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ABSTRACT

Fractal image coding using either fixed-size blocks or
variable-size blocks in a quadtree structure is by now
common. However, a fast decoding algorithm based cn
a hierarchical representation, which requires only a finite
number of iterations to exactly reach the fixed point of the
fractal transformation, has been shown only for fixed-size
blocks. In this work, a generalization of the fast decod-
ing algorithm is made, enabling its use with a quadtree
image partitioning. A theorem extending the hierarchical
representation of the fractal transformation fixed point to
include quadtree partitioning is given and proved.

1 INTRODUCTION

A fast decoding method using hierarchical decoding was
originally introduced by ¢ien ef @/ [11 and Baharav er al
[2], and is reviewed in [3]. Using hierarchical decoding,
one can decode an image, i.e., reach the fixed point of the
fractal transformation, in a finite predetermined number
of iterations.

This fast decoding algorithm was presented only for
fixed size range blocks, and hence its use in decoding a
quadtree partitioned image was not reported so far. Since
quadtree partitioning is a common way to improve the
performance of fractal image coders [4], it is of great in-
terest to extend the fast decoding method of [1, 2] to in-
clude this partitioning as well.

The concepts of the original fast decoding method are
briefly reviewed in section 2. The extended algorithm,
and a proof of the generalization is given in section 3.
Section 4 demonstrates simulation results of the extended
algorithm and section 5 concludes and discusses the ap-
plications arising from this work.

2 BLOCK-BASED FRACTAL CODING AND A
FAST DECODING ALGORITHM

In [5, 6} Jacquin introduced a practical block-based frac-
tal image coding scheme. Encoding is done by partition-
ing the image into non-overlapping blocks, called range
blocks (denoted R,;, where ¢ is the block index), and into
typically overlapping blocks twice as large in each coor-
dinate - creating what is called the domain pool. A spatial
contraction is performed on the domain pool, by an op-
erator ¢ (usually averaging), so that the resulting blocks
(which we denote D)) are of the size of the range blocks.
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Each range block is linearly estimated from a contracted
domain block according to fi,: = a; - Dy, + by, where a;
is called the scale parameter, b; - the offset parameter, and
71 18 the index denoting the best domain block to get R;as
close as possible to R,;. Decoding can be done by starting
with some initial image, estimating the range blocks of a
new image from the contracted domain blocks, and iter-
ating until a fixed point is reached, or nearly so (thus this
method is called IFS - Iterated Function System). If the
range block estimators are good enough, then the fixed
point image is much like the original picture. It should be
noted that this method does not really dictate the shape of
the range blocks, thus allowing quadiree partitioning, for
example.

In [1] a method for enriching the domain pool by a span
of vectors is suggested. A simple version of this method,
called DC orthogonalization, utilizes flat (DC) planes,
thus estimating range blocks by:

Ri=¢; - {D;, -D;} +R; (1

where the bar indicates a block of constant value which is
the mean of the corresponding block, Using DC orthogo-
nalization requires the triplets {a;, R;, j;} to be transmit-
ted/saved as the compressed code, instead of the triplets
{a:, bs, §1} which where used by Jacquin’s code. The
amount of information in the code is the same in both
methods,

In [2] Baharav et al introduced the hierarchical represen-
tation and interpretation of the fixed point. Before re-
viewing their results, several definitions are necessary:

Definition 1 An image at resolution m, Y e is the im-
age obtained from an image Y (or Y1) by m repeated
contractions using the spatial contraction operator p:

Y, = gp{Ywh} =™V} im21 @
Definition 2 A local transformation ¢; is a set {a;, 73, §; }
used for estimating range block R;.

Definition 3 A transformation T, is a union Ut
which operates via its local transformations on an image
having the size of Y 3. The fixed point of this transfor-
mation is denoted by Y ({13 }.

In the sequel, the contracting operator ¢ will be consid-
ered to be an averaging operator, but other linear opera-
tors with a mapping property of 2 x 2 — 1 x 1 that are
commutative with the averaging operations are valid.

The main theorem of [2, 3] states that the different reso-
lution levels of a fixed point X; = X {T1} (which are

Image Processing and its Applications, Conference Publication No. 465 © IEE 1999 581



X%m for the different values of m) are the correspond-

ing fixed points of the different transformations T 3 {i.e.

Xy {ngﬁ_} for those m values). This theorem is used
to develop a fast decoding algorithm [3] that reaches the
fixed point of the transformation in a fixed number of
steps that is log, of the side length of the square range
block.

Two operators are now defined. The first is the zoom-
out operator (10 be referenced as IZ0 for IFS Zoom Out):

1 -

)(2_mTr P {X R } Contracting a fixed point yields
the fixed point at the next lower resolution. The second is
the IFS Zoom-In (IZI) operator which is derived directly
from the definition of the range block estimator, and is
described by:

XFIWZUR&;Ri:ai'{Dj._ﬁj.‘}"'ri 3)

where D, is of the size of R;, and is taken from the
picture szﬁ with no further contraction (since Xzﬁ
is already a contracted version of Xg.%)' r; denotes the
value of R; in (1) stored in the code. Applying the IZO
operator M times to the fixed point picture X;, where
M = log, B, results in a picture Xﬁw in which every
range block is one pixel in size, and its value is given
explicitly in the code. Hence M IZI operations, starting

with X 1, results in the desired image X .
2

3 FAST DECODING USING QUADTREE PART1-
TIONING

When encoding an image, the smaller the size of the
range blocks, the better the quality of the reconstructed
image, but the lower the compression ratio. Quadtree
partitioning provides a way for improving coder perfor-
mance by allowing the use of blocks of different sizes de-
pending on the matching quality of corresponding range
and contracted domain blocks. Details about the use of
quadtrees in fractal coding can be found in [4, Ch, 31,
Encoding with a quadtree, either Jacquin’s way or ¢ien’s
way (i.c., using {as, by, 7; } or {aq, 74, 7i}), is done exactly
the same as with fixed size range blocks. The fast decod-
ing algorithm of [3] requires however all the range blocks
in the picture to be squares of the same size, which is ob-
viously not the case when quadtree partitioning is used.
To stress the point: Fast decoding requires log, B itera-
tions, where B is the size of the range block, but which
size of block should be used here when we have range
blocks of different sizes?!

An extension of the fast decoding algorithm, to include
quadtree partitioning of the image, 15 now presented. This
leads to a generalization of the Theorem in {2, 3].

Let the biggest range block in the quadiree-partitioned
picture be of size 2Lme= x 2Lme= and the smallest one of
size 2Lmin % 2Lmin  Then, according to the fast decod-
ing algorithm above, L. IZI operations should be ap-
plied to reconstruct_the biggest blocks, while only Lmin
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IZ1 operations should be applied to reconstruct the small-
est ones. Let us assume that only blocks of the biggest
size are to be used to cover the image in spite of the
quadtree partitioning, then an initial image can be con-
structed from the average values of these blocks. If a
block is partitioned by quaditree (o its sons, its average
is not contained explicitly in the transformation. How-
ever, it can be recovered by averaging the averages of its
sons. The same action may be taken when one or more of
its sons are further partitioned.

This leads us to suggest the following extended fast de-
coding algorithm:

1. Create an image of the size of X _ 1

maz

this image corresponds to a rangé block in the orig-
inal image (which is of the biggest size), then ini-
tiate it with 7; given in the transformation T. Else,
this pixel is a contraction of a block in the origi-
nal image, which is of the biggest size, but is not
a range block, and may be considered as a unicn
of smaller range blocks. This pixel is initiated with
the weighted average of this union, according to the
size of the range blocks in the union, and the exact
average of the big block is recovered. This can be
done naturally in a recursive way. Call this image
the source image.

. If a pixel in

2. Allocate space for an image twice the size, in each
coordinate, of the source image. Call this image the
destination image.

3. For every block in the source image that is a con-
traction of a range block, use the IZI operator and
put the results in the proper place at the destination
tmage. To any pixel in the source image which is not
a contraction of a range block, correspond four pix-
¢ls in the destination image, which should be each
a contraction of a range block, or a contraction of a
union of range blocks, and therefore these four pix-
els are set in the same manner as in stage 1.

4. Rename the destination image as source image, and
return to stage 2. Repeat stages 2-4 L, times.

5. After the last iteration, the image called source is
exactly the fixed point of the transformation.

It should be noticed that each range block is built using a
number of iterations which is exactly log, of its size, thus
reaching eventually its real size,

A demonstration of the process is depicted in Fig. 1.

A formal proof will now be given to support this algo-
rithm, claiming that the fixed point can be obtained using
a fast hierarchical decoding, even when quadtree parti-
tioning is used.

We’ll say that a bleck (not necessarily a range block) is
limited to resolution n, if it belongs to the original image
X, and its size is 2" x 2", A block R like this may be
contracted n times at most, to remain represented on a
discrete grid. The last contraction results in a single pixel
{1 » 1) having the value R, i.¢. the average of the block.
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Figure 1: On the left side, the original quadtree partition. On the
right side, the decoding process: all 1 x 1 blocks (pixels) are initiated
using the average values given by the transformation (explicitly or
implicitly). Then, IZI operation is performed to get the three 2 x 2
blocks according to the quadtree structure, and then, the averages
of the smaller blocks are implanted. Finally, an IZI operation is
performed, this time yielding the whole 8 x 8 image. More IZI
operations may be needed to get the real size of the image,

Since range blocks of different sizes are present when a
quadtree is used, there are range blocks (the smaller ones)
which may not be represented by their contracted version
after several contractions of the image. This implies that
the original transformation T} cannot be applied to this
image, and therefore, a different version of T' must be de-
fined. This is done in the next definition, which replaces
definition 3.

Definition 4 A transformation T2

1 is a transformation
that:

i

1. Operates on an image of the size ofXE;E.

2. Inherits from the transformation T_.__ its local
transformations t; = {a;, 74, ji} such that:

(a) If t; relates to a block limited to resolution k
and k > m, thent; belongsto T e 100.

(b} If t; relates 10 a block limited to resolution
m — 1, then this block is represented at the
current level by only one pixel, and due to the
structure of the quadtree partition, three more
blocks like this (limited to resolution m-1) are
its neighbors. Thus, instead of the four cor-
responding local transformations, a new lo-
cal transformation is defined for T b byt; =
{0,7;,0} so that the new value r; {the average
of the corresponding block) is equal to the av-
erage of these four blocks. Note, that a; and j;
are irrelevant here, and hence were formally
setto 0.

Theorem 1 Hierarchical fixed point representation
(generalization).
Given a transformation T = T\ = | ), t; where:

s {1;} are local transformations which relate to range
blocks according to a given quadtree structure.

e Range blocks are of size 28 x 2% (0 < k <
L, k and L are positive integers). L relates to the
size of the biggest range block that exists in the par-
tHtion.

» For every B such that a B x B range block exists,
there is a pool of contracted domain blocks, and the
displacement in this pool between every two blocks
(in any direction) is an integer muitiple of -‘g—.
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o X, is the fixed point of T1.
Then

X T} =Xg im=012,..L &

where, T?Iﬂ_ is defined in Definition 4.

Proof

Images of the size of X e contain only contracted ver-
sions of range blocks limited to resolution m or greater.
A block limited to resolution k < m will become a single
pixel in X 1 and will disappear in the next contraction.
We will préve that at any resolution, every range block in
the fixed point at this resolution can be estimated with
no error, using the transformation T. To do that, we will
assume that an exact representation exists in X . — and
show that a representationin X 3 (for 1 <m < L) has
also no errors. According to the theorem’s conditions, for
m = 1 the representation X 1= X is errorless. The
case n = 0 in equation (4) follows immediately from the
last condition stated in the theorem. Hence we consider
from now on only values of m which satisfy m > 1.
LetR; € X#_ , (m < L), be acontracted version

of a range block in X,. Denote its size by 2¥ x 2. Two
cases may exist:

1. Ry corresponds to a range block limited to resolu-
tion greater than m-1,

2. R; corresponds to a range block limited to resolu-
tion m-1.

Suppose the first case is true, then a local transformation

t; = {ai, 7, ji} cxists in T2mx_l (andin Ty also) so that

R; zai-{Dji =Dy} +r 5)

and D, exists in X 1 (being a contracticn of a domain

block in X2mz_ ). Applying the spatial contraction oper-

ator ¢ on both sides of the equation, yields:
¢{R.} Gp{a'i {D.‘i; _]_)1'-'} +ri}
a; {p{Dy,} — w{Dy.}} + wiri}
a: {(D;,} - #{Dy; T+ elny ©

w{R;} is a contracted version of the same range block
which relates to R;, and is a range block in Xz_}w.
»{D;,} is a contracted domain block that exists in
X_1 fork > 1 by the terms of the theorem. @{r;}

P
is a block of size 251 x 25~1 with constant value equals
to 7; (which is given by the proper #;). Since i; (which
is also in T . ) has all the needed parameters, the esti-
mation of {R.} in X 5 from @{Dy,} is errorless. We
draw the attention to the last equality of (6), which holds
only when the spatial contraction operator is commuia-
tive with the averaging operation.

For k = 1, a block ¢{D;, } does not necessarily exist in
X_n_n_, but in this case the block Dy, is of the size 2 x 2,

2m



therefore its contraction is 1 x 1 which is equal to its
average, and equation (6) reduces to the form ¢{R;} =
@{ri}, and since p{R;} is a 1 x 1 block, the estimation
is, again, errorless.

Suppose now the second case to be true, i.e. R; corre-
sponds to a range block limited to resolution m-1. Hence
its size in Xﬁlrr must be 1 x 1, resulting in R; = r;
(where r; is given by #; which exists in all resolutions
of the transformation T, until resolution m-1, including
m-1).

Due to the nature of the quadtree algorithm it is guaran-
teed that if R; is a 1 x 1 block, then it has three neighbors
of the same size, so that a new block, Ryp) of size 2 x 2
may be defined, and Ryg) is composed of four 1x 1 blocks
R[l], R[z], R[g] R R[4] (R; is one of them),

Rjg; is a contracted version of a block limited to reso-
lution m (though it is not a range block itself in Tﬁlﬁ,
but its contraction is a range block in ngw ), and therefore
@{Rg} is a1 x 1 range block that exists in X By
the definition of the spatial contraction operator, we get:

Rllxl + R12X1 + R13XI + R14X1
e(Rg) = ) 2l - 3] 4
Ry + R + Ryg) + Ryy)
4
Tt )t Tis) T

n (7

Since from Definition 4 the consequence is that r5) =
ﬂl]ﬂlﬂ%@li‘ﬂﬂ', then again, the estimation of o{Rg)}
in X?}w is without any error,

We conclude by the fact that the two kinds of o{R;} (R;
corresponding to range blocks limited to resolutions m-1
or greater} cover all of X e hence in every level of res-

olutionm = 0,1, ..., L: X {Tﬁ} =X, 0

4 DEMONSTRATION

Using a fixed grid, i.e., fixed size range blocks, one will
usually need to use range blocks of small size, like 4 x 4
or 8§ x 8, to achieve good quality of the reconstructed
image. Fixed grid compression results are demonstrated
in Fig. 2. As mentioned above, quadtree adapts itself
to the image, thus cbtaining a lower rate while retaining
quality. The reconstructed image is depicted in Fig. 3 on
the right. A series of images obtained by IZI operations,
resulting in the reconstructed image, is also depicted in
the same figure, The guadtree map used for the encoding
is depicted in Fig. 4.

As these figures show, the quadtree image is having a
quality very close to the fixed grid image with small 4 x 4
range blocks, while at less than half the rate.

Using the quadtree partitioning of Fig. 4, a total of 1M
additions and 333K multiplication operations are needed
for the hierarchical decoder to obtain the reconstructed
512 x 512 image in Fig. 3. In comparison, using the
same quadtree partitioning and assuming that six itera-
tions are performed (as typically used) with the iterative
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decoder, then 11M additions and 1.6M multiplications
will be needed for the reconstruction.

5§ CONCLUSIONS

The generalized fast decoding algorithm was shown to
reach the fixed point of a fractal transformation T in a
finite number of iterations, even if quadtree partitioning
is used. We note that usually the iterative decoder doesn’t
reach the fixed point in a finite number of iterations. In
section 4, the hierarchical decoder was shown to provide
a reduction in computations by a factor of 11 in additions
and a factor of about 5 in multiplications, as compared to
an iterative decoder.

It was also seen that in order to deal with a transforma-
tion that uses blocks of different sizes, the transformation
itself had to be changed when going to lower resolutions.
The reason for this is that blocks that were used by 71 no
longer exist in low resolutions, due to the discrete grid of
pixels, and 7 cannot be applied to this type of image.
An implicit advantage that was not mentioned before and
gives hierarchical decoding algorithms more power, is the
abandoning of the contraction condition on the scale pa-
rameter (Le. Ja;} < 1), since convergence is no longer an
issue,

The partitioning method is irrelevant to the fractal en-
coder, but when a fast hierarchical decoder is desired,
some partitioning methods cannot be used. A method
which cannot be used is, for example, HV partitioning
(Horizontal and Vertical tiling[4]). However, when the
image sides are 2 to the power of an integer, and rectan-
gular range blocks of similar shapes are sliced in half only
in one coordinate, fast decoding is feasible. This will be
expanded upon in an extended publication,
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Figure 2: On the left, the original 512 x 512 Lena picture. In the middle the reconstructed image with 4 x 4 range blocks (at 1.625bpp.
PSNR=36.6dB). On the right, reconstructed image with 8 x 8 range blocks (at 0.375bpp. PSNR=30.2dB.)

Figure 3: The four images on the left are the transformation fixed points at different resolutions (X Aom = 1,..,4). These images are
obtained by IZI operations one from the other, where every pixel in the leftmost image is the average of a 16 x 16 block (with no overlap) in
the original image (and also in the fixed point). The last step of the algorithm yields the image on the right, which is the reconstructed image
(at 0.772bpp. PSNR=35.4dB). All images demonstrate steps in the the fast decoding algorithm described in section 3.

Figure 4: The corresponding quadtree map used to encode the image. Smallest blocks are 4 X 4 and biggest are 16 x 16.
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