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Abstract – The use of 3D point clouds is currently of much 

interest. One of the cornerstones of 3D point cloud research and 

applications is point cloud registration. Given two point clouds, 

the goal of registration is aligning them in a common coordinate 

system. In particular, we seek in this work to align a sparse and 

noisy local point cloud, created from a single stereo pair of images, 

to a dense and large-scale global point cloud, representing an 

urban outdoors environment. The common approach of keypoint-

based registration, tends to fail due to the sparsity and low quality 

of the stereo local cloud. We propose here a new approach. It 

consists of the creation of a dictionary of much smaller clouds 

using a grid of synthetic viewpoints over the dense global cloud. 

We then perform registration via an efficient dictionary search. 

Our approach shows promising results on data acquired in an 

urban environment. 

 

Keywords – ICP, LiDAR, localization, 3D registration, SfM, 

sparse point cloud, stereo reconstruction, urban environment 

I. INTRODUCTION 

The process of point cloud registration is a crucial step in 

many applications involving 3D point clouds. A few examples 

of such applications are modeling of indoors or outdoors 

environments, robot navigation, obstacle avoidance, and 

landscape surveying. Given two (or more) 3D point clouds, the 

goal of point cloud registration is finding transformations 

which align the clouds in a common coordinate system. For 

rigid registration, these transformations include elements of 

rotation and translation (6DoF).  

The registration challenge we face in this work involves a 

dense, large-scale point cloud, representing an outdoor 

environment (e.g., a neighborhood, a small town), and a sparse 

and noisy local cloud with limited range and field of view. The 

large-scale (“global”) cloud may be created using Structure-

from-Motion (SfM) or a LiDAR sensor, and the local cloud is 

typically created using stereo reconstruction. A challenging 

aspect of such registration is the substantially different 

properties of the global and local clouds. While the global cloud 

is dense and detailed, the local cloud may be very sparse and 

noisy. Moreover, the local cloud usually suffers from missing 

data, especially on smooth, uniform surfaces. Because of such 

differences, common approaches to point cloud registration, 

such as keypoint or plane-based registration, mostly fail. For 

example, high levels of noise degrade the unique localization 

of keypoints and cloud sparseness hinders plane-based 

registration. As a result, descriptor matching (and using the 

putative correspondences for finding an initial registration) 

becomes especially challenging. 

Our proposed registration approach faces the previously 

mentioned challenges by utilizing the geometric information of 

the sparse local cloud as a whole. We use a synthetic grid of 

viewpoints over the global cloud in order to create from it a 

dictionary of much smaller clouds commensurate with the local 

cloud in terms of range and field of view. Given a sparse local 

cloud, we can now consider the registration problem as a 

dictionary search problem. 
 

Keypoint-based registration involves establishing local 

correspondences between sparse keypoints in the point clouds, 

using feature descriptors. In recent years, several keypoint 

detectors for 3D surfaces have been proposed. A recent survey 

of keypoint detectors [1] has performed an evaluation of such 

detectors. Some keypoint detection methods are typically based 

on the eigenvalues of the covariance matrix that characterizes 

local point neighborhoods. A related way of characterizing the 

saliency of a point in the cloud is by its neighborhood Surface 

Variation [2], defined as the ratio between the smallest of the 

eigenvalues of the neighborhood covariance matrix and their 

sum. Thresholding of this ratio is used to select keypoints. 

Once keypoints have been detected, a common next step is 

the computation of descriptors. A recent comparative study of 

3D shape descriptors [3] has evaluated the performance of ten 

popular descriptors over several databases. In terms of time 

complexity, the best performing descriptor was FPFH (Fast 

Point Feature Histogram) [4] while RoPS (Rotational 

Projection Statistics) [5] was reported to have good results over 

several different types of datasets. Spin-Images [6] are another 

example of a popular, albeit less recent, 3D shape descriptor, 

which may be used to encode the geometry of a local 3D 

neighborhood as a 2D image. 

Next, the keypoint descriptors may be used to establish 

correspondences between different point clouds. Then, a 

possible approach for finding an initial coarse registration, 

using the estimated correspondences, is by applying RANSAC 

(RANdom SAmple Consensus) [7]. Finally, an iterative 

refinement step may be applied using ICP (Iterative Closest 

Point) [8] or one of its variants [9]. Keypoint-based approaches 

for registration are often sensitive to noise, occlusion, and to 

point density differences. We have found them to be unreliable 

for registration of the stereo-reconstructed point clouds we 

have.  

Another approach for point cloud registration involves 

matching geometric primitives, such as lines [10] or planes 

[11], detected in the scenes to be registered. These approaches 

are viable when all the scans are relatively of high quality, e.g., 

acquired using LiDAR. However, for stereo-reconstructed 

point clouds, which are very sparse and noisy, reliable detection 

of line or plane features is challenging. 
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An approach which shares some similarities with ours was 

proposed for image-based localization given a Structure from 

Motion point cloud of a large-scale scene [12]. Their approach 

consisted of using synthetic viewpoints over a large-scale scene 

reconstructed using SfM, where the 3D points are characterized 

by SIFT descriptors [13]. They use synthetic viewpoints to 

efficiently index the 3D points with the goal of view (image) 

registration to the 3D scene. We, however, use synthetic 

viewpoints to transform the large-scale 3D scene into a 

dictionary of smaller point clouds with limited range and field 

of view. While their approach relies on the availability of 

image-based descriptors, our approach requires only the 3D 

point coordinates of the global and local clouds and allows use 

of other acquisition techniques such as LiDAR. 
 

The rest of the paper is organized as follows. Section II 

describes a conventional keypoint-based registration. In 

Section III, we present our proposed approach: viewpoint 

dictionary based registration, in detail. Sections IV and V 

discuss our experimental setup and registration results, 

respectively. We summarize, draw conclusions, and outline 

directions for future work in Section VI. 

II. KEYPOINT-BASED REGISTRATION 

In this section, we briefly outline the keypoint-based 

registration process that we used to attempt registration 

between a dense, large-scale, “global” cloud and a sparse and 

noisy “local” point cloud resulting from stereo reconstruction. 

An example of such clouds is shown in Fig. 1.  

The first step is keypoint detection, used to identify a sparse 

set of “interesting” points in both global and local clouds. For 

this step, we used a Surface Variation based detector [2], 

mentioned above. Points on flat surfaces are characterized by 

small Surface Variation values while salient points, such as 3D 

corners, have larger values. Keypoints were selected as points 

with Surface Variation values that exceed a set threshold value. 

Next, a Spin-Image descriptor [6], mentioned earlier, was 

computed for each of the identified keypoints.  

Keypoint correspondences are established by computing the 

similarity between each Spin-Image of the local cloud and the 

Spin-Images of the global cloud. 

The next step used is a RANSAC procedure [7], with the 

purpose of filtering out erroneous correspondences (outliers) 

and estimating an initial (coarse) registration between the local 

and global clouds. As a final step, ICP [8] is used to refine the 

registration. 

III.  PROPOSED APPROACH: VIEWPOINT DICTIONARY 

BASED REGISTRATION 

We now describe the steps of the proposed registration 

approach. We use a grid of synthetic viewpoints over the global 

cloud to transform it into a dictionary of smaller clouds and 

solve the registration problem via a dictionary search. A block 

diagram of the proposed method is shown in Fig. 2. If real-time 

localization is sought, i.e., finding the location from which the 

local cloud was acquired, in relation to the global cloud, the 

 

 
Fig. 1 – Top: a LiDAR global cloud representing an urban 

environment. The pose of a stereo local cloud is shown in blue. 

Bottom: stereo local cloud example. 
 

first two steps in the block diagram can be done offline. The 

third step may be done either offline or online, as will be 

discussed in Subsection C, and the remaining steps are done 

online, once a local cloud is received. 

 

 
Fig. 2 – Block diagram of the viewpoint dictionary based 

registration approach. 
 

A. Pre-processing 

The pre-processing step involves subsampling of the global 

cloud. Typically, dense clouds of large-scale scenes, 

reconstructed using SfM or LiDAR, may contain millions or 

even tens of millions of points. Since the computational 

resources required to work with such clouds are currently 

unfeasible when aiming at real-time performance, we perform 

a random subsampling of the global cloud. In our experience, 

such subsampling is legitimate while the relevant underlying 

geometric information contained in the cloud (e.g., ground 
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surface, building walls etc.) is preserved. We note that more 

sophisticated subsampling strategies are possible [14]. Pre-

processing may include also denoising of the global cloud data. 
 

B. Viewpoint grid creation 

In this step, we create a grid of synthetic viewpoints over the 

global cloud. We aim for the synthetic viewpoints to resemble 

typical viewpoints of observers moving on foot or by vehicle 

throughout the area represented by the global cloud. In this 

step, we assume that the global cloud is given such that gravity 

is approximately pointing in the negative direction of the z-

axis. Initially, we create a regular Cartesian grid in the x,y 

plane, over the global cloud. The distance between adjacent 

grid points is denoted as 𝑑𝑔𝑟𝑖𝑑. For each grid point, we assign 

a z value equal to that of the global cloud point, whose 

projection on the x,y plane is closest. The closest point’s 

normal vector is used as the grid point’s normal vector. Normal 

vector estimation is done based on Principal Component 

Analysis of the local neighborhood [15]. 

To avoid synthetic viewpoints in unlikely positions, such as 

on rooftops, on walls, or in vegetation, two filtering steps are 

performed. Viewpoints whose height above the ground exceeds 

some threshold value are filtered out. The ground height may 

be estimated based on plane detection in a local neighborhood. 

In addition, viewpoints whose normal vector is substantially 

different than those of its neighboring viewpoints are rejected 

as well. 

 Since we want to place the synthetic viewpoints at some 

user-defined height above the ground, we move each remaining 

viewpoint in the direction of its assigned normal vector.  

We note that the grid creation process we describe is not 

ideal but was chosen for its simplicity and because it was found 

to give reasonable results for typical urban global clouds. More 

advanced approaches, which are possible because this step is 

done offline, may involve a more robust ground surface 

detection. 
 

C. Dictionary creation 

We use the synthetic viewpoint grid to compute a dictionary of 

small clouds (“dictionary clouds”) which represent the 3D 

scenes that would be viewed by an observer from the synthetic 

viewpoints. The observer is assumed to have a limited viewing 

range and a restricted field of view - for example, a maximal 

range of 𝑟𝑚𝑎𝑥 = 60𝑚 and a ∢𝐹𝑜𝑉 = 75𝑜 horizontal angle of 

view (“yaw”), where the viewpoint normal defines the vertical 

direction 𝒛̂𝑖 = 𝒏𝑖 (see Fig. 3) where 𝑖 is the index of the 

corresponding viewpoint 𝒑𝒗𝑖. For each viewpoint, 𝒑𝒗𝑖, a 

number of viewing directions (e.g., 𝑁𝑑𝑖𝑟 = 12), denoted by 𝒙𝑖𝑗 

(𝑗 ∈ 1,2, … , 𝑁𝑑𝑖𝑟), are selected in the plane perpendicular to 𝒛̂𝑖. 

Thus, a unique right-hand frame of reference is created for each 

dictionary cloud, using a cross product: 𝒚̂𝑖𝑗 = 𝒛̂𝑖 × 𝒙𝑖𝑗. A 

vertical may be defined in addition to the horizontal one, but is 

not shown here for simplicity.  

Using its unique frame of reference (𝒙𝑖𝑗 , 𝒚̂𝑖𝑗 , 𝒛̂𝑖), the angle 

of view (∢𝐹𝑜𝑉), and the maximal range (𝑟𝑚𝑎𝑥), each 

dictionary cloud is cropped from the global cloud. 
 

 
Fig. 3 – A schematic drawing of the right-hand frame of reference 

defined for a dictionary cloud at a synthetic viewpoint 𝒑𝒗𝒊. 
 

We then use a Hidden Point Removal (HPR) algorithm [16]. 

Intuitively, given a set of points and a viewpoint, the HPR 

algorithm identifies a subset of points that are visible from that 

viewpoint. Our motivation for doing so is that a stereo-

reconstructed point cloud may only contain points which are 

visible from the viewpoint. Thus, keeping dictionary cloud 

points which will not be included in a stereo reconstruction will 

not assist in matching a local cloud to a dictionary cloud. 

Furthermore, to avoid including dictionary clouds that are not 

informative, we do not include those whose number of points 

is below a threshold number. 

The dictionary clouds are stored in a uniform pose such that 

the viewpoint is located at the origin and the frame of reference 

(𝒙𝑖𝑗 , 𝒚̂𝑖𝑗 , 𝒛̂𝑖) is aligned with the standard Cartesian frame. This 

way, in the following step where we compare a given local 

cloud to the dictionary clouds, we avoid realigning the local 

cloud with each dictionary cloud in the matching process. 

Dictionary creation may be performed either online or 

offline. When creating the dictionary offline (i.e., using a 

“static” dictionary), its storage may entail high memory 

requirements. This also depends on the size of the area 

represented by the global cloud, the number of synthetic 

viewpoints used and the number of viewing directions per 

viewpoint. In contrast, it is also possible to create the dictionary 

online (i.e., using a “dynamic” dictionary). Given an initial 

guess as to the location of the local cloud (e.g., GPS reading), 

dictionary clouds may be created in this case only for synthetic 

viewpoints in a relatively small surrounding area (e.g., within 

a radius of 30𝑚). This may significantly reduce memory 

requirements at the price of additional online computations. An 

advantage introduced by using a dynamic dictionary is the 

possibility of adapting the dictionary creation parameters (such 

as 𝑁𝑑𝑖𝑟) while navigating. In addition, assuming a dense 

viewpoint grid is created offline (Subsection B), selection of 

viewpoints to be used for creating the dictionary may be 

adaptive as well. 
 

D. Initial candidate selection 

Once we are given a local point cloud, which may be created 

using stereo reconstruction, we wish to select an initial set of 

candidate dictionary clouds that best resemble it. By doing so, 

we significantly reduce the computational load of the following 

ICP step (Subsection E). We first transform the local cloud to 
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the uniform pose described in the previous subsection. We 

assume that the local cloud viewpoint is known in its local 

reference frame and that its analog of the reference frame 

(𝒙𝑖𝑗 , 𝒚̂𝑖𝑗 , 𝒛̂𝑖) can be estimated by detecting the local ground 

plane (that defines 𝒛̂𝑖) and the center axis of the field of view 

(that defines 𝒙𝑖𝑗). 

Once the local cloud has been transformed to the uniform 

pose, we compute the RMSE over the nearest-neighbor 

distances between its points and the points of each dictionary 

cloud. A low RMSE value indicates a possibly matching 

dictionary cloud, while a high RMSE value indicates a different 

3D scene and an unlikely match. However, lowest RMSE is not 

a perfect indicator of a match between a dictionary cloud and 

the local cloud due to the substantial noise in the latter. Thus, 

initial candidates for additional processing are selected as a 

fraction (e.g., 0.1) of the dictionary clouds whose RMSE scores 

are the lowest. 

It should be noted that knowing the reference frame of a 

candidate dictionary cloud and the reference frame of the local 

cloud allows computing a potential coarse registration between 

the local and global clouds. 
 

E. ICP and final candidate selection 

We use the ICP algorithm to refine the registration between the 

local cloud and the set of candidate dictionary clouds selected 

in the previous step. This allows our registration accuracy to be 

better than what is dictated by the selection of viewpoint grid 

spacing (𝑑𝑔𝑟𝑖𝑑) and the number of viewing direction per 

viewpoint (𝑁𝑑𝑖𝑟). The result of the ICP step is a refining 

transformation (rotation and translation) of the local cloud, 

which brings the RMSE between it and a dictionary cloud to a 

local minimum. The final dictionary cloud candidate is selected 

to be the one with lowest RMSE, following the ICP application, 

with respect to the local cloud as described in the previous 

section.  

Given the transformations which brought the selected 

dictionary cloud and the local cloud to the uniform pose, and 

the refining transformation returned by the ICP algorithm, we 

can compute the equivalent 6DoF transformation which aligns 

the local and the global clouds. 

IV. EXPERIMENTAL SETUP 

In our experiments we used a large-scale LiDAR cloud (SfM 

is possible as well) representing an urban scene, and two types 

of local clouds: simulated clouds and clouds reconstructed 

using stereo images that were acquired at the actual scene 

represented by the global cloud (see example in Fig. 1). 
 

A. Simulated local clouds 

In order to simulate local clouds, the x,y coordinates of ten 

viewpoints in the global cloud are manually selected. Then, 

similarly to what is done during grid creation (Section III.B), 

we assign z values and normal vectors. The normal vectors are 

used as 𝒛̂𝑖, as mentioned before, and the 𝒙𝑖𝑗 vectors are chosen 

arbitrarily in the plane perpendicular to 𝒛̂𝑖 such that a local 

reference frame is defined for each viewpoint. Using the 

reference frame, a local cloud can be cropped from the global 

cloud with respect to range (𝑟𝑚𝑎𝑥 = 60𝑚) and field of view 

(∢𝐹𝑜𝑉 = 75𝑜) limitations. Next, the cropped cloud is 

subsampled such that its point density is inversely proportional 

to the distance from the viewpoint. Spatial Gaussian noise is 

added with uniform distribution in orientation, but the noise 

standard deviation is proportional to the distance from the 

viewpoint. The maximal noise standard deviation, which 

applies to points in the maximal range of 𝑟𝑚𝑎𝑥 = 60𝑚, is 

denoted as 𝜎𝑚𝑎𝑥 . As will be shown in Section V, three different 

levels of noise were tested: 𝜎𝑚𝑎𝑥 = 0𝑚 (𝑛𝑜 𝑛𝑜𝑖𝑠𝑒), 3𝑚, 5𝑚. 

As a final step, the HPR [18] algorithm is applied.  
 

B. Stereo local clouds  

Stereo reconstruction was used to create seven actual local 

clouds similar to the one shown in Fig. 1. A sequence of stereo 

image pairs was acquired from a single location in the scene 

while changing the viewing direction from pair to pair. The 

maximal range of the reconstructed stereo cloud was 𝑟𝑚𝑎𝑥 =
60𝑚 and the horizontal field of view was ∢𝐹𝑜𝑉 = 75𝑜. 

V. REGISTRATION RESULTS 

The transformations we compute to perform the registration 

have six degrees of freedom - three for rotation and three for 

translation. We represent the error in localization as the 

Euclidean distance in meters between the actual (ground truth) 

local cloud’s viewpoint and the estimated viewpoint resulting 

from the registration. The errors in rotation are represented 

using three intrinsic Euler angles, 𝑅𝑒𝑟𝑟𝑜𝑟 = 𝑅𝑧(𝛼)𝑅𝑦(𝛽)𝑅𝑥(𝛾), 

where 𝑅𝑒𝑟𝑟𝑜𝑟  represents the rotation matrix from the true 

orientation to the estimated orientation, and (𝛼, 𝛽, 𝛾) represent 

yaw, pitch and roll respectively. 𝑅𝑥(𝛾) thus represents a 

rotation by an angle 𝛾 around the x-axis of the ground truth 

frame of reference. Note that since intrinsic rotation angles are 

used, the frame of reference rotates after each elemental 

rotation. 

Registration results of the proposed viewpoint dictionary 

based approach are presented and compared below to the 

results of the keypoint-based approach presented in Section II. 

Both approaches are tested on both the simulated local clouds 

and the stereo local clouds. 
 

A. Registration Results: Simulated local clouds  

The registration results of the proposed approach for the ten 

simulated local clouds, with 𝜎𝑚𝑎𝑥 = 5𝑚, are summarized in 

Table 1. The average localization error was 1.01𝑚 with an 

STD of 0.79𝑚, averaged over the ten simulated local clouds. 

The maximal localization error was 2.28𝑚. 

 

Table 1 - Registration results of the proposed approach for the 

simulated local clouds, using a maximal noise STD of 𝝈𝒎𝒂𝒙 = 𝟓𝒎. 

 Localization 

Error [m] 

Yaw 

Absolute  

Error [deg] 

Pitch 

Absolute 

Error [deg] 

Roll 

Absolute 

Error [deg] 

Mean over 10 

clouds 
1.01 0.63 1.18 0.45 

STD over 10 

clouds 
0.79 0.87 0.56 0.31 
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To compare the registration results of the proposed approach 

and the keypoint-based approach we count the number of 

simulated local clouds, for which the localization error is lower 

than 3𝑚. This is repeated for each level of noise (see Table 2). 

While for the keypoint-based approach the number of 

successful registrations substantially declines when larger 

noise is introduced, the viewpoint dictionary based approach 

shows better robustness to noise. We note that for the keypoint-

based approach, when the localization error was larger than 

3𝑚, it was mostly around several tens of meters due to failure 

to establish correct correspondences between the local and 

global clouds. 
 

Table 2 - comparison of registration results between keypoint-based 

registration and viewpoint dictionary based registration. 

Max. noise STD (𝜎𝑚𝑎𝑥) 0[m] 2[m] 5[m] 

# Local 

clouds with 

localization 

error < 3m 

Keypoints 

 
9/10 8/10 4/10 

Viewpoint 

dictionary 

(proposed) 

 

10/10 
 

10/10 
 

10/10 

 

B. Registration Results: Stereo local clouds 

Registration results of the viewpoint dictionary based approach 

for each of the seven stereo local clouds are shown in Table 3. 

As can be seen in that table, for five of the seven local clouds 

the localization error was less than 3𝑚 (with a mean of 1.5𝑚), 

while two of the seven local clouds were not successfully 

registered. In contrast, using the keypoint-based approach on 

the same data, none of the local clouds were successfully 

registered - all localization errors were as large as several tens 

of meters (the lowest error was 25𝑚). This demonstrates the 

advantage of the viewpoint dictionary based approach over the 

keypoint-based approach for noisy and sparse local clouds. 
 

Table 3 - Registration results of the proposed approach for the 

seven stereo local clouds. 

Local 

cloud # 

Localization 

Error [m] 

Yaw Error 

[deg] 

Pitch Error 

[deg] 

Roll Error 

[deg] 

1 2.96 -6.35 -3.40 -6.00 

2 74.94 135.83 -3.93 -2.75 

3 2.41 4.18 2.87 -2.85 

4 0.48 0.94 1.90 -1.31 

5 0.51 2.23 1.59 -3.29 

6 1.16 3.13 0.45 -2.02 

7 12.10 51.65 -0.19 3.87 

VI. CONCLUSION 

In this paper, we have proposed a novel viewpoint dictionary 

based approach for the registration of a sparse and noisy stereo-

reconstructed point cloud, and a dense large-scale urban point 

cloud. The proposed approach is compared to the common 

keypoint-based registration approach, and shown to achieve 

much better results in terms of registration accuracy. In future 

work, we intend to test the method’s performance on larger 

datasets. In addition, we believe that the development of a 

dedicated descriptor for the dictionary and local clouds will 

benefit the method’s performance in terms of accuracy, 

robustness and computational complexity. 
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