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ABSTRACT 

In this work we present a novel approach for audio packet loss concealment, designed for MPEG-Audio streaming, 
based only on the data available at the receiver. The proposed method is based on the GAPES (Gapped-data 
Amplitude and Phase Estimation) algorithm for replacing the missing data, using interpolation in the spectral 
domain. The MPEG standard uses the Modified Discrete Cosine Transform (MDCT) for compression. However, 
better interpolation results are obtained by converting the data to the Discrete Short-Time Fourier-Transform 
(DSTFT) domain. This conversion is done directly using an efficient procedure developed in this work. This 
technique was tested subjectively and was found to provide better performance than previously reported works, even 
with a packet loss rate of 30%. 

 

1. INTRODUCTION 

With the growing popularity of the internet and the 
advancement in modem technology, there is increasing 
interest in using the internet for multimedia 
broadcasting, such as audio and video. This kind of 
broadcasting is usually referred to as streaming media, 
and its low cost and convenience make it appealing to 
both media distributors and consumers. 
Audio streaming operates by first compressing a digital 
audio file and then breaking it into small packets, which 

are consecutively sent over the internet. When the 
packets reach their destination, they are decompressed 
and reassembled into a form that can be played by the 
user's system. To maintain the illusion of seamless 
playing, the packets are "buffered". That is, a number of 
them are downloaded to the user's machine before 
playback. As those buffered packets are played, more 
packets are being downloaded and queued up for 
playback. This way, the client experiences only a small 
delay of a few seconds, waiting for the buffer to build 
up, instead of waiting several minutes, or even hours, 
for the complete files to be downloaded. 
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However, since internet delivery doesn’t assure quality 
of service, data packets are often delayed or discarded 
during network congestions. When the stream of 
arriving packets becomes too slow, the client’s audio 
player has nothing to play, thus an annoying gap is 
created in the streamed media. 

Previous researches on this subject [1-3] show that most 
of the receivers in such internet connections experience 
a mean loss rate of about 10% or lower, but it is still 
possible that at certain times the loss rate will go to the 
extremes, such as up to 20% or 30% loss rate, or no loss 
at all. At small loss rates (10% or less) the packet losses 
are random and become more and more correlated as 
the loss rates go higher [2]. Hence, when the network 
load is low to moderate, the packet losses are usually 
isolated audio packets [1]. Each loss, unless concealed 
in some way, produces an annoying disturbance. The 
common approach for dealing with such cases is to 
interpolate the gap, approximating the original 
waveform, so that a human listener will not notice the 
disturbance. 
Packet loss concealment algorithms are usually divided 
into two categories: receiver-based methods where only 
the data available at the receiver is used for the 
concealment and sender-based methods, where the 
sender changes the encoded bitstream, adding some 
redundancy or additional side information that the 
receiver can later use for the concealment process.  
In this work we focus on a receiver-based solution. 
When designing a receiver-based algorithm for 
concealment of audio packet loss, the designer wishes to 
interpolate the gap in a way that will sound natural: In 
the case of short gaps the replacing signal should have 
characteristics similar to the lost signal, so that the 
listener won't even notice it was replaced. Since audio 
signals are in many cases short-term stationary, these 
characteristics can be estimated from the surrounding 
packets, assuming they are available. In the case of long 
gaps, or gaps that are very close to each other, where it 
is impossible to perfectly restore the characteristics of 
the lost segment, it is usually demanded that the 
replacement should at least sound smooth rather than 
annoying. However, since typical audio packets 
correspond to 10-30 msec of audio, the gap created by 
even a single lost packet is relatively wide (441-1323 
samples at 44.1 kHz sampling rate) and is therefore 
difficult to interpolate. 

Previous works on receiver-based audio packet loss 
concealment start from simple techniques, such as noise 
substitution, waveform substitution [4] and packet 

repetition, on to advanced techniques that use 
interpolation in the compressed domain for MPEG 
audio coders [5,6] or interpolation using sinusoidal 
(parametric) audio modeling [7]. 

For reasons to be explained in the sequel, the proposed 
solution in this work is to interpolate the gap in the 
DSTFT domain using only data available at the 
receiver-side. The algorithm was designed for MPEG 
Audio coders and although it was implemented on an 
MPEG-1 Audio coder (a.k.a. MP3), it can be easily 
adapted also for MPEG-2/4 AAC. Our experiments 
show that the reconstruction is almost transparent for a 
10% loss rate, and yields good quality at higher loss 
rates, with an acceptable quality achieved even at 30% 
loss. Besides its good performance, the benefits of this 
solution are that it assumes no parametric modeling and 
that it can deal with different loss patterns. 

The remainder of the paper is organized as follows: 
Section 2 gives a brief overview of the MPEG-Audio 
coding scheme. Section 3 explores the proposed process 
for efficiently converting MDCT to DSTFT and vice 
versa. Section 4 describes the proposed concealment 
algorithm. Section 5 describes the quality tests and their 
results, and Section 6 concludes the paper. 

2. MPEG-AUDIO CODING 

The MPEG-1 Audio coder compresses signals sampled 
at rates of 32, 44.1 or 48 kHz, to rates in the range of 32 
to 320 kbps. The standard offers a choice of three 
independent layers of compression, with increasing 
codec complexity and better quality. The most 
interesting among them is MPEG-1 Layer 3, a.k.a. MP3.  
In recent years, the MP3 coder has become the number 
one tool for internet audio delivery and is now known in 
most households as an efficient way to store audio files. 
The reasons for its success include the fact that MP3 is 
an open, well defined, standard, along with the fact that 
it is supported by most hardware manufacturers (sound-
cards, CD-ROMs, CD-Writers etc.) and that numerous 
versions of its encoder and decoder are available on the 
internet as shareware. But the most important reason of 
all is the fact that MP3 gives good quality with a small 
file size, since the quality degradation arising from the 
MP3 lossy compression process is almost negligible at 
typical rates. Tests show [11] that at a 6:1 compression 
ratio (as is the case for a 48 kHz sampled stereo signal 
represented by 16 bits per sample and encoded into a 
256 kbps MP3 file) and under optimal listening 
conditions, expert listeners could not distinguish 
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between coded and original audio clips with statistical 
significance. 

MP3 and its successors (such as MPEG-2/4 AAC) are 
part of a family called perceptual audio coders. These 
coders achieve relatively high compression by 
exploiting characteristics and limitations of the human 
auditory system. The most useful of them are the 
frequency masking property, the temporal masking 
property, and the absolute threshold of hearing.  

When a signal is coded, a psychoacoustic model is 
applied to it in order to determine the signal-to-mask 
ratio (SMR), based on these three properties. Then, 
compression is achieved by a quantization process that 
shapes the quantization noise so it is always underneath 
the masking threshold, and hence is unnoticeable. 
Needles to say, that the quality of the psychoacoustic 
model has a great impact on the quality and efficiency 
of the encoding process. 

2.1. Encoding Process 

The MP3 encoder applies the psychoacoustic model in 
the following manner: The signal is divided into 
segments of 576 samples each. The psychoacoustic 
model calculates the SMR for every critical band of the 
human auditory system within each segment. The model 
also determines the type of window to be used for the 
segment in the MDCT process, according to the 
segment's short- or long-term characteristics. 

In parallel to this, each segment passes through 32 
filters of a uniform filter-bank creating 32 equal-width 
sub-bands. Then, each sub-band is further divided into 
18 frequency lines by applying an MDCT to each of the 
sub-bands' signals. Next, the resulting 576 frequency 
lines are arranged into groups, each group 
corresponding to a single critical-band, and each of 
them is quantized separately. The quantization step for 
each of the critical-band groups is determined by an 
iterative algorithm that compares the ratio between the 
energy of the un-quantized signal and the quantization 
noise in each critical-band to the SMR ratio that was 
determined for that band. This iterative algorithm 
controls both the bit-rate and the distortion level, so that 
the perceived distortion is as small as possible, within 
the limitations of the desired bit-rate. The quantized 
values and side information (such as the window type 
for the MDCT) are encoded using Huffman code tables 
to form a bit-stream. Every two segments of 576 
samples form a single MP3 packet.  

2.2. MDCT and Window Types 

The MDCT is a real-valued transform, turning 2N time 
samples into N MDCT coefficients, and is defined by: 
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Where xw[n] represents the original signal multiplied by 
a window function. The inverse transform is defined by: 
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The MDCT is a lossy transform since the reconstructed 
samples, x̂ w[n], contain aliasing in the time domain. 
However, by overlapping consecutive segments and by 
defining several conditions on the window functions 
that the direct and inverse MDCT transforms use, the 
aliasing can be completely canceled, so that a perfect 
reconstruction of the un-quantized signal is achieved.  
The first condition for perfect reconstruction is that the 
direct and inverse transforms use the same window 
function. In addition, the window functions of 
consecutive time segments should overlap by 50% and 
they should also relate to each other by several other 
conditions, as specified in [8]. 

The aliasing cancellation is achieved by multiplying 
each block of 2N aliased samples, x̂ w[n], with its 
corresponding window function. Then, each half-block 
is merged with the overlapping half-block from the 
neighboring segment into one segment of N samples by 
an overlap-and-add (OLA) procedure. Hence, we need a 
total of 3 consecutive MDCT blocks in order to 
perfectly reconstruct a whole block of 2N samples. Fig. 
1 illustrates this concept. 

The MP3 standard allows the psychoacoustic model to 
choose one of 4 possible window functions, which 
satisfy the conditions required for perfect 
reconstruction, to be used when applying the MDCT to 
each segment. The four windows are denoted [13]: 
‘Long’, ‘Start’ (long-to-short), ‘Short’, and ‘Stop’ 
(short-to-long), and they are marked as “type 0” to “type 
3”, respectively. The length of the ‘Long’ window 
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allows better frequency resolution for audio segments 
with stationary characteristics, while the length of the 
‘Short’ window provides better time resolution for 
transients. The ‘Start’ and ‘Stop’ windows are transition 
windows between the ‘Long’ and ‘Short’ window types.  
There are 3 basic half-window units, described in Fig. 2, 
that are used in direct or reverse form to create each of 
the 4 window functions that are shown in Fig. 3. Note 
that the 3 half-window units are of different lengths: the 
'long' and 'short-to-long' halves are 18 samples long, 
where the 'short' half is only 6 samples long. 

Fig.1: One segment of 2N samples is reconstructed 
using the relevant MDCT segment and also the MDCT 

segments on both its sides (dotted brackets). 

The long window types (type 0, 1 and 3) are 36-samples 
long, and are used for computing an MDCT of 36 
samples to 18 coefficients. The short window, however, 
is actually built of three overlapping 12-samples sub-
windows that are used for three short MDCT transforms 
of 6 coefficients, each. Under these definitions, all the 
windows result in the same total length with the same 
number of MDCT coefficients. As was already implied, 
switching between long and short windows is not 
instantaneous: a transition window should always come 
between them. One possible ordering can be seen in Fig. 
4. Utilizing this fact can be very helpful in case of a 
packet loss, since for a single packet loss, the window 
types of the lost segments can be recovered in most 
cases by observing the window types of neighboring 
packets. For example: long-missing1-missing2-stop 
could only match a single possible pattern, where 
missing1 is a start window and missing2 is a short 
window.  

3. INTEROPLATION DOMAIN 

As has been mentioned, MPEG-Audio coders compress 
the audio signal in the MDCT domain. Specifically, the 
MP3 encoder turns each segment of 576 samples in time 
into 576 MDCT coefficients. Each MP3 packet contains 
two such segments, therefore one lost MP3 packet 
creates a gap of 1152 samples. Or in other words, a gap 
of two coefficients per frequency line in the MDCT 

domain. Since a smaller gap is easier to interpolate, it 
makes sense to design a packet-loss concealment 
algorithm that works in the MDCT domain, rather than 
in the time domain, as suggested in [6]. In that work, the 
authors applied an adaptive missing-samples restoration 
algorithm for auto-regressive time-domain signals in the 
MDCT domain, considering the coefficients of each 
frequency line along time as a separate sequence of 
samples.  

 

Fig.2: The three basic half-window units:  
(a) long, (b) short-to-long, (c) short 

 

 

Fig.3: The four different window types defined in MP3: 
(a) ‘Long’, (b) ‘Start’, (c) ‘Short’, (d) ‘Stop’ 
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Fig.4: One possible ordering of the different windows 

There are, however, several disadvantages in working in 
the MDCT domain: First, the MDCT coefficients 
typically show rapid sign changes from frame to frame, 
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at each frequency line. These sign changes reflect phase 
changes in the complex spectral domain [12]. Second, 
because different window types have different 
frequency resolutions, the MDCT coefficients of two 
consecutive time segments at a certain frequency line 
might represent different resolutions: For example, 
consider the case where the first of two consecutive 
segments uses a 'Start' window while the second uses a 
'Short' window. Since the 'Short' window supports 3 
short MDCT transforms, each of the coefficients 
represents 1

6  of the frequency band. However, each of 

the coefficients of the 'Start' window represents 1
18  of 

the band. Since the data is not represented at the same 
resolution, it would not make sense to estimate the 
coefficients of one segment from the other.  

A possible way to cope with the first limitation above 
would be to work in a domain that has a less fluctuating 
representation of the signal, thus providing better 
interpolation results. A solution to the second limitation 
would be to convert the MDCT coefficients back into 
the time domain and then again to the frequency 
domain, this time using the same window length for all 
segments. The DSTFT domain answers both 
requirements and therefore was chosen as our working 
domain.  

Yet, there is a disadvantage in the conversion to the 
DSTFT domain, or to every other domain for that 
matter: Since consecutive MDCT windows overlap by 
50%, a loss of one MDCT frame affects not only the 
reconstruction of the corresponding block, but also the 
reconstruction of neighboring blocks, as shown in Fig. 
1. Therefore, a loss of L consecutive MP3 packets, 
which corresponds to 2L consecutive MDCT frames, is 
translated into a gap of 2L+2 DSTFT frames: 2L absent 
frames in the middle and 2 corrupted frames at the 
edges of the gap. An example for this is given in Fig. 5. 

3.1. From MDCT to DSTFT and vice versa 

In order to convert from one working domain to the 
other, we have developed expressions for direct 
conversion from MDCT to DSTFT, and vice versa, 
applying the DSTFT to the segments originally used by 
the MDCT, with a symmetric window that has two 
halves that complement each other to the value of 1.  
As was explained in section 2.2, three consecutive 
MDCT blocks are required in order to reconstruct a 
whole segment of 2N samples. Only then can we apply 
a DSTFT on this segment. The conversion back from 

the DSTFT domain to the MDCT domain requires an 
OLA procedure in a similar manner. 

Fig.5: How a loss of a packet in the MDCT domain 
affects the DSTFT domain: 2 lost MDCT frames affect 

the reconstruction of 2+2=4 DSTFT frames 

Since there are 4 possible window types for the MDCT, 
and considering the allowed ordering of the windows, 
we could theoretically get 12 different expressions for 
the conversion of 3 consecutive MDCT segments into 
one DSTFT segment. But, after changing the order of 
the summations and some algebraic manipulation, all 
these expressions converge into one general structure 
that uses 4 functions as "building-blocks", given below. 
The same happens in the conversion of DSTFT 
segments back to the MDCT domain.  

The general expression for the conversion from the 
MDCT domain to the DSTFT domain is: 
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Where [ ] [ ]1 1, , ,d rg m k g m k  and [ ] [ ]2 2, , ,d rg m k g m k  are 

the “building-block" functions referred to earlier. Each 
building-block function is chosen among 3 possible 
complex functions, depending on the window type of 
the segment that we wish to convert and on the window 
types of neighboring segments. Table 1 shows the 
different cases, where the first column is the window 
type of the converted segment. Note that since the 
DSTFT is performed on a 2N real-valued sequence, the 
output is conjugate-symmetric in the frequency domain. 
Therefore, it suffices to calculate only the first half of 
the output. In total, there are 12 complex functions, 
based on the 3 possible half-window units that were 

shown in Fig. 2. The explicit expressions for the 
different functions that appear in Table 1 are given in 
appendix A. 

In a similar manner, the conversion from the DSTFT 
domain back into the MDCT domain can also be 
expressed as a general expression of a sum of products, 
while in this case we need to calculate only the real part 
of the result, since the MDCT coefficients are real-
valued. The expression is given in (4) below, where * 
denotes ‘complex conjugate’ value. The building blocks 
here are chosen from the same functions as the direct 
conversion, according to Table 2. 
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Table 1: The different functions appearing in (3). Explicit expressions appear in Appendix A. 

           Function 
 [ ]1 ,dg m k  [ ]1 ,rg m k  [ ]2 ,dg m k  [ ]2 ,rg m k  

‘Long’ 1

dg _long  1

rg _long  2

dg _long  2

rg _long  

‘Start’ 1

dg _long  1

rg _short  2

dg _long  2

rg _short2long  
Next window is 

‘Stop’: 
1

rg _short2long  

Previous window is 
‘Start’: 

2

dg _short2long  
‘Short’ 1

dg _short  Next window is 
‘Short’:  

1

rg _short  

Previous window is 
‘Short’: 

2

dg _short  

2

rg _short  

‘Stop’ 1

dg _short2long  1

rg _long  2

dg _short  2

rg _long  

Table 2: The different functions appearing in (4). Explicit expressions appear in Appendix A. 
Function 

 [ ]1 ,dg m k  [ ]1 ,rg m k  [ ]2 ,dg m k  [ ]2 ,rg m k  blockN  

‘Long’ 1

dg _long  1

rg _long  2

dg _long  2

rg _long  N 

‘Start’ 1

dg _long  1

rg _long  2

dg _short2long  2

rg _short2long  N 

‘Short’ 1

dg _short  1

rg _short  2

dg _short  2

rg _short  3s
NN =  

‘Stop’ 1

dg _short2long  1

rg _short2long  2

dg _long  2

rg _long  N 

Window type 

Window type 
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The fact that we have one general expression for each 
direction of the conversion can be used to create an 
efficient procedure to convert between the two domains: 
Each general expression can be optimized into an 
efficient computer-function, while the "building-block" 
functions can be calculated off-line and stored. The 
same 12 "building-block" functions are used in the 
expressions for both conversion directions. Each 
"building-block" function contains N(N-1) complex 
values and 2N real values (for m=0,N), so in total, 2N2 
real numbers need to be stored for each function. In our 
case N = 18. 

4. CONCEALMENT ALGORITHM 

The proposed concealment method estimates the 
missing data in the DSTFT domain based on the 
GAPES algorithm [10]. The GAPES algorithm was 
chosen because of several of its qualities: As opposed to 
the algorithm suggested in [6], the GAPES algorithm 
assumes no parametric modeling of the signal. It can 
deal with more loss patterns than [6], because it is less 
limited, and can be applied to both complex and real 
signals. Although this paper describes an algorithm that 
involves GAPES in the DSTFT domain, it is important 
to note that we also considered applying GAPES  
directly in the MDCT domain. The benefits of such 
configuration are that there is no need to convert the 
data to any other domain, and that there are much fewer 
calculations since the signal is real-valued. The 
limitations of this configuration, however, are those 
mentioned in section 3.1: the problem of dealing with 
windows having different resolutions, and the rapid sign 
changes. Our subjective tests showed that this 
configuration is inferior to the GAPES-in-DSTFT  

 
configuration, especially at high loss rates. The results 
of the subjective comparison tests are given in section 5. 

Fig. 6 shows the block diagram of an MP3 decoder, 
after adding the concealment block. In the decoder, 
every new MP3 packet is decoded up to the MDCT 
level (i.e., de-quantized) resulting in two MDCT frames. 
The M0 most recent MDCT frames are stored in a 
buffer, indexed from 0 to M0-1. Their associated data 
(i.e., each frame's window type) is also stored 
separately. If a packet is lost, the corresponding MDCT 
values are set to zero and a flag is raised, indicating that 
this frame is actually missing. The window type of each 
of the missing frames is determined so that they comply 
with the window types of neighboring frames. Then, 
according to the system's delay, a delayed MDCT frame 
is copied from the buffer and decoded into waveform 
samples. In the case where the delayed frame is actually 
a missing frame, we estimate its MDCT values before 
continuing with the decoding process. 

Fig. 7 shows the concealment process: The MDCT 
frames are converted to the DSTFT domain, where the 
data along the time axis at each frequency is considered 
as an independent complex signal, and a single iteration 
of the GAPES algorithm is applied separately on each 
of these signals. After that, the data is converted back to 
the MDCT domain and then back again to the DSTFT 
domain, in order to merge the estimated MDCT frames 
with the available ones, using the OLA procedure that is 
incorporated in the conversion expressions. The process 
above is iterated until the difference between two 
consecutive reconstructions is sufficiently small. The 
estimated MDCT coefficients replace the coefficients of 
the lost frame and the MP3 decoding process continues. 

 

Fig.6: A diagram of the proposed decoding process that includes a concealment block
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Fig.7: The flow of the proposed algorithm for estimating lost MDCT frames
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(M-2) … … n-i- ∆  n-i n-i-1 

n-i-
( ∆ +1) … 

19*32 coefficients 
(M-2)  
DSTFT 
frames 

n-i- 
(M-2) … … n-i- ∆  n-i-1 

n-i-
( ∆ +1) 

n-i- 
(M-2) … … n-i- ∆  n-i n-i-1 

n-i-
( ∆ +1) 

18*32
coefficients

19*32 coefficients 

(M-2)  
DSTFT 
frames 

n-i- 
(M-2) … … n-i- ∆  n-i-1 

n-i-
( ∆ +1) 

Yes 
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It has already been explained that in order to convert an 
MDCT frame into the DSTFT domain we need to have 
both the previous and the next MDCT frames, and in 
order to convert that DSTFT frame back to the MDCT 
domain we need the next DSTFT frame too. This 
implies that the algorithm has to maintain a delay of at 
least two MDCT frames at all times, i.e., at least one 
MP3 packet. Adding more delay is not necessary, but it 
can improve the performance of the GAPES algorithm, 
as explained in Appendix B. The extra delay will not 
have much significance to the listener, since adding 
delay of a few packets will only postpone the beginning 
of the whole streaming session by less than a second. 

The buffer, of length M0, that holds the most recent 
MDCT frames, should not be too short, so there is 
enough data for the estimation. The buffer should not be 
too long either, since as the buffer grows longer, the 
frames at both ends will have less correlation with the 
missing frames around the middle, and hence it will be 
less effective to include them in the estimation. In the 
case of MP3, each MDCT frame contains 576 MDCT 
coefficients: N=18 coefficients for each of the 32 
uniform sub-bands. Hence, this buffer can be viewed as 
a real-valued matrix of 576 rows and M0 columns (as 
shown in Fig. 7). 

Due to packet loss, several MDCT frames in the buffer 
may be missing, meaning that the original values of 
some of the matrix's columns are unknown and are 
currently set to zero. Let’s assume that there are Q0 < M0 
missing frames in the buffer in some general loss 
pattern. Since we are dealing with a streaming 
application, we can assume that by the time we need to 
conceal a lost frame, all the frames prior to it had 
already been reconstructed, and therefore they are 
considered as part of the available data. We can choose 
to conceal more than one frame at a time, depending on 
the loss pattern: lost frames that are gathered closely 
together are concealed together, where distant frames 
are concealed separately. Concealing several frames at 
once can reduce the computational overhead of the 
whole concealment process. We will refer to a 
concealment of one or more MDCT frames at once as a 
concealment session. Let Q denote the number of 
MDCT frames that are concealed in one concealment 
session. The value of Q is reassigned at every session. 
Since each MP3 packet contains 2 MDCT frames, one 
concealment session always contains at least 2 
concealed frames (i.e., 2≤Q≤Q0). After deciding on 
the value of Q, we define the Q lost frames and the 
available frames that surround them, as the buffer 

section that will participate in the reconstruction of this 
concealment session. The length of this buffer section is 
denoted M, where Q<M≤M0. 

In the first stage of the algorithm, the MDCT frames 
that were selected to participate in the reconstruction are 
converted to the DSTFT domain. The conversion is 
done separately for each of the 32 sub-bands, and after 
the conversion is completed we have a complex-valued 
matrix of (M-2) columns and 36 ⋅ 32 rows of DSTFT 
coefficients: 2N=36 coefficients for each of the 32 
uniform sub-bands. The DSTFT frames are indexed 
from 1 to (M-2). Since the DSTFT coefficients of each 
transform are conjugate-symmetric it is enough to store 
only 19 (0 to N) coefficients of each sub-band, i.e., the 
matrix can be downsized into 19 ⋅ 32 rows. 

At this point, each row in the DSTFT matrix, that 
represents the DSTFT coefficients at some fixed 
frequency along the time axis, is considered as an 
independent complex signal with missing samples, 
described by the row vector: 

{ }1 2 2, ,....,k k k k
Mx x x x −  (5 ) 

Where k is the frequency index: 0≤ k≤ 19 ⋅ 32-1. The 
locations of the missing samples in the vector are 
actually the indices of the missing MDCT frames, since 

every sample in the vector kx  corresponds to a single 

MDCT frame in the buffer. The missing samples are 
estimated from the available samples by applying the 
GAPES algorithm. 

4.1. The GAPES Algorithm 

The GAPES algorithm [10] reconstructs the missing 
data, assuming that the missing data has the same 
spectral content as the available data that surrounds it. 
For the purpose of applying GAPES, each row of the 
DSTFT matrix, kx , is considered as a sequence of 
samples with complex values. The spectrum of these 
complex samples is represented by a set of spectral 
coefficients, ( ){ }ˆ kα ω , that are calculated on a pre-

defined frequency grid { }kω . The spectral coefficients 
of the complex samples are estimated from the available 
data using the APES (Amplitude and Phase Estimation) 
algorithm [9], and then the algorithm reconstructs the 
set of missing samples so that their spectral content will 
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approximate the spectrum of the available data, in the 
least-squares (LS) sense. 

The APES algorithm uses an adaptive filter-bank 
approach for the spectral estimation: for each frequency 

kω  on the frequency grid, a data-dependent 

narrowband filter, kh , is designed by requiring that the 

output of the filter kh  will be as close as possible, in the 

LS sense, to a sinusoid with frequency kω . I.e., the 

filter kh  passes the frequency kω  without distortion, 
and at the same time, attenuates all the other frequencies 
as much as possible. Each spectral coefficient ( )ˆ kα ω  
is obtained by first filtering the data with the 
corresponding filter, kh , and then calculating the DFT 

coefficient of the filtered data at frequency kω . Then, 
assuming that the missing samples have the same 
spectral content as the available samples, we can 
determine their values by requiring that the output of the 
filter, kh , fed by the full data sequence that contains 
both available and estimated samples, is as close as 
possible, in the LS sense, to the sinusoid 
( )ˆ kj t

k e ωα ω − . 

This concludes a single GAPES iteration. The algorithm 
is iterated, as explained next, until the reconstruction is 
sufficiently good. At the first iteration, APES uses only 
the available samples for determining { }kh and 

( ){ }ˆ kα ω , while in the next iterations the algorithm 
uses all the data (known and estimated samples) for the 
spectral estimation. The formulae summarizing the 
GAPES algorithm are given in Appendix B. 

After a single GAPES iteration is applied on all the row 
vectors of the DSTFT matrix, we have an estimate of 
the DSTFT coefficients of the missing frames. Since 
each DSTFT frame represents data from overlapping 
segments, we need to merge the data from consecutive 
frames. The merging process achieves two goals: First, 
by merging the data we get a continuous waveform that 
sounds better. Second, we can use the merging process 
to improve the estimation: re-calculating the lost 
DSTFT frames using the information stored in the 
available MDCT frames that are nearest to the loss will 
give a better basis for the next GAPES iteration, and in 
addition, the estimated MDCT frames along with the 

available MDCT frames can be used for reducing the 
aliasing in the DSTFT frames closest to the loss (see 
Fig. 5), by re-calculating them too. In our scheme, this 
merging is achieved by converting the estimated 
DSTFT frames back to the MDCT domain, and then 
recalculating the lost DSTFT frames and their nearest 
neighbors by converting the corresponding MDCT 
frames back to the DSTFT domain. It is important to 
note, though, that in order to merge the data, one 
doesn’t have to go as far as to the MDCT domain, but 
may perform it directly in the time domain. The benefit 
of using conversion to and from the time domain would 
be simpler conversion schemes such as FFT. The 
limitation of such conversion would be the need for 
more memory space, in order to hold the time-samples 
of the frames that require merging. 
 
In the final stage of the algorithm it is decided whether 
the estimation is good enough. As a stopping criterion 
for the concealment algorithm, we use a threshold over 
the average squared difference per subband, as defined 
in (6). This ratio is calculated over all rows in the 
DSTFT matrix corresponding to a sub-band (each sub-
band contains 19 rows): 

( )
2

19
, ,

2
0 ,

ˆ ˆ1 1  
19 ˆ

new old
k i k i

oldk i S k i

D sb
S

α α

α= ∈

⎛ ⎞−⎜ ⎟=
⎜ ⎟
⎝ ⎠

∑ ∑  (6 ) 

Where 0≤ sb≤ 31, S is the set of indices of the Q lost 
MDCT frames that are concealed in this session: 

S Q= . 

D(sb) is compared to a predefined threshold. If it is 
smaller than the threshold, then the estimation is 
sufficiently good, so we can stop at this point and 
continue with the MP3 decoding process. If it is larger 
than the threshold, then we apply another iteration on 
this subband, as shown in Fig. 7. In addition, it is 
recommended to limit the number of iterations in order 
to deal with cases where the convergence is very slow, 
or where the average difference values are "stuck" in a 
limit cycle. 

To conclude, we can describe the algorithm in 5 main 
steps, applied to each subband of the uniform filter-
bank: 

1. Initialization:  
- Store zero values in place of each lost MDCT  
   frame. 
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- Determine the parameters for this concealment  
    session: Q, the number of frames to be concealed  
    and M, the length of buffer section. 
-  Convert the MDCT buffer to the DSTFT domain. 

2. Estimate the DSTFT coefficients of the lost frames:  
- Treat each sequence of DSTFT coefficients at a   
   certain frequency, along the time axis, as a  
   complex signal with missing samples. 
- Estimate the lost samples by applying a single  
   GAPES iteration on each sequence. 

3. Restore the values of the lost MDCT frames:  
Convert the corresponding DSTFT frames into the 
MDCT domain. 

4. Correct the values in the DSTFT domain:  
Correct the values of the lost frames and their 
closest neighbors by converting the corresponding 
MDCT frames to the DSTFT domain. 

5. Check the stopping criterion, per sub-band:  
If it is satisfied, stop the algorithm for this sub-band 
in the current session and use the MDCT frames that 
were obtained last. If not, return to (2) for another 
iteration. 

It should be mentioned that the above described 
algorithm uses the Forward vesion of GAPES. Another 
option is to apply the Forward-Backward version [9]. In 
the Forward-Backward version the data is run through 
the filters both forward and backward, instead of using 
forward-filtering only. Unfortunately, this method did 
not show any significant improvement in our tests, to 
justify its complexity.  

4.2. Complexity Considerations 

The proposed algorithm shows good performance, but at 
the  expense  of  complexity:  A  single  iteration  of  the 
algorithm, per sub-band, requires: 
( ) ( ) ( ) ( )2 3 2

248 1 12 logO N N O M O M M⋅ + + ⋅ ⋅ + ⋅⎡ ⎤⎣ ⎦
 multiplications.  

The first option is to compromise quality and use the 
GAPES algorithm in the MDCT domain, as was 
described at the beginning of this section.  
This option reduces the complexity to 

( ) ( )3 2

2
1
22 logO M O M MN ⋅ ⋅ + ⋅⎡ ⎤⎣ ⎦  multiplications. 

For example, for N=18 and M=14, GAPES-in-DSTFT 

requires 6 times the amount of multiplications needed 
by GAPES-in-MDCT. 

Another option that can help to reduce the number of 
calculations in GAPES-in-DSTFT, is reducing the 
number of iterations on the basis of psychoacoustic 
considerations. Assuming that the MP3 encoder shapes 
the quantization noise according to the signal-to-mask 
ratios (SMR), we can get a rough estimate of these 
ratios at the decoder, from the closest neighbors of the 
lost MDCT frame: the quantization step size in each 
critical band gives an indication on the allowed level of 
noise, and the energy of the quantized signal in each 
band can be used to estimate the original signal's energy 
in the band. Based on the SMR estimation we can 
determine which critical bands are more sensitive to 
noise than others: A smaller SMR ratio indicates a high 
masking level relatively to the signal’s energy. Hence, it 
can be assumed that this band can also tolerate more 
“reconstruction noise”, i.e., less accurate estimation. 
Similarly, a bigger SMR ratio indicates a lower masking 
level relatively to the signal’s energy, meaning that it is 
more sensitive to noise addition. This information can 
be used to create different stopping-thresholds for 
different sub-bands, without compromising the quality 
of the resulting signal, by calculating a weight function 
on the threshold values: Sub-bands that contain 
coefficients from more sensitive critical bands will have 
lower thresholds than sub-bands that correspond to less 
sensitive critical bands. This method shows good 
performance and it saves many iterations. 

5. QUALITY TESTS 

This section reports on the results of two comparative 
subjective quality tests of algorithms for packet loss 
concealment, designed for wide-band audio signals 
encoded by an MPEG audio coder. The first test 
compares GAPES-in-MDCT to GAPES-in-DSTFT, in 
terms of listeners’ preference.  The second test 
compares the GAPES-in-DSTFT algorithm to 
previously reported works: packet repetition, suggested 
in the MP3 standard [13, annex E], and statistical 
interpolation (SI), suggested in [6]. The SI method was 
expanded in order to deal with random loss patterns, so 
that when the conditions weren’t suitable for using the 
original algorithm we used packet repetition instead.  

The packet repetition method introduces no delay since 
the decoder simply replaces a lost MDCT frame with 
the previous frame. In both versions of GAPES and in 
the SI method, a buffer of 9 MP3 packets, i.e., M0 = 18, 
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was used: 3 packets from the past, the current packet for 
decoding and 5 packets from the future, creating a delay 
of about 130 msec at a sampling rate of 44.1 kHz. Also, 
the stopping criteria threshold that was used in all 
methods was fixed to D(sb)=10-2 (see (6)), and the 
number of iterations was limited to a maximum of 6 
iterations. The window function that was used for the 
DSTFT was an even length Hann window that can be 
put in the following form: 

[ ] ( )( )2 1
2 2sin ,    0 2 1Nw n n n Nπ= + ≤ ≤ −  (7 ) 

which is equal to the square of the 'Long' window type 
used in the MP3 standard. 

The subjective tests were carried out by informal 
listening. All the participants are inexperienced listeners 
with normal hearing and in the age range of 25-35 
years. Each of the listeners was asked to compare pairs 
of audio files, where the packet losses in each file were 
concealed by a different method, and to decide which of 
the two he, or she, prefers.  

The audio files that were used in the tests are specified 
in Table 3. All the files are stereo signals ,15-17 seconds 
long each, sampled at 44.1 kHz and coded by the 
LAME MP3 [14] encoder at a bit-rate of 128 kbps per 
channel. The methods were tested for 10%, 20% and 
30% loss rates. The packet losses were simulated using 
random patterns, with the largest possible gap allowed 
being 3 packets.  

Table 3: Examined files 

No. File Name Nature of music 
1 Beatles17.wav POP music 
2 Piano10.wav A single piano 
3 Bream1.wav Guitar with violins 

5.1. GAPES: MDCT vs. DSTFT 

This test compares the performance of GAPES-in-
DSTFT to GAPES-in-MDCT, as described at the 
beginning of Section 4. Eight listeners were asked to 
compare pairs of files containing packet losses, each 
concealed by a different method, and to determine 
which of the two files sounds less disturbing. The 
results are presented in Table 4, where for each pair the 
numbers indicate how many listeners voted in favor of 

the method. The results show clearly that GAPES-in-
DSTFT performs better, especially at high loss rates. 

5.2. GAPES vs. Previous Works 

16 listeners were asked to compare pairs of files, the 
same way as in the previous section, where in this test 
we examined 3 methods: packet repetition, statistical 
interpolation, and the proposed method. Table 5 clearly 
shows that the proposed algorithm performs better than 
the two previously reported methods. 

Table 4: Comparative test results of GAPES-in-MDCT 
vs. GAPES-in-DSTFT. The numbers indicate how many 

listeners voted in favor of each method. 

File No. 1 
Loss Rate GAPES-in-MDCT GAPES-in-DSTFT 

10% 2 6 
20% 0 8 
30% 0 8 

   
File No. 2 

Loss Rate GAPES-in-MDCT GAPES-in-DSTFT 

10% 3 5 
20% 0 8 
30% 0 8 

   
File No. 3 

Loss Rate GAPES-in-MDCT GAPES-in-DSTFT 

10% 2 6 
20% 1 7 
30% 0 8 

6. CONCLUTION 

We have introduced a new packet loss concealment 
algorithm for wide-band audio signals encoded by 
MPEG audio coders, based on the GAPES algorithm in 
the DSTFT domain. We used comparative informal 
listening tests to test the algorithm at different loss rates, 
in the range of 10% to 30%, and different music types, 
and obtained that the proposed algorithm performs 
better than two previously reported algorithms: packet 
repetition [13, annex E] and statistical interpolation [6]. 
In addition, a direct conversion scheme was introduced 
that enables efficient conversion from the MDCT 
domain to the DSTFT domain and vice versa.  
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Table 5: Comparative test results of GAPES-in-DSTFT vs. Previously reported works. 
The numbers indicate how many listeners voted in favor of each method. 

 File No. 1
 GAPES-in-DSTFT 

 vs. Repetition 
GAPES-in-GDSTFT 

 vs. SI 
GAPES-in-DSTFT 

 vs. Uncorrupted Original 

Loss Rate GAPES Rep. GAPES SI GAPES Original 
10% 14 2  16 0 4 12 
20% 16 0 16 0   
30% 16 0 16 0   
    
 File No. 2 
 GAPES-in-DSTFT 

 vs. Repetition 
GAPES-in-GDSTFT 

 vs. SI 
GAPES-in-DSTFT 

 vs. Uncorrupted Original 
Loss Rate GAPES Rep. GAPES SI GAPES Original 
10% 15 1 16 0 5 11 
20% 16 0 16 0  
30% 15 1 16 0  
    
 File No. 3
 GAPES-in-DSTFT 

 vs. Repetition 
GAPES-in-GDSTFT 

 vs. SI 
GAPES-in-DSTFT 

 vs. Uncorrupted Original 

Loss Rate GAPES Rep. GAPES SI GAPES Original 
10% 16 0 15 1 2 14 
20% 15 1 16 0   
30% 12 4 14 2   
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APPENDIX A 

We give here the expressions for the 12 functions that were mentioned in section 3 as the “building-block” functions 
for the direct and reverse conversions, where 0≤m≤N and 0≤ k≤N-1. 

[ ] [ ] [ ]
1

1
d

0

1 1g _ long , cos
2 2

N j n mlong N

n

Nm k n k h n w n e
N

ππ− − ⋅ ⋅

=

⎡ + ⎤⎛ ⎞ ⎛ ⎞= ⋅ + ⋅ + ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑    (A.1) 

[ ] [ ] [ ]
1

1
r

0

1 1g _ long , cos 1
2 2

N j n mlong N

n

Nm k n k h n w N n e
N

ππ− − ⋅ ⋅

=

⎡ + ⎤⎛ ⎞ ⎛ ⎞= ⋅ + ⋅ + ⋅ ⋅ − − ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑   (A.2) 
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[ ] [ ] [ ]
1

2
d

0

1 1g _ long , cos 1
2 2

N j n mlong N

n

Nm k n N k h N n w n e
N

ππ− − ⋅ ⋅

=

⎡ + ⎤⎛ ⎞ ⎛ ⎞= ⋅ + + ⋅ + ⋅ − − ⋅ ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑  (A.3) 

[ ]

[ ] [ ]

2
r

1

0

g _ long ,

1 1cos 1 1
2 2

N j n mlong N

n

m k

Nn N k h N n w N n e
N

ππ− − ⋅ ⋅

=

=

⎡ + ⎤⎛ ⎞ ⎛ ⎞⋅ + + ⋅ + ⋅ − − ⋅ − − ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑

  (A.4) 

[ ]1

d/rg _ short2long ,m k  and [ ]2

d/rg _ short2long ,m k  are the same as 1

d/rg _long  and 2

d/rg _long , respectively, except 

that they use the window function 2short longh  instead of longh . 

Before introducing the expressions for the short window type, it is important to note that the MDCT coefficients of a 
short window type segment (i.e., type 2) are organized differently than in a segment with long window types (i.e., 
type 0,1 and 3), since in a short window we have the coefficients of 3 short MDCT transforms. The functions in the 
case of short window type consider the ordering of the coefficients. Fig. 8 shows how the coefficients are organized 
in the output of the MDCT function at the encoder (and respectively, in the input of the Inverse-MDCT function at 
the decoder). 

 

Fig.8: (a) Long window types – coefficients arranged in ascending order: 1-18. (b) Short window type – interleaving 
the coefficients of the 3 short MDCT transforms: A-C, according to their ascending order: 1-6. 

The expressions of [ ]1

d/rg _ short ,m k and [ ]2

d/rg _ short ,m k are given next, where 3s
NN = , 0≤m≤N and 0≤ k≤N-1: 

 

1
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1
rg _short[ , ]m k =           (A.6) 
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APPENDIX B 

Here we summarize the Forward-Only GAPES 
algorithm according to [9] and [10]. The Forward-
Backward version of the algorithm includes small 
modifications that can be found in the referenced 
articles. In addition, some numerical stability 
precautions are mentioned at the end of this appendix. 

Consider a sequence of data samples of length M: 
{ }0 1 1, ,...., Mx x x x −=  

Let’s assume that q of the samples are missing in some 
general loss pattern. The object of the algorithm is to 
estimate them from the available samples.  

Let x a and x u denote the two vectors holding the 
available samples and the unknown samples, 
respectively. A single iteration of the GAPES algorithm 
consists of 3 steps: 
1) Initialization. 
2) Using APES to estimate ( ){ }α̂ ω  and ( ){ }h ω : 

The initial estimate, in the first iteration, uses 
available data only and the next iterations use the 
full data. 

3) Estimating the lost samples, x u. 

Initialization 

Set the size K of the frequency grid { } 1

0

K
k k

ω −

=
, where 

2
k K kπω . We chose K to be the closest integer power 

of 2 greater than the segment's length M. 

APES estimation 

The first thing GAPES does is to use the APES 
algorithm [9] in order to estimate the spectral 
coefficients ( ){ }ˆ kα ω  and the filter-bank { }kh . APES 
estimates these parameters according to a LS-criterion 
requiring that the filter's output will be as close as 
possible to a sinusoid of frequency kω  in the LS sense. 

( )
( ) ( )

2*

, 0

1

1
min k

k k

M P
j l

k kh lM P
h y l e ω

α ω
α ω

−

=− +
⋅ − ⋅∑ (B.1)

Where P is the length of each filter kh , M is the length 

of the data sequence and * denotes "conjugate-
transpose". 

 
The estimation process is as follows, except that a 
special treatment is given to the initial estimation (the 
first iteration) as will be specified at the end of this 
section.  

1. Set the length P of the FIR filters that form the 
{ }kh  filter-bank. The value of P is limited by the 
condition introduced in step 4, below. 

2. Define L = M-P+1. The output of filtering an M-
sample sequence by a FIR filter 1Ph ×∈  can be 

written as *h Y , where P L×∈Y  is a matrix 
formed from the column vectors: 

( ) ( ) ( ) ( ), 1 ,..., 1
T

y l x l x l x l P= + + −⎡ ⎤⎣ ⎦  (B.2) 

       Where l = 0,1,…,L-1. Y divides the data samples of 
       the sequence x  into L overlapping vectors of size  

       P×1 with a shifted structure. 

3. Next, we calculate the sample covariance matrix 
ˆ P P×∈R , using:  

( )*1ˆ
L= ⋅R Y Y  (B.3) 

      In order to get a full-rank covariance matrix R̂ , P    
      should satisfy the condition: 

1  
2

MP L P −
≤ ⇒ ≤  (B.4) 

4. Apply an FFT of the length of the frequency grid, K, 
over each of the rows of Y and divide the 
coefficients by L, to get the matrix P K×∈G . Each 
of the columns of this matrix can also be written as: 

( )
21

0

1 L j kl
K

k
l

g y l e
L

π− −

=

= ⋅∑  (B.5) 

      Where 0≤ k≤K-1. 

5. Next, for every k, such that 0≤ k≤K-1, calculate the 
following: 

• Define 2
k K kπω = . 
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• Define the vector ka  to be: 

    ( )11, ,..., kk
Tj Pj

ka e e ωω − −−⎡ ⎤= ⎣ ⎦  (B.6) 

• The solution of the minimization problem in 
(B.1) is given by the following: 
The filter ( )kh ω  is calculated by: 

    ( )

( )
( )

( ) ( ) ( )
( )

*1
1

*

1

1

k k
k

k
k

k k
k

k

g
a

h

γ ω
ρ ω

ω
γ ω γ ω

β ω
ρ ω

−
− ⋅ +

−
=

+
−

R
R

 (B.7) 

     Where ( ) * 1
k k kg gρ ω −R ,    (B.8) 

                      ( ) * 1
k k ka aβ ω −⋅ ⋅R ,  

                       ( ) * 1
k k ka gγ ω −⋅R  

           The spectral coefficient ( )kα ω  is calculated  

           by: 

    

( ) ( )

( )

*

21
*

0

ˆˆ

1 ˆ

k k k

L j kl
K

k
l

h g

h y l e
L

π

α ω ω
− −

=

= ⋅

⎡ ⎤= ⋅ ⋅⎣ ⎦∑
 (B.9) 

           Which can be viewed as the FFT of the filtered  
           sequence (as explained in [10]).           

Initial estimation 

Article [10] offers two approaches for the initial 
estimation of APES. The first approach bases the 

estimation of ( ){ }ˆ kα ω  and { }kh on available data 

only. The second approach uses all the data, where the 
values of the lost samples are set to zero. Our 
experience shows that the first approach performs 
considerably better than the second one, so we use it in 
our solution. However, in order to use the first approach 
we need to consider the loss pattern and the number of 
lost samples and choose the filter's length, P, so that it 
will allow for a full-rank covariance matrix to be built 
using only the available data. The condition that P 

should satisfy can be described as follows: After 

creating the P L×∈Y  matrix (mentioned in step 3, 
above) the requirement is that Y will have at least P 
columns that contain only available samples. Note that 
there is no limitation on the location of these columns, 
i.e., the valid columns may include only samples from 
the past, or only samples from the future. Naturally, an 
estimation that is based on samples from both sides of 
the loss will usually achieve better performance.  

Given that this condition is satisfied, steps 1-4 in the 
algorithm above are re-defined with some small 
modifications for the initial estimation: 

1. Choose the value for P so the condition above will 
be satisfied. In our solution, since the samples arrive 
in pairs (each MP3 packet contains two frames), and 
since we use the past frames as available data, P≥ 2 
always. 

2. Define L = M-P+1. Build the P L×∈Y  matrix, as 
was defined before, only this time - all the columns 
in Y that contain one or more missing samples are 
set to zero.  

      Define L' as the number of columns that contain only  
     available samples (i.e., the ones that weren't zeroed).  
     The values of the resulting matrix in this special  
     case are the same as if we were to remove the un- 
     desired columns from Y matrix completely, and used  

     '' P L×∈Y  instead, since the zeroed elements are  
     always multiplied by zero elements, so they are not  
     considered in the averaging. 

3. Next, we calculate the sample covariance matrix 
ˆ P P×∈R , using: 

( )*1ˆ
'L

= ⋅R Y Y  (B.3*) 

4. Calculate the matrix P K×∈G , where its columns 
can now be written as: 

( )
21

0

1
'

L j kl
K

k
l

g y l e
L

π− −

=

= ⋅∑  (B.5*) 

       Where 0≤ k≤K-1. 
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Step 5 is the same in the first iteration as in the next 
ones. 

Estimation of lost samples 

After the filter-bank and the spectral coefficients are 
found, they can be used to estimate the missing samples. 
Under the assumption that the missing data x u have the 

same spectral content as the available data x a, we can 

estimate x̂ u from the condition that the output of the 

filter ( )kh ω  fed with the data sequence made from x a 

and x̂ u is as close as possible to the sinusoid 

( )ˆ kj l
k e ωα ω −  for 0≤ l≤ L-1 and 0≤ k≤K-1. 

The LS criterion can be written as: 

( ) ( )
1 1 2*

0 0

ˆmin k

u

K L
j l

k kx k l
h y l e ωα ω

− −

= =

− ⋅∑∑  (B.10) 

The LS criterion above can be also written as: 

1
2

0
min

u

K

k kx k
x z

−

=

−∑ H  (B.11) 

Where: 

*

*

*

0

0

k

L Pk
k

k

h
h

h

×

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H  (B.12) 

( ) ( )1 1ˆ 1, ,..., kk
Tj Lj L

k kz e e ωωα ω − ×⎡ ⎤⋅ ∈⎣ ⎦  (B.13) 

Expressing k xH  as k k a k ux x x+H A B , where the 

matrices kA  and kB  are simply the matrices holding 

only the rows from kH  that multiply the samples in the 

vectors x a and x u, respectively. 

Defining: 

k k k ad z x−A  (B.14) 

We can re-write the LS criterion as: 

1
2

0
min

u

K

k u kx k
x d

−

=

−∑ B  (B.15) 

The solution to this minimization problem is given by: 

11 1
* *

0 0

ˆ
K K

u k k k k
k k

x d
−− −

= =

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑B B B  (B.16) 

Some numerical stability precautions: 

1. In cases where the available samples, surrounding 
the loss, are zero or very close to zero, as is often the 
case for high frequency coefficients (indexed around 
420-576) the sample covariance matrix could 
become singular, and therefore cannot be inverted. 
In such cases we prefer to avoid estimation and 
simply set the lost values arbitrarily to zero. 

2. In order to avoid cases of singularity or near-
singularity, in the general case, a regularization 
matrix, Iε , is added to the sample covariance 
matrix before inverting it. 
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