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ABSTRACT — This work presents new the-
oretical results concerning the Morphological
Skeleton Representation of images. Based on
these properties, one can considerably improve
existing schemes for Skeleton-Based Coding, or de-
sign new efficient ones.

An example of such a scheme is also pre-
sented. Computer simulations indicate that,
typically, the proposed coding scheme substan-
tially improves the coding rates obtained by
the best previous schemes for Skeleton coding,
and is more efficient than coding the original
binary image by Chain Code, Quadtree and
Run-length/Huffman methods. Moreover, the
related algorithm is fast, when properly imple-
mented.

1 Historical Background

It is well-known that the Skeleton decomposi-
tion of images (binary images, mainly) is suitable
for Compression [3]. However, the compression
rates achieved until now by lossless-coding of the
Skeleton were only comparable to (and sometimes
even worse than) other simpler methods (such
as Chain Coding, Quadtree Decomposition and
Run-length Coding) applied directly to the origi-
nal image. This made many researchers skeptical
about Skeleton-based Coding.

On the other hand, little was proposed concern-
ing the improvement of the coding scheme itself!
3, 4]

In this work, we present a number of theorems
concerning properties of the Skeleton Represen-
tation. These properties are not used by con-
ventional Skeleton-coders, and this is reflected in
their unsatisfactory performance.

2 Basic Definitions and Notation

The authors suppose the readers to be familiar
with the basic translation invariant operations of
Mathematical Morphology: dilation (&), erosion
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(6), opening (o), and closing (e). For background
material see [1, 3].

2.1 Discrete Morphological Skeleton
Representation

The theorems in this paper are related to a dis-
crele Generalized-Step Skeleton Representation
[5] of a given image X. By “discrete” we mean
that the family of elements used in the Skele-
ton decomposition is indexed by natural num-
bers (0,1,...). On the other hand, X and the
shapes in the above decomposition family are not
restricted to be discrete. They can be discrete
(sets in Z?2), continuous (sets in R?) or grayscale
images (functions over Z? or R?).

A discrete Generalized-Step Skeleton Repre-
sentation is a collection of subsets {S5,}, n =
0,1,..., obtained by the following discrete ver-
sion of Lantuéjoul’s formula [5, 6]:

Sp =X 0 An) — [X 6 A(n)]o B(n), (1)

where the series {B(n)} (n = 0,1,...) is any pre-
defined family of shapes, and the series {A(n)}
(n = 0,1,...) is generated from {B(n)} in the
following way:

{ An+1)=A(n)® B(n), n=0,1,... (2)
A(0) = {(0,0)}.

As a particular case, A(n) = nB (where B is a
fixed structuring element) when we set B(n) = B,
Vn.

From this point on, we adopt the following no-
tation throughout the paper:

X, 2 XoAMn), (3)
Yot £ Xny1 @ B(n) =
= X, oB(n). (4)

This way we can rewrite (1) as 5, = X, —



The Skeleton Subsets {5,} are disjoint, and

their union § 2 U, S» is called the Skeleton.
Each Skeleton point belongs to one and only one
Skeleton Subset 9, and its index n is called its
quench value. The map relating each Skeleton
point to its quench value is called Quench Func-
tion [1].

The original shape X can be fully or partially
reconstructed from the collection of Skeleton Sub-

sets {5, } by the formula [5]:

XokB = | S.® A(n). (5)
n>k

Full (partial) reconstruction is obtained for & = 0

(k> 0)in (5).

2.2 Connectivity, Reconstruction and Ul-
timate Erosions

Connectivity, Reconstruction and Ultimate Ero-
sions are fundamental concepts in this work. Re-
construction and Connectivity are defined in [1]
in the following way:

Definition 1 (Connectivity)

Two points & and y are connected (under a pre-
defined structuring element B) iff {z} C {y} @& B
or{y} C{z} & B.

Definition 2 (Reconstruction) Let A,D be
lwo sets, such that D C A, and B a pre-defined
structuring element. The Reconstruction of A
from D using B, Recp){A, D} is given by the fol-

lowing recursive formula:
Reqp{A, D} = {[(D® B)N A]& BYN A ... (6)

Intuitively, when B is a symmetric structuring el-
ement, the Reconstruction of A from D is the col-
lection of connected components of A which con-
tain points of D. It is important not to confuse
the above operation of Reconstruction with the
previously mentioned reconstruction of the origi-
nal tmage X from ils Skeleton Representation.

The definition of Ultimate Erosions presented
bellow in slightly generalized in order to meet our
purposes:

Definition 3 (Ultimate Erosions) The Ulti-
mate Erosion of order n, denoted as U,, of a
given image X is the set given by:

A .
Un = Xy — Recio(n){Xn, Yot} (7)

where C(n) = B(n — 1), for n > 1, and C(0) is

an arbitrary structuring element.

The original definition in [1] is restricted to the
case where B(n) = B (and therefore A(n) = nB),
hence C(n) = B, for all n. Intuitively, the Ul-
timate Erosions are those Skeleton points with
maximal quench value within each region of the
original shape. (See the example in Fig. 1(a)).
They are usually a small percentage of the Skele-
ton.

3 New Skeleton Properties

Our main theoretical results are presented in
this section. They are related only to a dis-
crete Generalized-Step Skeleton Representation
(see section 2.1).

3.1 Quench Function Sampling

Theorem 1 The quench values of the Skeleton
points corresponding to the Ultimate Erosions, in
addition to the position of all the Skeleton points,
are sufficient for perfect reconstruction.

Proof (Outline) We use induction in the fol-
lowing way: (i) If N is the mazimal quench value
in the Skeleton, then Xy = Un. (i) Once Xp4q
s known, each set X,, N > n >0, can be calcu-
lated (see bellow), and (iii) the original image X
s equal to Xy.

In order to oblain the second part of the above
induction, suppose that X, 11 is available. There-
fore Y11 is also available. From the hypothesis,
the Skeleton S and the Ultimate Erosions {U,}
are provided. Then X, is obtained from the above
(not proven here due to lack of space) by:

X,=U,U REC[C(n)]{[Yn+1 U S], Yn+1} (8)

where {C'(n)} are as defined in Definition 3. O

The above proof is constructive; it provides a
reconstruction algorithm for the original image
from the resulting “Quench-sampled” Skeleton.
It comsists of calculating at each step n, which
varies from N down to 0, the set X, according to
(8).

Corollaries 1 and 2 bellow are direct conse-
quences of (8). In both of them, suppose that,
for each n, the structuring element C(n) is sym-
metric. In addition, Connectivity is considered
under the same C(n).

Corollary 1 Ifs is a Skeleton point with quench
value n, then all the Skeleton points in the con-
nected component to which it belongs have also
quench value n.

According to Corollary 1, not all the ultimate-
erosion points need to have their quench value



stored! For every connected component in the
set of ultimate erosions, one needs to store only
the quench value of one point. Note that the set
of ultimate erosions is usually a very small subset
of the Skeleton points, and, due to the above con-
sideration, only a small percentage of them need
to have their quench values stored. This provides
a sampling scheme of the Quench Function. (See

Fig. 1(b)).

Corollary 2 A Skeleton point s has quench
value n if and only if s ¢ Y,11 and s is con-
nected to either U, or Y 11, directly or by a path
of Skeleton points.

The above corollaries are used in the Coding
scheme proposed in section 4.

Corollaries similar to Corollaries 1 and 2 above
can be derived also for asymmetric structuring
elements, if we substitute the concept of Connec-
tivity by Descendance (see [2]).

3.2 Deterministic Prediction

Suppose a Coding procedure where, at a certain
step, the Skeleton Subset of order n, S5,, is to
be coded, and that Y,y is known to be avail-
able both to the coder and the decoder. Since
Spn = Xp—Y41,it follows that there are no points
of 5,, inside the region Y, ;1. Therefore the coder
does not need to code the status (whether belong-
ing, or not, to 9,,) of the pixels inside Y, 11, and
the decoder does not need to “look for” Skeleton
points in that region at that moment. This was
used in the coding schemes proposed in [3].

It turns out that there is also a region outside
Y, 4+1 that can be predicted not to contain Skele-
ton points from S5,. This region can be charac-
terized by the following theorem:

L,
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Figure 1: (a) Skeleton and Ultimate Erosions of a
portion of the image “Coffee Grains”. The Ultimate
Erosions are the black Skeleton points. (b) A subset of
the Ultimate Erosions (the four black points). Their
quench values, in addition to the position of all the
Skeleton points, are sufficient for perfect reconstruc-
tion.

Theorem 2 Let p be any point in the Fuclidean
space in which X is defined (R* or Z%). If the
following holds:

[(Yayr U{p}) ¢ A(n)] 0 B(n) D {p}  (9)
then p cannot belong to S,.

Proof The proof is by contradiction. Suppose

p is in Sy, and let us define the operator p(Z) 2
[Z S A(n)]o B(n). By definition of Y41, p(X) =
Yii1. Also the set Y11 @ A(n) gives Y41 when
operated upon by p(-). Therefore, any set Zy, such
that Y41 @ A(n) C Zy C X, satisfies p(Zy) =
Yot1. In particular, Zg = (Y41 U {p}) & A(n),
p € Sy, satisfies it. However, according to (9)
p(Zo) D {p}, and, therefore, p € Y, 11, which
contradicts that p € S,,. O

Theorem 2 provides a test for each point in the
Fuclidean space: If it passes it, i.e. (9) holds,
then its status as a Skeleton point need not to
be coded because it is known to both coder and
decoder to be negative. On the other hand, if the
test fails ((9) does not hold), nothing can be said
about the point status, and it must be coded.

The above test is however practically inviable,
because it is extremely computation-demanding.
Luckily, a simplified, much faster test is possible
in many cases by the following corollary:

Corollary 3 Let p be a point in the Fuclidean
space, and let F be any sel not containing the
origin (denoted as O ), and satisfying:

[(FUO)e A(n)]o B(n) > {0}  (10)

If (F @ {p}) C Ynt1, then p cannot belong to S,,.

In other words, one can pre-select a template F’,
excluding the origin and usually containing few
points, such that it satisfies (10). Since it is inde-
pendent of the input image X, the above selection
is done “off-line”, and only once for a given de-
composition family {B(n)}. During an “on-line”
Coding algorithm, the “prediction test” is per-
formed, for each point p, by placing the template
F “on” p and examining the status of the indi-
cated points.

The points found in the above test are only a
subset of the “predictable points” found in the
test of Theorem 9. In order to find all the pre-
dictable points, a family { F}} of all the templates
satisfying (10) should be defined, and the test in
Corollary 3 must be repeated for each F;. This
could also be very computation-demanding. Of-
ten, however, a small subset of {F;} is enough for
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Figure 2: A point (4, j) predicted not to belong to S,
according to Corollary 4.

finding most of the desired points. As an exam-
ple, consider a Skeleton decomposition of a dis-
crete set X, having B(n) = B, Vn, where B is
a 3 X 3-pizel squared structuring element. In this
case, Corollary 3 above can assume the following
specific format:

Corollary 4 TLet (i,j) € 22, and consider a
Skeleton with a 3 x 3-pizel squared structuring
element. If any of the triplets

{(i+k1,5), (6,0 + k2), (i + ks, j + ks)}
i = k1,301 — ko) (i — ko — ko).
{0+ k1,5), (6,5 — k2), (d )}
{( J)s (5 + k), (2 — k3, j + ka)}

for any integers ki, ko and ks in the interval
[2,2n + 1], is contained in Y,11, then the poinl
(i,7) does not belong to S,,.

The above triplets represent a subset of the fam-
ily {F;} related to the given squared structuring
element. Fig. 2 shows an example of a point (¢, §)
which is predicted not to belong to S, in this
specific case.

4 Proposed Coding Scheme

In this section we propose an efficient coding
scheme of the Skeleton Representation, which
makes use of the properties presented above. In
general lines, the proposed algorithm is as follows.
After the Skeleton Representation is calculated,
the coding is performed in the same way as the de-
coding, i.e., by reconstructing the original image.
Let N be the maximum quench value. Initially,
for each of the Ultimate Erosions U,, 0 <n < N,
a set U, is formed, containing one point of each
connected component of U,. Then, the points
in the above sets have their position and quench
value coded. At this point, the main loop starts.
At each step n, which varies from its maximum
value, N, down to 0, a scanning procedure is per-
formed on the ezternal boundary of Y, ; and of

U, (the external boundary is provided here by

the operator (-) @ C(n)— (), Yn). Only these ex-
ternal boundaries need to be scanned, since the
Skeleton points in 5, are necessarily linked either
to Y41 or to U, (Corollary 2). Some points in
the above scan can be predicted not to belong
to 5, by the test in Corollary 3. These points
are skipped. The other (non-predictable) points
have their status (“true” or “false”) as a Skeleton
point coded by an arithmetic coder. If a point
has status “true”, its neighborhood is searched
for other connected Skeleton points in a recursive
way, before the main scanning procedure goes on.
This procedure is detailed in [7].

The above algorithm is shown, in simulations
on binary images, to outperform one of the best
previous Skeleton coders, presented in [4], and the
well-known Ziv-Lempel, Run-length + Huffman,
Quadtree and Chain coders, and its complexity is
on par with their complexity [7]. At this point, it
is still weaker than the most advanced Standards
for facsimile (G4 and JBIG), but it is comparable
to the 2-dimensional Group 3 Standard (G3D2,
with k& = 4), being usually more efficient than it.

5 Conclusion

We have presented new Skeleton properties, and
shown how to efficiently take advantage of them
in order to design a fast and efficient coder of
binary images via their Skeleton Representation.
The presented theoretical results can be ap-
plied also to grayscale images and “labeled” im
ages (obtained by a segmentation procedure).
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