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Abstract

In this paper we analyze and examine a recently proposed waveform coding
scherne based on maximizing the entropy of the transmitted bit-stream. The
theoretical motivation for using Lhis scheme is the fact thal maximum entropy
is a necessary condition for optimality of any coding scheme. A practical motijva-
tion is its simplicily and amncnability Lo fast implementation. For stationary sig-
nals, a detniled analysis of the coder/decoder characterislics is presented. For
non-stationary signals we propose an adaptation scherne which tracks slow tem-
poral variations of some statistical parameters. A gain adaptotion mechanism
cuncels the idle channel noise which cannot be removed by an ordinary A.G.C.
The new adaptive system is found Lo overperform ADPCM, particularly for not too
- highly correlated (p < 0.8) non-stationary Gaussian processes.

1, Introduclion

In Lhis paper, a new adaptive predictive wavelormn
coding scheme is developed and cxamined. The
scheme is bascd upon rmaximizing the flest order
entropy of the transmitted bit stream. This concept is
proposed by E. Angel and L. Daigle in [1]. who
presented sorme resulls of 8 non-adaptive version of
the system (for 1 and 2 bils/sample), for coding
spcech signals [2] and images |V These authors
assume the inpul signal to be a stationary Gaussian
process with a known covariance funclion. For Lthis
class of signals wa found their proposed scheme to
over perform DPCM significantly in a wide range of the
correlation coeflicient  value. [lowever, for non-
stationary signals, the fixed scheme is not suitable.
Moreover, Jow energy regions of large dynamic range
signals, arc reconstructed with very high level of idle
channel noise. The non-linear nature and the implicit
dependence of the cncoder characteristics upon the
input signal gain and corrclation cocflicient value,
causes considerable difficulties in the adaplation task.
Nevertheless, in this paper we propose approximatiens
of these characteristiecs by explicit functions of the
gain and the correlation coeflicient, which cnable
adaptation Lo slow variations of these parametlers. The
suggested gain adaplation algorithm cancels the idle
channel noise, whiclhi can not be removed by an ordi-
nary A.G.C. lowever, the computational complexity
required for adapting the correlation coeflicient is
greater than in classical ADPCM. The proposed adap-
tive predictive maximum entropy system s

particularly suitable for coding non-stationary Geus-
sian processes with slowly varying covariance fune-
tions. For specch slgnals, tha resulling quality and
intelligibtiity are equivalent to CVSD for the 1
bit/sample verslon and to ADPCM for the 2 bit/sample
systeit, In addition to ghnulation resulls, the presen-
tationt 6t an adaptation yehems, end the method for
cancelling the limit cycles ot low inpul signal ampli-
tudes, nn lmportant contribution of this paper is a
detailed enalysis and presentation of the coding and
decoding characteristics, not given previously in Fl,z].
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2. The Haximum Botropy Concept

The maximum entropy (ME) criterion has bcen
proposed by Angel and Daigle [1,2]. As we sce i, the
motivation for selecting Lhis criterion, is the fact that
maximum entropy is a necessary attribute of an
optimum data compression system. This foltows from a
simple consideralion: Suppose we had such an
optirnum systern having entropy less Wthan its rale (in
bits/symbol), then one could further cornpress the
dala with no additional distortion (by entropy voding).
and consequently reduce the rate. It follows that the
original rate was nol minimuni for the given allowed
distortion. From the convexily properly of the rate-
diglortion funclion, it follows thal Lhe distortion was
nol minimum for that rate, in contrast Lo the above
assumplion.

It can be shown [5] that for conventional
waveform coding schernes such as DPCM, there arce
considcrable difficulties in oplimizing the parameters
(in the MMSE scnse) for low roles, because the Lrue
equations for solving the optimum predictor
cocfTicienls arc higbly non-lincar. On the-other hand,
since il satisfies a nccessary condition for optimalily,
the ME approach has the potential of oblaining on
improved solution compared to a solution based on
linearizing the non-linear equations.

3. System Description

In this section we review the scheme proposed by
Angle and Daigle [1.2]). In crder Lo oblain a convenicnt
analytic solution, these authors [1,2] concentrate on
the maximization of the conditional first order entropy
and assume that the source is a Gaussian process with
a known covariance [unction. Fig.l depicts Lthe
transmitler and recciver for the rale of 1 bit/sample.
The transmilter (a) is quite similar to the first order
DPCM transmitter. However, in contrast to the DPCM
transmitter, which is designed Lo minimize Lthe encrgy
of the residual, the suggested predictor (also 1st
order), is designed in such a way that the output sym-
bols are equally likely, given the information currently
ovailable to the predictor, i.c., 2, and y,. In olther
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words, the [ollowing condition ig to be satisfled:
1
Prien&l=1|9n-Un;:prien‘l:olen-Un;=E— (l)

In this way the rmaximum conditional first order
entropy is ensured and consequently, statistical
independence belween successive bits. The receiver
(b) consists of a similar predictor (in order to recon-
struct ¥,), and in addition an estirnator of the input
(Zn) which ulilizes the information currently available
at the receiver; narmely, €5, Yn. €n-) and Yy, .12

En = Eir'n‘enrcnﬂ-ynvyn—l; (2)

where £{(-)] denotes the expectation operator. Since
Yn is determined from e,_, and y,., by the predictor,
it can be omitted and (2) can be rewritlen also as:

E,', = Eizn!en-en—l-yn—l; (3)

Since the prediction and the estimation functions are
implicit (as we shall see later), it is proposed in [1,2}
to store them in look-up Lables (LUT's). This way there
is no computational load at all bul only memory
accesses. Consequently, a very fast system can be
implemented with quite modest memory require-
ments, and can handle high sampling rales as
required, for example, in video processing.

The performance of the above scheme for image
compression is described in [1] and the resnits for
speech signals are given in [2]. bolh in comparison
with DPCM (non-adaptive), for 1 bil/sample and 2
bits/sample. No adaptive version of the above scherne
is proposed in [1.2].

4. Prediction and Estimation Characteristics

I this section we describe in detail the prediction
and estimation characteristics for a 1 bit/sample sys-
tem. In the sequel we consider also the 2 bits}samp[c
system,
let {r,] be a zero mean Gaussian process with vari-
ance 6% and correlation coefficient P [ E(T,Tn, )/ 0%
and assume that these parameters are known.

4.1 The predictor

In order to ensure cqunl probabililies for the
quantization levels at the transmitter, the predictor:
Yn+1 = M(y,.e,) must be the median of the conditional
density function g(z,s|z, 2yn) for e, =1, or the
median of the density function g(Zn ]z, <yn) for
e, = 0. For the case e, =1, it follows [rom the Bayes
formula that:

- gjrnn.rnéyn)

g(InHlInayn) - P(Inayn) (4)

The denominator of (4) is given by @( yg‘—) where
AL T e n
z) 4 e dt .
o= 8 = f (®)
For the numerator of (4) we have:

g(In H-Inayn) = fg(‘zn l—l"") asd =
Vn

7 1 (9=pzn11)%]
=g (Fn+1) expl— dd =
) L Tate e )
2
.1 Tatly  Yn =PTne1
= - e 6
~2na exp ( 20% @ oVi-p? '’ ©

By putting (B) into (4) and integrating with respect to
4 from y,,, to inflnity, we oblain an expression for
Prieg = 1a,.y,]. Now, by (1) we have the following

equation:
Pri-’rnol 2"'ynﬂl-’rn > yn‘ =

sz L

Voo Y11 [ Y20t YUn P 1
[VZrnog( - )] _/ e Q[ N 5

o l—/)2

Ynat

In expression (7) the variables p,0 and ¥, can be
viewed as paramcters and ¥,,, can be viewed as the
unknown. This equation can be solved by numeric tech-
niques. For the case e, =0 a similar equation is
obtained by using symmetry considerations, The
resulting predictor is non-linear as is demonslrated in
Fg.2.

4.2 The Fistimator

The estimator reconstructs the inpul by assigning
the appropriate representation levels for Lhe
predictor's quantization decision levels. These levels
are the centroids [6] of the ranges of the input sam-
ples given the information {e,.y,..1.85-1}. For the case
e, =€, ;=1 it can be shown (using integration by
parts) that (3) satisfies:

~ 2 1 w2720 | Un-1—P¥n
I, =0 ——te " Q == +
" T Yno { oV1-p? l
Q=)
2 17262 [ Yn DY ®
“Vn-17 20 n Jno1
+ 2] —_—
d 0\/1-/"‘*,”

For other values of e, and e,_,, similar expressions
are ohtained by using symmetry properties of the
Gaussian distribution.

Because of practical limitations explained below,
a 2 bits/sample system is not obtained just as a simple
extension of the 1 bit/sainple system, since there are
now 3 threshold values. Here, if each threshold is
rcpresented by 8 bits, and the error is quantized to 2
bits, then the predictor LUT is addressed by 26 bits,
Consequently, the predictor LUT size neceded is 192
Mbyte ! Clearly, one nust limit the number of states,
This could be done by dividing the support of the den-
sity functions g(z,yilz, 2 yn) and g(znalza <Yn)
into four non-overlapping intcrvals, each having a pro-
bability of 1/4. This solution is of coursc suboptimal.

5. System Performance for Stalionary processes

In this scetion we present sorne simulation results
performed to measure the ME performance for sta-
tionary Gaussian proccsses at the rates of 1 and 2
bits/sample.

We now examine the dependence of the SNR on
the value of the correlation coeflicient - p. The SNR is
deflned as

y 13
sNR 2 100gl (3 22/ (5 (220071 (9)
n=j n=i

where N denotes the number of poinls per sequence
and k - the number of sequences. The values of p used
were p = 0.2,0.5, 0.8, 0.9, 0.95, 0.98. For each of these
values, k =50 Gauss-Markov sequences were pro-
duced. Each sequence had N = 4096 points. Ip addi-
tion, for each value of p the prediction and estimation
LUT's were computed. The upper bound for the SNR of
the reconstruction of a 1st order Gauss-Markov pro-
cess from any represenlalion by ff bils/sample can be
easily obtained frorn the rate-distortion function [3].

SNR[dZ] % 6.02R7 10 tog,q (1-p?) (1m)

In Fig.3 several graphs of SNR vs. p are presented. The
figure compares the performances of ME, DPCM and
the upper bound provided by (10) for Lthe above rates.
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The stepsizes for DPCM and LDM (Linear Delta Modula-
tion) were sclceted empirically to mminirnize the MSH
[5].

Several inferences are drawn from these curves:

1. The performances of all the systems examined are
considerably far from the upper bound.

2. For a wide range of p, the ME systern significantly
overperforms DPCM and LDM, particularly at the
rate of 1 bit/sample.

It is seen [rom Fig.3 that for a wide range of the corre-
lation coefTicient (zero to 0.8 or 0.85) the ME system
has & higher SNR, by up to 5dB than LDM at 1
bit/sample, and about 3 dB above DPCM for 2
bits/sample.

8. The Adaptive Scheme

In order to make the system described ecarlier
adaptive, one nceds to estimate p and ¢ at cach time
instant, and to update the predictor and the estima-
tor, accordingly, at both transmitler and recciver.

8.1 Gain Adaplation

It is suggested to estimate the paraneter ¢ as fol-
lows:

Sp = ASp + (1-N)T2 (0=A<1) (11)

where: 0, = /5, is the estimate of o ol litne n, ¥, -
the reconstructed "normalized” signal {sce Fig.4) and
A-adecay which determines the speed of adaptation.

In this way, the variance of the "norrmalized"” signal
remaing coughly consiant. AL the receiver, ¥, is mulli-
plted by oy, ?E,‘ = T,'0,). The main problern observed
in using this AGC mechanism, is a limit cycle effect
which occurs when the inpul signnal has a low encrgy.
The limit eycle is characterized by high arnplilude
ogcillations in the reconstrucled waveform. Since the
gain is adapted using the Teconstrucled signal, it turns
out that the gain {(0,) does not decay sufficiently in low
energy intervals, and these oscillations rernain large.
To overcome the limit cycle problem it is first neces-
sary to identify this event and to force the variable S,
to decrease, regardless of the value of the recon-
structed signal. We have therefore modified (11) as [ol-
lows:

At Spoy + (1=A)Z2 . no limit cyele exis&s'

S 12)

n = Ao Spo . limit cycle exists

where Ay and Az are positive numbers smalier than 1.
The identification of a limit cycle ovceurrence is based
on the alternating sign of the prediclion variable y,. A
limit cycle event is declared whenever the sign of y,
alternates at least thrce times successively. This
mechanism was {ound to remove completely the limit
cycle effect.

8.2 Adaptation of the Correlation Cocflicient (p)

To adapl the system to variations in the correla-
tion voeflicient p, it is suggested to estimate p in the
following way:

Co = A Croy + T Ty (13a)
Sy =AS,., + 2P (13b)
pn = Cu/ Sn (13¢)

where A is the “forgetling” factopr (0 <A< 1). It is
pecessary to limit the values of p, such that |p,]
would not exceed unity.

‘The main problem now is how Lo use this estimate (B,‘)
lo updale the predictor and the eslimator. We have
seen (expression (8)) that the estimatle Z, can be
expressed “explicilly” in terms of p, 0,y 2., 7, 2nd
Yn-1. where ¥, is related Lo ¥, .y and e, by the pred-
iction [unction. However, for the predictor we do not
have an cxplicit formula. Thercfore, it is proposed to
use a simple approximation of the predictor by an
cxplicit [unction. This is easily done by deflning the
predictor as the conditional expected valuc (instead of
the median value), e.g., [or e, = 1, we have:

Y
~ o exP(_‘Zo?’)
Ynr = Bz lzazyn) = ‘\/%‘?’Y—_‘F (14)
g

This approximation turns out to be a very good one
(purticularly for large values of |y,|). Simulation
results did not reveal any significant diflerences
between using the cxact predictor or Lhe above
approximated predictor. Simnilar ideas can be used for
the 2 bits/samnple system [7]. We now have "explicit”
forrnulas for bolh the prediclion and estimation by
which updated values of p and ¢ can easily be substi-
tuted.

The computational load requircd to adapt the systern
is heavier than in classical ADPCM because these for-
mutas are quite comnplicated. A lookup Lable for the
funclion Q((B is needed as well. Bul, as il was shown
above, il the input is nol Loo highly correlated, that
adaptive version of the ME method overperforms
ADPCM for non-stationary Caussian processes with
slowly varying covariance f{unctions. For speech sig-
nals, the adaptive ME scheme turns out to perform
equivalently to ADPCM in terms of quality and intelligi-
bility.
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