencies
as much as possible. Each spectral coefficient ()ˆ kα ω
is obtained by first filtering the data with the
corresponding filter, kh , and then calculating the DFT

coefficient of the filtered data at frequency kω . Then,
assuming that the missing samples have the same
spectral content as the available samples, we can
determine their values by requiring that the output of the
filter, kh , fed by the full data sequence that contains
both available and estimated samples, is as close as
possible, in the LS sense, to the sinusoid
()ˆ kj t

k e ωα ω − .

This concludes a single GAPES iteration. The algorithm
is iterated, as explained next, until the reconstruction is
sufficiently good. At the first iteration, APES uses only
the available samples for determining { }kh and

(){ }ˆ kα ω , while in the next iterations the algorithm
uses all the data (known and estimated samples) for the
spectral estimation. The formulae summarizing the
GAPES algorithm are given in Appendix B.

After a single GAPES iteration is applied on all the row
vectors of the DSTFT matrix, we have an estimate of
the DSTFT coefficients of the missing frames. Since
each DSTFT frame represents data from overlapping
segments, we need to merge the data from consecutive
frames. The merging process achieves two goals: First,
by merging the data we get a continuous waveform that
sounds better. Second, we can use the merging process
to improve the estimation: re-calculating the lost
DSTFT frames using the information stored in the
available MDCT frames that are nearest to the loss will
give a better basis for the next GAPES iteration, and in
addition, the estimated MDCT frames along with the

available MDCT frames can be used for reducing the
aliasing in the DSTFT frames closest to the loss (see
Fig. 5), by re-calculating them too. In our scheme, this
merging is achieved by converting the estimated
DSTFT frames back to the MDCT domain, and then
recalculating the lost DSTFT frames and their nearest
neighbors by converting the corresponding MDCT
frames back to the DSTFT domain. It is important to
note, though, that in order to merge the data, one
doesn’t have to go as far as to the MDCT domain, but
may perform it directly in the time domain. The benefit
of using conversion to and from the time domain would
be simpler conversion schemes such as FFT. The
limitation of such conversion would be the need for
more memory space, in order to hold the time-samples
of the frames that require merging.

In the final stage of the algorithm it is decided whether
the estimation is good enough. As a stopping criterion
for the concealment algorithm, we use a threshold over
the average squared difference per subband, as defined
in (6). This ratio is calculated over all rows in the
DSTFT matrix corresponding to a sub-band (each sub-
band contains 19 rows):

()
2

19
, ,

2
0 ,

ˆ ˆ1 1
19 ˆ

new old
k i k i

oldk i S k i

D sb
S

α α

α= ∈

⎛ ⎞−⎜ ⎟=
⎜ ⎟
⎝ ⎠

∑ ∑ (6)

Where 0≤ sb≤ 31, S is the set of indices of the Q lost
MDCT frames that are concealed in this session:

S Q= .

D(sb) is compared to a predefined threshold. If it is
smaller than the threshold, then the estimation is
sufficiently good, so we can stop at this point and
continue with the MP3 decoding process. If it is larger
than the threshold, then we apply another iteration on
this subband, as shown in Fig. 7. In addition, it is
recommended to limit the number of iterations in order
to deal with cases where the convergence is very slow,
or where the average difference values are "stuck" in a
limit cycle.

To conclude, we can describe the algorithm in 5 main
steps, applied to each subband of the uniform filter-
bank:

1. Initialization:
- Store zero values in place of each lost MDCT
 frame.

Ofir and Malah Audio Packet Loss Concealment

AES 118th Convention, Barcelona, Spain, 2005 May 28–31
Page 11 of 19

- Determine the parameters for this concealment
 session: Q, the number of frames to be concealed
 and M, the length of buffer section.
- Convert the MDCT buffer to the DSTFT domain.

2. Estimate the DSTFT coefficients of the lost frames:
- Treat each sequence of DSTFT coefficients at a
 certain frequency, along the time axis, as a
 complex signal with missing samples.
- Estimate the lost samples by applying a single
 GAPES iteration on each sequence.

3. Restore the values of the lost MDCT frames:
Convert the corresponding DSTFT frames into the
MDCT domain.

4. Correct the values in the DSTFT domain:
Correct the values of the lost frames and their
closest neighbors by converting the corresponding
MDCT frames to the DSTFT domain.

5. Check the stopping criterion, per sub-band:
If it is satisfied, stop the algorithm for this sub-band
in the current session and use the MDCT frames that
were obtained last. If not, return to (2) for another
iteration.

It should be mentioned that the above described
algorithm uses the Forward vesion of GAPES. Another
option is to apply the Forward-Backward version [9]. In
the Forward-Backward version the data is run through
the filters both forward and backward, instead of using
forward-filtering only. Unfortunately, this method did
not show any significant improvement in our tests, to
justify its complexity.

4.2. Complexity Considerations

The proposed algorithm shows good performance, but at
the expense of complexity: A single iteration of the
algorithm, per sub-band, requires:
() () () ()2 3 2

248 1 12 logO N N O M O M M⋅ + + ⋅ ⋅ + ⋅⎡ ⎤⎣ ⎦
 multiplications.

The first option is to compromise quality and use the
GAPES algorithm in the MDCT domain, as was
described at the beginning of this section.
This option reduces the complexity to

() ()3 2

2
1
22 logO M O M MN ⋅ ⋅ + ⋅⎡ ⎤⎣ ⎦ multiplications.

For example, for N=18 and M=14, GAPES-in-DSTFT

requires 6 times the amount of multiplications needed
by GAPES-in-MDCT.

Another option that can help to reduce the number of
calculations in GAPES-in-DSTFT, is reducing the
number of iterations on the basis of psychoacoustic
considerations. Assuming that the MP3 encoder shapes
the quantization noise according to the signal-to-mask
ratios (SMR), we can get a rough estimate of these
ratios at the decoder, from the closest neighbors of the
lost MDCT frame: the quantization step size in each
critical band gives an indication on the allowed level of
noise, and the energy of the quantized signal in each
band can be used to estimate the original signal's energy
in the band. Based on the SMR estimation we can
determine which critical bands are more sensitive to
noise than others: A smaller SMR ratio indicates a high
masking level relatively to the signal’s energy. Hence, it
can be assumed that this band can also tolerate more
“reconstruction noise”, i.e., less accurate estimation.
Similarly, a bigger SMR ratio indicates a lower masking
level relatively to the signal’s energy, meaning that it is
more sensitive to noise addition. This information can
be used to create different stopping-thresholds for
different sub-bands, without compromising the quality
of the resulting signal, by calculating a weight function
on the threshold values: Sub-bands that contain
coefficients from more sensitive critical bands will have
lower thresholds than sub-bands that correspond to less
sensitive critical bands. This method shows good
performance and it saves many iterations.

5. QUALITY TESTS

This section reports on the results of two comparative
subjective quality tests of algorithms for packet loss
concealment, designed for wide-band audio signals
encoded by an MPEG audio coder. The first test
compares GAPES-in-MDCT to GAPES-in-DSTFT, in
terms of listeners’ preference. The second test
compares the GAPES-in-DSTFT algorithm to
previously reported works: packet repetition, suggested
in the MP3 standard [13, annex E], and statistical
interpolation (SI), suggested in [6]. The SI method was
expanded in order to deal with random loss patterns, so
that when the conditions weren’t suitable for using the
original algorithm we used packet repetition instead.

The packet repetition method introduces no delay since
the decoder simply replaces a lost MDCT frame with
the previous frame. In both versions of GAPES and in
the SI method, a buffer of 9 MP3 packets, i.e., M0 = 18,

Ofir and Malah Audio Packet Loss Concealment

AES 118th Convention, Barcelona, Spain, 2005 May 28–31
Page 12 of 19

was used: 3 packets from the past, the current packet for
decoding and 5 packets from the future, creating a delay
of about 130 msec at a sampling rate of 44.1 kHz. Also,
the stopping criteria threshold that was used in all
methods was fixed to D(sb)=10-2 (see (6)), and the
number of iterations was limited to a maximum of 6
iterations. The window function that was used for the
DSTFT was an even length Hann window that can be
put in the following form:

[] ()()2 1
2 2sin , 0 2 1Nw n n n Nπ= + ≤ ≤ − (7)

which is equal to the square of the 'Long' window type
used in the MP3 standard.

The subjective tests were carried out by informal
listening. All the participants are inexperienced listeners
with normal hearing and in the age range of 25-35
years. Each of the listeners was asked to compare pairs
of audio files, where the packet losses in each file were
concealed by a different method, and to decide which of
the two he, or she, prefers.

The audio files that were used in the tests are specified
in Table 3. All the files are stereo signals ,15-17 seconds
long each, sampled at 44.1 kHz and coded by the
LAME MP3 [14] encoder at a bit-rate of 128 kbps per
channel. The methods were tested for 10%, 20% and
30% loss rates. The packet losses were simulated using
random patterns, with the largest possible gap allowed
being 3 packets.

Table 3: Examined files

No. File Name Nature of music
1 Beatles17.wav POP music
2 Piano10.wav A single piano
3 Bream1.wav Guitar with violins

5.1. GAPES: MDCT vs. DSTFT

This test compares the performance of GAPES-in-
DSTFT to GAPES-in-MDCT, as described at the
beginning of Section 4. Eight listeners were asked to
compare pairs of files containing packet losses, each
concealed by a different method, and to determine
which of the two files sounds less disturbing. The
results are presented in Table 4, where for each pair the
numbers indicate how many listeners voted in favor of

the method. The results show clearly that GAPES-in-
DSTFT performs better, especially at high loss rates.

5.2. GAPES vs. Previous Works

16 listeners were asked to compare pairs of files, the
same way as in the previous section, where in this test
we examined 3 methods: packet repetition, statistical
interpolation, and the proposed method. Table 5 clearly
shows that the proposed algorithm performs better than
the two previously reported methods.

Table 4: Comparative test results of GAPES-in-MDCT
vs. GAPES-in-DSTFT. The numbers indicate how many

listeners voted in favor of each method.

File No. 1
Loss Rate GAPES-in-MDCT GAPES-in-DSTFT

10% 2 6
20% 0 8
30% 0 8

File No. 2

Loss Rate GAPES-in-MDCT GAPES-in-DSTFT

10% 3 5
20% 0 8
30% 0 8

File No. 3

Loss Rate GAPES-in-MDCT GAPES-in-DSTFT

10% 2 6
20% 1 7
30% 0 8

6. CONCLUTION

We have introduced a new packet loss concealment
algorithm for wide-band audio signals encoded by
MPEG audio coders, based on the GAPES algorithm in
the DSTFT domain. We used comparative informal
listening tests to test the algorithm at different loss rates,
in the range of 10% to 30%, and different music types,
and obtained that the proposed algorithm performs
better than two previously reported algorithms: packet
repetition [13, annex E] and statistical interpolation [6].
In addition, a direct conversion scheme was introduced
that enables efficient conversion from the MDCT
domain to the DSTFT domain and vice versa.

Ofir and Malah Audio Packet Loss Concealment

AES 118th Convention, Barcelona, Spain, 2005 May 28–31
Page 13 of 19

Table 5: Comparative test results of GAPES-in-DSTFT vs. Previously reported works.
The numbers indicate how many listeners voted in favor of each method.

 File No. 1
 GAPES-in-DSTFT

 vs. Repetition
GAPES-in-GDSTFT

 vs. SI
GAPES-in-DSTFT

 vs. Uncorrupted Original

Loss Rate GAPES Rep. GAPES SI GAPES Original
10% 14 2 16 0 4 12
20% 16 0 16 0
30% 16 0 16 0

 File No. 2
 GAPES-in-DSTFT

 vs. Repetition
GAPES-in-GDSTFT

 vs. SI
GAPES-in-DSTFT

 vs. Uncorrupted Original
Loss Rate GAPES Rep. GAPES SI GAPES Original
10% 15 1 16 0 5 11
20% 16 0 16 0
30% 15 1 16 0

 File No. 3
 GAPES-in-DSTFT

 vs. Repetition
GAPES-in-GDSTFT

 vs. SI
GAPES-in-DSTFT

 vs. Uncorrupted Original

Loss Rate GAPES Rep. GAPES SI GAPES Original
10% 16 0 15 1 2 14
20% 15 1 16 0
30% 12 4 14 2

7. ACKNOWLEDGEMENTS

We would like to thank Dr. Erik Larsson, from George
Washington University, Washington DC, for sending us
his Matlab implementation of GAPES, which helped us
develop our C implementation of the algorithm, and to
all the colleagues who participated in the listening tests.

APPENDIX A

We give here the expressions for the 12 functions that were mentioned in section 3 as the “building-block” functions
for the direct and reverse conversions, where 0≤m≤N and 0≤ k≤N-1.

[] [] []
1

1
d

0

1 1g _ long , cos
2 2

N j n mlong N

n

Nm k n k h n w n e
N

ππ− − ⋅ ⋅

=

⎡ + ⎤⎛ ⎞ ⎛ ⎞= ⋅ + ⋅ + ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ (A.1)

[] [] []
1

1
r

0

1 1g _ long , cos 1
2 2

N j n mlong N

n

Nm k n k h n w N n e
N

ππ− − ⋅ ⋅

=

⎡ + ⎤⎛ ⎞ ⎛ ⎞= ⋅ + ⋅ + ⋅ ⋅ − − ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ (A.2)

Ofir and Malah Audio Packet Loss Concealment

AES 118th Convention, Barcelona, Spain, 2005 May 28–31
Page 14 of 19

[] [] []
1

2
d

0

1 1g _ long , cos 1
2 2

N j n mlong N

n

Nm k n N k h N n w n e
N

ππ− − ⋅ ⋅

=

⎡ + ⎤⎛ ⎞ ⎛ ⎞= ⋅ + + ⋅ + ⋅ − − ⋅ ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ (A.3)

[]

[] []

2
r

1

0

g _ long ,

1 1cos 1 1
2 2

N j n mlong N

n

m k

Nn N k h N n w N n e
N

ππ− − ⋅ ⋅

=

=

⎡ + ⎤⎛ ⎞ ⎛ ⎞⋅ + + ⋅ + ⋅ − − ⋅ − − ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑

 (A.4)

[]1

d/rg _ short2long ,m k and []2

d/rg _ short2long ,m k are the same as 1

d/rg _long and 2

d/rg _long , respectively, except

that they use the window function 2short longh instead of longh .

Before introducing the expressions for the short window type, it is important to note that the MDCT coefficients of a
short window type segment (i.e., type 2) are organized differently than in a segment with long window types (i.e.,
type 0,1 and 3), since in a short window we have the coefficients of 3 short MDCT transforms. The functions in the
case of short window type consider the ordering of the coefficients. Fig. 8 shows how the coefficients are organized
in the output of the MDCT function at the encoder (and respectively, in the input of the Inverse-MDCT function at
the decoder).

Fig.8: (a) Long window types – coefficients arranged in ascending order: 1-18. (b) Short window type – interleaving
the coefficients of the 3 short MDCT transforms: A-C, according to their ascending order: 1-6.

The expressions of []1

d/rg _ short ,m k and []2

d/rg _ short ,m k are given next, where 3s
NN = , 0≤m≤N and 0≤ k≤N-1:

1
dg _short[,]m k = (A.5)

[] [] ()

[] [] ()

1

20

1 1cos
2 3 2

1 1cos 1 2
2 3 2

s

s

S

j m n Nshorts N
sN

s

j m n Nn shorts N
s s s

s

N kn h n w n N e
N

N kn N h N n w n N e
N

π

π

π

π

− ⋅ ⋅ +

−

− ⋅ ⋅ +=

⎡ ⎤⎛ ⎞+ ⎛ ⎞⎛ ⎞ ⎢ ⎥⋅ + ⋅ + ⋅ ⋅ + ⋅⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞+ ⎛ ⎞⎛ ⎞ ⎢ ⎥⎢ ⎥+ ⋅ + + ⋅ + ⋅ − − ⋅ + ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠⎝ ⎠⎣ ⎦

∑

[] [] ()1 2

0

 , 0,3,6,..., 3

1 1cos 2 , 1,4,7,
2 3 2

s
s

N j m n Nshorts N
s

n s

k N

N kn h n w n N e k
N

ππ− − ⋅ ⋅ +

=

= −

⎛ ⎞+ ⎛ ⎞⎛ ⎞ ⎢ ⎥⋅ + ⋅ + ⋅ ⋅ + ⋅ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠⎝ ⎠
∑ ..., 2

0 , 2,5,8,..., 1

N

k N

−

= −

Ofir and Malah Audio Packet Loss Concealment

AES 118th Convention, Barcelona, Spain, 2005 May 28–31
Page 15 of 19

1
rg _short[,]m k = (A.6)

[] () ()

[] () ()

1

20

1 1cos 1
2 3 2

1 1cos 1 1 2
2 3 2

s

s

S

j m n Nshorts N
sN

s

j m n Nn shorts N
s s s

s

N kn h n w N n N e
N

N kn N h N n w N n N e
N

π

π

π

π

− ⋅ ⋅ +

−

− ⋅ ⋅ +=

⎡ ⎤⎛ ⎞+ ⎛ ⎞⎛ ⎞ ⎢ ⎥⋅ + ⋅ + ⋅ ⋅ − − + ⋅⎡ ⎤⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞+ ⎛ ⎞⎛ ⎞ ⎢ ⎥⎢ ⎥+ ⋅ + + ⋅ + ⋅ − − ⋅ − − + ⋅⎡ ⎤⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎢ ⎥⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠⎝ ⎠⎣ ⎦

∑

[] ()

 , 0,3,6,..., 3

1 1cos 1 2
2 3 2

jshorts N
s

s

k N

N kn h n w N n N e
N

ππ −

= −

⎛ ⎞+ ⎛ ⎞⎛ ⎞ ⎢ ⎥⋅ + ⋅ + ⋅ ⋅ − − + ⋅⎡ ⎤⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠⎝ ⎠

()1 2

0

 , 1,4,7,..., 2
0

s
s

N m n N

n

k N

− ⋅ ⋅ +

=

= −

∑

 , 2,5,8,..., 1 k N= −

2
dg _short[,]m k = (A.7)

[] []

0 , 0,3,6,..., 3

1 1cos 1
2 3 2

shortS
S S

S

k N

N kn N h N n w n e
N
π

= −

⎛ ⎞+ ⎛ ⎞⎛ ⎞ ⎢ ⎥⋅ + + ⋅ + ⋅ − − ⋅ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠⎝ ⎠

1

0

 , 1,4,7,..., 2

1 1cos
2 3 2

SN j m n
N

n

S

S

k N

N kn
N

π

π

− − ⋅ ⋅

=

= −

+⎛ ⎞ ⎢ ⎥⋅ + ⋅ +⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

∑

[] []

[] [] ()

1

0

1 1cos 1

2 3 2

S

S

j m nshort N
N

j m n Nn shortS N
S S s

S

h n w n e

N kn N h N n w n N e
N

π

ππ

− ⋅ ⋅

−

− ⋅ ⋅ +=

⎡ ⎤⎛ ⎞⎛ ⎞
⋅ ⋅ ⋅⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞+ ⎛ ⎞⎛ ⎞ ⎢ ⎥⎢ ⎥+ ⋅ + + ⋅ + ⋅ − − ⋅ + ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠⎝ ⎠⎣ ⎦

∑

 , 2,5,8,..., 1k N= −

2
rg _short[,]m k = (A.8)

0 , 0,3,6,..., 3

1 1cos
2 3 2

shorts
s

s

k N

N kn N h
N
π

= −

⎛ ⎞+ ⎛ ⎞⎛ ⎞ ⎢ ⎥⋅ + + ⋅ + ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠⎝ ⎠
[] []

1

0
1 1

 , 1,4,7,..., 2

1cos
2

sN j m n
N

s
n

s

s

N n w N n e

k N

Nn
N

π

π

− − ⋅ ⋅

=

− − ⋅ − − ⋅

= −

+⎛ ⎞⋅ +⎜ ⎟
⎝ ⎠

∑

[] []

[] () ()

1

0

1 1
3 2

1 1cos 1 1
2 3 2

s

s

j m nshort N
N

j m n Nn shorts N
s s s

s

k h n w N n e

N kn N h N n w N n N e
N

π

ππ

− ⋅ ⋅

−

− ⋅ ⋅ +=

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⋅ + ⋅ ⋅ − − ⋅⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞+ ⎛ ⎞⎛ ⎞ ⎢ ⎥⎢ ⎥+ ⋅ + + ⋅ + ⋅ − − ⋅ − − + ⋅⎡ ⎤⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎢ ⎥⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠⎝ ⎠⎣ ⎦

∑

 , 2,5,8,..., 1 k N= −

Ofir and Malah Audio Packet Loss Concealment

AES 118th Convention, Barcelona, Spain, 2005 May 28–31
Page 16 of 19

APPENDIX B

Here we summarize the Forward-Only GAPES
algorithm according to [9] and [10]. The Forward-
Backward version of the algorithm includes small
modifications that can be found in the referenced
articles. In addition, some numerical stability
precautions are mentioned at the end of this appendix.

Consider a sequence of data samples of length M:
{ }0 1 1, ,...., Mx x x x −=

Let’s assume that q of the samples are missing in some
general loss pattern. The object of the algorithm is to
estimate them from the available samples.

Let x a and x u denote the two vectors holding the
available samples and the unknown samples,
respectively. A single iteration of the GAPES algorithm
consists of 3 steps:
1) Initialization.
2) Using APES to estimate (){ }α̂ ω and (){ }h ω :

The initial estimate, in the first iteration, uses
available data only and the next iterations use the
full data.

3) Estimating the lost samples, x u.

Initialization

Set the size K of the frequency grid { } 1

0

K
k k

ω −

=
, where

2
k K kπω . We chose K to be the closest integer power

of 2 greater than the segment's length M.

APES estimation

The first thing GAPES does is to use the APES
algorithm [9] in order to estimate the spectral
coefficients (){ }ˆ kα ω and the filter-bank { }kh . APES
estimates these parameters according to a LS-criterion
requiring that the filter's output will be as close as
possible to a sinusoid of frequency kω in the LS sense.

()
() ()

2*

, 0

1

1
min k

k k

M P
j l

k kh lM P
h y l e ω

α ω
α ω

−

=− +
⋅ − ⋅∑ (B.1)

Where P is the length of each filter kh , M is the length

of the data sequence and * denotes "conjugate-
transpose".

The estimation process is as follows, except that a
special treatment is given to the initial estimation (the
first iteration) as will be specified at the end of this
section.

1. Set the length P of the FIR filters that form the
{ }kh filter-bank. The value of P is limited by the
condition introduced in step 4, below.

2. Define L = M-P+1. The output of filtering an M-
sample sequence by a FIR filter 1Ph ×∈ can be

written as *h Y , where P L×∈Y is a matrix
formed from the column vectors:

() () () (), 1 ,..., 1
T

y l x l x l x l P= + + −⎡ ⎤⎣ ⎦ (B.2)

 Where l = 0,1,…,L-1. Y divides the data samples of
 the sequence x into L overlapping vectors of size

 P×1 with a shifted structure.

3. Next, we calculate the sample covariance matrix
ˆ P P×∈R , using:

()*1ˆ
L= ⋅R Y Y (B.3)

 In order to get a full-rank covariance matrix R̂ , P
 should satisfy the condition:

1
2

MP L P −
≤ ⇒ ≤ (B.4)

4. Apply an FFT of the length of the frequency grid, K,
over each of the rows of Y and divide the
coefficients by L, to get the matrix P K×∈G . Each
of the columns of this matrix can also be written as:

()
21

0

1 L j kl
K

k
l

g y l e
L

π− −

=

= ⋅∑ (B.5)

 Where 0≤ k≤K-1.

5. Next, for every k, such that 0≤ k≤K-1, calculate the
following:

• Define 2
k K kπω = .

Ofir and Malah Audio Packet Loss Concealment

AES 118th Convention, Barcelona, Spain, 2005 May 28–31
Page 17 of 19

• Define the vector ka to be:

 ()11, ,..., kk
Tj Pj

ka e e ωω − −−⎡ ⎤= ⎣ ⎦ (B.6)

• The solution of the minimization problem in
(B.1) is given by the following:
The filter ()kh ω is calculated by:

 ()

()
()

() () ()
()

*1
1

*

1

1

k k
k

k
k

k k
k

k

g
a

h

γ ω
ρ ω

ω
γ ω γ ω

β ω
ρ ω

−
− ⋅ +

−
=

+
−

R
R

 (B.7)

 Where () * 1
k k kg gρ ω −R , (B.8)

 () * 1
k k ka aβ ω −⋅ ⋅R ,

 () * 1
k k ka gγ ω −⋅R

 The spectral coefficient ()kα ω is calculated

 by:

() ()

()

*

21
*

0

ˆˆ

1 ˆ

k k k

L j kl
K

k
l

h g

h y l e
L

π

α ω ω
− −

=

= ⋅

⎡ ⎤= ⋅ ⋅⎣ ⎦∑
 (B.9)

 Which can be viewed as the FFT of the filtered
 sequence (as explained in [10]).

Initial estimation

Article [10] offers two approaches for the initial
estimation of APES. The first approach bases the

estimation of (){ }ˆ kα ω and { }kh on available data

only. The second approach uses all the data, where the
values of the lost samples are set to zero. Our
experience shows that the first approach performs
considerably better than the second one, so we use it in
our solution. However, in order to use the first approach
we need to consider the loss pattern and the number of
lost samples and choose the filter's length, P, so that it
will allow for a full-rank covariance matrix to be built
using only the available data. The condition that P

should satisfy can be described as follows: After

creating the P L×∈Y matrix (mentioned in step 3,
above) the requirement is that Y will have at least P
columns that contain only available samples. Note that
there is no limitation on the location of these columns,
i.e., the valid columns may include only samples from
the past, or only samples from the future. Naturally, an
estimation that is based on samples from both sides of
the loss will usually achieve better performance.

Given that this condition is satisfied, steps 1-4 in the
algorithm above are re-defined with some small
modifications for the initial estimation:

1. Choose the value for P so the condition above will
be satisfied. In our solution, since the samples arrive
in pairs (each MP3 packet contains two frames), and
since we use the past frames as available data, P≥ 2
always.

2. Define L = M-P+1. Build the P L×∈Y matrix, as
was defined before, only this time - all the columns
in Y that contain one or more missing samples are
set to zero.

 Define L' as the number of columns that contain only
 available samples (i.e., the ones that weren't zeroed).
 The values of the resulting matrix in this special
 case are the same as if we were to remove the un-
 desired columns from Y matrix completely, and used

 '' P L×∈Y instead, since the zeroed elements are
 always multiplied by zero elements, so they are not
 considered in the averaging.

3. Next, we calculate the sample covariance matrix
ˆ P P×∈R , using:

()*1ˆ
'L

= ⋅R Y Y (B.3*)

4. Calculate the matrix P K×∈G , where its columns
can now be written as:

()
21

0

1
'

L j kl
K

k
l

g y l e
L

π− −

=

= ⋅∑ (B.5*)

 Where 0≤ k≤K-1.

Ofir and Malah Audio Packet Loss Concealment

AES 118th Convention, Barcelona, Spain, 2005 May 28–31
Page 18 of 19

Step 5 is the same in the first iteration as in the next
ones.

Estimation of lost samples

After the filter-bank and the spectral coefficients are
found, they can be used to estimate the missing samples.
Under the assumption that the missing data x u have the

same spectral content as the available data x a, we can

estimate x̂ u from the condition that the output of the

filter ()kh ω fed with the data sequence made from x a

and x̂ u is as close as possible to the sinusoid

()ˆ kj l
k e ωα ω − for 0≤ l≤ L-1 and 0≤ k≤K-1.

The LS criterion can be written as:

() ()
1 1 2*

0 0

ˆmin k

u

K L
j l

k kx k l
h y l e ωα ω

− −

= =

− ⋅∑∑ (B.10)

The LS criterion above can be also written as:

1
2

0
min

u

K

k kx k
x z

−

=

−∑ H (B.11)

Where:

*

*

*

0

0

k

L Pk
k

k

h
h

h

×

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H (B.12)

() ()1 1ˆ 1, ,..., kk
Tj Lj L

k kz e e ωωα ω − ×⎡ ⎤⋅ ∈⎣ ⎦ (B.13)

Expressing k xH as k k a k ux x x+H A B , where the

matrices kA and kB are simply the matrices holding

only the rows from kH that multiply the samples in the

vectors x a and x u, respectively.

Defining:

k k k ad z x−A (B.14)

We can re-write the LS criterion as:

1
2

0
min

u

K

k u kx k
x d

−

=

−∑ B (B.15)

The solution to this minimization problem is given by:

11 1
* *

0 0

ˆ
K K

u k k k k
k k

x d
−− −

= =

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑B B B (B.16)

Some numerical stability precautions:

1. In cases where the available samples, surrounding
the loss, are zero or very close to zero, as is often the
case for high frequency coefficients (indexed around
420-576) the sample covariance matrix could
become singular, and therefore cannot be inverted.
In such cases we prefer to avoid estimation and
simply set the lost values arbitrarily to zero.

2. In order to avoid cases of singularity or near-
singularity, in the general case, a regularization
matrix, Iε , is added to the sample covariance
matrix before inverting it.

Ofir and Malah Audio Packet Loss Concealment

AES 118th Convention, Barcelona, Spain, 2005 May 28–31
Page 19 of 19

REFERENCES

[1] J-C Bolot, H. Crepin and A.V. Garcia, "Analysis of
Audio Packet Loss in the Internet", Proceedings of
NOSSDAV 1995, Fifth Int. workshop on Network
and Operating Sys. Support for Digital Audio and
Video, April 1995, pp.163-17.

[2] J-C Bolot, "Characterizing End-to-end Packet
Delay and Loss in the Internet", Journal of High-
Speed Networks December 1993 Vol. 2, pp. 305-
323.

[3] M. Handley, "An examination of MBone
performance", USC/ISI res. Rep. ISI/RR-97-450,
April 1997.

[4] D.J.Goodman, G.B.Lockhart, O.J.Wasem,
W.Wong, "Waveform substitution techniques for
recovering missing speech segments in packet
voice communications", IEEE Trans. On ASSP,
vol. 34, Dec. 1986, pp. 1440-1448.

[5] P. Lauber and R. Sperschneider, "Error
Concealment for Compressed Digital Audio", AES
111th convention, September 2001, NY, pp. 1-11.

[6] S. Quackenbush and P.F. Driessen, "Error
Mitigation in MPEG-Audio Packet Communication
Systems", AES 115th convention, October 2003
NY, pp. 1-11.

[7] J. Lindblom and P. Hedelin, "Packet loss
concealment based on sinusoidal extrapolation",
ICASSP, May 2002, Vol. 1 pp. 173-176.

[8] Y. Wang, M. Vilermo, "Modified discrete cosine
transform-its implications for audio coding and
error concealment", AES Journal, vol.51, Jan.-Feb.
2003, pp.52-61.

[9] Petre Stoica, Hongblin Li and Jian Li, "A new
derivation of the APES filter", IEEE Signal
Processing Letters, August 1999, Vol.6 pp. 205-
206.

[10] Petre Stoica and Erik G.Larsson, "Adaptive filter-
bank approach to restoration and spectral analysis
of gapped data", The Astronomical Journal (by the
American Astronomical Society), October 2000,
pp. 2163-2173.

[11] D.Y. Pan, "A tutorial on MPEG/audio
compression", Multimedia, IEEE, Vol. 2 , Issue: 2
, Summer 1995, pp. 60-74.

[12] José M. Tribolet, "Frequency Domain Coding of
Speech", IEEE Trans. On ASSP, Vol. 27, Oct.
1979, pp. 512-530.

[13] MPEG-1: Coding of moving pictures and
associated audio for digital storage media at up to
1.5 Mbit/s, part 3: Audio. International Standard IS
11172-3, ISO/IEC JTC1/SC29 WG11, 1992.

[14] The LAME Project: An open source of an MP3
coder: http://lame.sourceforge.net

